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ABSTRACT 

.- ’ 

. . 

A simple graph model is developed for binary digital pictures on 

a triangular grid leading to consistent and intuitive definitions of 

connectivity and region boundaries as well as fast memory-efficient 

algorithms for computing boundaries and the Qnsidedness” tree. 

Boundary encodings are extremely compact and can be smoothed using 

a discrete implementation of the minimum-perimeter polygon methods 

of Montanari (JACM April 1970 and CACM January 1970) and Sklansky 

et al. (IEEE-TC March 1972). Details of implementation are briefly 

discussed and attempts to generalize the model to nontriangular grids 

explains the well-known “anomaly” associated with connectivity on the 

square grid. 
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Introduction 

Much picture processing and pattern recognition research has been con- 

cerned with inputs encoded like Fig. 1. Following Rosenfeld [ 1, p. 21 we call 

these binary digital pictures. The present paper concerns several problems 

encountered in transforming the grid format into a more structured format 

suitable for describing and/or recognizing the shapes embodied in the picture. 

The first problem is that of defining a concept of connectivity among points of 

the digital picture so that the resulting connected components correspond well 

with one’s intuitive sense of connectivity and separateness. This topic is 

treated at some length by Rosenfeld [ 3] . Having defined connectivity there is 

the problem of how to construct an efficient algorithm for labelling the separate 

connected components (or equivalently detecting what and where they are). 

Montanari 1111 among others has suggested a method for this problem. Each 

connected component is separated from adjacent connected components of 

opposite color by boundary curves whose precise definition and computation 

is the third problem. Some have preferred to construct border curves through 

extremal points of a connected component but we feel boundaries which fall 

between adjacent pairs of opposite colored points have more intuitive appeal. 

Rosenfeld 131 and Zahn [ 101 represent different approaches to boundary curve 

construction, the latter being the forerunner of the approach developed here. 

Finally, it is of some interest to know which connected components are enclosed 

by which others and this information is nicely represented by an “insidedness 

tree” whose vertices may be components or boundary curves. Algorithms for 

constructing this tree are given by Montanari 14 J and Buneman [5]. See 

Rosenfeld [ 1, pp. 135-1391 or [Z, p. 1611 for brief discussions of these 

problems and excellent bibliographies. 
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FIG. l--Binary digital picture on square grid. 
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All methods cited above concern digital pictures on a square grid as 

exemplified by Fig. 1. In this paper we develop a theory and algorithms for 

the above problems assuming digital pictures on a triangular grid as exemplifed 

in Fig, 2. The triangular grid is also known as “hexagonal” [ 61 or “rhombic” 

[ 71 D Attempts to arrive at a consistent definition of connectivity on the square 

grid have encountered an “anomaly” which forces 8-connectivity for one color 

and 4-connectivity for the other [ 31. This has the effect of treating two connected 

shapes differently even if they differ only in color. The anomaly runs some- 

what deeper and has been independently acknowledged by a number of pattern 

recognizers. Golay [ 61 has emphasized the isotropic nature of the triangular 

grid and developed paralled picture processing operators for this grid. Gray 

[ 81 also shows an appreciation for the elegance of this grid. In earlier work 

[ 91 we recognized several important ways in which the triangular grid was at 

an advantage but until now we had not carried these hints to their logical con- 

clusion. . 

In the following sections we develop a simple graph model for binary digital 

pictures on a triangular grid leading to consistent and intuitive definitions of 

connectivity and region boundaries and fast memory-efficient algorithms for 

computing boundaries and the insidedness tree. The boundary encodings can 

be smoothed using a discrete implementation of the minimum perimeter polygon 

methods of Montanari [4] , [ 111 and Sklansky et al. [ 121. The resulting data- 

structure represents connected regions (components) by their boundary curves 

so that shape comparisons can employ techniques developed for curves (e. g. , 

[ 131 , [ 141 , [ 161 to cite a few). 

-3- 
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FIG. 2--Binary digital picture on triangular grid. 
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Triangular Picture Graphs 

A triangular& is an infinite planar graph each of whose faces is an equi- 

lateral triangle and each of whose vertices is incident to exactly six edges. A 

triangular picture graph is a triangular grid whose vertices are labelled ‘black’ 

or ‘white’ so that the set of black vertices is bounded. Figure 4 depicts a portion 

of a triangular picture graph as seen through a rectangular window; it is a 

discrete digitizing of the regions in Fig. 3. Although in practice all such 

pictures will be viewed through a bounded window, it is convenient for the theory 

which follows to consider infinite triangular picture graphs. 

The connectivity graph C(T) of a triangular picture graph T is the subgraph 

of T consisting of all vertices of T and just those edges (level e) whose end 

vertices have the same label. The heavy edges in Fig. 5 identify the connec- 

tivity graph for Fig. 4. The graph C(T) can be decomposed into connected 

components ( CK/ each bearing a label ‘black’ or ‘white’ inherited from its 

vertices. For each CR let the connectivity region RR be defined as a region 

of the plane containing all the edges in CK. If a level face is one with only level -- 

edges then the faces included in RR are all level. The level faces are shaded 

in Fig. 5. 

A contrast e of T is one with differently labelled end vertices and a 

contrast face is one with at least one contrast edge. The contrast edges are 

light in Fig. 5. It is easily seen that a contrast face has exactly two contrast 

edges. Each contrast face contains a unique contour segment which is a directed 

line segment joining the midpoints of the two contrast edges in such a way that 

the black vertex or vertices of the face lie to the right of the directed line. 

The contour segments for all (unshaded) contrast faces are depicted in Fig. 5. 

Some motivation for the term ‘contour’ is appropriate at this point. It is 
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FIG. 4--Triangular picture graph derived from Fig. 3. 
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possible to construct a continuous piecewise-linear function FT defined on the 

plane so that FT(v) = 1 at black vertices and FT(v) = 0 at white vertices. This 

is accomplished very simply by defining FT on each separate triangular face of 

T to be the unique linear function whose values at the three vertices of the face 

are as prescribed by the vertex labels. The contour set of FT at value l/2 

(i.e. , points p with FT@) = l/2) is then a family of mutually nonintersecting 

simple closed curves which separate black and white areas of the plane. The 

union of all contour segments defined above constitutes the contour set for FT. 

We would like to define a graph based on T which corresponds to the contour 

curves of FT. It is convenient to use the dual graph for this purpose. Every 

planar graph G has a dual graph D(G) constructed by making a vertex in D(G) 

for each face of G and connecting two vertices of D(G) by an edge if the corre- 

sponding faces of G share an edge in G. There is thus a one-to-one eorrespond- 

ence between the edge sets of G and D(G) and between the face set of G and the 

vertex set of D(G). Now let the dual graph D(T) of a triangular picture graph T 

inherit labelling structure from T as follows : Appropriate vertices of D(T) will 

be designated as contrast vertices and labelled with the contour segment from 

the corresponding contrast face in T. Furthermore, edges of D(T) will be 

directed from vertex v1 to vertex v2 if the corresponding edge in T is a contrast 

edge which has black on the right when crossing it from face fl to face f2 (the 

correspondents of v1 and v2 respectively). The boundary graph B(T) is the 

subgraph of the labelled D(T) consisting of contrast vertices and directed edges. 

The appropriateness of this definition is demonstrated by the following theorem 

which shows the consistency between the connectivity graph C(T) and the 

boundary graph B(T). 
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Theorem 1 

If C(T) =UCK is the connectivity graph of the triangular picture graph 

T with connected components CR defining connectivity regions RR and 

B(T) =UBi is the boundary graph of T with connected components Bi then 

(a) Each Bi is a directed circuit and the set of contour segments labelling 

vertices of Bi forms a simple closed curve yi. The edge directions 

in Bi are compatible with the contour segment directions in the sense 

that when edge (vl, v2) belongs to Bi and sK = (pK qK) is the contour 

segment label on vertex vK, then ql = p2. 

(b) The curves {ri/ form a mutually nonintersecting family of simple 

closed curves which partitions the remainder of the plane into connected 

regions pj each containing as a subset exactly one of the connectivity 

regions RR. 

Proof 

(a) A vertex v of B(T) corresponds to a contrast face f in T and f has 

exactly two contrast edges el and e2. When viewed from the center 

of f one of these edges is a left-right pair (b, w) and the other a (w, b) 

pair. Suppose el is the (b, w) and e2 the (w, b). Then el corresponds 

to an edge of B(T) directed into v and e2 to an edge directed out from v. 

Hence any vertex of B(T) has exactly one in-directed and one out- 

directed edge; hence, the Bi are directed circuits. If directed edge 

tv 1, v2) belongs to B(T) then T contains two adjacent contrast faces 

fl and f2 with a common contrast edge e12 whose labelling is (w, b) 

as viewed from fl and (b, w) viewed from f2* If sK = (p,, qK) is the 

contour segment for fK then clearly ql and p2 are both the midpoint of 

e12* Each edge of B(T) indicates that two contour segments from 

- 10 - 



adjacent faces of T have a common endpoint and since each Bi is a 

directed circuit the set of contour segments labelling its vertices must 

form a closed curve yi. The yi are simple because a contrast face has 

one unique contour segment. 

(b) It is clear that the family of closed curves {yi/ partitions the remainder 

of the plane into a set of maximal connected regions p.. Each con- 
J 

nectivity region RK is entirely contained in one region p. 
J(K) 

since 

otherwise a curve yi would intersect RK and this is impossible since 

RK is made up entirely of level edges and faces. If two vertices v1 

and v2 are both in the region pj then they can be connected by a curve 

6 12 lying entirely in pj. It is an easy exercise to replace 612 by a 

curve 6’ 12 which lies entirely within edges of T as well as being in p.. 
J 

The curve 6i2 is obtained by replacing each face-crossing subcurve 

Of 32 by a portion of the face boundary. In the case of a contrast 

face the subcurve lies within a triangular or trapezoidal subface but it 

can still be pulled over to the boundary of the face in an obvious way. 

The curve 6i2 can be transformed to Al2 which consists of a sequence 

of edges of T simply by eliminating redundant loops in 6i2. The curve 

Al2 joins VI to v2 inside pj and consists of edges of T. Now Al2 cannot 

contain a contrast edge for then a point on some yi would be inside p.. 
1 

Hence, Al2 is a level path in T and so VI and v2 belong to the same 

RK. This means that two distinct RK cannot be in the same region p.. 
J 

We have thus shown that there is a natural one-to-one correspondence 

between the connected regions pK determined by the curves { yij and 

the connectivity regions RK determined by the connected components 

CK of C(T). 

Endproof 
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Theorem 1 shows that the regions pj and RK come in natural pairs (RK c_ pK) 

so that there is no reason to distinguish the indexing symbols. The connection 

between pK and R K is actually stronger than what we have stated above. In fact, 

the part of region pK not in RK is restricted to narrow bands near the boundary 

curves for pK, where narrow means no wider than one half the length of an edge 

of T. The difference in area between RK and pK is thus approximately a linear 

function of the boundary perimeter of pK With these remarks as justification 

we shall now restrict our attention to the connected regions pK and no longer 

treat the connectivity regions RK directly. Figure 6 depicts the relationships 

among graphs regions and curves in T. 

There is some more structure relating the curves {yi] and the regions {pK). 

which can be captured very naturally in a tree-structure. Each p K except p m 

(the sole unbounded region) has a unique outer boundary curve yi(K) so that there 

is a one-to-one correspondence between the bounded pK and the curves of yi. 

Henceforth, we use the same indexing symbol and assume yK is the outer 

boundary curve for region pK. In addition to its outer boundary each pK (even 

pd has zero or more inner boundary curves separating pK from its holes. We 

define the insidedness tree IJLJ for a triangular picture graph T as a directed 

tree rooted at p, having vertices pK and edges corresponding to boundary 

curves yK. The pair tpK? f p ) is a directed edge of YT) if the outer boundary 

curve y K for region pK is also one of the inner boundary curves for pa. In this 

case the edge (p,, pl) carries a label yK. An equivalent way to phrase the 

condition is that region pK is a subset of one of the holes in region pt. The 

insidedness tree for Fig. 4 is shown in Fig. 7 where regions have been appro- 

priately labelled as white or black and boundary curves are directed as clock- 

wise or counter clockwise. We point out that region labels alternate as one 

- 12 - 
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yK and planar regions pK formed by boundary curves yK. 
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FIG. 7--I.widedness tree of regions and boundaries for 
the picture in Fig. 3. 
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passes up or down the tree and clockwise curves are just above black regions 

and vice versa for counter clockwise curves. The importance of this simple 

relationship is that in the next section we will show how to compute the boundary 

curves yK for a picture T without directly computing the connectivity graph 

C(T) and so all information about the shape of a region pK and the label @ or w) 

of region RK must be inferred from the curves jr,!. 

Computing the Tree of Boundary Curves 

Let a TV-scan triangular picture graph T* be a black-white labelling of a 

partial triangular grid formed by staggered rows of vertices in a rectangular 

window with the restriction that all vertex labels are white along the outer 

border adjacent to the unbounded region of the plane. Figure 4 is a TV-scan 

triangular picture graph. There is no loss of generality here since T* can 

always be extended to an (infinite) triangular picture graph T in the obvious 

way and any T can be transformed to a T* without loss of information because 

the set of black vertices is bounded. The only difference between T and T* for 

the previous theory is that Cm and RW are infinite in T while they are connected 

to the outer border in T*. Concerning curves (yK/ and regions {p,/ and p, 

there is no difference at all. - 

Now we describe a method for computing the boundary curves / yK 1 and the 

insidedness tree I(T*) for a TV-scan triangular picture graph T*. Let ri denote 

the ith row of vertices in T* reading from top to bottom with i in the range IO, n] ; 

we shall usually think of each row ri as a sequence of edges of T*. The sequence 

of triangular faces between rib1 and ri (ordered from left to right) we call the 

corridor C. . The corridor sequence 4 is obtained from Ci by replacing each 

face by its “undirected” contour segment value (. = level, / , \ , ) and then 

eliminating entries representing level faces. Figure 8 depicts a portion of 

- 15 - 
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corridor C6 from Fig. 5 and demonstrates pictorially much of what we attempt 

to verbalize in the next few paragraphs. Let the skew sequence Ei be obtained 

from pbydeletingallflat (-)entries. ThenSi =(si 1, si 2, ..*, s. 1,2m. ) 
, 1 

can be broken into mi adjacent pairs where each pair along with the (possibly 

zero) flat segments in between constitute a connected piece of contour inter- 

secting the corridor. Within the skew sequence some segments touch the top 

row r. 1-1 and the others touch the bottom row ri and we call these two subsequences 

the &J sequence xi and the bottom sequence_Pi. The segments of ri are of the 

form tsodd, \) or(SevenT /) and the segments of pi are of the form (Sodd, /) 

Or (Seven’ \ ). This is because each connected subsequence (si 2K-1, * * * , si 2K 
, , ) 

of the full corridor sequence ‘“1 touches the adjacent rows at the leftmost end- 

point of segment si 2K-1 
3 

and the rightmost endpoint of segment si 2K. The 

sequences ri and pi are indexed from left to right as subsequences of Si. 

Table 1 gives a BNF grammar for valid corridor sequences and exhibits the 

natural parse into connected subsequences, some of which cross the corridor 

and others of which simply dip in and out. 

The following theorem shows how to reconstruct the directions for contour 

segments and how to relate connected subsequences from adjacent corridors. 

It provides the backbone of an algorithm for constructing the boundary curves 

{r,j from the corridor sequences of a picture graph T*. 

Theorem 2 

A contour segment is directed upward ( f or 2 ) if it has an odd index 

in ri or pi and downward ( ,/ or 1 ) if it has an even index in ri or pi. If 

Ci and Ci+I are adjacent corridors with pi = (b,, b2, * * * , bp) and 

Ti+l =(ti, t2, “‘, tq) then p=q and each pair of segments (bj, tj) intersects 

at the midpoint of a contrast edge along row ri. 

- 17 - 



Table 1 

Grammar for Valid Corridor Sequences 

<even-flat> +- <empty> I <odd-flat> - 

<odd-flat> - <even-flat> - 

(bottom-bottom> .- / <odd-flat> \ 

@bottom-top> + / <even-flat> / 

@op-top) - \ <odd-flat> / 

<top-bottom> - \ <even-flat> \ 

<corridor-crossing> .- <bottom-top> I <top-bottom> 

<in-out> - Gottom-bottom> 1 <top-top> 

@art-sequence) .- <corridor-sequence> <corridor-crossing> 

1 (part-sequence> <in-out> 

<corridor-sequence> - <empty> <corridor-sequence> <in-out> 

1 (part-sequence> <corridor-crossing> 

- 18 - 



Proof 

Consider the row ri between adjacent corridors Ci and Ci+l as a 

sequence of edges of T*. Since the leftmost and rightmost vertices 

of ri are on the border of T* they are labelled w. Eliminating the 

level edges of ri we obtain a left-right sequence(el, e2, * * * , eZu) of 

contrast edges such that ej is labelled (w, b) or (b, w) according as j 

is odd or even. Now the bottom sequence pi for corridor Ci contains 

exactly those contour segments of 5 which touch (i. e. , have an end- 

point on) row ri. Each such segment bj must therefore have an end- 

point which is the midpoint of some contrast edge in row ri. On the 

other hand, each contrast edge ej on row ri is adjacent to a contrast 

face in corridor Ci and therefore its midpoint mj is the endpoint of 

some segment bj in the bottom sequence pi. We have shown that p=2u 

and that mj the midpoint of contrast edge ej is an endpoint of segment 

bj in the bottom sequence for corridor Ci. An analogous argument 

leads to the conclusion that q=Zu and mj is an endpoint of segment t. 
J 

in the top sequence for corridor Ci+l. The segment directions for b. 
J 

and tj depend on the labelling of contrast edge ej and since these 

labellings alternate (w , b), (b , w), * . ’ the first part of the theorem 

follows immediately. 

Endproof 

Figure 8 indicates that once the correct segment direction has been selected 

for the initial segment in each connected subsequence (i. e. , the segments which 

have odd index in the skew sequence) then the remainder of the segments inherit 

directions in the obvious way. 
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We now outline algorithms to construct the boundary curves f-y,/ in a TV- 

scan triangular picture graph T* and to link these curves into the insidedness 

tree I(T*). A later section discusses some implementation details and suggests 

a hardware-software combination for converting the raw binary array represen- 

tation of T* into a tree I(T*) of boundary curves. 

Algorithm B 

(I) Pass over the picture T* in TV-scan order generating a corridor 

sequence for each pair of adjacent horizontal rows and inserting end- 

of-corridor codes. Add an end-of-picture code as the final symbol. 

Call this the full sequence of contour segments. - 

(2) Process the full sequence from left to right parsing it into corridor 

sequences and further into connected subsequences by identifying 

consecutive (odd, even) pairs in each skew sequence. For each 

segment of the skew sequence determine its direction and assign it 

to the top or bottom sequence for the corridor. Segments assigned to 

the top sequence are linked to the appropriate segment in the bottom 

sequence constructed during the processing of the previous corridor. 

Segments assigned to the bottom sequence are placed in a list for use 

by the next corridor. The direction of the initial segment of each 

connected subsequence is propagated through the remainder of the 

subsequence and appropriate links are made between adjacent segments. 

(3) Pass once through the full sequence looking for the next untraced 

contour segment. When such a segment s is encountered then trace 

through the linked sequence of segments (marking them as traced) 

starting at s and returning to s. Give this new curve a name and place 

the name in a list of curves with a reference to segment s as the &I 

- 20 - 



of the curve. The initial segment s will always be of type / and if it 

is linked to the next segment ( -) in the full sequence then the curve 

encloses a black region; otherwise, it encloses a white region. This 

information is recorded with the curve name and reference to s. Then 

the search for an untraced segment resumes directly after s in the full 

sequence. This is repeated until the end-of-picture code is encountered. 

Algorithm B determines the geometry (except position) of each boundary 

curve ‘K in the picture T* and also indentifies the label of the immediately 

enclosed region pK. The following algorithm constructs a tree which is almost 

identical to I(T*); the difference is that the tree computed has vertices corre- 

sponding to boundary curves yK and is rooted at a fictitious curve at m called 

yc.3. As a simple consequence of the one-to-one correspondence {yK/++{pK\ 

this difference is of no consequence. It does seem more natural to construct 

I(T*) this way since the {y,i are the objects which have been computed by 

algorithm B. 

Algorithm I 

(1) For each curve on the list of boundary curves obtain its top segment s 

and then find the segment previous to s in the same corridor sequence. 

If s is the initial segment in a corridor sequence then link its curve 

-y(s) to the fictitious curve at =Q called y co* If segment t precedes s in 

the same corridor sequence then link y(s) to the curve y(t) containing 

segment t. There are some interesting problems of what computation 

and data structure is most efficient for determining y(t) but we are 

content to post a simple warning sign ala Bourbaki. The linkage 

symbolizes the fact that y(s) and y(t) can be connected by a curve which 

does not intersect any other boundary curves. If y(s) and y(t) enclose 
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regions with identical labels then the link implies that y(s) and y(t) 

are siblings in the insidedness tree (i. e. , y(s) and y(t) have a common 

immediately enclosing curve). Otherwise y(s) will be a child of y(t). 

(2) When each curve has been given a link it remains only to transform 

sibling links into the appropriate child link. This can be done by trac- 

ing sequences of sibling links until a child link is found and then letting 

all the intermediate siblings inherit this child link to their common 

parent. Since all the links point backwards in the full (TV-scan) 

sequence there will always be an end to sibling links. The child links 

thus determined define the insidedness tree of boundary curves. 

The regions pK are implicit in I(T*) in the sense that each vertex with its 

children represent the outer and inner boundary curves for some region pK. 

The degree of multiple connectivity of pK is given by the number of such boundary 

curves. 

If the position of regions is not important compared to their shape, size, 

orientation and degree of multiple connectivity the algorithm B suffices. How- 

ever, if the position of curves is required the following modifications to algorithm 

B will do the job. 

(la) Proceed as in step 1 of algorithm B with some additional information 

encoded into the corridor sequences. Before the first corridor 

sequence we enter the index of that corridor (i.e. , the first corridor 

containing a contrast face). Subsequently, a corridor index is inserted 

before a new corridor sequence if and only if the previous corridor 

sequence contained no bottom segments. Within each corridor every 

adjacent pair of the form (/ - ) will have inserted after it the horizontal 

position within the corridor of the segment /+ 
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(3aj Proceed as in step 3 of algorithm B except keep track of the corridor 

index by incrementing it for each corridor sequence which has a 

bottom sequence and resetting it from the encoded index otherwise. 

The top of each curve is a pair of the form (/ -) so the position can 

be determined from the current corridor index and the encoded 

horizontal position. 

Some remarks about data-structures are appropriate at this point. 

Algorithm B constructs one-way linked circuits of segments (i.e. , the directed 

circuits BK of B(T*)) so each segment must have a pointer to indicate its 

successor. The full sequence is probably best accommodated as a simple one- 

dimensional static array and since each segment entry requires only two bits 

( / , \ , -, and E where E means %ot a segment, code follows”) there can be 

some considerable data packing. The references to the previous bottom sequence 

and the additions to the new bottom sequence can be implemented as one con- 

tinuous bottom queue whose maximum size is certainly bounded by the length 

of the rows r.. 
1 

The elements of the top sequence are used immediately so no 

further lists are required for step 2. A simple list of curve headers is needed 

for step 3. 

Algorithm I indicates a requirement for a pointer in each curve header to 

record the links between curves but also requires some additional data struc- 

ture to allow the determination of the curve header for y(t) when t is an arbi- 

trary segment and y(t) is the curve containing t. One way is (at step B3) to set 

a tag bit in the segment-to-segment link which arrives at the top of a curve; 

then that link is set to point to the curve header rather than the top. The curve 

header for y(t) can be gotten by tracing the curve from t back to the header 
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for y(t) using the tag bit to recognize the curve header from a segment, No 

further data-structure is required for algorithm I. 

A final note of some interest is that the end-of-corridor codes stipulated 

in algorithm B are unnecessary for the correct linking together of contour 

segments and even for creating the curve-to-curve links used tc construct the 

insidedness tree. The reason for the first statement is implicit in our earlier 

discussion of the data structure for the top and bottom sequences. The validity 

of using a single queue for the super-sequence of successive bottom sequences 

rests on the fact that no matter where the end-of-corridor codes fall in the full 

sequence, the Kth top segment encountered matches the K th bottom segment 

encountered. The parsing of corridor sequences into parity pairs can clearly 

be done without reference to the end-of-corridor information. 

In creating curve-to-curve t%xt to” links we linked curve ys to y if the 02 

top segment s was the first segment of a corridor sequence. In the absence of 

knowledge about where corridors begin we can still link ys to the curve y(t) 

which corresponds to the segment t previous to s in the full sequence because 

if s begins a corridor, then t ends the previous one so both y, and y(t) bound 

holes in p, and should be siblings. The topmost curve is of course linked to y,. 

Compacting and Smoothing Boundary Curves 

Each closed curve yK computed by algorithm B is a sequence of vectors of 

constant length in one of six possible directions and hence can be represented 

by a Freeman chain-encoding [ 131. We shall assume that the horizontal 

direction to the right is labelled zero (0) and the subsequent labels 1, 2, 3, 4, 

5 represent counter-clockwise rotations of 60’. The outer curve in Fig. 5 

is encoded as (00000005555011000523345555554455444333222111122233332234 

555544444333222221111222210011). This can be condensed by recording the 
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initial direction and thereafter the length of each run and the difference (+ or -) 

at each bend. The above encoding becomes (O/7-4+1+2-3-1-1-2+1+6-2+2-3-3 

-34+3+4-2+1+1+4-5-3-5-4+4-l-2+2-) in which minus (-) indicates the curve 

bends to the right or clockwise by SO” and plus (+) indicates a bend to the left. 

A careful consideration of the length-bend encoding shows that each odd length 

is between identical bends and each even length is between unlike bends. This 

is essentially due to the fact that the triangular faces of the triangular grid can 

be partitioned into two sets F1 and F2 based on orientation and adjacent faces 

always belong to different sets. This means that the bends are redundant and 

needn’t be explicitly encoded. If the lengths are in binary format then the bend 

can be determined by the low order bit of the length and the type of the previous 

bend. The encoding can thus be further condensed to (-O/7412311216223334342 

11453544122). The convention we have adopted is that the curve starts at the 

first bend encountered in a TV-scan of the picture. With this convention the 

initial direction is redundant and the label of the immediately enclosed region 

can be deduced directly from the initial bend; (-) implies ‘black’ with initial 

direction 0 whereas (+) implies ‘white’ with initial direction 4. 

When discrete grid systems are used to represent curves in the plane 

there occurs the distasteful phenomenon known as quantization error, the most 

undesirable effect of which is that perfectly straight lines are represented by 

zigzag polygons. In an attempt to undo this mischief several authors 1151 , 

[4] , [ 121 , [ 141 have proposed methods for smoothing digitized curves. In 

particular, Montanari [ 111 and Sklansky et al. [ 121 define a minimum perimeter 

polygon which has the same digitization as a given curve. In the terminology of 

Montanari [ 111 the triangular grid is a complete convex digitization scheme 

(CCDS) and the normal digitization of a boundary curve is the sequence of 
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triangular contrast faces corresponding to the segments of yK. The minimum 

perimeter polygon (MPP) is then the shortest polygon which lies entirely in 

the same faces and encounters them in the same cyclic order; intuitively 

visualize a rubber band woven through the contrast faces of yK. Figure 9 

shows the outer boundary curve from Fig. 5 and its MPP while Fig. 10 is the 

MPP for the chromosome in Fig. 2. Although Montanari [4] gives a general 

method for computing the MPP of a digitization, it involves the solution of a 

nonlinear programming problem and so any shortcuts are worthy of attention. 

For the special case of the triangular grid we have obtained some simple rules 

which can be used to generate a good approximation to the MPP of a digitized 

boundary curve. The rules are stated in terms of the edge-length encoding of 

the boundary and are derived from the following lemmas. Table 2 gives most 

of the rules we have derived. 

Let us call the sequence of contrast faces for a curve yK a road and let 

@ and p denote the outer and inner boundary curves for the annular region 

defined by the road. The boundary curves a! and p are formed by the level 

edges of faces in the road, one curve being edges labelled black, the other 

white. Any curve in the road joining points on CY and p we call a transversal 

and so contrast edges are transversals; it is clear that any curve which follows 

the annular road cuts every transversal. 

Lemma 1 

For every circular neighborhood of an MPP vertex the portion of the 

neighborhood on the concave side of the vertex contains a point not in the 

road. 

Proof 

Given a neighborhood of an MPP vertex whose concave sector is entirely 

in the road a line across this sector can be drawn to shorten the MPP. 
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FIG. lo--Smoothed version of boundary of chromosome depicted 
in Fig. 2. 
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Table 2 

Condition MPP Vertex 

1. odd 
t 

yes 

1.1. odd+(# 2) yes yes 

1.2. odd .t 2 even yes yes 

1.3. odd t 2 odd yes no 

2* 2t2 
no 

3. 3+ 3+ 
t yes 

4. 3+ 5+ 
t 

yes yes 

5. .4 (2 or4) 
t 

no 

6- *“t no 

6.1. .2 even 
t 

no 

6.2. .2 odd t yes no 

7.1. 4+ (22)*4+ 
t 

yes 

7.2. 4+ (22)*. 
t 

yes 

8. 6+t22 yes 

a. 1. 6+ (22)*. 
t 

yes yes 

g- 4 t”- 
no 

10. 8+ t 22 yes yes 

11. . (2n) 2 (2m). 
t 

In-ml51 no 

12. a Wnt2t)* @n) 2 no 

t bends to which conclusion applies. 
+ n any length 2 n . 

bend known to be on MPP. 

Cd* repeat cz 1 or more total times. 

(2n) refers to a single edge of length 2n in rules 11 and 12. 
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Corollary 1.1 

No MPP vertex is interior to the road. 

Corollary 1.2 

No MPP vertex lies on a straight line segment of one of the boundary 

polygons CY and p. 

We shall call a vertex on o or /3 a concave bend or convex bend according 

as the concave or convex sector of the vertex is outside the road. This 

definition corresponds to local concavity or convexity of the road at the partic- 

ular boundary point. 

Corollary 1.3 

No MPP vertex is at a convex bend of a! or 0. 

If a bend transversal is a contrast edge across the road corresponding to a 

bend in the contour curve yK defining the road and if a bend vertex is the end- -- 

vertex of a bend transversal lying on the concave side of the contour bend then 

we have the following result. 

Lemma 2 

Each MPP vertex is a bend vertex (i.e. , concave bend in road). 

This lemma allows us to restrict our attention to bend vertices which 

correspond to contour bends. To discover which bend vertices are really 

MPP vertices stronger medicine is required--supplied in the following lemmas. 

Let a chord p&be a line segment in the road with both P and Q on the same road 

boundary curve (Q! or p) and let the sector generated by chord p&be the simply- 

connected subregion of the road formed by the chord. 

Lemma 3 

If S is a road sector generated by chord PQ then MPP f’ S C_ p&. 
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Probf 

If the MPP intersects the sector S then it crosses into and out of S via 

the chord p&. It cannot intersect the interior of S because that would imply 

an unnecessary MPP vertex. 

Lemma 4 

If P and Q are points on the MPP and -lies in the road then 

p& C MPP. 

As an example of the use of these lemmas we prove part of condition 1.1 in 

table 2. We demonstrate that a contour bend between an odd edge and an edge 

of length 1 generates a bend vertex of the MPP. Referring to Fig. 11 we apply 

lemmas 3 and 4 to sector (BFEC) which shows that p& 5 MPP because MPP 

must cross transversals EQ and PC. Since the MPP doesn’t intersect the 

interior of sector (ADCB) it follows that P is an MPP vertex. Other conditions 

are proved in a similar fashion. 

The MPP in Fig. 10 contains 28 vertices out of 58 contour bends in Fig. 2. 

All but two of these vertices were clearly established as MPP vertices or not; 

the two which were found to be on the MPP but not known to be vertices are 

marked with a ‘?I in Fig. 10. The first five conditions in table 1 appear to be 

the most useful. For example, the 58 contour bends of the boundary curve in 

Fig. 2 represent only 53 bend vertices because there are five 1s in the edge 

length sequence; Of these 53, 23 are established as MPP vertices and 18 as 

not MPP vertices using just conditions 1, 1.1, 1.2, 1.3, 2. That leaves only 

12 vertices to be tested by other means. 

Implementation Considerations 

First we must consider how to generate a TV-scan triangular picture 

graph T*. Most image scanners that are currently in use transform a 
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FIG. 11--Section of annular road straddling an odd length 
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continuous two-dimensional image intensity distribution into a set of quantized 

sample intensity values at the vertices of a square grid as depicted in Fig. 1. 

If image intensity is quantized into two values (0,l) then we have binary digital 

pictures as discussed by Rosenfeld [l] , [2]. These square grid digital pictures 

are generated top-to-bottom and left-to-right in the familiar TV-scan or raster 

scan. It is natural to think of a picture as consisting of rows of sample values 

spaced Aj units apart along each scanned line where the distance between 

successive lines is Ai. For the square grid we have Ai= Aj and the sample 

points are of the form (iAi, jAj) if the northwest corner of the picture is the 

origin. It is not hard to see that a TV-scan triangular picture graph T* also 

consists of equally spaced (Ai) rows of equally spaced (Aj) sample points with 

two differences. First, the ratio (Ai/Aj) =. 6/Z g .866 rather than 1 and 

second, the rows are staggered so that the sample points are of the form 

(iAi, jAj + 1 if i = 0 mod 2 then Aj/2 e& 0 1 ). 

Neither of these differences represent radical departure from the overall 

design of image scanners. 

There is also the possibility of simulating a triangular grid scanner when 

the actual hardware produces square-grid pictures. The technique will be 

approximate in the sense that triangular faces will have a height-to-width ratio 

of (Ai/Aj) = 1 rather than the equilateral ratio Z/2 G .866. The transforma- 

tion from square-grid to triangular-grid is suggested by the staggered row 

phenomenon. Each row ri with even index i = 2K remains as is while rows with 

odd index i = 2K + 1 are replaced by rows containing sample values at jAj + Aj/2, 

the new values being averages between adjacent values in the original row. 

The interpolation is clearly more meaningful if the original square-grid picture 

- 33 - 



is quantized at more than 2 levels and the reduction to binary (via a threshold) 

occurs after the required two-point interpolations. As far as the triangular 

face distortion is concerned it is an entirely systematic one which can probably 

be adjusted for; although this is a real nuissance, we shall see in the next 

section that the theory of connectivity and boundaries in triangular picture 

graphs does not depend on the equilateral property of triangles in the usual 

triangular grid. Hence, the material of previous sections is still applicable 

with minor adjustments whenever actual lengths and distances are involved. 

Notice, for example, that there are still two varieties of triangular face based 

on orientation! 

The second problem is that of generating corridor sequences from pairs 

of successive rows of the triangular picture graph. To illustrate we will 

generate the corridor sequence c6between rows r5 and r6 in Fig. 5. The 

derivation is depicted in Fig. 12. It is clear from theorem 2 that the contrast 

edges of r and r 5 6 play a central role in the structure of corridor sequence (r 6’ 

We therefore immediately define a binary difference vector ArK for each row 

rK as 

ArK = rK 69 SRl(rK), 

where SRl means shift right one place and $ is exclusive or bit-by-bit. The 

difference vector ArK is a selector for the contrast edges in row rK. Each 1 

in Ar K represents the midpoint of a contrast edg.e in row rK and there is a 

natural staggering effect from row to row as shown in Fig. 12. Next, the 

difference vectors of two adjacent rows are interleaved in a perfect shuffle 

and this shuffled vector is replaced by an equivalent index sequence of its 1s. 

Because of the perfect shuffle, the parity of each index identifies which row 

the contrast edge lies on. The index sequence can be partitioned into successive 
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pairs as shown in Fig. 12. Each index pair (x,y) corresponds to a unique 

connected subsequence of the corridor sequence c 6. If we use the notation 

(a,, h , p) to denote connected subsequences where (YE( /, \ ), 0 < h is an 

integer denoting the number of flat (-) contour segments, and PE (/, \ ) then 

CY , p, A can be determined from x and y by the following formulas : 

a! - if odd (x) then / else \; -- - - 

P--- - - if odd (y) then / else \ ; 

h - (y -x - 1); 

We know from previous considerations that the value of p is redundant, being 

a function of o and A given by 

P--- - if odd (A) then opposite (a) else cr; 

where opposite interchanges / and \ . This formula shows that the low order 

bit 6 of the binary representation for h is equivalent to the boolean expression 

(a, # p) . Because of this redundancy we encode each connected subsequence 

by a pair (0:) h) as shown in Fig. 12. It is possible to encode all subsequences 

(a, h) for 0 I A 5 6 by a 4-bit hexadecimal code, leaving one code ‘7 for end-of- 

corridor and another F for an escape code. After an escape code an 8-bit 

code is used for an (CY , A) with h > 6. Each end-of-corridor (EOC) after a 

corridor sequence with no bottom segments is followed by an 8-bit row-index 

increment. An initial EOC is followed by the index of the initial non-empty 

corridor sequence and code FFF indicates end-of-picture. The entire Fig. 5 

can thus be encoded by the hexadecimal sequence (‘701F07728378927818708C87 

038188788000000789090187B8907BFFF). The high order bit of each code (except 

7 and F) represents CY with 0 = / and 1 = \ . This encoding into connected 
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sequences of corridor sequences involves a partial completion of step 2 in 

algorithm B and leads to an efficient table lookup based on the 16 hexadecimal 

codes. 

The transformation from two binary rows to the hexadecimal digit sequence 

can be implemented in hardward employing a shift register to store one row 

or in software using shifts, exclusive or and a left justify instruction (if 

available). 

Generalizations 

The theory developed for triangular picture graphs extends in some ways 

to picture graphs defined on grid systems which are less regular or whose 

faces are not restricted to triangles. The extent to which each of these 

systems fails to generalize the previous theory reveals the essential reasons why 

the triangular grid is emphatically the best grid. We begin by defining a planar 

picture graph to be any binary vertex-labelled planar graph with the set of 

black vertices bounded. Figure 13 depicts such a picture graph; it is irregular 

and has triangular, quadrilateral and pentagonal faces. A connectivity graph 

can be defined exactly as before using the ideas of level and contrast edge. 

The level edges of the connectivity graph are heavy in Fig. 13. Let a planar 

picture graph be called convex if each face is convex. Now every contrast face 

of a convex planar picture graph has an even number of contrast edges but that 

number can be larger than 2 if the face is not triangular. This suggests an 

advantage for triangular-faced picture graphs but we can still try to define 

boundary curves as segments across contrast faces joining midpoints of 

contrast edges. There are several ways to do this pairing when a face has 

more than 2 contrast edges. One way is to join the two contrast edges bounding 

a sequence of level black edges around the face. These coutour segments are 
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FIG. 13--A convex planar picture graph. 
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shown as solid arrows in Fig. 13. Another is similar but the segments span white 

sequences. These segments (when different) are depicted as dashed. Either 

choice allows a consistent definition of boundary curves which form a disjoint 

family of simple closed curves. The problem is that neither definition is 

compatible with the connectivity graph in the sense of an earlier section. 

Notice that Fig. 13 contains a white vertex which is isolated in the connectivity 

subgraph but is not separated from the rest of the white subgraph by any 

boundary segments using the first boundary choice (solid). There is an isolated 

black vertex to play a similar role for the second boundary choice (dashed if 

two), The most we can say is that the solid boundary is compatible with an 

asymmetric definition of connectivity in which black vertices must share an edge 

but white ones need only share a face. The other boundary choice corresponds 

to the reverse situation. The well-known problem of connectivity on a square 

grid [ 31 is a special case of this phenomenon. It is known that 4-connectedness for 

black and 8-connectedness for white (or vice versa) must be used on the square 

grid to obtain reasonable notions of boundary. But 8-connectedness is easily seen 

to be equivalent to face-connectedness! 

We casually used the term contour segments for this more general case 

but that part of the theory does not generalize to non-triangular faces except 

by rules for triangulating these faces depending on the vertex-labels of the face. 

On the other hand, any planar picture graph composed of triangular faces admits 

compatible definitions of connectivity and boundaries formed by contour 

segments. The triangular grid happens to be the only regular planar tesselation 

by triangles and also is relatively isotropic. 
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