
SLAC-118
UC-32
WSC)

THE ENGINEERING OF ACCESS CONTROL MECHANISMS

IN PHYSICS DATA BASES

LANCE J. HOFFMAN

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U. S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

July 1970

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia/22151.
Price: Full size copy $3.00; microfiche copy $.65.

ABSTRACT

A model is presented for engineering the user interface for large data base

systems in order to maintain flexible access controls over experimental and

other physics data. Several examples of its use are given. The model is inde-

pendent of both machine and data base structure,, Access control is based on

sets of procedures called form&tries O The decision on whether a user can read,

write, update, etc O , data is controlled by programs (not merely bits or tables of

data) which can be completely independent of the contents or location of raw data

in the data base.

The decision to grant or deny access can be made in real time at data access

time, not only at file creation time as has usually been the case in the past. In-

deed, the model presented does not make use of the concept of “files”, though a

specific interpretation of the model may do so. Access can be controlled at

arbitrarily low levels, including the data field level and the bit level. Each ele-

ment of raw data need appear only once, thus allowing considerable savings in

memory and in maintenance effort over previous file-oriented systems.

Access controls for physics data banks of the type presented herein are of

special interest to regional computing centers or other centers with many inde-

pendent users O

. . .
- 111 -

ACKNOWLEDGEMENTS

The author is deeply indebted to Professor William F. Miller for his en-

couragement and advice during the research and writing of the dissertation

upon which this report is based. The research environment he has provided at

the Stanford Linear Accelerator Center (SLAC) Computation Group makes it a

pleasure to work there. His advice has been, at the same time, timely, com-

petent, and unobtrusive.

Many other members of the Stanford Linear Accelerator Center and the

Stanford Computer Science Department have also contributed their ideas and

help, in particular, John Levy, Robert Tussell, and Victor Lesser D I wish to

thank Professors Harold Stone, Edward Feigenbaum, and Jerome Feldman for

their constructive readings of the thesis. The formulary idea was initially sug-

gested by the use of syntax definitions (“field formularies”) for input/output data

descriptions, as described in Castleman [1967] 0
Part of the excellent research environment at SLAC is due to the very helpful

and competent technical staff. My thanks go to the SLAC library for tracking down

articles on the topics involved and to the SLAC Technical Information Department

for translating chicken-scratches into meaningful illustrations. I appreciate the
interest and assistance of Jorge Bruguera at the Stanford Computer Science

Department Library. I wish to thank Kathleen Maddern for her many retypings
of this report, Linda Lorenzetti, SLAC Program Librarian, and Carla West, the

Executive Secretary of the SLAC Computation Group.
The dissertation upon which this report is based, “The Formulary Model for

Access Control and Privacy in Computer Systems, ” is available as Report No.

SLAC-117.

- iv -

TABLE OF CONTENTS

Chapter

I. Introduction o 0 e . . 0 . 0 o 0 a 0 o 0 a D a 0 e D . . D . * 0 a 0 D D

II. Access Control Methods. e e 0 . a 0 . D 0 . . 4 0 s D e 0 D 0 0 0 . 0

A. Access Control in Existing Systems 0 . . . D 0 0 0 . o 0 e D . .

B. Significance of This Work to Physics Data Banks . D . . 0 D D D

III. The Formulary Method of Access Control a 0 , 0 D . . a 0 0 D a 0 a

A.

B.

C.

D.

E.

F.

G.

H.

I.
J.

K.

L.

Definitions and Notation . 0 . 0 D 0 . e 0 0 a . o 0 a . D 0 D 0 .

TheACCESSProcedure ~OOOOO.~O~~O.O~OO~OO~

TALK, The Application-Oriented Storage and

Retrieval Procedure o q . ., . a o a . o . . n . . . D m 0 . 0 D o
Formularies -WhatTheyAre O..sO..OnsO.OOOO.

Simultaneous Use of One Formulary by Multiple Users 0 . D o e

Building a Formulary e 0 a o 0 D 0 D D Q D . e . D D 0 0 o . . a .

The Attachment Process - The Method of Linking a

Formulary to a User and Terminal 0 . e D 0 o . o o D o D . a o

Subdivision of Data Base into Files Not Required 0 0 D D D o 0 D

Concurrent Requests to Access Data - The LOCKLIST 0 0 o a D
The TALK Procedure - Details 0 e 0 0 0 0 D a o * e + 0 o 0 a 0

The ACCESS Procedure - Details 0 o 0 0 q D a 0 0 0 o 0 0 0 0 Q

FETCH AND STORE Primitive Operation o 0 D a m 0 Q o 0 a D 0

IV. Conclusions 0 . D e 0 a D D e a e 0 0 e 0 o 0 D a . 0 . s . a 0 0 o . 0

A. Summary...................~~.~~~~.~.

B. FutureWork .~O~~ODDO~.O~.DODOO~~~~~~~~

References e D D 0 0 0 . D D G e 0 . 0 . D . 0 e 0 a o . a . 0 . (I D B e . o

Appendix A -- FORTRAN Version of ACCESS Procedure a a D w . 0 a D a
Annendix R -- The ACCESS Procedure - “No Parallelism” Version . e

Page
1

2

2

2

4

5

6

8

9

14

14

14

18

18
19

20

32
33

33

33

35

36
40

--L-r------ -

-v-

LIST OF FIGURES

Page

1. Procedures supplied by the installation o 0 . D . m 0 o D 0 . q o 0 a o 4
2. Modularity of the formulary model a . o D a D a 0 0 0 a . D D Q 0 . 0 7

3. User/data base interface 0 0 . D D D D 0 . D V D 0 e . o a o D . e 0 . 8

4. AsampleCONTROLprocedure.................... 13

5. General block diagram of FORMULARYBUILDER program 0 0 o . . 15

6. Attachment of user, terminal, and formulary a o e . 0 e D 0 a ., e a 16

- vi -

CHAPTER I

INTRODUCTION

A model is presented for engineering the user interface for large data base

systems in order to maintain flexible access controls over experimental and

other data, Several examples of its use are given. The model is independent

of both machine and data base structure. Access control is based on sets of

procedures called formularies. The decision on whether a user can read, write,

update, etc D, data is controlled by programs (not metely bits or tables of data)

which can be completely independent of the contents or location of raw data in

the data base.

This type of access control is especially important in large shared systems

such as regional centers or national data banks.

The decision to grant or deny access can be made in real time at data access

time, not only at file creation time as has usually been the case in the past. In-
deed, the model presented does not make use of the concept of “files”, though a

specific interpretation of the model may do so. Access can be controlled at

arbitrarily low levels, including the data field level and the bit level. Each ele-

ment of raw data need appear only once, thus allowing considerable savings in

memory and in maintenance effort over previous file-oriented systems.

Specific interpretations of the model can be implemented on any general-

purpose computer; no special time-sharing or other hardware is required. The

only proviso is that all requests to access the data base must be guaranteed to

pass through the data base control system.

-l-

CKAPTER II

ACCESS CONTROL METHODS

A. Access Control in Existing Systems

In most current information storage and retrieval systems, access to data

is controlled at the file level only - it has been tacitly assumed that all data

within a file has the same value and will be altered by the same user (in particular,

the file owner). This constraint is unnecessary and, in fact, inhibits optimum use
of large data banks for experimental physics research. Experimental data is con-

stantly coming into common data pools; different members of the research team

use and alter this data in different ways. For example, a scanner may be able

to only add new data to the data base; his supervisor may be able to alter that

data; and only the experimenter may be permitted to purge that data from the

data base. Few current systems allow different levels of access to fields within

files. The limitations of current systems are discussed more fully in

Hoffman [1970].

B. Significance of This Work to Physics Data Banks

It seemed desirable to devise a method of access control with the following

characteristics:

1. It does not impose an arbitrary constraint (such as segmentation

or access levels) on data or programs.

2. The method should allow efficient control of individual data ele-

ments (rather than of files or records only). Also, it should not

extract unwarranted costs in storage or elsewhere from the user

who wants only a small portion of his data controlled in this way.

3. The method should be independent of both machine and file

structure, yet flexible enough to allow a particular implementa-
tion of it to be efficient.

Such a method would easily allow operations on physics data banks which we

have not been able to carry out previously.

-2-

Examples (Note that the formulary model allows all of the examples below

to be carried out simultaneously on the same data bank):

a.

b.

C.

d.

e.

f.

Scanners could, under suitable and arbitrarily complex controls,

make corrections to raw data items via on-line remote terminals.

Massive updates or addenda of data for an experiment could be

limited to the experimenter or his delegate.

Histories of changes in datum values can be easily kept on a log

tape or other medium since all data accesses go through one

central interface a

Historical data for experiments (“grandfather files”, etc.) can

only be purged by authorized personnel.

Using the LOCKLIST mechanism of the model, we can avoid col-

lections of mixed data (Le., some data items updated and others

out-of-date at a given point in time).

Data can be manipulated only at given times, for example, only

when the computer system is not heavily taxed accepting real-time

data from on-line external devices.

We now present a method with all of the above characteristics.

-3-

CHAPTER III

THE FORMULARY METHOD OF ACCESS CONTROL

We now describe the ‘formulary” method of access control. Its salient

features have been mentioned in Chapter I. The decision to grant or deny access

is made at data access time, rather than at file creation time, as has generally
been the case in previous systems. This, together with the fact that the decision

is made by a program (not by a scan of bits or a table), allows more flexible

control of access. Data-dependent, terminal-dependent, time-dependent, and

user response-dependent decisions can now be made dynamically at data request

time, in contrast to the predetermined decisions made in previous systems,

which are, in fact, subsumed by the formulary method. Access to individual

related data items which may have logical addresses very close to each other

can be controlled individually. For example, the date of an event might be un-
alterable while the measurement, in the adjacent memory location, is alterable.

For any particular interpretation, the installation must supply the procedures

listed in Fig. 1. These procedures can all be considered a part of the general

FOR EACH INTERPRETATION, INSTALLATION MUST SUPPLY

l

0

0

0

0

AT LEAST ONE TALK PROCEDURE

CODING FOR THE ACCESS ALGORITHM

PRIMITIVE OPERATIONS
0 FETCH
0 STORE

AT LEAST ONE FORMULARY, CONSISTING OF
0 CONTROL PROCEDURE
0 VIRTUAL PROCEDURE
0 SCRAMBLE PROCEDURE (may be null)
l UNSCRAMBLE PROCEDURE (may be null)

A FORMULARYBUILDER PROCEDURE

FIG. l--Procedures supplied by the installation.

accessing mechanism, each performing a specific function. By clearly delimiting

these functions, a degree of modularity is gained which enables the installation to

experiment with various access control methods to arrive at the modules which

-4-

best suit its needs for efficiency, economy, flexibility, etc. This modularity

also results in access control becoming independent of the remainder of the op-

erating system, a desirable but elusive goal (Weissman [1969]). While the

formulary model and its central ACCESS procedure remain unchanged, each in-

stallation can supply and easily change the procedures of Fig. 1 as desirable.

They are all specified in the body of this paper. In most unclassified physics

applications of the model (which is itself useful for all data bases - physics and

nonphysics alike), the SCRAMBLE and UNSCRAMBLE procedures will be un-

necessary and, therefore, will be null procedures.
The basic idea behind the formulary method is that a user, a terminal, and

a previously built formulary (defined below) must be linked together, or attached,

in order for a user to perform information storage, retrieval, and/or manipula-

tive operations. At the time the user requests use of the data base system, this

linkage is effected, but only if the combination of user, terminal, and formulary

is allowed. The general linking process is described in Section G of this chapter.

Virtual memory mapping hardware is not required to implement the model, -
but the model does handle systems equipped with such hardware. It is assumed

that enough virtual addressing capacity is available to handle the entire data base.

Virtual addresses are mapped into the physical core memory locations, disc

tracks, low-usage magnetic tapes, etc., by hardware and/or by the FETCH and
STORE primitive operations (see Section Lof this chapter) for a particular

implementation.

A. Definitions and Notation

The internal name of a datum is its logical address (with respect to the

structure of the data base). The internal name of a datum does not change during

continuous system operation.

Examples :

1. A “tree name” such as 5.7.3.2 which denotes field 2 of branch 3

of branch 7 of branch 5 in the data base.

2. “Associative memory identifiers” such as (14, 273, 34) where I4

represents the 14th attribute, 273 represents the 273rd object,

and 34 represents the 34th value, in a memory similar to the one

described in Rovner and Feldman [1968].

-5-

A User Control Block, or UCB, is space in primary (core) storage allocated

during the attachment process (described in Section G) . It contains the user iden-

tification, terminal identification, and information about the VIRTUAL, CONTROL,

SCRAMBLE, and UNSCRAMBLE procedures of the formulary the user is linked

to.
Usually this information is just the virtual address of each of these procedures.

The virtual addresses are kept in primary storage in the UCB since a formulary,

once linked to a user and terminal, will probably be (oft-) used very shortly. The

first reference to any of these addresses (indirectly through the UCB) will trigger

an appropriate action (e.g., a page fault on some computers) to move the proper

program into primary storage (if it is not there already) e It will then presumably

stay there as long as it is useful enough to merit keeping in high-speed memory.

The virtual addresses of procedures of a formulary cannot change while they are

contained in any UCB. This constraint is easy to enforce using the CONTROL

procedure described below which controls operations on any datums, including

formularies . Each UCB always is in high-speed primary storage in the data area

of the ACCESS procedure.

B. The ACCESS Procedure
All control mechanisms in the formulary model are invoked by a central

ACCESS procedure. This ACCESS procedure is the only procedure which directly

calls the primitive FETCH and STORE operations and which performs locking and

unlocking operations on data items in the data base. All requests for operations

on the data base must go through the ACCESS procedure.

The ACCESS procedure is a very important element of the formulary model.
It never changes (see Fig. 2). It is described in full detail in Section K, and its

algorithm is supplied there.

-6-

EACH OF THESE PROCEDURES CHANGES ONLY AS
OFTEN AS THE INSTALLATION DESIRES. THE

INSTALLATION SUPPLIES THESE PROCEDURES.

ACCESS
THIS BASIC PROCEDURE NEVER
CHANGES. ITS ALGORITHM IS
SUPPLIED IN THIS REPORT.

1465A4

FIG. 2--Modularity of the formulary model.

-7-

The user communicates only indirectly with ACCESS. The bridge (see

Fig. 3) between the system-oriented ACCESS procedure and the application-

oriented user is provided by the (batch or conversational) storage and retrieval

program, TALK.

I- USER OR USER’S PROGRAM .

TALK, THE CONVERSATIONAL STORAGE AND RETRIEVAL PROCEDURE

CONTROL
and other procedures ~

of the attached

t
formulory

c I DATA DATA

(1 DATA BASE

171 PRIMITIVE OPERATIONS

FIG. 3--User/data base interface,

C. TALK, The Application-Oriented Storage and Retrieval Procedure

To access a datum, the user must call upon TALK, the (nonsystem) application-

oriented storage and retrieval procedure. TALK converses with the user (or the

user’s program) to obtain, along with other information, (1) a datum description

in a user-oriented language, and (2) the operation the user wishes to perform on
that datum (e.g., u@ate, modify, delete, etc.) 0 TALK translates the datum

description in the user-oriented language into an internal name, thus providing

a bridge between the user’s conception of the data base and the system’s con-

ception of the data base. The TALK procedure is described in more detail in

Section J.

-8-

D. Formularies - What They Are

A formulary is a set of procedures which controls access to information in

a data base. These procedures are invoked whenever access to data is requested.

They perform various functions in the storage, retrieval, and manipulation of

information. The set of procedures and their associated functions are the es-

sential elements of the formulary model of access control.

Different users will want different algorithms to carry out these functions.

For example, some users will be using data which is inaccessible to others; the

name of a particular data element may be specified in different ways by different

users; some users will manipulate data structures - such as trees, lists, sparse

files, ring structures, arrays, etc ., , - which are accessed by algorithms speci-
fically designed for these structures e Depending on how he wishes to name, access,

and control access to elements of the data base, each user will be attached to a
formulary appropriate to his own needs.

1. Procedures of a Formulary

In this subsection, we describe the procedures of a formulary. These pro-

cedures determine the accessibility, addressing, structure and interrelationships

of data in the data base dynamically, at data request time. They can be arbitrarily

complex. In contrast, earlier systems usually made only table-driven static

determinations, prespecified at file makeup time. By use of the formulary method,
these advantages are gained:

1) flexibility and changeability of data base organization to reflect

current needs

2) capability to perform access control at request time as well as

at file creation time

3) more efficient use of storage.

Each procedure of a formulary should, if possible, run from memory which

is alterable only under administrative control. The integrity of the system de-

pends on the integrity of the formularies and therefore the procedures of all for-
mularies should be written by “system” programmers who are assumed faultless.

Undebugged procedures in a formulary may result in undesiredtypesof access to

data items.

A formulary has four procedures: VIRTUAL, SCRAMBLE, UNSCRAMBLE,
and CONTROL. The first three are relevant but not central to access control;

the decision on whether to grant the type of access desired is made solely by the

-9-

CONTROL procedure. As pointed out in Hoffman [1970], the first three pro-

cedures have been explicitly included in each formulary for three reasons:

1) to centralize in one place all functions dealing with addressing

and access control;

2) to give the model the generally necessary to model existing and

proposed systems; and

3) to provide well-delimited modules for cost/effectiveness studies

and for experimentation with different addressing schemes and

access control schemes Q

a. The VIRTUAL procedure. VIRTUAL translates an internal name into the

virtnal address of the corresponding datum. VIRTUAL is a procedure with two

input parameters:

1) the internal name to be translated

2) a cell which will sometimes be used to hold “other information”
as described in Section Dld below.

VIRTUAL returns
1) the resulting virtual address

2) a completion code (1 if normal completion)

Recall that enough virtual addressing capacity is assumed available to handle

the entire data base. Virtual addresses are mapped into the physical core memory

locations, disc tracks, low-usage magnetic tapes, etc., by hardware and/or by

the FETCH and STORE primitive operations for a particular implementation.

b. The SCRAMBLE procedure D SCRAMBLE is a procedure which transforms

raw data into encrypted form. (I n most unclassified physics applications,

SCRAMBLE will be null.) SCRAMBLE has two input parameters:

1) the virtual address of the datum to be scrambled

2) the length of the datum to be scrambled

SCRAMBLE has three output parameters:

1) a completion code (1 if normal completion)

2) the virtual address of the scrambled datum

3) the length of the scrambled datum

Note that if an auto-key cipher (one which must access the start of the cipher-

text, whether or not the information desired is at the start) is used, all of the -
information encrypted using that cipher, be it as small as a single field or as

large as an entire “file”, must be governed by the same access control privileges.

- 10 -

Therefore, some applications may choose to use several (or many) auto-key

ciphers within the same “file. ” It is inefficient and usually undesirable to scram-

ble data items at other than the internal name level, e.g., scrambling as a block

(to effectively increase key length) the data represented by several internal names.

In cases where internal names represent data which fits into very small areas of

storage, greater security may be obtained by other methods (e.g., use of nulls) 0

We do not discuss encrypting schemes in this paper. The interested reader

is referred to Shannon [1949], Kahn [1967], and Skatrud [1969].

c. The UNSCRAMBLE procedure. UNSCRAMBLE is an unscrambling procedure

which transforms encrypted data into raw form. (In most unclassified physics

systems, UNSCRAMBLE will be null.) UNSCRAMBLE has two input parameters:

1) the virtual address of the datum to be unscrambled

2) the length of the datum to be unscrambled

UNSCRAMBLE has three output parameters:

1) a completion code (1 if normal completion)

2) the virtual address of the unscrambled datum

3) the length of the unscrambled datum

d. The CONTROL procedure. CONTROL is a procedure which decides whether

a user is allowed to perform the operation he requests (FETCH, STORE,

FETCHLOCK, etc *) onthe particular datum he has specified. CONTROL may consider
the identification of the user and/or the source of the request (e.g., the terminal

identification) in order to arrive at a decision. CONTROL may also converse with

the requesting user before making the decision.
CONTROL has two input parameters and two output parameters. The two

input parameters are:

1) the internal name of the datum

2) the operation the user desires to perform

The two output parameters are:

1) 1 if access is allowed; otherwise an integer greater than 1

2) “other information” (explained below)

- 11 -

In some specific systems, data elements may themselves contain access

control information. Consider three examples:

Example 1.

DATUM R W 30 bits of actual data
I

If bit R is on, DATUM is readable.

If bit W is on, DATUM is writeable.

Example 2.

ENERGY [65BevI

Reading or writing of energies of 65 BeV or over requires special checking.

CONTROL must inspect the ENERGY cell before it can do further capability

checking and eventually return 1 or some greater integer as its first output

parameter (see Fig. 4) o In the formulary model, CONTROL can only make a

yes or no decision about access to a particular datum. Any more complex

decisions, such as one involving release of a count which is possibly low enough

to allow unwanted identification of individual data (e.g., “Tell me how many

people in the Computation Group were tested by Health Physics for radiation symp-

toms last year”), can only be made by a suitably sophisticated TALK procedure.

More on pitfalls involved in using counts while protecting sensitive data is given

in Miller and Hoffman [1969].

Example 3.

Record N

Record N-l Record N+l

347 346 storage units of actual data

The record contains its own length (and, therefore, also points to its suc-

cessor) o This type of record would appear, for example, in variable length

sequential records on magnetic tape and in some list-processing applications.

In systems of this type, CONTROL might often duplicate VIRTUAL’s function

of transforming the internal name of a datum into that datum’s virtual address.

To achieve greater efficiency, CONTROL can (when appropriate) return the

datum’s virtual address as ‘other information. ” VIRTUAL, which is called

after CONTROL (see the ACCESS algorithm in Section K) , can then examine

this ‘other information. ” If a virtual address has been put there by CONTROL,

- 12 -

. .

Internal Name
> CONTROL --Yes or No

Operation’

Time of Day
Between 0830
and 1700 PST 7 Yes

NO

Chief operator :
call user to
Resolve Problem

Voice Conversation

NOTE: I. TIME-DEPENDENT
2. FEEDBACK LOOPS
3. ON-LINE HUMAN DECISION FOR DIFFICULT PROBLEMS

1631AI

FIG. 4--A sample CONTROL procedure.

- 13 -

VIRTUAL will not duplicate the possibly laborious determination of the datum’s

virtual address, since this has already been done. VIRTUAL will merely pluck

the address out of the “other information” and pass it back.

Note that CONTROL can be as sophisticated a procedure as desired; it need

not be merely a table-searching algorithm. Because of this, CONTROL can con-

sider many heretofore ignored factors, in making its decision (see Fig. 4). For

example, it can make decisions which are data-dependent and time-dependent.

It can require two keys (or N keys) to open a lock. Also it can carry on a lengthy

dialogue with the user before allowing (or denying) the access requested.

CONTROL is not limited to use at data request time. In addition to being

used to monitor the interactive storage, retrieval, and manipulation of data, it

can also be used at initial data base makeup time for data edit picture format

checking, data value validity checking, etc. Or, alternatively, one could have

two procedures CONTROL1 and CONTROL2, in two different formularies, Fl and

F2. Fl could be attached at data input time and F2 at on-line storage, retrieval,
manipulation, and modification time.

E. Simultaneous Use of One Formulary by Multiple Users

Note that the same formulary can be used simultaneously by several different

users with different access permissions. This is possible because access control

is determined by the CONTROL procedure of the attached formulary. This pro-

cedure can grant different privileges to different users D

F. Building a Formulary

Before a formulary can be attached to a user and a terminal, the procedures

it contains must be specified. This is done using the system program

FORMULARYBUILDER. FORMULARYBUILDER converses with the systems
programmer who is building a formulary to learn what these procedures are, and

then retrieves them from the system library and enters them as a set into a

formulary which the user names (see Fig. 5) o The specifics of FORMULARY-

BUILDER depend on the particular system.

G. The Attachment Process - The Method of Linking a Formulary to a User

and Terminal

In order to allow information storage and retrieval operations on the data

base to take place, a user, a terminal, and a formulary which has been previously

built using FORMULARYBUII.DER must be linked together (see Fig. 6}* This
linking process is done in the following manner.

- 14 -

Ascertain which four programs
make up the formulary

,

1 Ascertain name for the formulary 1
I I

I

r- Enter name and formulary
into the data bank

1
EXIT

I

1275A4

FIG. 5--General block diagram of FORMULARYBUILDER program.

- 15 -

THIS ATTACHMENT MUST BE MADE BEFORE
ANY INFORMATION STORAGE, RETRIEVAL,

OR MANIPULATION IS ALLOWED.

USER

\

FORMULARY

FIG. 6--Attachment of user, terminal, and formuhry.

- 16 -

At the first time ACCESS is called (by TALK) for a given user and terminal,

it will only permit attachment of a formulary to the user and terminal (i.e., it

will not honor a request to fetch, store, etc.) o The attachment is permitted only

if the CONTROL program of the default formulary allows. The default formulary,

like all other formularies, contains VIRTUAL, CONTROL, SCRAMBLE, and

UNSCRAMBLE procedures. For the default formulary, they act as follows:

CONTROL CONTROL takes the internal name representing the

formulary and decides whether user U at terminal T

is allowed to attach the formulary represented by the

internal name. U and T are maintained in the UCB

and passed to CONTROL by ACCESS.

VIRTUAL VIRTUAL takes the internal name representing the

formulary and returns the virtual address of the

formulary.

SCRAMBLE No operation.

UNSCRAMBLE No operation.

The ATTACH attempt, if successful, causes information about the formulary

specified by the user to be read into the UCB (which is located in the data area of

the ACCESS procedure) D ACCESS then uses this information (when it is subsequently

called on behalf of this user/terminal combination) to determine which CONTROL,

VIRTUAL, SCRAMBLE, and UNSCRAMBLE procedures to invoke.

1. Independence of Addressing and Access Control

After the attachment process, the User Control Block (UCB) contains the

user identification U, terminal identification T, and information about (usually

pointers to) the VIRTUAL, CONTROL, SCRAMBLE, and UNSCRAMBLE pro-

cedures of a formulary. Whether the user can perform certain operations on a

given datum is controlled by the CONTROL program. The addressing of each
datum is controlled by the VIRTUAL program. Addressing of data items is now

completely independent of the access control for the data items.

2. Breaking an Attachment

An existing attachment is broken whenever

1) the user indicates that he is finished using the information storage and
retrieval system (either by explicitly declaring so or implicitly by

logging out, removing a physical terminal key, reaching the end-of-job

indicator in his input card deck, etc.),

- 17 -

or

2) the user, via his TALK program, explicitly detaches himself from

a formulary.

H. Subdivision of Data Base into Files Not Required

Note that while the concept of a data set (or a “file’? MAY be used, the

formulary method does not require this. This represents a significant departure

from previous large-scale data base systems which were nearly all organized

with files (data sets) as their major subdivisions. Under the formulary scheme,

access to information in a data set is not governed by the data set name. - Rather,

it is governed by the CONTROL procedure of the attached formulary. Similarly,

addressing of data in a data set is governed by the WTUAL procedure and not

by the data set name. Subdividing a data base into data sets, while certainly

permitted and often desirable, is not required by the formulary model.

I. Concurrent Requests to Access Data - The LOCKLIST

The problem of two or more concurrent requests for exclusive data access

necessitates a mechanism to control these conflicts among competing users. This

problem has been discussed, and solutions proposed, in Dijkstra [1965],

Hsiao [1968], and Shoshani and Bernstein [1969]. In the formulary model, data

can be set aside (locked) dynamically for the sole use of one user/terminal com-

bination in a manner similar to Hsiao’s ‘blocking” (Hsiao [1968]), using a

mechanism known as the LOCKLIST.

The locking and unlocking of data to control simultaneous updating is an

entirely separate function from the access control function. Access control takes

into account access rights considerations only. Locking and unlocking are handled

by a separate mechanism, the LOCKLIST. The LOCKLIST is a list of triplets

maintained by the ACCESS program and manipulated by the FETCHLOCK,

STORELOCK, UNLOCKFETCH, and UNLOCKSTORE operations. Each triplet
contains (1) the internal name of a current item, (2) the identification of the

user/terminal combination which caused it to be locked, and (3) the type of lock

(fetch or store) 0 Any datum represented by a triplet on the LOCKLIST can be

accessed only by the user/terminal combination which caused it to be locked.
Data items which can be locked are atomic, i.e., subparts of these data

items can not be locked. This implies, for example, that if a user wishes to -
lock a tree structure and then manipulate the tree without fear of some other

- 18 -

user changing a subnode of the tree, either

1) The tree must be atomic in the sense that its subnodes do not

have internal names in the data base system, or

2) each subnode must be explicitly locked by the user and only after

all of these are locked can he proceed without fear of another user

changing the tree. *

J. The TALK Procedure - Details

To access a datum, the user must effectively call upon TALK, the (nonsystem)

application-oriented storage and retrieval procedure. TALK converses with the

interactive user and/or the user’s program and/or the operating system to obtain

1) a datum description in a user-oriented language

2) the operation the user wishes to perform on that datum

3) user identification and other information about the user

and/or the terminal where the user is located.
Depending on the particular system, the user explicitly gives TALK zero, one,

two, or all three of the above parameters. TALK supplies the missing parameters

(if any), converts (1) to an internal name, and then passes the user identification,

the terminal identification, the internal name of the datum, and the desired opera-

tion to the ACCESS procedure, which actually attempts to perform the operation.
Note that one system may have available many TALK procedures. A user

requests invocation of any of them in the same way he initiates any (nonsystem)

program O Sophisticated users will require only “bare-bones” TALK procedures,

while novices may require quite complex tutorial TALK procedures D They may

both be using the same data base while availing themselves of different datum

descriptions. As an example, one TALK procedure might translate English ‘Yield

names” into internal names, while another TALK procedure translates French
‘field names I’ into internal names O This ability to use multiple and user-dependent

descriptions of the same item is not available with such generality in any system

the author is aware of, though some systems allow lesser degrees of this (Jones

[1968], Giering [1967]) O

*
A more general and elegant method of handling concurrent requests to access
data is being developed by R. D. Russell at SLAC as part of a general resource
allocation method. Much of the housekeeping work currently done in the for-
mulary model can be handled by his method.

I

- 19 -

The above remarks about using different TALK procedures also apply if a

system uses only one relatively sophisticated TALK procedure which takes actions

dependent on the person or terminal using it at a given time.

K. The ACCESS Procedure - Details

ACCESS uses the VIRTUAL, CONTROL, UNSCRAMBLE, and SCRAMBLE

procedures specified in the UCB to carry out information storage and retrieval

functions. Its input parameters are:

1) information about the user, terminal, etc *, defined by the installation.

This information is passed by the procedure that calls ACCESS;

2) internal name of datum;

3) an area which either contains or will contain the value of the datum

specified by&

4) the length of(3)

5) operation to perform - FETCH, FETCHLOCK, STORE, STORELOCK,

UNLOCKFETCH, UNLOCKSTORE, ATTACH, or DETACH. FETCHLOCK

and STORELOCK lock datums to further fetch or store accesses respec-

tively (except by the user/terminal combination for which the lock was

put on) D UNLOCKFETCH and UNLOCKSTORE unlock these locks.

ATTACH and DETACH respectively create and destroy user/terminal/
formulary attachments D

6) a variable in which a completion code is returned by ACCESS.

ACCESS itself handles all operations of(5)except FETCH and STORE. For
FETCH and STORE operations on the data base, it invokes the FETCH and STORE

primitives specified in Section L.

An ALGOL algorithm for the ACCESS procedure follows. This procedure is

quite important and should be examined carefully. The comments in the algorithm

should not be skipped, as they often suggest alternate methods for accomplishing
the same goals. An equivalent FORTRAN algorithm is given as Appendix A. Note

that some means must be provided to determine which formulary is attached so

that the CONTROL, SCRAMBLE, UNSCRAMBLE, and VIRTUAL procedures of
that particular formulary can be invoked. The program of Appendix A transfers

this responsibility to those procedures themselves, which determine which for-

mulary is attached by examining COMMONdata set up previously by the ACCESS

procedure. An alternative method, if ACCESS were written in a more powerful

language or in assembly language, would be to use a transfer vector.

- 20 -

Note that two procedures and their corresponding calls can be removed from

ACCESS if no user will ever have to lock out access to a datum which ordinarily

can be accessed by several users at the same time or if the installation wishes

to use another method to control conflicts among users competing for exclusive

access to datums; this makes the procedure considerably shorter. Such a “no

parallelism” version of the ACCESS algorithm is given in Appendix B.

- 21 -

The A.CCESS Algorithm

procedure access (info, intname, val, length, opn, compcode);

integer arrayinfo, val; integer, length, opn, compcode;

begin comment If OPN = FETCH, VAL is set to the value of the datum

represented by INTNAME.

If OPN = STORE, the value of the datum represented by

INTNAME is replaced by the value in the VAL array.

If OPN = FETCHLOCK or STORELOCK, the datum is locked to

subsequent FETCH or STORE operations by other users or from

other terminals until an UNLOCKFETCH or UNLOCKSTORE operation,

whichever is appropriate, is performed.

If OPN = UNLOCKFETCH or UNLOCKSTORE, the fetch lock or store

lock previously inserted by a FETCHLOCK or STORELOCK opera-

tion is removed.

If OPN = ATTACH, the formulary represented by internal name

INTNAME is attached to the user and terminal described in the

INFO array.

If OPN = DETACH, the formulary represented by internal name

INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a FETCH (STORE) operation will actually attempt

to fetch (store) LENGTH storage elements of information.

It is the responsibility of the TALK procedure to handle

scrambling or unscrambling algorithms that return outputs

of a different length than their inputs.

- 22 -

ACCESS returns the following integer completion codes in

COMPCODE :

1 normal exit, no error

2 unlock operation requested by user or terminal

who/which did not set lock

3 operation permitted but gave error when attempted

4 attempt to unlock datum which is not locked in given

manner

5 cannot handle any more User Control Blocks (would

cause table overflow)

6 attempt to detach nonexistent user/terminal/formulary

combination

7 operation permitted for this user and terminal but

could not be carried out since datum was locked (by

another user/terminal) to prevent such an operation

8 cannot put lock on as requested since LOCKLIST is full

9 datum already locked by this user and terminal

10 error return from VIRTUAL procedure

11 operation on the datum represented by INTNAME not

permitted by CONTROL procedure of the attached formulary

12 end of data set encountered by FETCH operation.

Note that by the time the user has left the ACCESS routine, the data may

have been changed by another user (if the original user did not lock it). Note that

ACCESS could be altered to allow scrambling and unscrambling to take place at

external devices rather than in the central processor.

- 23 -

‘.

Important: ACCESS expects the following to be available to it. The installation

supplies these in some way other than as parameters to ACCESS (for example, as

global variables in ALGOL or COMMON variables in FORTRAN) -

(1) ISTDUCB the default User Control Block. Its length is NUCB

storage units.

(2) NUCB see (1).

(3) UCB a list of User Control Blocks (UCB’s) initialized outside

ACCESS to ucb (1,l) = -2,

ucb (i, j) = anything when -(i = j = 1)

UCB is declared as m array (l:maxusers, 1:nucb).

(4) MAXUSERS the maximum number of users which can be actively

connected to the system at any point in time.

(5) ITALK the length of the INFO array (which is the first

parameter of ACCESS) - INFO contains information about

the user and terminal which is used by ACCESS and also

passed by ACCESS to procedures of the attached formulary.

INFO(l) contains user identification.

(6) LOCKLIST a list of locks (each element of the LOCKLIST array

should be initialized outside ACCESS to -1).

LOCKLIST is declared as integer array (1:4, 1:maxllist).

(7) MAXLLIST the maximum length of the LOCKLIST

(8) CSl a semaphore to govern simultaneous access to the critical

section of the ACCESS procedure (initialized to 1 outside ACCESS).

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, STORELOCK,

UNLOCKFETCH, UNLOCKSTORE, ATTACH, and DETACH have been initialized

globally and are never changed by the installation;

- 24 -

integer array iucb [l:nucb] , reslt [l:length] ;

integer i, ii, islot, j, yesno, other, n, datum;

integer procedure testandset (semaphore); integer semaphore;

It returns -1 begin comment TESTANDSET is an integer function designator.

if SEMAPHORE was in the state LOCKED on entry to TESTANDSET. Otherwise,

TESTANDSET returns something other than -1. In all cases, SEMAPHORE is in

state LOCKED after the execution of the TESTANDSET procedure, and must be

explicitly unlocked in order for it to be used again.

TESTANDSET is used to implement a controlling mechanism to prevent

conflicts among users competing for the same resource, as discussed in

(Dijkstra [1965]). It will= prevent “deadly embraces” (Habermann [1969]). No

explicit code is given here, since the function is machine-dependent. The manner

in which TESTANDSET is implemented for a particular machine, the IBM 360/67,

is shown in the listing of the TESTSE procedure of Appendix A.

This procedure can be removed if no user will ever have to lock out access

to a datum which ordinarily can be accessed by several users at the same time

or if the installation wishes to use another method to control conflicts among users

competing for exclusive access to datums;

< code >

end testandset; -

integer procedure idxll (intname, opn); integer intname, opn;

begin comment IDXLL, given an internal name INTNAMF:, returns the relative

position of INTNAME on the LOCKLIST if the datum represented by INTNAME is

locked in a manner affecting the operation OPN. Otherwise, IDXLL returns

- 25 -

the negation of the relative location of the first empty slot on the LOCKLIST. If

the LOCKLIST is full and the INTNAME/OPN combination is not found on it,

IDKLL returns 0.

This procedure can be removed if no user will ever have to lock out access

to a datum which ordinarily can be accessed by several users at the same time

or if the installation wishes to use another method to control conflicts among

users competing for exclusive access to datums;

integer firstempty;

j : = if opn = FETCH ‘p opn = UNLOCKFETCH z opn = FETCHLOCK then 1 e& 2 ;

idxll : = firstempty : = 0;

for i := lstepl*maxllist* -

begin ii := -i;

if locklist [l, i] = -1 then firstempty := i

else if locklist [l, i] = intname and locklist [2, i] = j then begin idxll : = i; -- -

&RET

if firstempty # 0 e idxll

RET:

: = -firstempty;

end idxll; -

procedure ret (i); integer i;

begin comment RET sets the completion code compcode to i and then causes

exit from the ACCESS procedure;

compcode :=i; go FIN

end ret; -

- 26 -

compcode : = 1;

comment first let’s see if we recognize the user/terminal combination

in INFO;

islot :=O;

for i : = 1 step 1 until maxusers & -

beginii:=i;

if ucb [i, 1] = -2 thenbegin comment end of list of ucb’s; -

if isloti0 then begin if ii # maxusers then ucb [ii+l, 1]:= - 2;

-XFER;

end -

else go PRESETUP;

end -

else if ucb [i, l] =-1 then islot := ii --

comment remember this slot if vacant;

else begin for j : = 1 step 1 until italk do - -

if ucb [i, j]#info[j] then go to ILOOPND;

go SETUPPTRS

end;

ILOOPND:

end i loop; -

if islot = 0 then ret (5); comment cannot handle any more UCBs;

PRESETUP:

ii := islot;

XFER:

for k : = 1 step 1 & italk &o ucb[ii, k] : = info[k];

for k := italk + 1 Step 1 until nucb do ucb[ii, k] := istducb[k]; -

- 27 -

SETUPPTRS:

for i : = 1 step 1 until nucb & iucb[i] : = ucb[ii, i] ; -

comment set up pointers to appropriate user control block for particular

implementation. Note well: Setting up pointers to appropriate user control blocks

is quite dependent on the particular system. For an example of one implementation,

see Appendix A;

comment We have now associated user and terminal with the user control block

(representing a formulary) in relative position i of the UCB table;

if iucb[nucb] # intname a& opn = DETACH + ret (6);

comment attempt to detach user/terminal/formulary combination not currently

attached;

control (intname, opn, yesno, other);

if yesno > 1 then ret (11);

comment return 11 if CONTROL does not permit operation;

if opn = ATTACH then begin ucb[ii, nucb] : = intname; go FIN

end;

comment Note well: In many implementations, pointers to each procedure of

the formulary (obtained by having VIRTUAL transform intname into a virtual

address) might be put into the UCB upon attachment. In others, the philosophy

used here of only putting one pointer - to the formulary - into the UCB will be

followed. The decision should take into account design parameters such as

implementation language, storage available, etc. ;

if opn = DETACH then beffin comment detach formulary (this leaves an open

slot in the ucb array); ucb[ii, l] : = -1; go FIN

f&;

- 28 -

if opn = UNLOCKFETCH or opn = UNLOCKSTORE then - -

begin i : = .idxll(intname, opn); comment find internal name on LOCKLIST;

if i < 0 then ret(4); comment cannot find it;

for j:=l* laitalk* -

if locklist [2+j, i] # iucbb] then ret(2);

locklist [l, i] : = -1; comment undo the lock and mark slot in UCB array empty;

end unlock operation; -

TRY:

if testandset(cs1) = -1 then go TRY;

comment loop until no other user is executing the critical section below;

comment ACCESS should ask to be put to sleep if embedding system permits;

comment ----------------- enter critical section for locking out datums --------;

i : = idxll(intname, opn);

comment get relative location of locked datum in locklist;

if i > 0 then bee comment datum found on locklist so see if it was locked by --

this user and terminal;

for j:=l@laita&+ -

if locklist [2+j, i] # iucb[j] then ret(7);

comment data already locked by another user or terminal;

if opn = FETCHLOCK ok opn = STORELOCK a ret(g);

comment datum already locked by this user and terminal,

so return completion code of 9;

end; -

- 29 -

. .

i :=-1;

if opn = FETCHLOCK 01‘ opn = STORELOCK then

begin comment this is a lock operation;

if i = 0 then ret(8); comment connot set lock since locklist is full;

locklist[2, i] :=if opn = FETCHLOCK then 1 else 2;

comment set appropriate lock;

for j : = 1 step 1 until italk & locklist[2+j, i] : = iucb[j] ; -

comment place user and terminal identification into LOCKLIST;

locklist[l, i] : = intname; comment place internal name on LOCKLIST;

go FIN;

end lock operation; -

virtual (intname, datum, other, compcode);

comment VIRTUAL returns in datum the virtual address of the datum specified;

if compcode > 1 then ret(lO); comment error return from VIRTUAL;

if opn = STORE then -

begin comment store operation;

scramble (val, length, compcode, reslt, n);

if compcode > 1 then ret@);

comment operation permitted but gave error when attempted;

comment now perform a physical write of n storage units to the block

starting at reslt;

store (datum, reslt, n, compcode);

if compcode > 1 then ret(3)

end -

else

begin comment fetch operation;

fetch (datum, reslt, length, compcode);

- 30 -

if compcode = 2 then ret(12); comment end of data set encountered; -

if compcode > 1 then ret(3);

unscramble (reslt, length, compcode, val, n);

if compcode > 1 then ret(3);

end fetch operation; -

FIN:

comment --------------- Leave critical section for locking out datums ------------;

csl := 1;

end access; -

- 31 -

L. FETCH AND STORE Primitive Operation

The two primitive operations FETCH and STORE are supplied by the insml-

lation 0 These primitives actually perform the physical reads and writes which

cause information transfer between the media the data base resides on and the

primary storage medium (usually, magnetic core storage) 0 They are invoked

only by the ACCESS procedure.

The primitive operations cannot be expressed in machine-independent form,

but rather depend on the specific system and machine used. They are defined

functionally below .,

FETCH(ADDR, VALUE, LENGTH, COMP)

This primitive fetches the value which is contained in the storage locations starting

at virtual address ADDR and returns it in VALUE. This value may be scrambled,
but if so unscrambling will be done later by UNSCRAMBLE (called from ACCESS),

and LENGTH is the length of the scrambled data. The value comprises LENGTH

storage elements 0 Upon completion, the completion code COMP is set to:
1 if normal exit

2 if end of data set encountered when physical read attempted

3 if length too big (installation-determined)

4 if illegal virtual address given to fetch from

5 if error occurred upon attempt to do physical read

STORE(ADDR,VALUE, LENGTH,COMP)

This primitive stores LENGTH storage elements starting at virtual address

VALUE into LENGTH storage elements starting at virtual address ADDR. The

information stored may be scrambled, but if so the scrambling has already been

done by SCRAMBLE (called from ACCESS), and LENGTH is the length of the

scrambled data. Upon completion, the completion code COMP is set to:

1 if normal exit
3 if length too big (installation-determined)

4 if illegal virtual address given to store into

5 if error occurred upon attempt to do physical write.

- 32 -

. .

CHAPTER IV

CONCLUSIONS

A. Summary
We have defined and demonstrated a model of access control which allows

real-time decisions to be made about privileges granted to users of a data base.

Raw data need appear only once in the data base and arbitrarily complex access

control programs can be associated with arbitrarily small fragments of this data.

The desirable characteristics for an access control method laid out in

Chapter II are all present (though we have not yet run enough experiments to make

general statements about efficiency) :

1) No arbitrary constraint (such as segmentation or sensitivity levels) is
imposed on data or programs

2) The method allows control of individual data elements. Its efficiency

depends on the specific system involved and the particular controls

used. As shown in Hoffman [1970], very little performance degradation

due to increased overhead was added by the introduction of formularies

to the tape-based system discussed there.

3) No extra storage or time is required to describe data which the user

does not desire to protect.

4) The method is machine-independent and also independent of file

structure o The efficiency of each implementation depends mainly on

the adequacy of the formulary method for the particular data structures

and application involved.

B. Future Work
More experiments should be carried out to determine the amount of additional

system overhead introduced by user formularies. This will vary over data struc-
tures and over data base systems. In particular, actual costs in additional central

processor cycles should be determined for various hardware systems.
Criteria of system efficiency, degree of control required, etc., should be

developed to determine the extent of usefulness of the formulary method. Some

preliminary work has already been done in this area (Wortman and Hoffman [1969]).

Using the formulary method, cost measures for scrambling and unscrambling

techniques and for threat monitoring (Hoffman [1969]) subsystems can be developed

in the same manner that some cost measures were developed in Hoffman [I9?6].

- 33 -

To observe the full capabilities of the method and its potential for storage

efficiency, a system should be developed where quite a number of users share

several formularies 0 Also, the problem of users granting limited capabilities to

other users, these new users granting even more limited capabilities to still

other users, etc. , and all this being done while access control decisions are

being made in real time by procedures, should be investigated in more detail.

Once this problem of granting limited privileges is solved, we will see much

more controlled sharing of mutually useful programs and data. The implications

here for giant physics-oriented data banks are very great.

A most promising area for future work is the development of a generalized

resource allocation system which incorporates the formulary model as a first

stage and a sophisticated scheduler as a second stage. Such a system is cur-

rently being investigated by R. D. Russell at SLAC.

Finally, since the central ACCESS procedure is fixed, hardware or micro-

programmed implementations of it could be built which would greatly decrease

the overhead in central processor cycles involved in using the formulary method.

- 34 -

REFERENCES

Castleman, P. A. [1967]. “User-defined syntax in a general information storage

and retrieval system, ‘I in Information Retrieval, The User’s Viewpoint, An

Aid to Design, International Information, Inc D

Dijkstra, E. W. [1965]. Cooperating sequential processes. Department of

Mathematics, Technological University, Eindhoven, The Netherlands.
Hoffman, Lance J. [1969]. Computers and privacy: A survey. Computing

Surveys 1, 2 (June 1969).

Hoffman, Lance J. [19?0] e The Formulary Model for Access Control and Privacy

in Computer Systems. Report No. SLAC-117, Stanford Linear Accelerator

Center 0

Hsiao, D. K. [1968]. A File System for a Problem Solving Facility. Ph.D.

Dissertation in Electrical Engineering, Univ. of Pennsylvania, Philadelphia.

Jones, R. S. [1968]. DATA FILE TWO - A data storage and retrieval system.

Proc. SJCC 1968, 171-181.

Kahn, D. [1967]. The Codebreakers. MacMillan, New York.

Miller, W. F. and Hoffman, L. J. [1969]. A method of extracting record-specific
information from “statistical” data banks q CGTM-67, Stanford Linear Accel-

erator Center, Computation Group, Stanford, California.

Rovner, P. D. and Feldman, J. A. [1968]. The Leap Language and data structure.

Proc. IFIP Congress 1968, C73-C77.

Shannon, C. E. [1949]. Communication theory of secrecy systems. Bell System

Tech. J. 28, 656-715.

Shoshani, A0 and Bernstein, A. J. [1969] 0 Synchronization in a parallel-accessed

data base. Comm. ACM 12, 11 (November 1969), 604-607.

Skatrud, R. 0. [1969]. The application of cryptographic techniques to data

processing. Proc. AFIPS 1969 Fall Joint Computer Conference, 111-117.
Wortman, David and Hoffman, Lance J. [1969] 0 Steps toward a formalism for

the formulary model. CGTM-83, Stanford Linear Accelerator Center,
Computation Group, Stanford, California.

- 35 -

APPENDIX A -- FORTRAN VERSION OF ACCESS PROCEDURE

The ACCESS procedure has the following characteristics:
a. only procedure which directly calls FETCH and STORE primitives.
b. only procedure which performs locking and unlocking operations.
C. all requests for operations on data base must go through it.

Lines 5247-5284 above describe the operation of the ACCESS procedure.

- 36 -

Appendix A --FORTRAN Version of ACCESS Procedure (cont’d.)

. .

COMPCODE=l
ISLOT=O

C FIRST TRY TO RFCOGNIZE USER/TERMINAL COMBINATION IN INFO ARRAY
DO 1 I=lrMAXUSFRS
II=1
IF lUCBll I.11 .EQ. -2) GO TO 2

C END LIST OF UCBS
IF (UCBl(I.1) .EQ. -1) GO TO 3
DO 4 J=lrITALK
IF 1UCBl(I,J) .NE. INFO(JIb GO TO 1

4 CONTINUE
GO TO 6

2 IF (ISLOT .NE. 0) GO TO 7
IF (I1 .NE. MAXUSERS) UCBl(II+l,l)=-2
GO TO 16

3 ISLOT=II
C REMEMBER THIS SLOT IF VACANT

1 CONTINUE
IF (ISLOT .EQ. 0) GO TO 805

C CANNOT HANDLE ANY MORE UCES
7 II=ISLOT

16
5

a
6
9

DO 5 K=l,ITALK
UCBl(II.Ki=INFO(K1
Kl=ITALK+l
DO 8 K=KlrNUCB
UCBl(II,K)=ISTDUcB(K)
DO 9 I=lrNUCB
IUCB(I)=UCBI(II,1 I

C SET UP POINTERS TO APPROPRIATE USER CONTROL BLOCK
C USER AND TERMINAL N?k ASSOCIATED WITH PUSITION II OF ucB TABLE.

IF I (IUCB(NUCB) .NE. INTNAMEI .AND. (DPN .EQ. DETACHPJI GO TO 1306
C ATTEMPT TO DETACH USER/TERMIN4L/FORMULARY COMB INATION NOT CURRENTLY
C ATTACHED

CALL CONTROL~INTNAME,OPN,YESNO,OTtiER~
IF (YESNO .GT. 11 GO TO Bll

C RETURN 11 IF CONTROL DOES NOT PERMIT OPFRATION
IF (UPN .EQ. ATTACHP) GO TO 10
IF (OPN .EP. DFT4CHP) GO TO 11
IF((ClPN .Nb. UhLFEPl .4ND. (OPN .NE. UNLSTP)) GO TO 12
I=IDXLL(INTNAME,flpNI

C FIND INTERNOIL NAME ON LOCKLIST
IF (I .LE. 0) G3 TO 804

C CANNOT FIND IT IF I .LE. 0
DO 13 J=l,ITPLK
IF (LLIST(Z+J,ll .NE. IUCBiJI) GO TO 802

C JUMP IF UNLOCK RFPUESTED BY USER/TERMINAL WHO/WHICH DID NOT SET LOCK
13 CONTINUE

LLIST(I,I)=-1
c UNDO THE LOCK AND MARK SLOT IN uca ARRAY EMPTY

GO TO 801
12 IF (TESTSF(L:ll .EQ. -1) GO TO 12

C--
C ENTeR CRITICAL SECTION FOR LOCKING OUT DATUMS
C--

I=IDXLL(INTNAME.OPNI
C GET RELATIVF LOCATION OF LOCKED DPTUH IN LOCKLIST

IF(I .LE. OJ GO TO 14
C IF DATUM NUT LOcKED TO THIS DPN, GO TO 14

00532700
00532800
00532900
00533000
00533100
CO533200
00533300
00533400
00533500
005 33600
00533700
00533800
00533900
00534000
0053410@
00534200

‘00534300
00534400
00534500
00534600
00534700
00534800
00534900
00535000
00535100
00535200
co535300
00535400
00535500
00535600
00535700
00535B@O
00535900
00536000
00536100
00536200
00536300
00536400
00536500
00536600
00536700
00536800
00536900
00537000
00537100
00537200
00537300
00537400
00537500
00537600
00537700
00537800
00537900
00538000
00538100
00538200
00538300
00538400

” 37 -

Appendix A --FORTRAN Version of ACCESS Procedure (cont’d.)

. .

C NOW SEE IF DATUM FOUND ON LOCKLIST LOCKED BY TliIS USER AND TERMINAL
DO 15 J=l,ITALK
IF (LLISTIZ+J,Ib .NE. IUCBIJII GO TO 807

15 CONTINUE
IFl(OPN .EQ. FLOCKP) .OR. (OPN .EQ. SLOCKPI) GO TO 809

14 1=-I
IF ((“PN .NE. FLOCKP) .AND. IOPN .NE. SLOCKP)) GO TO 18

C JU"p IF NOT A LOCK OPERATION
IF (1 .EQ. 0) GO TO 808
K1=2
IF IOPN .EQ. FLOCKP) Kl=l
LLISTl2,Il=Kl

C SET APPROPRIATE LOCK
DO 20 J=l.ITALK

20 LLISTI2tJ.I)=IUCBI J)
C PLACE USER AND TERMINAL ID INTO LOCKLIST

LLISTll,I)=INTNAME
C PLACE 1”ITERNAL NAME ON LOCKLIST

GO TO 801
L

18 CALL VIRTuAL(INTNAHE,DATUM,OTHER,COnP)
C VIRTUAL RETURNS IN DATUM THE VIRTUAL ADDRESS OF

IF ICOHP .GT. 1) GO TO 810
C JUMP IF ERROR RETURN FROM VIRTUAL

DATUM SPECIFIED THE

IF (OPN .EP. STaREPI GO TO 21
CALL FETCH(OATUM,RESLT,LENGTHICOHP)
IF (CONP .FO. 21 GO TO 812

C JU”P TO 81;’ I;-&Jo OF DATA SET ENCOUNTERED
IF iCO;P-.GT. II GO TO 803
CALL UNSCRAHBLE~RESLT,LENGTH~~OMP.VALUE.N~
IF (COMP .GT. II GO TO 803
GO TO 801

21 CALL SCRAMBLEIVALUE,LENGTH,COMP,RESLTIN)
IF (COMP .GT. 1) GO TO 803

C OPERATION PERMITTED RUT GAVE ERROR WHFN ATTEYPTED
r
; NOW PERFORM A PHYSICAL kiRI’:F OF N STORAGE UNITS TO THE BLOCK ST
C AT RESLT

CALL STOREI DATUH,RESLT,N.CO~P)
IF (COMP .GT. 1) GO TO 803
GO TO 801

10 UCBL(II ,NuCB)=INTNAME
GO TO 801

11 UcBllJ'.1)=-l ..,__
C DETACH FORHULARY
C ““I~oL~~V~&AN OPEN SLOT IN THE UCR TABLE)

C
812 COMPCODE=COMPCOOE+l
8 11 COHPCODE=COHPCOOE+1
810 COMPCODE=COHPCODE+l
809 COMPCODE=COMPCODE+l
BOB COHPCODE=COMPCODE+1
807 COMPCODE=COMPC~~DE+~
806 COMPCODE=COMPCODE+1
805 cOMPCODE=COMPCOOE+1
804 COHPCODE=COHPC~DE+1
803 COMPCODE=COMPCODE+1
802 COHPC00E=COMPCODE+1
801 CSl=l

c ________^___________--------- ____________________------------
C LEAVE CRITICAL SECTIOY FOR LOCKING OUT DATUMS __________
c ____________________--------------

EN0

00538500
005386oo
00538700
0053BBOO
00538900
00539000
005391@0
005392@0
00539300
00539400
00539500
00539600
00539700
00539800
00539900
005400F0
00540100
00540200
00540300
00540400
00540500
00540600
00540700
005408oo
00540900
OO54100@
00541100
005412oo
005413oc
005414oc
005415OC
00541600
00541700
005418oC
005419OC
00542000
005421OC
00542200
00542300
00542400
00542500
005426@(!
00542700
OC542Boo
00542900
00543000
00543100
00543200
00543300
005434co
oc543500
00543600
00543760
00543BO@
of?543900
OO54400@
oo544100
00544200
005443tv
OO54440@
0054450@
00544600
005447oc
OC544BCO
0054490@

ART ING

- 38 -

1

Appendix A --FORTRAN Version of ACCESS Procedure (cont’d.)

INTEGER FUNCTION IDXLLtINTNAHE, OPYI
IvPLICIT INTEGERTA-2)
INTEGER INTN4ME.OPN

c IDXLLI GIVEN AN INTERNAL NAME INTNAM AND AN OPERATION OPN,
I- RETURNS THE RELATIVE PCSITION OF ItiTNAM ON THE LOCKLIST IF
C IT IS LOCKED IN A MANNER AFFECTING OPERATION OPN. OTHERWISE,
C IDXLL RETURNS THE NEGATION OF THE FIRST EMPTY RELATIVE LOCATION
C ON THE LOCKLIST. IF THE LOCKLIST IS FULL AN0 THE INTNAM/ OPN
C COMBINATION IS NOT FOUND, IDXLL RETURNS 0.
c

COHM~N~CONSTANTS/NUCBtNFORM,HAXU5ERS,MAXLLISTrITALK,
1 FORHl,FORHZ,FORM3,
2 NEXTALL,SAMEALL,
3 FETtHP,STOREP,UNLFEPIUNLSTP.FLOCKP,SLOCKP.ATTACHP,DETACHP

C
CIIMMON/OWNl/UCBl ,LLIST,CSI
INTEGER LLTSTd4,IOOl
INTEGER UCBl(10013)
J=2
IFf (OPN .EQ. FETCHPI .OR. (OPN .EO. UNLFiPl .OR. IOPN .EP. FLOCKPI

1) J=l
F IR STE YPTY=O
IDXLL=O
DO 1 I=l,YAXLLIST
II-I
K=LLIST(l.I)
IF IK .EP.- 1 t FI RSTEWTY=I
TFITK .EQ. INTNAYEI .AND.TLLIST(Z,IT .EQ. JTI GO TO 4

1 CONTINUE
2 IF (FIRSTEMPTY .NE. 0) IOXLL=-FIRSTEMPTY

RETURN
4 I@xLL=II
5 RETURN

ENCl

1 TESTSE START 0
2 + TESTSE IS AN INTEGER FUNCTION .DESIGNATOR CALLASLE FROM FCiRTRAN
3 l VIA THE CALL
4 l J=TESTSE(I b
5 + I IS A VARIABLE OF TYPE INTEGER+4. J CONTAINS, ON RETURN,
6 * -1 ONLY IF THE CONDITION CODE YAS 1 AFTER EXECUTING THE TS OPERATION
7 * ON I. THE LEFTMOST BYTE OF I IS SET TO ALL ONES ON
B + RETURN FROM TESTSE.
9 *

:; ; THANKS TO JOHN EHRMAN FOR THE CODING OF THIS.

12 L L,O(O,ll
13 TS 0111
14 BALR 0.0

:z
SLL
SRA Zl

17 BR 14
18 END

- 39 -

APPENDIX B -- THE ACCESS PROCEDURE - lLNO PARALLELISM” VERSION

__ This appendix presents a version of the ACCESS algorithm which can be used

when no user will ever have to lock out access to a datum which ordinarily can be

accessed by several users at the same time or if the installation wishes to use

a method other than the one given in Section K of Chapter III to control conflicts

among users competing for exclusive access to datums.

- 40 -

procedure access (info, intname, val, length, opn, compcode);

integer array info, val; integer intname, length, opn, compcode;

If OPN = FETCH, VAL is set to the value of the datum begin comment

represented by INTNAME.

If OPN = STORE, the value of the datum represented by INTNAME

is replaced by the value in the VAL array.

If OPN = ATTACH, the formulary represented by internal name

INTNAME is attached to the user and terminal described

in the INFO array.

In OPN = DETACH, the formulary represented by internal name

INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a FETCH (STORE) operation will actually attempt

to fetch (store) LENGTH storage elements of information.

It is the responsibility of the TALK procedure to handle

scrambling or unscram.bling algorithms that return outputs

of a different length than their inputs.

ACCESS returns the following integer completion codes in

COMPCODE:

1 normal exit, no error

3 operation permitted by CONTROL procedure gave error

when attempted

5 cannot handle any more User Control Blocks (would cause

table overflow)

6 attempt to detach nonexistent user/terminal/formulary

combination

- 41-

10 error return from VIRTUAL procedure

11 operation on the datum represented by INTNAME not

permitted by CONTROL procedure of the attached formulary

12 end of data set encountered by FETCH operation.

Note that by the time the user has left the ACCESS routine, the data may

have been changed by another user. Note that ACCESS could be altered to allow

scrambling and unscrambling to take place at external devices rather than in the

central processor.

Important: ACCESS expects the following to be available to it. The installation

supplies these in some way other than parameters to ACCESS (for example, as

global variables in ALGOL or COMMON variables in FORTRAN) -

(1) ISTDUCB

(2) NUCB

(3) UCB

(4) MAXUSERS

(5) lTALK

the default User Control Block. Its length is NUCB

storage units.

see (1).

a list of User Control Blocks (UCBs) initialized outside

ACCESS to ucb(l,l)=-2,

ucb(i, j)=anything when ~(i=j=l)

UCB is declared as integer array (1: maxusers, 1: nucb).

the maximum number of users which can be actively

connected to the system at any point in time.

the length of the INFO array (which is the first

parameter of ACC&S) - INFO contains information

about the user and terminal which is used by ACCESS

and also passed by ACCESS to procedures of the

attached formulary. INFO(l) contains user identification.

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, STORELOCK,

- 42 -

UNLOCKFETCH, UNLOCXSTORE, ATTACH, and DETACH have been initialized

globally and are never changed by the installation;

integer array iucb (l:nucb), reslt (1:length);

integer i, ii, islot, j, yesno, other, n, datum;

procedure ret (i); integer i;

w comment RET sets the completion code compcode to i and then causes

exit from the ACCESS procedure;

compcode : = i; go FIN

end ret; -

compcode : = 1;

comment first let’s see if we recognize the user/terminal combination

in MFO;

islot : = 0;

fori:=l*l&maxusers*

begin ii:=i;

.if ucb [i, l] = -2 then begin comment end of list of ucb’s; -

if islot= 0 then begin if iif maxusers then

ucb [ii+l, l] :=-2; go XFER

end -

else go to PRESETUP;

end -

else if ucb [i, l] = -1 then islot : =ii --

comment remember this islot if vacant;

else begin for j : = 1 step 1 JI@ italk 2

- 43 -

if ucb [i, j] #info [j] then go 2 ILOOPND;

go& SETUPPTRS

e&;

LLOOPND:

end i loop; -

ifislot = 0 then ret (5); comment cannot handle any more UCBs;

PRESETUP:

ii : = islot;

XFER:

for k : = 1 step 1 until italk do ucb [ii, k] : = infolk]; - -- -

for k := =italk + 1 step 1 until nucb do ucb[ii, k] :=istducb[k]; - -

SETUPPTRS:

for i : = 1 step 1 until nucb do iucbfi] := ucb[ii, i]; -

comment set up pointers to appropriate user control block for particular

implementation. Note well: Setting up pointers to appropriate user control

blocks is quite dependent on the particular system. For an example of one

implementation, see Appendix A;

comment_ We have now associated user and terminal with user control block

(representing formulary) in relative position ii of the ucb table;

-if iucb[nucb] # intname and opn = DETACH thenret (6);

comment attempt to detach user/terminal/formulary combination not currently

attached;

control (intname, opn, yesno, other);

if yesno > 1 then ret (11);

comment return 11 if CONTROL does not permit operation;

if opn = ATTACH then begin ucb[ii, nucb] : = intname; m FIN

end; -

- 44 -

- 9P -

