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ABSTRACT 

Switching properties of junction diodes are analyzed with em- 

phasis on the effects of conductivity modulation resulting in induc- 

tive behavior. Transients are computed including conductivity 

modulation, diffusion capacitance, transition capacitance, and 

finite generator impedance. 
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I. INTRODUCTION 

Junction diodes have been finding increasing application in high-speed switch- 

ing circuits. Technological advances have resulted in increased operating speed, 

improved reliability, and lower cost. 

Switching properties of junction diodes are analyzed in this report, with par- 

ticular emphasis on the effects of conductivity modulation resulting in inductive 

behavior. A simple diode model is presented incorporating dc junction properties, 

diffusion capacitance, transition capacitance, and conductivity modulation. Tran- 

sient responses are computed with this model driven by a generator with a finite 

source impedance. 
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II. THE DIODE MODEL 

A. DC Characteristics of the Junction 

The dc characteristics of the junction can be represented by 

I =I0 (evj’vT-I) . (1) 

Here I is the current through the junction, v j is the voltage across it, IO is the 

saturation current (a constant for a given diode at a fixed temperature), and VT 

is given by 
V =nk2 

‘I’ 4 ’ (2) 

where k is the Boltzmann constant k = 1.38 x 10 
-23 Ws/‘K, T is the absolute 

temperature in OK, and q = 1.6 x 10 -19 Coul is the charge of the electron. The 

multiplier n is 1 to 1.5 for germanium, 1.5 to 2 for silicon diodes. The value 

of kt/q is in the vicinity of 25 mV at room temperature, resulting in a VT of 

between 25 mV and 50 mV. 

From (l), for large negative vj one would expect the diode current I to ap- 

proach -IO, typically a few nanoamperes. In reality, to this current one has to 

add a surface leakage current and a current resulting from breakdown at 

some negative v.. 
I 

In the following, however, these corrections will be omitted 

and (1) will be utilized throughout. 

A small signal characteristic of the diode, the incremental resistance 

(3) 

can be expressed from (1) as 

vT r. = - 1 I + IO (4) 
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B. Stored Charge and Capacitance. 

The charge Q stored in a junction diode, and the resulting capacitance C, 
* 

can be divided into two parts: 

and 

Q = Qd(*) + Q&vj) (5) 

where 

hence also 

c = Cd(I) + C,(Vj) 

dQd 
‘d = dvj 

dQt 
Ct =dv j 

dQ 
“‘5 - 

(6) 

Pa) 

0) 

(7c) 

The charge Qd is, to a very good approximation, proportional to the junction 

current I: 

where the factor of proportionality, TV, is the minority carrier lifetime. The 

diffusion capacitance Cd can be written as 

d% d1 

cd = dvj 

By utilizing (1) and (8), 

which can be also written as 

I + IO 

cd = ‘O -7 ’ 
(10) 

cd - ‘$; zj”T. I (11) 

*The assumption is made that Qd and Qt are each stored in a single storage element. 
For more accurate models, see J. G. Linvill, Models of Transistors and Diodes, 
(McGraw Hill, New York, 1963). 
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The charge Qt is that stored in the transition capacitance of the junction, 

which depends on the effective width of the junction as 

cOv: 
Qt = yqg (vo-vj)(l-m) 

I 
. (12) 

Also 

dQt Ct= dv. = cO 

3 
( ) 
l-4 m 

vO 

(13) 

Here m is between l/3 and l/2, V. is in the vicinity of 0.7 volts. 

In addition to the above, there is also a stray capacitance associated 

with the diode; this will be neglected in what follows. 

C. Body Resistance and Conductivity Modulation 

The junction described above is made between two materials, at least one of 

which is a semiconductor. In reality, these are of finite size resulting in a series 

ohmic body resistance which at low currents can be approximated by a constant. 

At high current levels, however, the stored charge may substantially increase the 

conductivity of the body material: this is the phenomenon of conductivity modula- 

tion. The resulting conductance l/rs can be approximated by the sum of two terms: 

a constant go and one proportional to the stored charge: 

1 - = go + constant x Qd r . 
S 

Utilizing (1) and (8), this becomes 

1 I -= 
r 

S 
go +“, 

which can be written as 

, 

1 IO -= 
r 

S 
go ‘7 c evj’VT-J . 

Here go and V, are constants, characteristic of the diode. 

(14) 

(15) 

W-5) 
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D. The Complete Diode Model 

The complete diode model is shown in Fig. 1. 

for I, ri, Cd, Ct, and rs are collected here. 

For convenience, the expressions 

I = IO e 
( ) 

Vj/VT 
-1 

v. = v 
J 

TPn I++ 
( > 0 

vT r. = - 1 I + IO 

I + IO ToI 
cd=ToT=T e 

Vj/VT 

Ct = 
CO 

( ) 
l-Tim 

vO 

t 

, 

1 I -= 
r 

‘0 (~jivTml) . 
S 

80 + vs = go + v, 

(17a) 

(18) 

(19) 

(20) 

(21) 
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III. JUNCTION DIODE TRANSIENTS 

A. The Circuit 

Transients of junction diodes in the circuit of Fig. 2(a) will be analyzed. The 

circuit with the diode model of Fig. 1 substituted is shown in Fig. 2(b); the generator 

current waveform ig(t) is shown in Fig. 2(c). 

Several special cases will be considered. The simplest case, when Ct and 

rs are zero, and R -m, 
g 

is analyzed in Section RI. B. The analysis is extended 

in Section III. C for the case of rs # 0. Section III. D gives results for finite 

Rg and Ct # 0. Transients at very high forward current levels when (15) is not 

valid are discussed in Section III. E. 

B. Transients with Ct = 0, ru = 0, and R -CQ. 
g- 

In this case, in the circuit of Fig. 2(b) vj = vin . Resistor Rg can be chosen to be 

arbitrarily large; it cannot, however, be omitted entirely since then all of ig(t) would 

be forced into the junction, and (1) may be violated. 

Neglecting the current through R 
g’ 

one can write the equations : 

and 

dv. 
i = 
C ‘d-;itl , 

I =‘,(eyj’“T-I) , 

the latter of which can also be written as 

v.=VT Qn I++- . 
J ( > 0 

(22) 

(23) 

(244 

(24b) 
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Expanding (23), and utilizing (4) and (lo), one obtains 

(25) 
, 

as a result (22) becomes 

2 . =I+Tog . (26) 

Thus, although neither ri nor Cd is constant, the resulting differential equation 

is linear in I. 

From (26), for the ig(t) of Fig. 2(c) with -Ig- < - IO, one can write for 

the turn-on transient 

Also, by utilizing (24b) 

v. =VT Iln I$- +lj I--uj’] . 
J 

For I 
g+ 

>>I09 this becomes 

I+ v. zv 
J T 

Pn S- + Pn 
IO 

(28) 

(29) 

The turn-off transient, assuming that equilibrium conditions are established 

by the time to,, is given by 

I = Ig+ - (I +‘I 
g+ g- 

) ( l-e 
-wo& 0 

(30) 

valid as long as I 2 -IO, i. e. , as long as t-toff < 7 o gn w ; I = -IO 
g- 0 

otherwise. The voltage vj can be obtained by substituting (30) into (24b): 

vj=VTPn I++ -I _ 
i [ 

+ (Ig+ + Ig-)e 
-woffV To 

0 g Ii 
(31) 
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The voltage vj becomes zero at a time toff + ts, where from (31) with vj = 0, I+ 
ts = 7. Qn 1 + -ig c ) . g- 

(32) 

The time ts is defined as the storage time of the diode, which is a function of r o and I /I 
kg 

_. 

Representative transients of (28) and (31) are shown in Fig. 3 and Fig. 4. 

C. Transients with Ct = 0, rs # 0, and R -00. g- 

With a non-zero ohmic body resistance rs, the input voltage can be 

written with (21) as 

For t < tOff and I >> Io,utilizing Eqs. (27) and (29) for I and v., respectively, 
J 

the input voltage becomes 

V. m =VT 

[ 

h y + !ln( 1 -e+‘o>+ govsvs’v~t,~o (34) 

- + l-e 
I+ g 1 

It can be shown that the nature of the forward transient is determined by the 
I+ I+ 

value of - 
I PogVs * 

For g < 4, the turn-on transient is monotonic. For 
govs 

4 < 2 < 4.536 the transient has a local maximum followed by a local minimum,. 
govs I+ 

but the value of the maximum is below the final value of the voltage. For -g- > 4.536, 
T gOvS 

the transient has an overshoot followed by an undershoot. As 2 
hVs 

is increased more 

and more above 4.536, the magnitude of the overshoot increases, and that of the under- 

shoot decreases. These various possibilities are shown in Fig. 5. 

Figure 5 also shows the turn-off transient obtained by substituting (30) and (31) 

into (33). As a result of non-zero rb, there is an instantaneous drop in the terminal 

voltage followed by a storage time close to that of the case with r = 0. 
S 
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D. Transients with Ct # 0 and Rg #a. 

If Rg is finite or Ct is not zero, the transient analysis of the circuit 

of Fig. 2(b) becomes considerably more involved. The following equations 

can be written: 

Also 

cd - :: zj”T 

C 
ct = 0 

v. m 

( > 
l- 1. 

vO 

I = Io(J’VT -1) 

rS =+s 

. +gi 1. 
m 

g s 

v. = (i in g 
- iin) R 

g 

i =i. -1 c m 

i 
V = 

c,Pct 
dt 

j 

which can be approximated by a finite sum: 

where 

vj(t + At) =v 
1 
(t) + Av 

, 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42a) 

Av = 
icAt 

‘d + ‘t 
. (42”) 

Equations (35) through (43) are solved by adigital computer using the flow- 

chart of Fig. 6 with Atmax = 0.1~~’ Atmin = 10 -6 ro, and Avmax = O.lVT. 

The Fortran - IV computer program is shown in Fig. 7. 
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Representative transients are shown in Fig. 8 and Fig. 9 . Storage times are 
. 

summarized in Fig. 10. Transients for Ct $ 0 with V. = 25 VT and m = i are 

shown in Fig. 11 and Fig. 12. 

E. Transients at Very High Forward Currents. 

In general, the body resistance rs can be written as* 

(43) 

Here go and Vs are constants and Xn=W/L, where W is the dimension of the diode in 

the directionof the current flow, and L is the diffusion length of the minority carriers. 

It can be shown that rs is always positive; also that in the limit Xn-0, rs of 

(43) becomes 

1 
rsc I 

O go+vs 
(44) 

by L’Hospital’s rule. 

If the diode is YYhinll as it was assumed in Section III. C, (44 ) is applicable; 

in general (43) must be used. The effect of finite Xn on the transient is shown in 

Fig. 13. 

* W. I% Ko, “The forward transient behavior of semiconductor function diodes, 11 
Solid-State Electronics 3, 59-69 (1961). 
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