ARPAD BARNA
STANFORD LINEAR ACCELERATOR CENTER STANFORD UNIVERSITY
Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONTRACT NO. AT(04-3)-515

March 1969

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $\$ 3.00$; microfiche copy $\$.65$.

ABSTRACT

Switching properties of junction diodes are analyzed with emphasis on the effects of conductivity modulation resulting in inductive behavior. Transients are computed including conductivity modulation, diffusion capacitance, transition capacitance, and finite generator impedance.

TABLE OF CONTENTS

Page
I. Introduction 1
II. The Diode Model 2
A. DC Characteristics of the Junction 2
B. Stored Charge and Capacitance 3
C. Body Resistance and Conductivity Modulation. 4
D. The Complete Diode Model 5
III. Junction Diode Transients 6
A. The Circuit 6
B. Transients with $C_{t}=0, r_{s}=0$, and $\mathrm{R}_{\mathrm{g}} \rightarrow \infty$ 6
C. Transients with $\mathrm{C}_{\mathrm{t}}=0, \mathrm{r}_{\mathrm{s}} \neq 0$, and $\mathrm{R}_{\mathrm{g}} \rightarrow \infty$ 8
D. Transients with $C_{t} \neq 0$ and $\mathrm{R}_{\mathrm{g}} \neq \infty$. 9
E. Transients at Very High Forward Currents 10
Figure Captions 11

FIGURE CAPTIONS

Page

1. The diode model . 11
2. (a) The circuit, (b) the circuit incorporating the diode model of Fig. 1, (c) generator current waveform 12
3. Transient response of a diode with $\mathrm{r}_{\mathrm{s}}=0, \mathrm{R}_{\mathrm{g}} \rightarrow \infty, \mathrm{C}_{\mathrm{t}}=0, \mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$, and with $\frac{\mathrm{I}_{\mathrm{g}^{+}}}{e^{20} \mathrm{I}_{0}}=\frac{\mathrm{I}_{\mathrm{g}^{-}}}{e^{20} \mathrm{I}_{0}}$ as parameter
(a)
(b)
4. Transient response of a diode with $\mathrm{r}_{\mathrm{s}}=0, \mathrm{R}_{\mathrm{g}} \rightarrow \infty, \mathrm{C}_{\mathrm{t}}=0, \frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{e}^{20} \mathrm{I}_{0}}=1$,
and with $\mathrm{I}_{\mathrm{g}} / \mathrm{I}_{\mathrm{g}^{+}}$as parameter. 15
5. Transient response of a diode with $\mathrm{r}_{\mathrm{S}} \neq 0, \mathrm{R} \rightarrow \infty, \mathrm{C}_{\mathrm{t}}=0, \mathrm{~g}_{0} \mathrm{~V}_{\mathrm{s}}=$ $\frac{e^{20^{\prime}} I_{0}}{4}$, and $\mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$. Note different voltage scales and parameters in
(a) . 16
(b) . 17
6. Flow chart of the computer program
(a) . 18
(b) . 19
7. FORTRAN-IV computer program 20
8. Transient response of a diode with $\mathrm{r}_{\mathrm{s}}=0, \mathrm{C}_{\mathrm{t}}=0, \mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$, and with $\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{e}^{20_{\mathrm{I}_{0}}}}=\frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{e}^{20} \mathrm{I}_{0}}$ as parameter
(a) $\mathrm{R}_{\mathrm{g}} \mathrm{e}^{20} \mathrm{I}_{0} / \mathrm{V}_{\mathrm{T}}=100$. 21
(b) $\mathrm{Rg}_{\mathrm{g}} \mathrm{e}^{20} \mathrm{I}_{0} / \mathrm{V}_{\mathrm{T}}=50$. 22
9. Transient response of a diode with $r_{s} \neq 0, C_{t}=0, g_{0} V_{s}=\frac{e^{20} I_{0}}{4}$, and $\mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$
(a) $\mathrm{R}_{\mathrm{g}} \mathrm{e}^{20} \mathrm{I}_{0} / \mathrm{V}_{\mathrm{T}}=100$.
(b) $\mathrm{R}_{\mathrm{g}} \mathrm{e}^{20} \mathrm{I}_{0} / \mathrm{V}_{\mathrm{T}}=50$
10. Storage times $t_{S}=t(v=0)-t_{\text {off }}$ for $I_{g^{+}}=e^{20} \mathrm{I}_{0}$ and $C_{t}=0$ as function of $I_{g^{\prime}} / I_{g^{+}}$with normalized source resistance $R_{g} e^{20} I_{0} / V_{T}$ as parameter25
11. Transient response of a diode with $r_{s}=0, C_{t} \neq 0, \mathrm{R}_{\mathrm{g}} \rightarrow \infty$, $\mathrm{V}_{0}=25 \mathrm{~V}_{\mathrm{T}_{\mathrm{C}_{0}}}, \mathrm{~m}=0.5, \mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$, and with $\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{e}^{20} \mathrm{I}_{0}}$ as parameter
(a) $\frac{\mathrm{C}_{0} \mathrm{~V}_{\mathrm{T}}}{\tau_{0} \mathrm{I}_{0} \mathrm{e}^{20}}=0.001 \cdots \cdots \cdot \cdots \cdot{ }^{2} \cdot \cdots$
(b) $\frac{\mathrm{C}_{0} \mathrm{~V}_{\mathrm{T}}}{\tau_{0} \mathrm{I}_{0} \mathrm{e}^{20}}=0.01$.
12. Transient response of a diode with $\mathrm{r}_{\mathrm{s}} \neq 0, \mathrm{C}_{\mathrm{t}} \neq 0, \mathrm{R}_{\mathrm{g}} \rightarrow \infty$,

$$
\mathrm{g}_{0} \mathrm{~V}_{\mathrm{s}}=\frac{\mathrm{e}^{20_{\mathrm{I}}}}{4}, \mathrm{~V}_{0}=25 \mathrm{~V}_{\mathrm{T}}, \mathrm{~m}=0.5 \text {, and } \mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}
$$

(a) $\frac{\mathrm{C}_{0} \mathrm{~V}_{\mathrm{T}}}{\tau_{0} \mathrm{I}_{0} \mathrm{e}^{20}}=0.001$
(b) $\frac{\mathrm{C}_{0} \mathrm{~V}_{\mathrm{T}}}{\tau_{0} \mathrm{I}_{0} \mathrm{e}^{20}}=0.01$
13. Transient response of a diode taking finite size into account with $\mathrm{r}_{\mathrm{s}} \neq 0, \mathrm{C}_{\mathrm{t}}=0, \mathrm{R}_{\mathrm{g} \rightarrow \infty}, \mathrm{g}_{0} \mathrm{~V}_{\mathrm{s}}=\frac{\mathrm{e}^{20} \mathrm{I}_{0}}{4}, \mathrm{I}_{\mathrm{g}^{+}}=\mathrm{I}_{\mathrm{g}^{-}}$, and with various normalized thickness X_{n}
(a) $X_{n}=0.2$. 30
(b) $X_{n}=0.5$31
(c) $\mathrm{X}_{\mathrm{n}}=1 . \ldots .32$

I. INTRODUCTION

Junction diodes have been finding increasing application in high-speed switching circuits. Technological advances have resulted in increased operating speed, improved reliability, and lower cost.

Switching properties of junction diodes are analyzed in this report, with particular emphasis on the effects of conductivity modulation resulting in inductive behavior. A simple diode model is presented incorporating dc junction properties, diffusion capacitance, transition capacitance, and conductivity modulation. Transient responses are computed with this model driven by a generator with a finite source impedance.

II. THE DIODE MODEL

A. DC Characteristics of the Junction

The dc characteristics of the junction can be represented by

$$
\begin{equation*}
I=I_{0}\left(\mathrm{e}^{\mathrm{v}_{\mathrm{j}} / \mathrm{V}_{\mathrm{T}}}-1\right) \tag{1}
\end{equation*}
$$

Here I is the current through the junction, v_{j} is the voltage across it, I_{0} is the saturation current (a constant for a given diode at a fixed temperature), and V_{T} is given by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{T}}=\mathrm{n} \frac{\mathrm{kT}}{\mathrm{q}} \tag{2}
\end{equation*}
$$

where k is the Boltzmann constant $\mathrm{k}=1.38 \times 10^{-23} \mathrm{Ws} /{ }^{\circ} \mathrm{K}, \mathrm{T}$ is the absolute temperature in ${ }^{\circ} \mathrm{K}$, and $\mathrm{q}=1.6 \times 10^{-19}$ Coul is the charge of the electron. The multiplier n is 1 to 1.5 for germanium, 1.5 to 2 for silicon diodes. The value of kt / q is in the vicinity of 25 mV at room temperature, resulting in a V_{T} of between 25 mV and 50 mV .

From (1), for large negative v_{j} one would expect the diode current I to approach $-\mathrm{I}_{0}$, typically a few nanoamperes. In reality, to this current one has to add a surface leakage current and a current resulting from breakdown at some negative v_{j}. In the following, however, these corrections will be omitted and (1) will be utilized throughout.

A small signal characteristic of the diode, the incremental resistance

$$
\begin{equation*}
r_{i}=\left(\frac{d I}{d v_{j}}\right)^{-1} \tag{3}
\end{equation*}
$$

can be expressed from (1) as

$$
\begin{equation*}
r_{i}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}+\mathrm{I}_{0}} \tag{4}
\end{equation*}
$$

B. Stored Charge and Capacitance.

The charge Q stored in a junction diode, and the resulting capacitance C, can be divided into two parts:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{Q}_{\mathrm{d}}(\mathrm{I})+\mathrm{Q}_{\mathrm{t}}\left(\mathrm{v}_{\mathrm{j}}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
C=C_{d}(I)+C_{t}\left(v_{j}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{d}=\frac{d Q_{d}}{d v_{j}} \tag{7a}\\
& C_{t}=\frac{d Q_{t}}{d v_{j}} \tag{7b}
\end{align*}
$$

hence also

$$
\begin{equation*}
\mathrm{C}=\frac{\mathrm{dQ}}{\mathrm{dv}} \mathrm{v}_{\mathrm{j}} \tag{7c}
\end{equation*}
$$

The charge Q_{d} is, to a very good approximation, proportional to the junction current I:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{d}}=\tau_{0} \mathrm{I} \tag{8}
\end{equation*}
$$

where the factor of proportionality, τ_{0}, is the minority carrier lifetime. The diffusion capacitance C_{d} can be written as

$$
\begin{equation*}
C_{d}=\frac{d Q_{d}}{d v_{j}}=\tau_{0} \frac{d I}{d v_{j}} \tag{9}
\end{equation*}
$$

By utilizing (1) and (8),

$$
\begin{equation*}
\mathrm{C}_{\mathrm{d}}=\tau_{0} \frac{\mathrm{I}+\mathrm{I}_{0}}{\mathrm{~V}_{\mathrm{T}}}, \tag{10}
\end{equation*}
$$

which can be also written as

$$
\begin{equation*}
\mathrm{C}_{\mathrm{d}}=\frac{\tau_{0} \mathrm{I}_{0}}{\mathrm{~V}_{\mathrm{T}}} \mathrm{e}^{\mathrm{v}_{\mathrm{j}} / \mathrm{V}_{\mathrm{T}}} \tag{11}
\end{equation*}
$$

*The assumption is made that Q_{d} and Q_{t} are each stored in a single storage element. For more accurate models, see J. G. Linvill, Models of Transistors and Diodes, (Mc Graw Hill, New York, 1963).

The charge Q_{t} is that stored in the transition capacitance of the junction, which depends on the effective width of the junction as

$$
\begin{equation*}
Q_{t}=\frac{\mathrm{C}_{0} \mathrm{~V}_{0}^{\mathrm{m}}}{1-\mathrm{m}}\left[\mathrm{~V}_{0}^{(1-\mathrm{m})}-\left(\mathrm{V}_{0}-\mathrm{v}_{\mathrm{j}}\right)^{(1-\mathrm{m})}\right] \tag{12}
\end{equation*}
$$

Also

$$
\begin{equation*}
C_{t}=\frac{d Q_{t}}{d v_{j}}=\frac{C_{0}}{\left(1-\frac{v_{j}}{V_{0}}\right)^{m}} \tag{13}
\end{equation*}
$$

Here m is between $1 / 3$ and $1 / 2, \mathrm{~V}_{0}$ is in the vicinity of 0.7 volts.
In addition to the above, there is also a stray capacitance associated with the diode; this will be neglected in what follows.

C. Body Resistance and Conductivity Modulation

The junction described above is made between two materials, at least one of which is a semiconductor. In reality, these are of finite size resulting in a series ohmic body resistance which at low currents can be approximated by a constant. At high current levels, however, the stored charge may substantially increase the conductivity of the body material: this is the phenomenon of conductivity modulation. The resulting conductance $1 / \mathrm{r}_{\mathrm{S}}$ can be approximated by the sum of two terms: a constant g_{0} and one proportional to the stored charge:

$$
\begin{equation*}
\frac{1}{r_{s}}=g_{0}+\text { constant } \times Q_{d} \tag{14}
\end{equation*}
$$

Utilizing (1) and (8), this becomes

$$
\begin{equation*}
\frac{1}{r_{s}}=g_{0}+\frac{I}{V_{s}} \tag{15}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\frac{1}{\mathrm{r}_{\mathrm{s}}}=\mathrm{g}_{0}+\frac{\mathrm{I}_{0}}{\mathrm{~V}_{\mathrm{s}}}\left(\mathrm{e}^{\mathrm{v}_{\mathrm{j}} / \mathrm{V}_{\mathrm{T}_{-1}}}\right) \tag{16}
\end{equation*}
$$

Here g_{0} and V_{S} are constants, characteristic of the diode.

D. The Complete Diode Model

The complete diode model is shown in Fig. 1. For convenience, the expressions for I, r_{i}, C_{d}, C_{t}, and r_{s} are collected here.

$$
\begin{align*}
I & =I_{0}\left(e^{v_{j} / V_{T}}-1\right) \tag{17a}\\
v_{j} & =V_{T} \ln \left(1+\frac{I}{I_{0}}\right), \tag{17b}\\
r_{i} & =\frac{V_{T}}{I+I_{0}} \tag{18}\\
C_{d}=\tau_{0} \frac{I+I_{0}}{V_{T}} & =\frac{\tau_{0} I_{0}}{V_{T}} e^{v_{j} / V_{T}}, \tag{19}\\
C_{t} & =\frac{C_{0}}{\left(1-\frac{v_{j}}{V_{0}}\right)^{m}} \tag{20}\\
\frac{1}{r_{S}}=g_{0}+\frac{I}{V_{S}} & =g_{0}+\frac{I_{0}}{V_{S}}\left(e^{v_{j} / V_{T}}\right) \tag{21}
\end{align*}
$$

III. JUNCTION DIODE TRANSIENTS

A. The Circuit

Transients of junction diodes in the circuit of Fig. 2(a) will be analyzed. The circuit with the diode model of Fig. 1 substituted is shown in Fig. 2(b); the generator current waveform $\mathbf{i}_{\mathbf{g}}(\mathrm{t})$ is shown in Fig. 2(c).

Several special cases will be considered. The simplest case, when C_{t} and r_{s} are zero, and $R_{g} \rightarrow \infty$, is analyzed in Section III. B. The analysis is extended in Section III. C for the case of $r_{s} \neq 0$. Section III. D gives results for finite R_{g} and $C_{t} \neq 0$. Transients at very high forward current levels when (15) is not valid are discussed in Section III. E.
B. Transients with $\mathrm{C}_{\mathrm{t}}=0, \mathrm{r}_{\mathrm{s}}=0$, and $\mathrm{R} \rightarrow \infty$.

In this case, in the circuit of Fig. 2(b) $v_{j}=v_{i n}$. Resistor R_{g} can be chosen to be arbitrarily large; it cannot, however, be omitted entirely since then all of $\mathbf{i}_{\mathbf{g}}(\mathrm{t})$ would be forced into the junction, and (1) may be violated.

Neglecting the current through R_{g}, one can write the equations:

$$
\begin{align*}
& i_{g}=I+i_{c} \tag{22}\\
& i_{c}=C_{d} \frac{d v_{j}}{d t} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
I=I_{0}\left(e^{v_{j} / V_{T-1}}\right) \tag{24a}
\end{equation*}
$$

the latter of which can also be written as

$$
\begin{equation*}
\mathrm{v}_{\mathrm{j}}=\mathrm{V}_{\mathrm{T}} \ln \left(1+\frac{\mathrm{I}}{\mathrm{I}_{0}}\right) \tag{24b}
\end{equation*}
$$

Expanding (23), and utilizing (4) and (10), one obtains

$$
\begin{equation*}
i_{c}=C_{d} \frac{d v_{j}}{d t}=C_{d} \frac{d v_{j}}{d I} \frac{d I}{d t}=C_{d} r_{i} \frac{d I}{d t}=\tau_{0} \frac{d I}{d t} \tag{25}
\end{equation*}
$$

as a result (22) becomes

$$
\begin{equation*}
i_{g}=I+\tau_{0} \frac{d I}{d t} \tag{26}
\end{equation*}
$$

Thus, although neither r_{i} nor C_{d} is constant, the resulting differential equation is linear in I.

From (26), for the $\mathrm{i}_{\mathrm{g}}(\mathrm{t})$ of Fig. 2(c) with $-\mathrm{I}_{\mathrm{g}^{-}}<-\mathrm{I}_{0}$, one can write for the turn-on transient

$$
\begin{equation*}
\left.I=-I_{0}+I_{g^{+}}+I_{0}\right)\left(1-e^{-t / \tau_{0}}\right) \tag{27}
\end{equation*}
$$

Also, by utilizing (24b)

$$
\begin{equation*}
v_{j}=V_{T} \quad \ln \left[\left(\frac{I_{g^{+}}}{I_{0}}+1\right)\left(1-e^{-t / \tau_{3}}\right)\right] \tag{28}
\end{equation*}
$$

For $\mathrm{I}_{\mathrm{g}^{+}} \gg \mathrm{I}_{0}$, this becomes

$$
\begin{equation*}
\mathrm{v}_{\mathrm{j}} \approx \mathrm{~V}_{\mathrm{T}}\left[\ln \frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{I}_{0}}+\ln \left(1-\mathrm{e}^{-\mathrm{t} / \tau} 0\right)\right] \tag{29}
\end{equation*}
$$

The turn-off transient, assuming that equilibrium conditions are established by the time $t_{\text {off }}$, is given by

$$
\begin{equation*}
I=I_{g^{+}}\left(I_{g^{+}}+I_{g^{-}}\left(1-e^{-\left(t-t_{o f f}\right) / \tau_{0}}\right)\right. \tag{30}
\end{equation*}
$$

valid as long as $I \geq-I_{0}$, i. e., as long as $t-t_{o f f} \leq \tau_{0} \ln \frac{I_{g^{+}}+I_{g^{-}}}{I_{g^{-}}-I_{0}} ; I=-I_{0}$
otherwise. The voltage v_{j} can be obtained by substituting (30) into (24b):

$$
\begin{equation*}
\mathrm{v}_{\mathrm{j}}=\mathrm{v}_{\mathrm{T}} \ln \left\{1+\frac{1}{\mathrm{I}_{0}}\left[-\mathrm{I}_{\mathrm{g}^{-}}+\left(\mathrm{I}_{\mathrm{g}^{+}}+\mathrm{I}_{\left.\mathrm{g}^{-}\right)} \mathrm{e}^{-\left(\mathrm{t}-\mathrm{t}_{\mathrm{off}}\right) / \tau} 0\right]\right\}\right. \tag{31}
\end{equation*}
$$

The voltage v_{j} becomes zero at a time $t_{\text {off }}+t_{s}$, where from (31) with $v_{j}=0$,

$$
\begin{equation*}
\mathrm{t}_{\mathrm{s}}=\tau_{0} \ln \left(1+\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{I}_{\mathrm{g}}^{-}}\right) \tag{32}
\end{equation*}
$$

The time t_{s} is defined as the storage time of the diode, which is a function of τ_{0} and $\mathrm{I}_{\mathrm{g}^{+}} / \mathrm{I}_{\mathrm{g}}$-. Representative transients of (28) and (31) are shown in Fig. 3 and Fig. 4.
C. Transients with $C t=0, r, s \neq 0$, and $R \rightarrow \infty$.

With a non-zero ohmic body resistance r_{s}, the input voltage can be written with (21) as

$$
\begin{equation*}
\mathrm{v}_{\text {in }}=\mathrm{v}_{\mathrm{j}}+\frac{\mathrm{i}_{\text {in }}}{\mathrm{g}_{0}+\frac{\mathrm{I}}{\mathrm{v}_{\mathrm{s}}}} \tag{33}
\end{equation*}
$$

For $\mathrm{t}<\mathrm{t}_{0 \text { ff }}$ and $\mathrm{I} \gg \mathrm{I}_{0}$, utilizing Eqs. (27) and (29) for I and v_{j}, respectively, the input voltage becomes

$$
\begin{equation*}
\mathrm{v}_{\text {in }} \cong \mathrm{V}_{\mathrm{T}}\left[\ln \frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{I}_{0}}+\ln \left(1-\mathrm{e}^{-\mathrm{t} / \tau} 0\right)+\frac{\mathrm{V}_{\mathrm{s}} / \mathrm{V}_{\mathrm{T}}}{\frac{\mathrm{~g}_{0} \mathrm{~V}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{g}^{+}}}+1-\mathrm{e}^{-\mathrm{t} / \tau_{0}}}\right] \tag{34}
\end{equation*}
$$

It can be shown that the nature of the forward transient is determined by the value of $\frac{\mathrm{I}_{\mathrm{g}}}{\mathrm{g}_{0} V_{\mathrm{S}}}$. For $\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{g}_{0} \mathrm{~V}_{\mathrm{s}}}<4$, the turn-on transient is monotonic. For $4<\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{g}_{0} \mathrm{~V}_{\mathrm{s}}}<4.536$ the transient has a local maximum followed by a local minimum, but the value of the maximum is below the final value of the voltage. For $\frac{I_{g^{+}}}{g_{0} V_{s}}>4.536$, the transient has an overshoot followed by an undershoot. As $\frac{\mathrm{I}_{\mathrm{g}^{+}}}{\mathrm{g}_{0} \mathrm{~V}_{\mathrm{S}}}$ is increased more and more above 4.536, the magnitude of the overshoot increases, and that of the undershoot decreases. These various possibilities are shown in Fig. 5.

Figure 5 also shows the turn-off transient obtained by substituting (30) and (31) into (33). As a result of non-zero r_{b}, there is an instantaneous drop in the terminal voltage followed by a storage time close to that of the case with $r_{s}=0$.
D. Transients with $\mathrm{C}_{\mathrm{t}} \neq 0$ and $\mathrm{R} g \neq \infty$.

If R_{g} is finite or C_{t} is not zero, the transient analysis of the circuit of Fig. 2(b) becomes considerably more involved. The following equations can be written:

$$
\begin{align*}
& C_{d}=\frac{\tau_{0} I_{0}}{V_{T}} e^{v_{j} / V_{T}} \tag{35}\\
& C_{t}=\frac{C_{0}}{\left(1-\frac{v_{j}}{V_{0}}\right)^{m}} \tag{36}\\
& I=I_{0}\left(e^{v_{j} / V_{T}}-1\right) \tag{37}\\
& r_{s}=\frac{1}{g_{0}+I / V_{s}} \tag{38}\\
& i_{i n}=\frac{i_{g} R_{g}-v_{j}}{R_{g}+r_{s}} \tag{39}\\
& v_{i n}=\left(i_{g}-i_{i n}\right) R_{g} \tag{40}\\
& i_{c}=i_{i n}-I \tag{41}
\end{align*}
$$

Also

$$
v_{j}=\int \frac{i_{c}}{C_{d}+C_{t}} d t
$$

which can be approximated by a finite sum:

$$
\begin{equation*}
v_{j}(t+\Delta t)=v_{j}(t)+\Delta v \tag{42a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta v=\frac{i_{c} \Delta t}{C_{d}+C_{t}} \tag{42b}
\end{equation*}
$$

Equations (35) through (43) are solved by a digital computer using the flowchart of Fig. 6 with $\Delta t_{\max }=0.1 \tau_{0}, \Delta t_{\min }=10^{-6} \tau_{0}$, and $\Delta \mathrm{v}_{\max }=0.1 \mathrm{~V}_{\mathrm{T}}$. The Fortran - IV computer program is shown in Fig. 7.

Representative transients are shown in Fig. 8 and Fig. 9. Storage times are summarized in Fig. 10. Transients for $\mathrm{C}_{\mathrm{t}} \neq 0$ with $\mathrm{V}_{0}=25 \mathrm{~V}_{\mathrm{T}}$ and $\mathrm{m}=\frac{1}{2}$ are shown in Fig. 11 and Fig. 12.

E. Transients at Very High Forward Currents.

In general, the body resistance r_{s} can be written as*

$$
\begin{equation*}
\mathrm{r}_{\mathrm{s}}=\frac{1}{\mathrm{~g}_{0}}\left[1-\frac{1}{\mathrm{X}_{\mathrm{n}}} \ln \left(\frac{1+\frac{\mathrm{I}}{\mathrm{~g}_{0} \mathrm{~V}_{\mathrm{s}}}}{1+\frac{\mathrm{I}}{\mathrm{~g}_{0} \mathrm{~V}_{\mathrm{s}}} \mathrm{e}^{-\mathrm{X}_{\mathrm{n}}}}\right)\right] \tag{43}
\end{equation*}
$$

Here g_{0} and V_{S} are constants and $X_{n}=W / L$, where W is the dimension of the diode in the direction of the current flow, and L is the diffusion length of the minority carriers.

It can be shown that r_{s} is always positive; also that in the limit $X_{n} \rightarrow 0, r_{s}$ of (43) becomes

$$
\begin{equation*}
\mathrm{r}_{\mathrm{s}} \xrightarrow[\mathrm{X}_{\mathrm{n}} \rightarrow 0]{ } \frac{1}{\mathrm{~g}_{0}+\frac{\mathrm{I}}{\mathrm{~V}_{\mathrm{s}}}} \tag{44}
\end{equation*}
$$

by L'Hospital's rule.
If the diode is "thin" as it was assumed in Section III. C, (44) is applicable; in general (43) must be used. The effect of finite X_{n} on the transient is shown in Fig. 13.

* W. H. Ko, "The forward transient behavior of semiconductor function diodes," Solid-State Electronics 3, 59-69 (1961).

ACKNOWLEDGEMENT

The work described here was performed in collaboration with Dale Horelick, whose suggestions and comments are gratefully acknowledged.

Fig. 1

$$
\overline{125042}
$$

Fig. 2

Fig. 3a

Fig. 4

Fig. 5a

Fig. 5b

Fig. 6a

Fig. 6b

DIDDE TRANSIENT***
FUNCIION CQ(V)
IFIV.GT. $+140.0 \mathrm{~V} V=+140.0$
CUEEXP $(\mathrm{V}-20.0$)
RETURN
END

FUNCTION DIODE(V)
IFIV.LT. $-100.01 V=-100.0$
1F(V.GT. $+120.01 \mathrm{~V}=+120.0$
DIDOE=EXP(V)-1.0
RETURN
END

REAL 1D,IC,IG,
DOUBLE PRECISIUN
CALL STRTPII29)
CALL PLOT110.0. $-30.0,231$
CALL PLOT110.0.0.5.23
FORMAT:
(URNOFFTIME*1,1PE10.31
FORMAT(: ,7F10.4,11)
FORMATI'1:'
6 FORMATIFIO
ARGI $=-20.0$
EXPI=EXP (ARG1)
7 CONTINUE
READ 5,6)CTR
IFICTR.LE.0.0JGU TO 100
IFICTR.LT.0.001)CTR=0.0
KRITE(6,4)
12 CUNTINUE
READ $5,1 / G, G N, R 1$, DELT,L,C1, NEWPLT
IF(G.LE.O.O)GD TO 7
WRITE $(6,5)$
WRITE(6,3)G,GN,RL, OELT,L,C1,CTR,NEWPLT
IFIC1.6T. 100.0 OCL=1E20
DELT2=1E-6
IF ${ }^{2}$ NEUPIT $10,0,0,0,+31$
CALL PLOTI $115.0,0.0,-31$
CALL AXISITO.0,2.0., $7^{*},-1,10.0,0,0,0,0,1,0,20,01$
CALL AXIS $110.0,0.0, \mathrm{I}^{\prime},+1,10.0,90.0,-10.0,5.0,10.01$
12
CUNT INUE
TRISE=0.0
XPLOTM $=-0.02$
$V=-G N$
VL $=-G N$
$\mathrm{IC}=0.0$
$T=0.0$
$\begin{array}{rl}X P L O T & =0.0 \\ Y P L O T & 0\end{array}$
YPLOT $=2.0+0.2$ *VL
IFIYPLOT.LE.O.0) YPLOT $=0.0$
3 CALL PLUTI (XPLUT, YPLUT ; *3)
13
$\mathrm{Vi}=\mathrm{V}$
(FICTR.LE.0.0)C=CL(V1)
IFICTR. GT. O.O)C=CU(V2) +CTR/SQRTI1.0-VI*O.04)
IFIT.LT. 6.0)VG=G

$\mathrm{GS}=\mathrm{C} 1+L \leqslant 10$
$G S * C 1+L * 1 D$
$G S I=1.0 / G S$
$G=(V G-V) /(G S I+R 1)$
VL=VG-IG*R1
IC $=16-10$
IC:IG-10
DELTI
DV=IC*OELTI/C
ABSDV=ABS(OV)
IFIABSOV.LT.O.1)GU TU 16
DEL T1=0.2*OELTL/ABSDV
IFIOELTI.LT.DELT210ELT1=DELT2
DV=IC*DELT1/C
IFIOV.GT.0.11OV=0.1
IFIDV.1T -0.1)OV=-0.1
16 CONTINU
$T=T+D E L T$
IFIVL.GT.O.O. AND.TRISE.EQ. O.OJTRISEFT
IFIVL.LT.O.O.AND.TRISE.NE.O.O. ANO.TTOFF, EQ.O.O1TTUFF=T-6.O
XPLOT=T
IFIXPLOT-XPLOTM.LT.O.O1)GU TO 15
XPLOTM=XPLOT
YPLOT=2.0 0 . $2 * \mathrm{VL}$
IFIYPLOT.LT. $0.01 \mathrm{YPLOT}=0.0$
IF (YPLOT.GT. 10.0) YPLUT $=10.0$
14 CONTINUE
CALL PLOTIIXPLOT, YPLUT, +21
TFIYPLOT.LE.O.O.AND.T.GT.6.0JGO TO 17
15 CONTINUE
IFIXPLOT-LE. 10.1GU TO 13
17 CONTINUE
WRITE(6,2)TRISE, TTOFF
WRITE(6,5)
GO TO 11
100
CALL PLOT1 $(15.0,0.0,-3)$
CALL ENDP 1
STOP
ENO

Fig. 10

Fig. 13a

Fig. 13b

Fig. 13c

