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ABSTRACT 

A mathematically exact error analysis is performed on an 

ideal resonant toroid charge monitor for varying beam pulse 

width, assuming calibration with a known impulse charge. An 

optimum waveform sampling point is derived from the data, 

which minimizes the error. The effects of using a rectangular 

calibration pulse are analyzed, and the error for an impulse 

beam is calculated as a limiting case of beam charge distribution. 

Errors for variation in system timing are also analyzed. 

All computations are performed on a digital computer to ob- 

tain the required precision. The results show that a maximum 

error of * .0120/o can be achieved over a pulse width range of 

O-2 psec, with a resonant frequency of 5.25 kRz and a damping 

time constant of 0.33 msec. Under the same conditions the 

maximum timing error is about - 0. 07’%/Psec. 
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I. INTRODUCTION 

In a toroidal charge monitoring system currently in use at SLAC, the beam 

pulse* charge is measured to an accuracy of i 0.1% using a resonant technique. 

In a previous report on this system1 an error analysis of the resonant toroid is 

performed based on certain simplifying assumptions. However, the errors in- 

herent in the mathematical approximations are comparable to the effects being 

investigated, and a more exact analysis is warranted. The present paper de- 

scribes an error analysis of the resonant toroid circuit model, using a digital 

computer, in which the effects of varying beam pulse width and system timing 

instabilities are analyzed. 

All calculations were performed on an IBM 360 computer using Fortran IV 

language. Due to the nature of the calculations it was found that double precision 

arithmetic was necessary to achieve the desired accuracy. The error curves, 

except for a few interpolated from others, are plotted directly from the computer 

output; hence they are mathematically exact within the limits of plotting. 

II. CHARGE MONITOR SYSTEM 

The system and associated waveforms are shown in Fig. 1. The operation 

is described briefly as follows: 

Passage of a beam pulse through the toroid causes a charge to accumulate 

on a capacitor connected across the toroid terminals. The toroid-capacitor 

system then oscillates, the peak amplitude of the damped oscillation being very 

nearly proportional to the amount of beam charge. Using a precise beam pre- 

trigger as a timing reference, the amplified signal is sampled near the second 

peak, converted into a digital number, and added into a digital accumulator; the 

accumulator thus displays the total charge passing through the toroid over a 

period of time. 

The basis for system accuracy is a calibration system capable of simulating 

beams of precisely 10 -8 , lo-’ or 10 -10 coulombs per pulse. The shape of the 

calibration pulse is approximately triangular with a half-maximum width of 

less than 0.5 psec. Using this pulse, sample point timing and system gain are 

adjusted very precisely. 

The SLAC beam characteristics are: pulse width, 0.2 to 2 psec; shape, approx- 
imately rectangular; maximum peak amplitude, 50 mA; rate, up to 360 pps in 
multiples of 60 pps; type of particles, electrons or positrons. 

-l- 
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III. THE RESONANT TOROID MODEL 

Figure 2 shows the circuit model used for the resonant toroid. The toroid 

is assumed to be an ideal current transformer, with the beam equivalent to an 

ideal current source driving a single turn primary. 2,3 Coil resistance and 

inter-turn capacitance are neglected, but core losses and stray capacitance are 
a part of R and C respectively. Resistance R also represents the input imped- 

ance to the preamplifier, in parallel with a separate damping resistor. Posi- 
tional effects of the beam4 are neglected in this model. 

The circuit values used in the actual system, which are referred to later in 
this report, are as follows: 

L=28mH C= .033/.4F R = 5000R f. = 5.25 kHz 

The beam current pulse is assumed to be rectangular, and the spacing be- 

tween pulses large enough so that there is no interpulse error between succes- 

sive beam pulses - i.e., the damping time constant is much shorter than the 

interpulse period. 

Using this model, Laplace transform methods will be used to determine the 
output voltage transient. For a generalized current input, I(t), 

e,(s) = +$j = I(s) sLL 
I+sz+s2Lc 

For a rectangular current pulse input of amplitude Ib/N and width T 

qs) = Ib 1 (1 _ .-ST 
Ns ) 

Then 

‘b 
e,(s) =FC (1-e 

-ST 
) 

1 
2 s+l 

’ + RC LC 

(1) 

(2) 

- & < 0 this transform has the resonant form of solution for e,(t): 

‘b e,(t) = - e -t/PRC 
NCwO wet - eT’2RC sin wo(t-T)u(t-T) 1 (4) 
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The resonant angular frequency, wO = 27rf0, is given by 

When T<<2RC and T<<&, e,(t) has the general form shown in Fig. 2. 

I 

(5) 

IV. DEVELOPMENT OF THE PULSE WIDTH ERROR EQUATION 

The amplitude of e,(t) can be shown to be approximately proportional to the 

total charge in the current pulse. Then 
approximating e T/BRC 

Assume that T << &, and T << 2RC. 
-1, sin w 0 T-wOT, and cos wOT-1, 

w ‘bT 

e,(t) = NC e 
-t/BRC cos wet (6) 

The term IbT is exactly the charge Q in the rectangular current pulse so 

that 

e,(t) g 2 e-t’2RC cos wet (7) 

e-ts’2RCcos w t 
If the waveform is measured or sampled at ts then es E KQ where K = OS 

NC 
It is most practical to measure the waveform near the peak in the vicinity of 

WOts = x, since the waveform slope is near zero, minimizing sampling errors, 

and is well removed from the effects of any secondary beam disturbances. 

Substituting Q = IbT into the exact Eq. (4) and replacing t by the sampling 
time ts yields the sampled voltage es: . 

es = & e-ts’2RC 
0 

T’2RC sin wO(ts - T) 
I 

, (8) 

valid for ts > T. 

The error analysis is based on the assumption of an ideal calibrator which 

injects a calibration impulse* charge into the toroid at t = 0, so that timing and 

* 
An impulse calibration charge is defined as the passage of a precisely known 
charge in infinitesimal time. 
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gain can be accurately adjusted. Adjustment on an impulse results in zero 

theoretical error in measuring “zero width” beam pulses. The use of the cali- 

brator compensates for slow changes in C, 2RC, and w. so that these param- 

eters may be considered known constants in the analysis. 
In order to introduce the calibration charge into Eq. (8), the response to an 

impulse current must be found by applying L’Hospital’s rule to Eq. (8) to find 
the limit as T - 0. 

-ts/2RC 

e 
I 

= Qe sin w t 
NC 3 OS (9) 

’ T--O 

If (es)cal is the given calibration voltage for the calibration charge Qcal 

then 
-ts/2RC 

e 
NC =Q 

(es)cal 
sin wets 

I 

Substituting Eq. (10) into Eq. (8)) 

If the relative error is defined as 

Error = Measured Charge - True Charge 
True Charge 

Q Q 
Error = meas calxLl 

Q - ’ = es (eJcal Q 

then the final equation for the relative error is 
T/PRC 

Error = & 
sin wo(ts-T) 1 -1 

C t 
1 

0 cos w 0 s - 2RC w. 
sin wOts 1 

(10) 

(11) 

(12) 

(13) 
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This equation relates the charge measurement error to pulse width T, at a 

given sampling time ts, assuming impulse charge calibration at t = 0. Since T 

is the variable parameter this error will be referred to as the pulse width error. 

The parameters o. and 2RC are characteristics of the electrical components, 

whereas ts is a system parameter. Since the waveform is measured near the 
peak, the true peak for an impulse charge at t = 0 will be used as the reference 

point from which a small compensation angle 6, is measured. * 

V. LOCATION OF THE PEAK FOR AN IMPULSE CHARGE INPUT 

In order to locate the peak of the waveform differentiate Eq. (9), the expres- 

sion for the impulse response: 

deS 
dt 

e-ts’2Rc -w. sin w t 
’ T-O 

OS - & cos wets 1 
( 14) 

/ 1 -ts/2RC 1 
-2RCe 2RC o. sin w t OS = 0 

Let ts = tp at the peak. Then from Eq. (14) it can be shown that 

tan WOtP = 

4RC w. 

1 - (2RC wo)’ 

or 

1 t =-arc tan 
4RC w. 3n - > P wO 

1 - (2RC 
w~)~; 2w0 t,>$ 

0 

( 15) 

(16) 

The location of the peak, t 
P’ 

which is used in later computation can be 

calculated from the circuit parameters w o and 2RC. Calculated values of t 
P 

are given in Table 1, under two different conditions: (a) The damping time 

constant 2RC is held constant as the frequency w. is varied, (b) the resistance 

R is held constant at 5000 ohms as w. is varied with L held constant at 28 X 10s3 
henries. In order to perform the latter calculations the required value of C is 

* 
The term “compensation” is used since the offset from the peak tends to com- 
pensate for variation in pulse width, T, as shown in Section VI.A. 
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TABLE 1 

LOCATION OF WAVEFORM PEAK 

2RC (set) 

.330x 10 -3 

.330 x 1o-3 

.330 x 10 -3 

.330 x 10 -3 

.330 x 10 -3 

.330 x 1o-3 

.325395 x 1o-3 

wO 
Impulse Rectangular2 

5 (set-3 
Cal Peak Calibration Notes 
tp WW Shift 

Atp (k-c) 

5.25x lo3 89.683890 .250082 2RC = .330 msec 

‘7.25 x lo3 66.049150 .250072 

9.25 x lo3 52.261443 .250089 

11.25 x lo3 43.232198 .250079 

13.25x lo3 36.861791 .250078 

15.25 x lo3 32.126976 .250082 

5.25 x lo3 89.605717 R = 5 K (Constant) 

See Note 1 L = 28.0 x 1O-3 H 

.169263 x 10 -3 7.25 x lo3 63.302912 

.102852 x 10 -3 9.25 x lo3 48.350135 

10 
-3 

.068560 x 11.25 x lo3 38.686791 

.048558 x 1O-3 13.25 x lo3 31.910109 

.035862 x 10 -3 15.25 x lo3 26.875874 

‘Note: The slight discrepancy between this figure and the first is due to the 
assumed value of L used to calculate C. This has no significant 
effect on the results since a self-consistent set of data was used. 

2 Rectangular calibration width of 0.5 ,usec is assumed for this calculation. 
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found by rearranging the resonant frequency formula, Eq. (5): 

VI. PULSE WIDTH ERROR AS A FUNCTION OF RESONANT FREQUENCY 

A. Error at f. = 5.25 kHz 

The pulse width error equation (Eq. (13)) can be evaluated for f. = 5.25 kHz, 

2RC = 0.330 msec and T ranging from 0 to 2 X 10 -6 sec. Selected values of ts 

were used corresponding to a compensation angle, ec, ranging from - lo to 8’. 

The computed error is plotted in Fig. 3. As expected, the error is zero for an 

impulse (T = 0). For large compensation angles the error is positive, but for 

smaller angles, the error shows both positive and negative excursions over the 

range of T. Thus there is an optimum compensation angle in the vicinity of lo 
which minimizes the peak absolute error. Further detail of the region around 

lo with 0. lo resolution is shown in Fig. 4. Again, selecting the angle which 

minimizes the peak error yields an optimum angle of 1.05’ f . 050°, the un- 

certainty being due to the resolution in ec. The peak error at this angle is about 

.0120/o. Note that the error at the optimum angle passes through zero at a beam 

width of 1.66 psec. 

B. Error for 2RC Constant 
From Eq. (7)) it may be seen that the toroid sensitivity, defined as e peak” 

is approximately proportional to 

-t /2RC 
eP 

C 

considering N to be a constant of the toroid. 

then varies approximately as l/C, or wi . 

For tpC< 2RC, the peak amplitude 

Since it is desirable to maximize the 

sensitivity, it is important to evaluate pulse width errors for higher resonant 

frequencies. 
The error calculations were repeated for the resonant frequencies of 7.25, 

9.25, 11.25, 13.25 and 15.25 kHz, with the damping time 2RC held constant, a 

constraint which implies a change in both R and C as frequency varies, and 

-9- 
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results in a fixed interpulse error. The shape of the error curves at these 

additional frequencies remains the same, but the peak error and optimum com- 

pensation angle increase with increasing resonant frequency. 

At each frequency, error curves with 0. lo resolution in 0, were plotted, and 

the optimum angle was selected. Optimum pulse width error curves are plotted 

in Fig. 5. The resulting peak error and optimum angle are plotted against 

frequency in Figs. 6 and 7 respectively. Linearity of the optimum compensation 

angle plot implies an optimum compensation time measured from the peak of the 

waveform which is essentially independent of the frequency over the range con- 

sidered. A linear fit to the plotted curve results in an optimum compensation 

delay of 0.5556 psec. 

C. Error for Constant R 

The above procedure was repeated with R held constant at 5000 ohms to 

simulate a preamplifier having a fixed input resistance; L was held constant at 

28 mH. The smaller capacitance at the higher frequencies (Eq. (17)) results in 

a shorter damping time constant and a smaller interpulse error than at 5.25 kHz. 

At each frequency error curves and optimum angles were again computed and 

plotted in Figs. 6 and 7, using the value of C from Eq. (17). The results are 

quite similar to those obtained for 2RC = constant. In fact, the optimum angle 

curve cannot be distinguished within plotting errors from the case of fixed 2RC. 

These results indicate that the dominating parameters in the pulse width 

error are w o, T, and the compensation time, ts - t . 
P 

D. Error for an Impulse Charge 
Having determined the peak error and optimum measurement time for an 

ideal rectangular current pulse ranging in width from 0 to 2 psec, one may in- 

vestigate the error for another form of charge distribution when operating at 

the previously determined optimum measurement point. In particular an im- 

pulse occurring at time to (to ranges from 0 to 2 psec) was selected as a limiting 

case for the charge distribution. 
The response of the resonant toroid to an impulse of current at to = 0 has 

already been calculated in Section IV and the result is given in Eq. (9). The 

response for an input of a shifted current impulse becomes: 

-(ts-td/%RC 

e = Qe 
S NC W,,(ts-tO) - 2R; w 

0 
sin uo(ts-td 1 u(t,-to) (18) 

- 12 - 
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Assuming impulse charge calibration at t = 0 and substituting Eq. (10) into 

Eq. (18) yields 

tO/2RC (eslcal 
e s=Qe - 

Q cal 

Defining the impulse charge error as 

Q 
Error = measured 

Q -1 (20) 

results in 

Error = e 
tO/2RC 

The resulting error curves for an impulse charge are plotted in Fig. 8, 

for the same resonant frequencies, with 2RC = 0.330 msec and with 6c at the 

optimum compensation angle as previously determined. These curves show a 

similar shape to those for a rectangular pulse input, but indicate greater error, 

although the maximum error at 5.25 kRz is still less than 0.1 percent. Note 

that all of the error curves intersect the zero error axis in the vicinity of 

to = 1.15 psec. 

E. Error for a Rectangular Calibration Pulse 

From the previously calculated results (Section VI. B) it is possible to 
compute the pulse width error for a more realistic calibration pulse, in partic- 

ular a rectangular calibration pulse of width tc, with known charge Qcal. A 
value of tc = 0.5 psec will be used for the computations. From Eq. (8) the 

response for a rectangular pulse of width tc is 

e 
S 

= & e-ts’2RC [Sin WOts _ etc’2RC sin wO(ts-tc) 1 (23) 
oc 

- 16 - 
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Assuming that this is the calibration condition, 

e 
-ts’2RC (es)cal % 
NC w. = - Q cal sin &Jots - e 

tc/2RC 
sin wO(ts-tc) 

Substituting into Eq. (8)) 

tc (esjcal sin wOts - e 
T/2RC sin wo(ts-T) 

e s=Q~ q--- 
cal t /2RC 

sinwt -ec OS 
sin wO(ts- tc) 

Q meas -Q 
If the error is again defined as Q 

then 

5 [ 
sin wOts - e T/BRC 

Er = r 
sin wo(ts-T) 1 

tc/2RC -1 

( 24) 

(25) 

(26) 

This error is defined as the rectangular calibration error Er, referring to the 

assumed shape of the calibration pulse. For a fixed t c1 ts’ WO’ and 2RC the error 

can be written as 

sinot -e T/ZRC 

Er = Kl OS sin wo(ts-T) 

T 
-1 

For an impulse calibration (Section IV) the pulse width error (Eq. (13)) for 

a fixed w 0’ 5 and 2RC can be written as 

sinwt -e T/2RC 

Ei =K OS sin wo(ts-T) 

2 T -1 

Therefore for a given T, 

l+E K1 -= 
l+ E; s = K3 

(28) 

(29) 

or 

l+Er=K3(1+Ei). 

-18 - 



. 

The constant K3 is determined by the impulse error at T = tc, since the 

rectangular calibration error must be zero when the beam width T equals the 

calibration width tc. 

Therefore 

l+E,(T) = 
1 + Ei(T) 

1+ Ei(tc) 
(30) 

As a result,the previously calculated error curves for impulse calibration 

(Figs. 3 and 4) can be used to find the error curves for a rectangular calibration 

pulse. For small errors it can be shown that 

E,(T) ~ Ei(T) - Ei(tc) (31) 

with a calculation error approximately equal to the impulse calibration error at 

T=t. Thus, the rectangular calibration error calculations given by Eq. (31) are 

accuiate to better than l%, for impulse calibration errors below 1%. 

However, an error curve so generated is associated with a different compen- 

sation angle from the impulse calibration error curve, since the reference peak 

of the waveform shifts for a rectangular calibration pulse. The correction is 

found by differentiating Eq. (23) and setting the result equal to zero, in order to 

find the location of the new peak. 

% -- 

- Qe 2RC deS 

dtS 
NC wOtc 

tc/2RC 
cos wOts - e w. cos wO(ts-tc) 1 

tc/2RC 
= 0 

(32) 

Solution of Eq. (32) yields the following result for the time of the peak: 

tc/2RC 
e 

( 
cos wotc + 1 

2RC w. sin wOtc 
> 

- 1 
tp = + arctan 

tc’2RC ( 

(33) 
0 

sinw t - 1 1 
-e Oc 2RCw0 2RC w. 
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where : < w t < % and tp is in seconds. 
OP 

For 2RC = 0.33 x 10s3 sec., tc = 

0.5 x 1o-6 set and w = 2nX 5.25X lo3 set -1 
0 . . . 15.25x lo3 set -1 the shift in 

tp is shown in Table I. Note that the change in tp is very close to one-half the 

calibration pulse width. 
Shifting the original error data according to Eq. (31) and using the data in 

Table 1 to correct the compensation angle, the new error curves are plotted in 

Fig. 9. The optimum compensation angle, defined again as that which minimizes 

the & error, is about 0.8’ compared to the optimum compensation angle of 

1.05’ for impulse calibration. The resulting peak error of .014% is slightly 

greater than the peak error for impulse calibration (. 012%). 

A similar procedure followed for the remaining frequencies results in an 

optimum angle which is again linear with frequency, corresponding to a fixed 

compensation time of 0.417 psec. This is a shift in optimum compensation of 

.138 psec from that of impulse calibration (see Section Vi. B) . The increase in 

peak error is less than 15% over the peak error for impulse calibration. 

VII. TIMING ERROR ANALYSIS 

In the previous sections, charge measurement errors due to changes in 

charge distribution have been discussed. It is also possible to analyse errors 

due to measurement time changes. The timing change can take place in either 

of two areas: (1) A change in ts due to instabilities of timing within the charge 
measurement system. (2) A change in the beam pretrigger reference timing 

t = 0 with respect to the beam pulse leading edge. The error analysis which 

follows applies equally well to either type of timing error. 

The method of analysis will be to differentiate the expression for es (Eq. (8)) 

resulting in the slope of the waveform in volts/set. Then dividing by the value 

of es at that point gives the relative timing error. Substituting the optimum com- 

pensation angle gives the timing error variation with pulse width T when operating 
at the optimum point for a rectangular input pulse. 

Performing the operations above, and rearranging terms yields 

cos w t - e T/2RC cos wo(ts-T) 

sin w:t,” - eT’2RC sin wo(ts-T) 

1 
--x10 , 

I 

-6 
2RC 

which gives the relative slope per microsecond. 

- 20 - 
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Using the previous set of values for resonant frequency, holding 2RC constant 

at ,330 msec, and ranging T from 0 to 2 nsec, the timing error function was cal- 

culated and is plotted in Fig. 10. 

Note that operation at the optimum compensation angle essentially minimizes 

the peak timing error. An error curve for a compensation angle of 0’ is included 

to demonstrate this point. Note also that the timing error or waveform slope is 

zero at about T = 1.13 psec, indicating operation at the peak of the waveform for 

this value of T. 

At 5.25 kHz the maximum timing error is about .07 percent per microsecond. 

VIII. SUMMARY AND CONCLUSIONS 

The major results of the analysis and calculations for a O-2 psec beam can 

be summarized as follows: 
a. At a resonant frequency of 5.25 kHz and a range in pulse width of 0 - 2 

lsec, a compensation angle of 6c = 1.05’ minimizes the peak pulse width error 
to + .012%. If no compensation is used the peak error is - .0730/o. 

b. At higher frequencies, with 2RC constant at .33 msec, the optimum com- 

pensation time (0.5556 psec) is independent of frequency up to 15.25 kHz. The 

optimum peak error increases with frequency; at 15.25 kHz it is f .105yc. 

c. With R held constant at 5000 ohms, the result is similar to (b) but with 

slightly greater peak error at the higher frequencies. 

d. With the system optimized for a 0 - 2 psec pulse, the peak error for an 

impulse charge input over the same range approaches 0.1% at 5.25 kHz, and 0.85% 

at 15.25 kHz. 

e. The use of a 0.5 nsec rectangular calibration pulse instead of an impulse 

results in a .138 nsec shift in the optimum compensation time, and approximately 

a 150/o increase in the peak error. 

f. The optimum compensation angle, which minimizes the peak pulse width 

error, also tends to minimize the peak timing error slope. 

g. The timing error slope increases with resonant frequency; the worst 

slope is about -. 07o/o/psec at 5.25 kHz, and about - 0.5%/psec at 15.25 kHz. The 

timing error curves indicate a waveform slope of zero for a pulse width of 1.13 

psec, independent of frequency. 

Several other conclusions concerning system design and performance are 

possible. First, assuming that the system is always in calibration, then the error 

due to a slow resonant frequency change is given by the slope of Fig. 6, which is 

0.0003% for a 1% change in frequency at 5.25 kHz. It may also be concluded that 

slow variations in the time constant 2RC have little effect on the error. 
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The result (b) above, that the optimum angle corresponds to a fixed compen- 

sation time, implies that the system can be constructed with a fixed compensation 

time,thereby simplifying the electronic circuits. 

It has been shown that the peak error for finite width calibration (0.5 psec) 

is somewhat greater than that for impulse calibration. From the nature of the 

error curves it is apparent that the use of impulse calibration minimizes the 

peak error. On this basis the calibrator should be designed to have the smallest 

possible pulse width. 

It should be recognized that there are other factors contributing to the overall 

accuracy of a resonant toroid charge monitor system. Some of the more important 

ones are listed below. 

1. Imperfections in the electronics (amplifiers, etc.) 

2. Imperfections in the toroid model 

3. Accuracy of the calibration charge 

4. Precision of system adjustment 

5. Drifts in system parameters after calibration 

6. Effects of system noise 

The latter factor is quite important, since the toroid signal may be in the 

microvolt region. It should be noted that the toroid signal increases for higher 
frequencies SO that increased pulse width and timing errors can be traded against 

improved signal-to-noise ratio. 
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