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A. INTRODUCTION 

A standard problem connected with the detection and analysis of high energy 

particles is the optimization of particle trajectories with respect to some measured 

points along the trajectory. 

Point coordinates of this kind are measured, for instance, by photographic or 

“on-line7 techniques, in spark and wire chambers, set up with analyzing magnets, 

hodoscope systems with magnetic analysis as well as in bubble or streamer chambers. 

The problem becomes considerably more complex when the magnetic field is 

not uniform but defined as some three-component function of the space coordinates, or 

when the interaction vertex is not a measured point and its position correlates 

several trajectories originating from it. A situation such as this will be encountered 

in experiments whenever the target is not directly viewed and the coordinates of the 

interaction vertex can not be measured or when trajectories pass through areas of 

nonuniform magnetic fields such as extended fringe fields. 

One expects as a result of the optimization procedure track param- 

eters such as spatial angles and the momentum at the vertex which fit best 

the measured data. Simplifying assumptions about the analytic form of the tra- 

jectories and the ignoring of the correlations between trajectories (especially in 

the case of an unmeasured vertex) may result in incorrect information on the mean 

and on the errors of the optimized parameters. The testing of the conservation of 

energy and momentum in an observed interaction, in particular the testing of 

kinematical hypotheses as to the masses of the observed particles or the param- 

eters of an unmeasured particle requires an accurate knowledge of the covariance 

matrix of the particle angles and momenta. 

In an earlier paper’ a method was described for a simultaneous least square 

fit of the unmeasured vertex and all originating trajectories, allowing for a general 

form of a three-component magnetic field. In this report we want to document in 

some detail the computer procedure CIRCE which was developed to perform the 

nonlinear least square fit of the problem in question. We are describing a version 

of this computer program which requires as an input the measurements xi, yi, 

zi of the points along a trajectory. The point coordinates are to be measured in 

the same coordinate system in which the magnetic field is defined. The distribu- 

tion of the magnetic field can be arbitrary; thus points inside and outside the magnetic 

field region can enter the fit. Generally all trajectories of a multiprong event are 
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fitted simultaneously by the same fit. The vertex coordinates are regarded 

as three additional parameters which are being optimized together with the 

momenta and angles of all tracks emerging from this vertex. The computer 

routine allows to introduce correlations between measured points and renders 

the full covariance matrix of the fitted parameters of all tracks. 

B. MATHEMATICAL FORMULATION 

B. 1 Definition of the Chisquare Sum 

The optimization of the parameters is achieved by minimizing a chisquare 

which is defined as follows: 

(5 - q$ J&c J12 
JI OJI 

The vector m = (xJI, yJI, z JI) represents the measured points of all tracks 

of the same event. I refers to the count of points of the track J. z* repre- 

sents the corresponding computed points on the trajectory which are defined 

as having a minimum distance to the measured points iT;. oJI denotes the 

estimated measuring error for the measurement of the point ZJI . 

In a somewhat more general way one can write chisquare in a matrix form3 

X2 = (m - m*)T W(m - m*) (14 

(‘T’ means transposed) 

Now m and m* represent rectangular matrices, containing all measured points 

of all tracks. For example (we will denote by x, y, z points on the computed 

trajectory) 

m* = 

I 

Yll y12 y13 *** y21 y22 Y23 *-a 

L”11 ‘12 ‘13 *** ‘21 ‘22 ‘23 ‘*’ 
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W is the weight matrix which is calculated by taking the inverse of the co- 

variance matrix of the measurements of the point coordinates, For uncor- 

related measurements W is simply a diagonal matrix containing the inverse 

of the squared measurement error. However the matrix formulation (la) 

permits one to assign different errors to measurements of x, y and z or to 

introduce corresponding correlations if those are present. 

B. 2 Representation of Trajectories 

The computed track coordinates m* are points along the theoretical 

trajectory of a charged particle through a given magnetic field. The trajectory 

depends of course on parameters such as particle momentum, starting point 

and angles. The most general form of a trajectory is the solution of the set 

of differential equations 

Bx tx, Y> 4 9 By (x, y, z), BZ (x, y, z) 

magnetic field in kG [ 1 
c = 2.99791 

GeV P = k the particle momentum in c [ 1 

(3) 

s = arc length along-the trajectory in [meter] 

Equation (3) is derived from the Lorentz invariant form of the electromagnetic 

force equation. All quantities are defined in the laboratory system and electric 

fields are absent, Equation (3) is therefore valid for particles with arbitrary 

velocities. Energy dissipative forces which may obey a scalar equation of the 

form 

did - - G(S) ds 
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do not enter the equation (3) explicitly. They can be taken in account by in- 

serting an appropriate solution of Eq. (4) P = P(s) into Eq. (3). (The 

numerical procedure to solve (3), which is described in section B. 6, will 

also work with a variable P = P (s) . ) 

The general set of initial values 

20 = (x0, YO’ zo) 

determines uniquely a solution of (3), which is obtained by a numerical method. 

With our choice of the coordinate system (see Fig. 1) the derivatives are 

related to the dip angle A and the azimuthal angle C#I of the track at the vertex: 

dx 

0 
TG --) = co9 A cos $ 

xO 

0 3 =cosAsin@ ?. W 

dz 
0 
z--e= sfn A 

xO 

The particular parametrization of Eq. (3) renders3 as a unit vector. whose 

components are the directional cosines at any given point s of the trajector>i, 

Thus we have at s = so only two independent parameters represented by ii. 

One can use a vector notation for the set of all parameters to be fitted. We 

count for an event 

3NR+3 

parameters whi.ch are to be fitted. The parameter vector then is defined as 
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FIG. 1 
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NR is the number of measured tracks emerging from the same interaction 

vertex. One notices that the common vertex is treated on the same basis as 

any other parameter and appears, regarding the initial value solution of (3), ‘ 

as a natural choice. 

B. 3 Fitting of Single Trajectories or Multivertices 

The method of fitting an entire event, including the vertex, poses however 

a problem for the fitting of a single trajectory. In this case one can optimize 

only two out of three vertex coordinates, since a single trajectory is defined, 

relative to measured points, only up to movements along the trajectory itself. 

Therefore, fitting of a single trajectory renders the origin of a track only at a 

point in a plane, arbitrarily defined, which intersects the track. The final param- 

eters K, h , I$ are being fitted at this point. 

It is therefore necessary to define one of the vertex coordinates as being 

fixed and not subject to variation due to the fit. (Alternatively one could also 

define a linear relation of the vertex coordinates; however one would have to 

modify slightly the input into the matrix A.) 

For the problem of fitting more than one vertex of the same event, we 

suggest first to fit only trajectories originating from the same vertex and then 

to combine the results in a common output record by restoring the original 

numbering of the tracks. This way one does not obtain the geometrical correla- 

tions between trajectories from different vertices, which however could only 

be of interest when a charged track connects the different vertices. 

In order to activate the different modes of fitting BOOLEAN switches have 

been provided. 

B. 4 Linearization of the Chisquare Sum and the Corrections for the Parameters 

The least square procedure to minimize chisquare employs the usual linear- 

ization by a first order Taylor expansion of the function. Starting from the 

definition of X2 (la) one can expand 

m*(zo + A??) = rng + AA?? (7) 

with 

rn; = m* (Ti,) 
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and 

(8) 

inserting (7) into (la) one obtains 

X2 = (AC - AA?i!)T W (AC - AAZ!) 

with 

the condition 

AC=m-m,* 

leads to 

(ATWA) AZ! = AT WAC (9) 

By solving the linear system (9) one can compute correction AZ! to ?i! . An 

iterative procedure is provided to approach the minimum of X2 as defined in 

(la). The decision whether the iteration has reached the X2 minimum is con- 

trolled by criteria which are discussed in the following section. 

B. 5 Convergence Criteria 

After linearization of the nonlinear functions in (9) involving the parameters 

and after optimization of the parameters one expects that near the chisquare 

minimum the optimized parameters Z! have a frequency distribution 

-exp-- ; {(IT - qTG-l (a- iq 

provided the measurements m’ are Gaussian distributed.and their covariance 

matrix W is known. (2’ being the parameter vector, when X2 = minimum.) 

The matrix G is related to W by a congruence transformation 

(10) 

G = AT W-l A (11) 
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G is the positive definite covariance matrix under the assumption that W-l is 

the covariance matrix of the measured quantities. (More detailed discussion 

of this can be found in Ref. 2.) Criteria for the convergence of the iterative 

fitting procedure can be established in the following ways: 
n 

(1) The difference of the chisquare of two consecutive iterations AX’ can 

be computed from (9). If AX2 is smaller than a positive number, say 0.3 one 

assumes to be close enough to the chisquare minimum. Actually we must per- 

form this test using the standard deviation 7 rather thanX2 which we de- 

fined as 

x= * 
2 6 nf 

(12) 

where nf is the number of degrees of freedom, since n f varies from event to 

event as the number of tracks and measured points varies. 

(2) A weak criterion for convergence would be to terminate the iteration 
- 

when X is smaller than some number such as 0.8. It can be used to save 

computer time when the accuracy of a fit which reached a standard deviation 

of 0.8 is considered to be sufficient. 

(3) A more exact criterion is obtained when one computes, by using the 

correction vector AZ, the bilinear form 

A$G AZ = AZTAT WAAZ 

which represents a multidimensional ellipsoid in the space AZ. In particular 

if one obtains near the chisquare minimum 

Ai?TA%AAz< 1 (124 

one expects that further iterations will give only corrections within the boundary 

of the error matrix. This can be seen if one assumes the covariance matrix G 

is diagonal and Acu’ represents a vector whose components are equal to the ortho- 

gonal errors 601~ (eigenvectors to G); in this case (12a) is trivially equal to 1. 

III order to calculate the standard deviation Fone has to know the number 

of degrees of freedom which is defined as the number of measured points minus 

the number of parameters within the number of constraint equations. Since we 
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have for each measured point x, y, z one constraint equation namely the 

function putting these points on a trajectory we count Z/3 Np - (3NR + 3) degrees 

of freedom per event where Np is the number of measured points and NR the 

number of tracks. 

B. 6 Numerical Computation of Trajectories 

The numerical computation of trajectories is achieved by a step by step 

integration of the system of differential equations (3). The numerical method 

which was employed is a third order RUNGE-KUTTA method, which is one of 

the standard methods for a numerical solution of a differential equation. It 

does not require additional differentiations or additional initial values beyond 

the mathematically required ones. Thus the RUNGE-KUTTA is well suited for 

our problem where the standard initial values contain the parameters to be 

optimized. We computed trajectories for a realistic magnetic field configura- 

tion to test the convergence and the computation speed and compared in particular 

the RUNGE-KUTTA results with the results obtained from a PREDICTOR COR- 

RECTOR method. In general the integration step in a RUNGE-KUTTA method 

can be chosen considerably larger than in the PREDICTOR CORRECTOR method 

in order to obtain the same numerical accuracy of the integration (about a factor 5). 

Therefore, although the magnetic field 

g (x, Y, Z) 

has to be computed three times per integration step in a RUNGE-KUTTA method 

(instead of two times in our PREDICTOR CORRECTOR procedure)the gain in 

computation speed due to the larger step size was still sizable. 

We have formulated the RUNGE-KUTTA approximation for the system of 

differential equations (3) as follows: Let us write the system of first order 

differential equations in matrix form 

with the definitions 



Given a set of initial conditions at s = s6 

ii = co 

A third order RUNGE-KUTTA procedures requires the computation of essentially 

three intermediate quantities for the calculation of the next integration step AS. 

They take for the equations (3) the following form: 

pi0 + l/2 To x fio]xisl 
As 

u. + l/2 ~oxxo 

co + 2i? 2 -pi] X~2 
As 

u. + 2z 2-S 

with 

go = fi (so) 

Bl = is (so + l/2 As) 

B, = 3 (so + As) 

the solution of (3) at a point so + As is then obtained from 

X(so + As) = 
Co + l/6 [Xi + 4X; + Cb] 

go + l/6 [ii, + 4i;, + E3] > 

(14) 

our parametrization of the initial values (5) is consistant with the constraint con- 

dition 
Iii\ = 1 (15) 
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as it was mentioned earlier and introduces in fact only five parameters, which 

are sufficient to determine uniquely the initial value solution of (13). Thus we 

make no explicit use of (15), which is taken into account in the actual computation 

in the SUBROUTINE TRACK automatically. 

C. DISCUSSION OF THE COMPUTATION FLOW AND THE FUNCTION OF 

VARIOUS SUBROUTINES 

C. 1 MAIN, SUBROUTINES ESTIM and FIT 

An effort was made to keep the computer procedure CIRCE transparent in 

its logical structure and simultaneously versatile so that it can be adapted to a 

large class of applications. The provision of suitable INPUT-OUTPUT routines 

(packing of data, etc.) for the analysis of a large number of data has been left 

to the user. No extended failure messages (IFAIL) have been provided either. 

The first SUBROUTINE called in MAIN is SETLOG which initializes and 

sets the necessary constants. Then we proceed in MAIN to read data (measured 

point coordinates). FORMAT and other details are listed in section D. 2. 

Due to a logic which is essential for our fitting routine, we have to provide 

for each fit the measured points, sequenced, starting from the vertex, of all 

tracks originating at the same vertex. They are stored in two-dimensional arrays. 

XSTORE (J, I), YSTORE (J, I), ZSTORE (J, I) . J refers to the track number, I 

refers to the point number. The estimated errors of the measured points SGX, 

SGY, SGZ have been set in SETLOG. They are assumed to be constant for all 

points, and they are assigned to the weight matrix W. In general the errors can 

be different for each point. Next the SUBROUTINE ESTIM is called. 

The nonlinear least square optimization requires one to provide starting 

values for the parameters (first estimates). It is difficult to define in general 

in what proximity of the final fit the starting values have to lie, since it depends 

critically how well a function can be represented by a first order 

Taylor linearization. In practical cases first estimates of the momentum which 

were 10% or 20% off the final value converge without difficulties, in some cases 

even estimates which were wrong by a factor 5 could be fitted. 

Using simulated events we tested that for first estimates as computed in 

the SUBROUTINE ESTIM, the final result is independent of the starting values, 
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to the extent that the fluctuations of the final results are small compared to the 

error of the parameters. In order to achieve convergence in as few iterations 

as possible, for reasons of computer economics, it is profitable to provide 

starting values reasonably close to the final values of the parameters. 

In ESTIM we compute in a simple way starting values for track momenta, 

angles and the common vertex. By selecting two trajectories one finds from 

their intersection vertex coordinates in the horizontal plane. Fitting a circle to 

the track points in the magnetic field renders projected momenta and angles. The 

z coordinates of the measured track points yield first estimates for the dip angle X . 

The FORTRAN names under which the parameters appear in CIRCE are P(J), K(J), 

LAMDA(J), PHI(J) and XIN, YIN, ZIN. In many cases one can provide certain 

starting values as being constant for all events. 

The SUBROUTINE FIT is a bookkeeping routine which communicates mainly 

with the SUBROUTINE FONC and FUNCTION SOLVE by COMMON-blocks. By 

looping through all points and track indices for each point all residuals and 

partial derivatives are assembled and filled into the matrix A, which establishes 

the link to the FUNCTION SOLVE. Thus in SOLVE, which is called for each 

point, the system of linear equations (9) can be formed. By matrix inversion 

SOLVE proceeds to compute corrections AZ for the parameter z. The cor- 

rections are transmitt.ed from SOLVE back into FIT by the same matrix A. The 

corrections are added to the parameters in FIT. SOLVE = SI provides a number, 

which signals the status of convergence of the iterative fitting procedure. If SI 

is equal -1, a further iteration is initiated. If SI is equal zero the fit is considered 

a failure (either chisquare increases or more than 8 iterations are required) and 

is discontinued. If SI is bigger than zero the fit has converged and SI is the 

standard deviation of the fit. These criteria can be overridden if one accesses 

the chisquare information in SOLVE after each iteration and uses one’s own criteria. 

(For information about SOLVE see Appendix I and Ref. 2.) 

C. 2 SUBROUTINE FONC 

FONC being called in a loop over all points and tracks in the SUBROUTINE 

FIT, activates the basic blocks of computation necessary for the fitting procedure. 

The first job carried out in FONC is the computation of a numerical solution of 

the equation (3) by calling the track integration routine TRACK. FONC activates 
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TRACK for each trajectory J and current set of parameters K(J), LAMDA(J), 

PHI(J), XIN, YIN, ZIN. As it will be described in section C. 3, the solution of 

(3) is rendered as a sequence of numbers 

x(s, 3, Y(%3, z(s,q 

defined as track points having the closest distance to the measured points iii. 

They are stored in arrays XCAL, YCAL, ZCAL. 

Next the partial derivatives 

required by the least square method have to be computed numerically. This is 

being done in a corresponding way by using the same integration routine TRACK, 

applied for slightly varied parameters 

a! = c?$ + Gc$ 1 

forming a difference for each track point (x - x’)/6a.. 1 
The derivatives with respect to the vertex, however, are of a particularly 

simple nature. In fact, for the case of a helix one has 

am ( ) q) 
= I 

s=const. 
(16) 

where I is a diagonal unit matrix. 

However, as we have discussed in Ref. 1, the partial derivatives used in 

our procedure are not computed at s = constant, but at a track point where the 

trajectory has the closest distance from the corresponding measured point. This 

necessitates for the case of a helix replacing (16) by 

These simplified partial derivatives (with respect to the vertex coordinates) 

have been used successfully in a magnetic field which varied from maximum 

values to zero field and where a second (radial) field component reached 30% of 

the maximum value of the main field component within the region where track- 

coordinates had to be fitted. We have provided a BOOLEAN switch, PRECIS, 
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am in order to use optionally for x0 either the numerically computed partials 

or the approximation (16a). 

ax zz X(S, 2) - qs, G) 
1 a, 6Z 

ay = Y(s,z~)- Y(S,Z) 
ad 6z; 

aZ = z s 2 - zs,z 
7 aa! 6Z 

one can approximate for most practical cases hi by 

&xi 5 1o-3x o! i 

Then the result of the fit appears to be independent from the choice of 6a. 

The partials are stored in the arrays 

mu, YDU, ZDU, 

XDV, YDV, ZDV, 

mw, YDW, ZDW. 

This method to obtain partial derivatives on a digital computer is relatively 

time consuming. 

For our least square fit of a multiprong event about 80% of the computer 

time is used to compute partials. One can think of using partial derivatives of 

an approximate solution of (3) which may have a simple analytic form such as a 

helix; on the other hand, high speed digital computers usually make the numeri- 

cal computation of partials feasible even for large samples of events. 

C. 3 SUBROUTINE TRACK 

The numerical method described in section B. 6 is carried out in the 

SUBROUTINE TRACK. After each step As, the stepwise integration provides 

coordinates Ti and directional cosinustof the trajectory. Starting from the 

initial values, 5 the numerical integration proceeds by testing after each step 
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the distance vector $, which connects the last point on the trajectory with the 

nearest measured spatial point 6ii . A very simple test indicates when the 

trajectory passes through the closest distance to iiii, namely when the condition 

ii. -cl,<0 

is satisfied. Then by a linear geometrical approximation we calculate the particular 

step size As by which the exact track point of closest distance 
I il= 

z Min. can be 

reached. By updating this point in the list of measured points we proceed to 

integrate and to test the next of the sequence of measured points until the last 

of the measured points has been updated. As an immediate consequence of 

this, TRACK can compute trajectories which bend more than 180’ or even 

cross over in a loop, provided track points are properly sequenced. The step 

size As has to be chosen with some care, for reasons of accuracy on one hand 

and for computation economies on the other hand. 

An empirical scaling rule for the step size As has been adopted: 

If P < 1 BeV then As = 0.1 meter 

If P 5 1 BeV then As = 0.1 x P meter 

In general one should scale the step size As not only according to the 

momentum but also in relation to the magnetic field lfi! , especially in order 

to adjust As for the field-free regions where As could of course be large. 

The parameters K(J), LAMDA(J), PHI(J) are transmitted through the 

calling sequence of the SUBROUTINE TRACK. XIN, YIN, ZIN and the computed 

track coordinates XCAL(l), YCAL(l), ZCAL(I) are communicated by COMMON- 

blocks. 

Here, as before, I refers to the count of points and J to the count of tracks. 

Information about the tracks length or the directional cosines at any point is also 

available. 

C. 4 Representation of the Magnetic Field 

A two component magnetic field in the standard version of CIRCE is 

represented by functions FLDBZ and FLDBR of (x, y, i) , which are called 

from the SUBROUTINE TRACK. (For a computer where the access time to a 

FUNCTION is appreciable compared to the time which is actually used for com- 

putation, one can program g (x, y, z) directly into the SUBROUTINE TRACK.) 

In order to access the magnetic field information one has several possibilities. 
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One can store the actual measurements of the field components and retrieve 

them from a 3-dimensional table by interpolation. Or one can instead store 

data, obtained by fitting a smooth function to the measurements and interpolate. 

We preferred to not use any table, but to compute the field for each point, 

where it is required, from functions which were obtained by fitting the measured 

field data. Since the field components can vary as much as 100% a polynomial 

fit to the entire magnetic field would have an excessive number of coefficients. 

It is, however, straight forward to subdivide the region in which the field has 

to be known into several parts, and to represent it in the various regions by 

relatively simple functions. For the functions we used polynomials or - especially 

for regions with large field gradients - inverse polynomials. 

The numerical stepping procedure permits without any difficulty to decide 

in which region the point lies for which the field has to be computed. NO 

effort was made to match the function at the boundaries of the various areas, since 

wherever they are defined, they represent the field within known un- 

certainties. Due to the fact that the field is represented by asymptotic functions 

no effort was made to find functions exactly satisfying the div g= 0 condition from 

Maxwell’s equations. 

The field representation used in the standard version of CIRCE represents 

a fit to the measurements of a large magnetwith circular pole pieces (diameter 2 

meters). The functions used require 78 coefficients which are stored in SETLOG 

and communicated by a COMMON-block. 

D. SUMMARY OF THE USE OF THE PROCEDURE CIRCE 

D. 1 Units, Identifiers and Coordinates 

The units used throughout CIRCE are 

length in [METER] 

angles in [RADIANS] 

magnetic field in [K GAUSS] 

The main variables and identifiers are in the list that follows. 
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I 

J 

NW 
NR 

XSTORE(J, I), YSTORE(J, l) , 
ZSTORE(J, I) 

SGX, SGY, SGZ 

XIN, YIN, ZIN 

K(J) = l/P(J), uMDA(J), 
PfwJ 

CHQO 
BKG 

A 

W 

index referring to measured points 

index referring to trajectories originating 
at the same vertex 

number of points per track 

number of tracks from the same vertex 

measured spatial coordinates sequenced 

measurement errors of the coordinates 
XSTORE, YSTORE, ZSTORE 

unmeasured vertex coordinates to be fitted 
for 

parameters to be fitted for. J referring to 
the different trajectories 

charge of the particle of track J 

approximate average magnetic field strength 

matrix containing residuals and partial 
derivatives. Communicates with SOLVE 

weight matrix 

The coordinate system in which the magnetic field and the measured co- 

ordinates of the track are defined in our standard version of CIRCE is a right- 

handed Cartesian system where the x axis points along the incident beam, the 

x y plane is horizontal and z points vertically upwards. 

The point (x = 1.00, y = 0, z = 0) lies in the geometrical center on the 

vertical symmetry axis of the gap of the (circular) magnet. The angles are 

defined as shown in Fig. 1 with 

D. 2 Input Requirements 

The main sequence of computations is indicated in the flow diagram Fig. 2. 

Subsidiary and utility routines are left out of this diagram. 

In the standard version of CIRCE, the control parameters are read from 

data cards in the form of single digit integer numbers which set the corresponding 
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FLOW DIAGRAM 

I- I Initialize 

Read Control Parameters 
Set CO~BtlUltS 

Read Data 
Fill Weight Matrix 

Compute First Estimates 
for Parametera 

FlT 
1 

Computation of Track Co- 
ordinates and Partial Derivatives 

I Setup Output 

Printed Output 

FIG. 2 
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BOOLEAN variables in SETLOG. The following 5 integers Jl, 52, 53, J4, 

J5 are read from the 

FIRST DATA CARD 

Jl= 0 

Jl= 1 

J2= 1 

J2= 0 

J3= 0 

J3= 1 

J4= 0 

J4= 1 

FORMAT (5 12) 

all partials are computed numerically 

partials with respect to the vertex are 
approximated 

a single track is to be fitted 

otherwise 

a multi-prong event (NR 12) is to be fitted 

otherwise 

origin of a single track defined in a plane 
(x0 = const., y, z) 

origin of a single track defined in a plane 
(x6 = XSTORE (1, l), y, z) = first measured 
point on the track. 54 is achieved only if 
52 = 1. 

J5 = 0 printed output only 

J5= 1 a tape record will be written 

Starting with the second Data Card always an entire event is being read before 

the fitting procedure starts: 

SECOND DATA CARD FORMAT (IlO, F10.5, 110) 

reads the event sequence number, the charge of the track J and the number of 

measured points for the track J. 

THIRD DATA CARD 

reads the x, y, z coordinates. 

FORMAT (3 E 16.8) 

The input requirements can be summarized as follows: 

(a) point coordinates XSTORE, YSTORE, ZSTORE have to be sequenced, 

starting from the (unmeasured) vertex, as indicated in Fig. 3. 
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(?J) if the measurements of the point coordinates are uncorrelated, the 

weight matrix is 

1 

SGX**2 0 0 
w= 0 1 0 

i 
SGY**2 

0 0 
1 

SGz**2 
! 

(c) starting values must be supplied for the parameters 

K(J) = l/W4 

LAMDA(J), PHI(J), ZIN, YIN, XIN, CHQQ 

J=I, 2, 3. . . NR 

They are computed in ESTIM if a circle represents a track approxi- 

mately ESTIM can be bypassed if starting values are supplied ex- 

ternally. 

(d) The magnetic field is supplied through SUBROUTINES, FLDBZ and 

FLDBR. The coefficients for the functions represented by FLDBZ 

and FLDBR are stored in SETLOG. 

If the magnetic field has components Bx, B 
Y’ 

BZ, then appropriate 

functions entering TRACK have to be defined. 

D. 3 Output Facilities 

Printed Output 

An example of printed output for a fitted event is given in Fig. 4. 

First the track coordinates XSTORE, YSTORE, ZSTORE are printed in 

3 parallel columns. There we distinguish 3 tracks. The numbers preceeding 

the track coordinates denote (from left to right) event number (= 4)) charge 

(=kl. 0) and number of points per track (= 12, 14 and 9). 
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Next,number of points and the starting values of the parameters are 

printed. The vertex coordinates are in the last row before CORR. After each 

iteration one obtains from SOLVE the following information (see example) : 

260.6 

standard 
deviation 

105 .00068 .00447 -. 08965 .00176 -. 00390 

degrees of AK1 
freedom 

*1 A% AK2 AA2 

The last corrections are AKIN, AYIN, AZIN. 

After the final iteration follows the result of the fit. Standard deviation 

( = STDEF), chisquare and degrees of freedom are preceeding the errors and cor- 

relations. 

The errors which are the square roots of the elements on the main diagonal 

of the variance covariance matrix CA are printed in the right hand column. The 

triangular matrix to the left of the errors contains the normalized correlations 

of the parameters in the form 

I- -l 

1% 31 
pi? Kl] [%* Al] 
[“2.KI] [‘s Al] k2* $11 

I1”2* “11 E2’ Al] [lh2’ $11 b2$ K2] 

Normally one would suppress this output and print only the short form 

output which follows next. 

The heading provides printed information, most of which is left to the user 

to fill. The information on the tracks is self explanatory. The last line contains 

for a NR-prong (N = 3 here) 9 + NR X 9 integer words INOTE for special informa- 

tion. They are not used in the present version of CIRCE. The print is only useful 

in this form if in INOTE only single digit words are used. A simple list of 

IFAIL is supplied which sets a flag when a track has less than 3 points, when one 

exceeds 8 iterations or when the standard deviation of a fit is less than 3.0. 

They can be easily changed by the user to his own specifications. 

Output on Tape 

The tape record is written by a utility routine BWRITE (for which a 

complementary routine BREAD is available). 
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The SUBROUTINE BWRITE (IOUTAP, SHGEOM, 2, VNF, CAW) generates 

a binary record on the tape unit IOUTAP. The data are organized in this record 

as follows: 

First, 20 integer words IREC which carry general information about the 

event and the length of the logical blocks. In particular we assign: 

IREC(3) to the event identifier (event number) 

IREC (5) to the number of tracks 

lREC(6) to a label for the data set 

IREC(8) to the standard deviation of the fit (floating 
point word) 

IREC (10) to the length of block VNF 

IREC (11) to the length of block CAW 

Second, the data follow subdivided into two blocks, VNF and CAW. 

VNF contains the fitted parameters. The allocations are the following: 

mF(l) 
mR2) 
VNF(3) 

VNF(4) 

VNF(5) 

VNF(6) 

VNF(7) 
VNF (8) 

Vi--P) 

A of incident track 

4 of incident track 

K of track 1 

A of track 1 

$ of track 1 

K of track 2 

A of track 2 

$J of track 2 

K of track 3 

VNF (2 + 3 x (hrR-1)) Kof track NR 

VNF (3+3 xNR) XIN 

VNF (4+ 3 xNR) YIN 

VNF(5+3xNR) ZIN 

The block CAW contains the variances and covariances of the parameters. 

The allocation is self explanatory from the way we sequence the elements of the 

triangular matrix CAW. Using the notation (Q, R)I where (R, R)I means the 
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variance of the parameter R and (Q, R)I means the covariance of the parameters 
Q and R, and I gives the sequence number of the element in the one-dimensional 

array CAW. 

(I%’ Kl)l 

D. 4 Analysis of Simulated Events 

We supplied for the standard version of CIRCE a test fit by analyzing 
simulated data of the type 

YP -cp K+ K- (3 wow) 

where the invariant mass of the K+ K- system was assumed to be 1080 MeV with 

a width of 12 MeV. The distribution of the four momentum transfer to the proton 

was sampled from an exponential distribution. The photon energy has a uniform 

spectrum 
40 < Ey s 50 GeV 

We generated track coordinates with random errors (Ax = Ay = k. 5 mm), and 

generated trajectories which extended into the zero field region and used simu- 

lated track coordinates from the region where the magnetic field is high (l3 kG) 

as well as from the zero field region. The magnetic field represents a fit to 

the actual measurements of the SLAC 2 meter streamer chamber magnet. 

Measurements of the fringe field are included in our fit, where we used 100 
coefficients to represent g(x, y, z) which is subdivided into three radial regions. 

The field is axial ,symmetrical and represented in 2 components BZ(R, z) and 

BR(R, z) . The number of degrees of freedom is about 90 per fit; the number of 

parameters to be fitted per event is 12. The computation time on an IBM 360/91 

computer was about 1 set per event. (The computation time could be reduced 
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by about a factor 5 if it is possible to use approximate partial derivatives in 

FONC, which could be calculated assuming an approximate explicit representa- 

tion of the trajectories, e. g. , a helix.) Furthermore, the computation time 

scales roughly with the number of degrees of freedom and the number of co- 

efficients for the representation of the magnetic field. 

An example of a fitted event of the type described above is given in Fig. 4 

(see also section D. 3). Here we used a fixed starting value for the momenta 

of track one and two and also for YIN and ZIN. The fitted values are very close 

to the one generated by the fake program: 

Track P (FIT) 

1 20.6802 

2 23.0469 

3 .2932 

AP P (FAKE) [GeVl 

,4653 20.970 11 

.6106 23.100 11 

.0016 .2932 1, 

Vertex 

xO 

63.887 

FIT 

YO 

-2.443 

FAKE 

zO “0 YO 

3.9098 63.865 -2.449 

z. l-4 
4.046 

E. POSSIBLE MODIFICATIONS 

In the standard versions the measurement errors SGX, SGY, SGZ are 

assumed to be constant for all points and all tracks, but in general it is straight- 

forward to assign different errors or general weights to each point, or even to 

introduce correlations related to SGX, SGY and SGZ. It is necessary then to 

fill the matrix within the general loop over all measured points, which is 

executed in FIT, where the residuals are also set up. 

A continuous or discontinuous energy loss of a particle along its path of 

flight can be taken into account by modifying K(J) in TRACK. For constant 

energy loss i-g= e the modification would be $ = P --P(l - e * s). 

There can be constraint equations F(z, 3 = 0 of geometrical or kine- 

matical nature which one wishes to be satisfied simultaneously with the fit. 

Instead of using Lagrange multipliers, one can treat the constraint equation the 
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same way as a measurement; that is to say the corresponding residual takes 

the form 

AC = F(z, 5) - 0 

with an appropriate error 

Conveniently one can use the fourth column in A for this purpose (since column 

1 to 3 are occupied by residuals and partials due to x, y, z). 

A kinematical fit using energy and momentum conservation can be 

performed using the fitted geometry parameters. A kinematical fitting routine, 

matched to the output of CIRCE was developed at SLAC by I. Derado and 

R. Leedy. 4 
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APPENDIX I 

SUHROUTINE SOLVE (Q, M) 

We copy here some of the most important instructions for the use of the 

SLAC computer library routine SOLVE as they were provided by Ch. Moore. 

SOLVE has a number of parameters, three of which are explicit 

in the call statement SOLVE (Q, Ivl): 

Q (integer) specifies which entry point is intended: 1, 2, 3 or 4. 

M (integer) has a meaning depending upon the value of Q. 

SOLVE (real) advises the user as to the state of convergence. 

However, the user must also employ certain implicit parameters by 

including in his program the date block: 

COMMON /SOL / N, A (16, 4)) W(4, 4) 

where: 

N (integer) is the number of variable parameters (maximum 15). 

A (real) contains up to 4 equations (residuals and partial derivatives). 

W (real) contains the weight matrix for the equations. 

S = SOLVE& M): This call initializes certain parameters within SOLVE. 

M is used to set switches; it is coded as follows: 

The units digit indicates whether the corrections obtained each itera- 

tion are to be printed (1) or not (0). 

The tens digit specifies whether the first set of equations are to be 

used to obtain corrections (I) or only used to obtain scale factors (0). 

The hundreds digit indicates how many iterations are to be permitted 

before admitting failure. 

S = SOLVE@, 1): This call will be employed within a loop to transmit a 

single equation. The arrays must be set as follows: 

A(l, 1): the observed data minus the computed value of the function 

(residual). 

A(2,l) to A(N+l, 1): The partial derivatives of the function with respect to 

each of the variables. 
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W(l, 1): The weight of the equation - 1. /variance of data (inverse 

square of standard deviation of measurement). 

M=l : Means the vector function has one component. 

S = SOLVE(3,O): When all data have been transmitted, this call solves 

for the corrections. A(2,l) to A(N+l, 1) contain the corrections to 

be added to the variables. S indicates the state of convergence: 

-1: Re-examine data for another iteration. 

0: Solution has failed to converge. 

greater than 0: Solution has been obtained and S is the standard 

deviation of the fit. 

S = SOLVE(4, M): The units digit of M specifies whether the covariance 

matrix is to be printed (1) or not (0). The following are printed: 

The standard deviation of the fit. 

Chisquared (the sum of the (weighted) squares of the residuals, 

which was the quantity to be minimized). 

Number of degrees of freedom (number of equations minus 

number of variables). 

The standard deviations of the variables; in a vertical array 

to two significant figures (as defined by the normal equations). 

The correlations between the variables; a lower triangular matrix, 

to two decimals. 

Lf a variable was not fitted the last iteration, its standard deviation and 

correlations are not defined and are replaced by zero. 

The tens digit of M specifies whether the user wants access to the CO- 

variance matrix (1) or not (0). If he does, it is resealed and placed in 

the (real) array CA(N, N). To reference CA, the user must declare the 

data block: 

COMMON /SOL2 / CA(16,16), D(15) 

Note that in the array A, the first variable is referenced by A(2,l); but in 

the array CA it is CA(l, 1). 
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