
SUE-84
UC-32, Mathematics and Computers

THE FORMAL DESCRIPTION AND PARSI?JG OF PICTURES

April 1968

bY

Alan C. Shaw

Technical Report

Prepared Under

Contract AT(Ob3)-515

for the USAEC

San Francisco Operations Office

Printed in USA. Available from CFSTI, National Bureau of Standards,
U. S. Department of Commerce, Springfield, Virginia 22151.
Price: Printed Copy $3.00; Microfiche $0.65.

ACKNOWLEDGMENTS

I am deeply indebted to my thesis advisor, Professor William F.

Miller, for the many valuable discussions we have had, for his constant

encouragement and enthusiasm, and for psoviding a stimulating atmosphere

at SLAC that made it not only possible but a pleasure to do research.

I am grateful to Professors G. Forsythe, D. Gries, and R. Reddy for

their constructive readings of the thesis.

No research is accomplished in a vacuum. I wish to thank the

members of the SLAC Computation Group, the SLAC Automatic Data Analysis

Group, and the SLAC-IBM Graphics Study Group for our useful talks on the

practical problems arising in film data analysis and for their coopera-

tion in making available some basic systems programs; Charles Dickens

of SLAC was particularly helpful. The critical evaLuation of parts of

this work by my colleagues, Ira Pohl and Donald Kap:Lan, is gratefully

acknowledged.

I wish to express my appreciation to Sandra Hatch for her excellent

typing and preparation of this report, and to Dorothy McGrath for the

fine illustrations.

I dedicate this work to my wife Elizabeth.

This research was supported in part by The Atomic Energy Commission,

the SLAC-IBM Graphics Study Project, and The National Science Foundation

grant GP-7615.

I

iii

TABLE OF CONTENTS

Chapter m

1. Introduction 1

1.1 History of Project and Contributions 2

1.2 Organization 3

2. A Linguistic Model for Picture Processing 5

2.1 The Receptor/Categorizer Model 5

2.2 The Linguistic Model 8

2.3 The Linguistic Approach to Picture Processing:

A Brief Survey 14

3. The PDL Picture Description System 25

3.1 Purpose and Requirements of a Picture Description

Language 25

3.2 PicturePrimitives 26

3.2.1 Definition of a Primitive 26

3.2.2 Description of a Primitive 28

3.2.3 The Primitive Connectivity Assumption 30

3.3 Picture Syntax and Semantics 32

3.3.1 The PDL Language - Primitive Description of

a Connected Picture 32

3.3.2 Hierarchic Descriptions 41

3.4 PDL: Formal Properties and Basic Theorems 45

3.4.1 Algebraic Properties 45

3.4.2 The Graph of a PDL Expression 47

3.4.3 Basic Theorems 50

4. The Formal Description of Several Picture Classes 59

4.1 Particle Physics 59

iv

CONTENTS (continued)

Chapter
4.2 Kirsch's 45' Right Triangles

4.3 Simple Block Letters and a Page of English Text . .

4.4 Closed Boundaries of Figures

4.5 Flow Charts

4.6 Some Description Limitations of the PDL System ...

5. Picture Parsing

5.1 The Analysis Problem

5.2 Goal-Oriented Picture Parsing

5.2.1 Bottom-Up and Top-Down Analyzers

5.2.1.1 Syntax Analysis of String Languages

5.2.1.2 Syntax Analysis of Pictures

5.3 A General Picture Parsing Algorithm

5.4 The Implemented Parser

5.4.1 General Discussion of the SPDL Parser

5.4.2 Simple Examples

6. Primitive Recognition

6.1 Hummingbird Automatic Film Digitizers

6.2 Recognition of Blobs

6.3 A General Purpose Line Recognizer (GPLR)

6.3.1 The Line Recognition Problem

6.3.2 GPLR

6.3 .j Recognition of Bubble Chamber Tracks by GPLR

6.4 Blank and Don't Care Primitives

7. Spark Chamber Film Analysis by the SPDL System

7.1 Characteristics of the Pictures

V

-
65

67

73

73

82

88

88

90

90

90

92

100

107

107

114

125

125

128

129

129

132

1-38

145

148

150

CONTENTS (continued)

Chapter

7.2

7.3

7.4

The Grammar

Primitive Recognizers

Results of the Parse .

a. Conclusions

8.1 Summary of Features s

a.2 Future Work I .

Appendix A Parsing Output for Colliding Beam Pictures

References .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

Page

1-55

163

166

173

173

1-75

179

1-99

vi

TABLES

Table Number Page(s)

3.1 The Binary Concatenation Operators , . 33, 34

7.1 SPDL Analysis of Colliding Beam Experiment Film

Timing Data (In Seconds). e e 170

vii

FIGURES

Figure Number Page(s)

2.1 Narasimhan's Generation of the Letter "P" 16-17

2.1(a) Rewriting Rules

2.1(b) Primitives

2.1(c) P and PE

2.2 Kirsch's Right Triangle Description 18-19

2.2(a) Sample Production: CY E {L, I] B E IH, W]

2.2(b) A Derived Triangle

2.3 Ledley's Chromosome Description 20-21

2.3(a) Sample Productions

2.3(b) Basic Curve Types

2.3(c) Chromosome Examples

2.4 Examples of Anderson's Syntax Rules 23 -24

2.4(a) Graphical Form of Replacement Rule

2.4(b) Tabular Form of Replacement Rule

3.1 Representation of a Picture Primitive 27

3.2 An Invisible Primitive. 28

3.3 An Extreme Case of a Connected Picture 31

3.3(a) Labeled Picture

3.3(b) Corresponding Graph

3.4 Primitive Structural Descriptions of an "A" and an "F" 35

3.5 Local Completeness of I+, X, -, *] 37

3.6 PDL Descriptions with Labels and / 39

3.6(a) The Complete b-Node Graph with Directed Edges

3.6(b) A 3-Dimensional Cube

viii

FIGURES (continued)

Figure Number

3.7 Structural Descriptions of a Picture . . ,

3.7(a) .&', S(b), and Primitives

3.7(b) Examples and Parse of a "P"

3.8 The Graph of a vPDL

3.9 Theorem 3.2 .

3.9(a) head(pn+l) cat head

3.9(b) head(pn+l) cat head

A tail(pn+l) cat head

4.1 Event in Bubble Chamber

4.2 Particle Physics Example

4.2(a) Sample Picture

4.2(b) Primitives

4.2(c) Syntax .&

4.3 Right-Angled 45' Triangle of Kirsch

4.3(a) Primitives

4.3(b) I: Right-Angled Triangle

4.3(c) Examples

4.4 Simple English Block Characters

4.4(a) Primitives

4.4(b) Examples

4.4(c) Primitive Structural Descriptions

4.5 A Page of English Text , 6 I

4.5(a) Sample Page of Text

4.5(b) Primitives

4.5(c) b: Syntax for a Page of Text

ix

Page(s)

42-43

50

52

61

63

66-67

I

68-70

71-72

FIGURES (continued)

Figure Number

4.6 Jacopini Flow Charts.

4.6(a) Primitives

4.6(b) Base Diagrams

4.6(c) Flow Chart Syntax

4.6(d) Sample Flow Chart

4,7 String and Flow Chart Syntax for a Small Algorithmic

Language. D s s a 0 0 . a

4.7(a) Small Language Syntax

4.7(b) Small Language Flow Chart Syntax

4 -7(c) Examples

4.8 Some Description Limitations of the PDL System . .

4.8(a) Staircase of "X"'s

4.8(b) Complex Relations Among Figures

4.8(c) More Than Two Concatenation Points on a

Primitive

5.1 Top-Down and Bottom-Up String Analysis. . . . a . .

5.2 The Implemented SPDL System e

5.2(a) SPDL System Organization

5.2(b) General Flow Chart of Program

5.3 The Parsing Subroutine. 0

5.4 Parsing a Digitized "A" D a .

5.4(a) Plot of a Hand-Digitized "A"

5.4(b) Syntax for A's

5.4(c) The Primitive Pattern Recognition System

5.4(d) Final Output After a Successful Parse

5.4(e) Parsing Tree Graph

X

Page(s)

75-77

84-85

91

108

110-113

117-120

FIGURES (continued)

Figure Number -Page(s)

5-5 Sawtooth Parse. . . O . s . , 121-124

5.5(a) Sawtooth Syntax (5 (DP + DM))
i=l

5.5(b) Input Picture n=3

5*5(c) Last Goal (S = 16) Leads to Failure

5.5(d) Final Picture Description

5.5(e) Graph of Parsing Tree

6.1 Examples of Line-Like Patterns. 131

6.2 o .* D- * . . . a l39-l43

6,2(a) Bubble Chamber Track Digitizings

6.2(b) Results of Blobbing

6.2(c) A Partial List of the Collinear Triples

6.2(d) Lines Found by GPLR

6.2(e) Listing of the Lines Found by GPLR

6.2(f) Cells and Their Lines

7,1 Chamber-Counter Geometry 149

7*2 Film Format 151

7e3 Cosmic Ray Shower 152

7.4 +. o **153-154

7.4(a) Photograph Containing a Typical Event - Frame 355

7.4(b) Digitized Version of (a)

7.5 Printer Plots of Selected Digitized Areas 156-159

7.5(a) Plot of Digitized Sparks

7a5(b) A Collinear Set of Sparks

7*5(c) Plot of a Fiducial

7.5(d) Top Part of Data Box Boundary

xi

FIGURES (continued)

Figure Number Page(s)

7.6 . 160-161

7.6(a) Primitive Class Names

7.6(b) Non-Terminal Symbols

7.6(c) Grammar for Colliding Beam Pictures

7.7 Analysis of Frame Number 355 168

FIGURES IN APPENDIX

Film Frame Number m

93 180

312 181

355 182

356 183

375 s 0 . 184

403 a . . . 185

406 186

414 187

416 188

455 . . . e 189

355 Parse Output 190-198

xii

CHAPTER1

INTRODUCTION

This thesis is concerned with the analysis and generation of pictures

by computer. The name ftpicture processing" will be used to describe this

subject area. While there is occasional reference to generation, the main

emphasis is on the more difficult problem of analysis. The latter has

been traditionally called pattern recognition or classification; here,

analysis is interpreted more generally to mean the derivation of picture

descriptions.

A distinction between "natural" and "artificial" pictures can be

made analogous to that between natural and artificial languages. Arti-

ficial languages and subsets of natural languages can be effectively

analyzed using formal methods for expressing and dealing with syntax

and semantics. A similar approach has been developed here for the

analysis of suitably restricted classes of pictures. Any picture whose

component connectivity can be meaningfully described by a graph is a

candidate for the system. This will be the operational definition of

an artificial picture.

Despite the introduction of a modest amount of theoretical material,

the results of this thesis are essentially pragmatic. The direct appli-

cability of this approach to real picture processing problems is demon-

strated. In most cases, the discussion assumes tha; the pictures have

been converted to machine-readable form by digitization hardware.

1.1 HISTORY OF PROJEET AND CONTRIBUTIONS

This research was started seriously during the spring of 1966. The

advantages of representing pictures by graphs and using graph properties

as an aid to their analysis were demonstrated by Clark and Miller [1966]

in their particle physics film recognition system; a subsequent suggestion

by Professor Miller that the model of graph theory might prove generally

useful in picture processing was the original inspiration of this research.

The developments were further influenced by the work of Narasimhan [1962-

19661 in suggesting and applying linguistic methods for picture analysis

and generation, and that of Kirsch Cl9641 in defining a number of out-

standing problems resulting from a language interpretation of pictures..

Finally, the complexity of present systems and the author's early painful

experiences in programming some picture manipulation routines confirmed

the need for "a better way".

A general picture processing model was first postulated; the basic

requirement within this model was a formal picture description scheme.

To this end, the PDL picture description language was conceived, developed,

and applied during the fall of 1966 and winter of 1967 (Shaw [1967aJ); at

the same time, the ideas and algorithms for parsing (analyzing) pictures

were worked out. Research into methods for recognition of specific

classes of elementary picture components continued in parallel with the

above. An implementation of an analysis system was completed in the

spring and the latter was applied to some spark chamber photographs

during the summer of 1967. Concurrently, preliminary work was begun on

the development of an interactive generation system based on the PDL

2

language (Noyelle [1967], George [1967]). The PDL language was found to

be particularly well-suited as the notation for a "picture calculus"; the

foundations of this calculus were laid in reports by Miller and Shaw

[@@a, b], and some basic theorems were derived in Shaw [1967b10

The original work and contributions of the author include:

1. a simple and general picture processing model,

2. a formal picture description scheme which allows the description

of a large class of pictures in terms of their primitive elements,

the relationships among primitives, and the meaningful structures

formed by sets of primitives, and

3. the concept and development of picture parsing--the description-

directed analysis of pictures.

In addition, an implementation and analysis has demonstrated the validity

of this approach; a simple recognizer for a variety of line-like elements

was developed for the application. In contrast to other methods, this

approach offers the advantages of simplicity and generality for both

description and analysis.

1,2 ORGANIZATION

The thesis is organized in a "top-down" manner, proceeding roughly

from the general to the specific. The second chapter motivates and

describes the picture processing model; related work is surveyed within

this model. The details of the picture description scheme are presented

in Chapter 3, including some of its formal properties. The following

chapter illustrates its descriptive power and limitations by means of a

series of picture description examples. Chapter 5 describes the

3

rationale and algorithms for a goal-oriented picture parser; the imple-

mented system is presented. The next chapter is devoted to the construc-

tion of primitive recognizers or pattern recognition routines for blobs,

line segments, and blank primitives. The implemented system is applied

to the analysis of spark chamber film and the results are given in

Chapter 7. The final chapter lists a number of open problems and

summarizes the major advantages of this approach.

Algorithms and the meaning of some constructs are conveniently

defined by recursive functions consisting of conditional forms and

ALGOL-like statements, with symbol lists as data and arguments.

4

CHAPTER 2

A LINGUISTIC MODEL FOR PICTURE PROCESSING

The term "mode1" denotes the general framework or "paradigm" (Kuhn

[1962]) within which workers pose and solve problems. Until recently,

most theoretical work in pattern recognition has, either implicitly or

explicitly, been based on the receptor/categorizer model (RCM) of Marill

and Green [196ol. While many useful and interesting results have been

produced, this model, nevertheless, has some very serious limitations

which are discussed in the next section.

2.1 THE RECEPIOR/CATEGORIZER MODEL

The analysis of pictures or pattern recognition proceeds as follows:

A picture is first reduced to a "feature" set by the receptor; this is a

set of quantities which may represent anything from the raw digitized

values (or analog signal) at one extreme to the results of a complex

feature extraction process on the other. The feature set is then

assigned to one of a finite number of classes or patterns by the cate-

gorizer. The assignment is the recognized pattern class to which the

picture supposedly belongs. It is often convenient to add a "rejectll

class; when the input cannot be assigned to a known pattern, the cate-

gorizer puts it in the reject class.

There has been a tremendous quantity of research accomplished

within this model (see the large pattern recognition bibliographies of

Minsky [1961] and Shaw [1966al). Receptor work has included the

5

development and application of techniques for:

1. noise reduction (preprocessing) such as smoothing (Unger [1959])

and local averaging (Selfridge [1955]),

2. extraction of global features, such as moments (Alt [19621, Hu

[1962]) and n-tuples (Bledsoe and Browning [1959]),

3. topological feature extraction (Sherman [195’31, Rosenfeld and

Rfaltz [1966l),

4. curvature point characterization (Zahn [1967], Freeman [1961],

and

5. combining features into complex features (Uhr and Vossler [1963]).

Most of the theory has dealt with the problem of categorization or

classification. The principal technique is to treat the feature or

measurement set as a point in a multidimensional space; the task of the

categorizer then becomes one of partitioning the space so that measure-

ments from pictures belonging to the same pattern class are 'close"

(according to some metric) and measurements from pictures of different

classes are far apart. The use and limitations of partitioning by

hyperplanes or linear discriminants has been exhaustively treated;

some non-linear discriminants, for example, polynomials have also been

studied (Sebestyen [1962l). When information about the probability

distributions of the measurements in each class is available, methods

of statistical decision theory can be employed to partition the space

(Chow [19571). Machine learning has been investigated in both the

receptor and categorizer stage; in the former, measurements and weights

on measurements have been learned successfully in some situations (Uhr

and Vossler [1963]); in the latter, the use of adaptLve systems for

6

partitioning the space and for learning probabilities has received much

attention (Nilsson [1965]).

The RCM is the basis for many recognition systems, notably in

character recognition (BCS [1967]). The model fails to be useful when

analyzing complex pictures where the structure and interrelationships

among the picture components are the important factors. To illustrate

this point in a simple setting, consider the one-dimensional pattern

recognition task required of a programming language translator, for

example, an ALGOL 60 compiler (Randall and Russell [19641, Shaw [1966b]).

One general purpose of the syntax analysis phase of the compiler is to

categorize an input program into one of two mutually exclusive classes

--the class of syntactically correct programs and its complement.

Theoretically, one could envision a receptor which produces a feature

vector from an input program; the categorizer then would determine in

which of the two possible subspaces the feature vector lies. While

this could be done in principle, it is never considered seriously because

of the complexities involved; for example, what is the feature set for

a program? Even if this approach were practically feasible for program

classification, it would not produce the most important byproduct of a

successful analysis, i.e., a description of the structure of the input

program. Parenthetically, RCM is a recognition or analysis model and

it is doubtful whether it would be of any value in picture generation.

Richly-structured pictures that are difficult to analyze within the

RCM include those produced by high energy particle physics reactions

(Adler et al. [1966]), line drawings (Roberts [196.51, text (not isolated

characters), and some biomedical pictures (Ledley et al. [1965]). What

7

is required in these examples is a description of the pictures in which

the meaningful relations among their subparts are apparent. Unfortunately,

there has been no general mechanism for either describing this type of

picture or analyzing it; each application has required a "one-of-a-kind"

system. In these systems, the appropriate place to apply the RCM is for

the recognition of the basic components of the pictures.

2.2 THE LINGUISTIC MODEL

In a series of papers, Narasimhan [1962, 1963b, 1964, 19661 has

forcefully stated the case for another approach to pattern recognition:

Categorization, clearly, is only one aspect of the recognition
problem; not the whole of it by any means. It is our conten-
tion that the aim of any recognition procedure should not be
merely to arrive at a 'Yes', 'No', 'Don't know' decision but
to produce a structured description of the input picture.
Perhaps a good part of this confusion about aims might have
been avoided if, historically, the problem had been posed as
not one of pattern recognition but of pattern analysis and
description. (Narasimhan [1962]).

This writer is in entire agreement with the above, and, in fact, was

largely motivated by these and similar remarks to develop a linguistic

model for picture processing. The important phrase in the above quota-

tion is "structured description of the input picture". This thesis

consists primarily of an interpretation of this phrase (the picture

processing model), the ramifications of this interpretation (the PDL

language and picture parsing) and the results of an implementation.

8

The linguistic model for picture processing is comprised of two

parts:

1. a general model within which pictures may 'be described (i.e.,

a meta-description formalism), and

2. an approach to the analysis (and generation) of pictures based

directly on their descriptions,

The description D of a picture 0 will consist of two parts--a

primitive or terminal symbol description T and a hierarchic description

H; this can be written D(Q) = (T(a), H(a)) O T and H, in turn, each

have a syntactical or structural component Ts and Hs, and a semantic

or value component TV and Hv D I.e.,

T(a) = (Tsb), TV(d)

H(a) = &(a), Hv(a)) .

Ts(a) describes the elementary component classes or primitives in

CI and their relationship to one another; TV(a) gives the values or

meaning of the components of a . It should be noted that the primitives

in Ts(a) denote classes; define p(Ts) as the sek of all pictures with

primitive structure Ts .

Example 1:

Let 1 name the set of all straight line segments. Let c name

the set of all circles. 1 and c are picture pr:imitives. Let 0

denote the geometric relationship of intersection.

Then, if a picture Q contains a line segment intersecting a circle,

Ts(a) = J? 0 c; TV(a) could be the list (ve, v,), where vL is the

pair of endpoint coordinates of I and vc is the center coordinates

and radius of c . P(!. 0 c) is the set of all pictures consisting of

a line segment intersecting a circle.

Consider a set of rules or grammar & generating a language .C(&)

whose "sentences" are primitive structural descriptions. Then, .& is

said to describe the picture class pd = T~ci(b,~(Ts) . For a given

picture Q: E Pa, Hs (a) is the ordered set of rules of & that were

used to generate Ts(a); that is, Hs(a) is the "linguistic" structure

or parse of Ts(a) according to .& . A one-to-one correspondence exists

between the elements of a set of semantic or interpretation rules 8

and the elements of & . Hvb) is defined as the result of obeying the

corresponding semantic rule for each rule of .& used in H&a) .

Example 2:

Let .& be the phrase structure grammar (Chomsky [1957]):

&' = {IX! -+ L, LC + C, LC - L 0 C, L + i, C 4 c}, where !, c, and 0

are defined as in Example 1. Let 8 = {vLc := vL, vLC := VC, VLc :=

xsect(vL, vC), vL := vi, vC := v,}, where vi, ie{L, C, LC], is the

value of the corresponding grammar rule and xsect is a function that

computes the intersection(s) of a line with a circle. Then, L(b) =

11, CT ! @ c] and P& = 6’(i) U b(c) U i’(! 0 c) . If Ts(a) = .! (3 c

for a given a E 63&, Hs(a) could be the simple tree:

10

Hvb) could be the list structure:

Several features of the description model require emphasis. It is

important to note that the grammar must be capable of generating primitive

structural descriptions of all pictures being considered. No restrictions

are made on the form of any of the components of D . A final point is

the essential difference between primitive and hierarchic descriptions;

the "meaning" of a picture is expressed by both. Thus, several grammars

may be used to generate the same class of primitive descriptions, but

the hierarchic description of a picture and hence its meaning may be

different for different grammars. Even more generally, the same picture

class may be described by totally different primitive and hierarchic

descriptions; the intended interpretation of the picture dictates its

description.

With the description model, the solution to the picture analysis

problem can now be formulated:

1. The elementary components or primitives which may appear in a

class of pictures are named and given a meaning.

2. The picture class is described by a generative grammar .& and

associated semantics 8 .

3. A given picture a: is then analyzed by parsing it according

to & and & to obtain its description D(a); that is, .&

and 8 are used explicitly to direct the analysis.

11

Conversely, picture generation can be viewed as the execution of

descriptions.

Descriptions are then not only the desired results of an analysis,

but they also define the algorithms that guide the recognition. The

advantages of this approach are:

1. It defines a general strategy for analyzing -pictures; this

implies that a general-purpose analysis program may be written

for a formally defined description scheme.

2. The design of the recognizers for the primitive components of

a picture is simplified. Each recognizer may be defined inde-

pendently of the others and thus may include its own prepro-

cessing. In addition, directed recognition can be done more

easily than global searches for all primitive components.

30 Picture processing systems based on this model can be imple-

mented quickly and reliably.

As the structural complexity of pictures increases, the value of this

description and analysis model becomes greater. At the lowest level,

a picture is described by one primitive component; this may be analyzed

using the RCM model. Each of the elementary components of more compli-

cated pictures can also be recognized within the RCM model, Thus, the

RCM model is included as a part or subset of the picture processing

model.

Much of the power of the model lies in the flexibility in the

hierarchic description. If the purpose of an analysis is pattern

classification, then the classification can be inserted directly in

I or 9 so that the resulting description explicitLy contains the

12

pattern class. S(J) could include a description of the complement of all

well-formed pictures; in this case , pictures that cannot be properly

classified may be described as such.

It should be mentioned that syntax-directed translation of programming

languages (Irons [1961l, Floyd [19641, Feldman and Gries [1967], Shaw

[1966b]) can be interpreted as the analysis of patterns of linear strings

and thus put within the model. In this case, the primitive description

is obtained immediately--the input program corresponds to T and the
S

meaning of the basic symbols of the language to T The grammar .& v .

is generally a BNF grammar plus some constraints on the use of identifiers;

the semantics 8 is most often a set of code-generating rules. The

analysis of a well-formed program yields the syntactic structure of the

program and an equivalent program in some other language. The similarity

of the picture processing model to that used in translator writing is no

accident; many of the ideas and results of language theory and compiler

construction are used in later parts of this thesis. The name "linguistic

model" is derived in part from the above considerations (Narasimhan [1962l

first used this name as applied to picture processing).

The next section surveys briefly those research efforts that are

related to this one. The model is used as a common framework for the

discussion. The purpose of the survey is to allow later comparisons,

to assign credit for some of the early research that has influenced the

present work, to illustrate the generality of the model, and to enable

the reader to put this work in its proper perspective.

2.3 TKE LINGUISTIC APPROACH To pImum PROCESSING: A BRIEF SURVEY

The literature survey of Feder [1966] covers the few basic develop-

ments up to and including 1965; since then, there has been a relative

surge of activity.

There are several early works that explicitly utilized primitive

descriptions. Grimsdale et. al. [19581 produced geometric descriptions

of hand-drawn line figures, such as alphabetic characters; the description

consisted of an encoded list of the picture curves, their connectivity,

and geometric properties. Sherman [1959l reduced a hand-printed letter

to a graph, and then built a character description out of the topological

and geometric features of the abstracted picture. Neither Ts nor TQ

is defined formally in the above examples; p icture analysis (recognition)

occurs by comparing or matching picture descriptions with descriptions

of standard patterns. Eden [1961, 19621 presented a formal system for

describing handwriting. The primitive elements are a set of basic

"strokes" or curves; the value of each stroke is a pcint pair (the end-

points) and a direction. Eden gave a set of rules & for concatenating

or collating strokes to form letters and words. The description Ts

of a word of handwriting is then a sequence of n-tuples of strokes,

each n-tuple representing a letter. This is one of the first works

where the author recognizes the benefits of a generative description:

Identification by a generative procedure leads to a clear
definition of the set of permissible patterns. The class of
accepted patterns is simply the set which can be generated
by the rules operating on the primitive symbols of the
theory. (Eden [1962l).

Unfortunately, Eden did not report any attempts at using his scheme for

recognition purposes--perhaps, because of the complexities of actually

trying to recognize handwriting; however, his descriptions were used for

generation. 114

The pioneering work in suggesting and applying a linguistic model

for the solution of non-trivial problems in picture processing was done

by Narasimhan [1962, I963a, b, 1964, 19661. He first proposed a general

linguistic approach in 1962, calling it a "linguistic model for patterns";

he has since applied it to the analysis of bubble chamber photographs

using a parallel computer [1963a, 1964, 19661, and to the generation of

"hand-printed" English characters [19661. Narasimhan restricts his model

to the class of pictures containing only thin line-like elements. Ts is

a list of the "basic sets" and their connectivity, where basic sets refer

to neighborhoods on the picture having specified topological properties,

for example, the neighborhood about the junction of two lines or the

neighborhood about an endpoint of a line. Two sets are said to be

connected if there exists a "road" or line-like element between them.

TQ
is the value of the sets (their topological meaning) and the geometry

of the connecting roads. A set of rules or grammar .& then describes

how strings of connected sets may be combined into other strings and

phrases; phrases are of the form: (name)((vertex list)), for example,

ST(l, 2, 3), where the (vertex list) labels those points that may be

linked to other phrases. Finally, there are additional rules of & for

conbining phrases into sentences. The description Hs of a picture is

then a list of sentences. Analysis proceeds from the "bottom up", first

labeling all points as basic sets or roads, then forming phrases, and

last of all, sentences. Narasimhan does not define a general form for

L and D . In the bubble chamber application, .& is implicitly defined

in the program itself. On the other hand, the generation of English

"hand-printed" characters is explicitly directed by a finite-state

15

generative grammar .& and an attribute list 9, the latter specifying

some geometric properties of the characters, for example position, length,

and thickness. The primitives are simple geometric forms, such as straight

lines or arcs; the definition of each primitive includes a set of labeled

vertices to which other primitives may be attached. Productions or

rewriting rules in b are of the form:

S(ns) + Sl - S2(nS s ; nS s;
12 1

nS ,),
2

where S 1 is a terminal symbol (primitive name) or non-terminal symbol

(phrase name), S2 is a terminal symbol, S is a non-terminal symbol--the

defined phrase--, nS s is a list of the nodes of concatenation between
12

sl and s2' nsls and ns2s define the correspondence between the nodes

of s 1 and S 2 and those of S, and nS
is a node list labeling the

nodes of S . Figure 2.1 illustrates Narasimhan's rewriting rules for

generating the letter "PI', the primitives required, and the generated

letters. In the above implementations, all nodes of possible concatena-

tion must appear in the description; this is cumbersome for simple pictures

such as the English alphabet, and might be unmanageable for more complex

pictures. The system can only describe connected pictures and some other

mechanism is required when dealing with pictures whose subparts are not

connected.

ml, 2, 3) - v * d’(=, 23; 2, 3; 2jl

r* d'(l1, 23; 2, 3; 2)

P'PE

Figure 2.1(a) Rewriting Rules

16

I
1

V: 2

3

1
P 3

2

1

d'
5
32

Figure 2.1(b) Primitives

or P
1

3
2

/

1

r: 2

3

Figure 2.1(c) P and PE

Figure 2.1 Narasimhan's Generation of the Letter "P"

Kirsch [lg@+], in a stimulating article, argues that the proper

way to view picture analysis is within a linguistic framework. Follow-

ing this line of thought, he posed several problems: How does one

1. express picture syntax or structure,

2. generalize the idea of concatenation to several dimensions,

3. describe geometric relations among picture components,

4. do syntax analysis of pictures, and

5. define picture primitives?

Kirsch gives a two-dimensional context-dependent grammar for 45’ right

triangles generated in a plane divided into unit squares; this is

suggested as an illustration of the possible form of picture grammars.

Figure 2.2 contains a sample production and a derived triangle. Here,

Ts is a 2-dimensional 45’ right triangle with labeled unit squares (the

primitives); TV is the meaning of the labels. There is no semantic

portion 3 corresponding to the grammar. As Kirsch admits, it is not

evident how this approach may be generalized for other pictures. It

is also a debatable point whether context-sensitive grammars are desir-

able since the analysis would be extremely complex. Lipkin, Watt, and

Kirsch [I9661 argue persuasively for an "iconic" (image-like) grammar to

be used for the analysis and synthesis of biological images within a

large interactive computer system; however, the authors state that

'we cannot at this time show examples of any except the most primitive

form of picture grammar." This thesis offers a solution to some of the

picture description problems posed by Kirsch for the class of pictures

defined in Chapter 1.

Figure 2.2(a) Sample Production: (Y l {L, I), B E fH, W)

18

Figure 2.2(b) A Derived Triangle

Figure 2.2 Kirsch's Right Triangle Description

Ledley [l962] and Ledley et. al. [1965] employed a standard BNF

grammar to define picture classes. Their published method for the

analysis of chromosomes Cl9653 illustrates this approach. Here, Ledley's

"syntax-directed pattern recognition" is embedded in a large picture

processing system that searches a picture for objects, recognizes the

primitives of an object, performs a syntax analysis of the object

description, and finally computes further classifications and some

statistics on all the chromosomes found. The object primitives consist

of five types of curves from which chromosome boundaries can be generated.

An edge-following program traces the boundary of an object in the picture

and classifies each boundary segment into one of the primitive classes;

since the boundary is a closed curve, a linear string or ordered list of

its segment types is sufficient for the description T .
S

If Ts

represents a chromosome, the parse H
S

will contain a categorization

of it as, for example, submedian or telocentric type; otherwise the

parse fails, indicating the original object was not a chromosome.

Figure 2.3 contains samples from chromosome syntax, examples of the

basic curve types, and some chromosome descriptions. Ledley's work is

an example of a direct application of artificial language analysis

methods to picture classification. It is difficult to generalize this

approach to figures other than closed curves unless relational operators

are included as part of T *
S’

in the latter case, the most difficult

task is obtaining Ts, not parsing the resulting string.

(arm) ::= B(arm)l(arm) B 1 A

(side) ::= B(side)l(side) B 1 B 1 D

(submedian chromosome) ::= (arm pair)(arm pair)

Figure 2.3(a) Sample Productions

Figure 2.3(b) Basic Curve Types

20

A
B

B

c+
A

C B
E

B

BCBABDBABCBABDBA BCBABEBA

Submedian Telocentric

Figure 2.3(c) Chromosome Examples

Figure 2.3 Ledley's Chromosome Description

Clark and Miller [‘Lg66] use the language of graph theory to describe

spark linkages and the topology of physics "events" appearing in spark

chamber film. These descriptions are embodied in computer programs that

apply some graph theorems to assist in the decision-making process and

perform the film analysis. The primitive elements of the pictures are

sparks; a multi-list structure provides the description T S
and T of v

the spark connectivities. Hierarchic descriptions result from combining

sparks according to their geometric and graph properties to form tracks

and events. While an explicit linguistic approach is not employed, the

underlying graph model acts as a formal descripticmn language.

Very recently, Anderson [19671 and Clowes [1967 a, b] have reported

some interesting research on the application of li.nguistic models to

picture processing. In Clowes [1967al, a set .& of Boolean functions

on pictures is used to define the syntactical classes for hand-written

numerals; the successive execution of these functions from the bottom

up serves to analyze and describe the pictures. Another approach,

based on Chomsky's model for natural language syntax (Chomsky [1965])

was proposed by Clowes [1967b]. Until more experimentation is done, it

is not clear how useful this model will be. Anderson [19671 syntactically

analyzes pictures after their primitive elements have been characterized

by conventional pattern recognition techniques. The value of a primitive

is its name and 6 positional coordinates: X min' X center' X max' Y min'

dimensional mathematical notation. The meaning of the notation is as

follows:

'i : the ith element (left to right order) of the right par t of

the syntax rule.

Pi : a partitioning predicate that Si must satisfy. C.. is the
iJ

.th
J positional coordinate of S. . 1

R: a predicate testing the spatial relationship among success-

fully parsed elements of the right part of the syntax rule.

ci : the six coordinates to be assigned to the ILeft part of the

syntax rule in a successful parse.

M: the semantic rule indicating an action to be taken or the

meaning to be given to the rule.

A top-down goal-directed method is used for analysis; the basic idea is

Y center' Y max e Each syntax rule consists of four structural parts

(elements of b) and one semantic part (element of 3) . Figure 2.4

contains a syntax rule used in the recognition of hand-printed two-

22

to use the syntax directly to partition the picture space into syntactical

units. Anderson has described several non-trivial classes of pictures,

such as hand-written two-dimensional mathematical formulas, directed

graphs, and flow charts; but, as of this writing, has tested the analysis

only on simulated "hand-printed" data. The set partitioning strategy is

inherently inefficient and there remains the question of what increases

in efficiency can be obtained by the various devices he proposes. One

of the virtues of this model is the use of predicates which allow the

expression of complex relations among the picture parts.

term

Figure 2.&(a) Graphical Form of Replacement Rule

term-

Sl: expression Pl: '01 > '21 and '03 < '23 Cl: c21

and c 04 ' '26 c2: c22

se: horizline P2: $3 c3: '23
s3: expression P3: cO1 > c21 and co3 < '23 c4: c34
R: @ and co6 < ~2~ c5: '25
M: (s1)/(s3) c6: '16

Figure 2.4(b) Tabular Form of Replacement Rule

Figure 2.4 Example of Anderson's Syntax Rules

Underlying a large number of description schemes is the conceptual-

ization of a picture as a graph; in the above survey, the models of

Narasimhan, Sherman, and Clark and Miller are clearly of this type.

Other picture processing efforts where a graph representation has proved

useful include Breeding [19651 and Guzman [19671.

24

CHAFTER 3

THE PDL PICTURE DESCRIPTION SYSTEM

3.1 PURPOSE AND REQUIREMENTS OF A PICTURE DESCRIPTION LANGUAGE

Two general applications may be envisioned for a formal picture

description scheme:

1. It can be a language of discourse about pictures for humans.

2. As part of the picture processing model outlined in Chapter 2,

it provides the basis for analysis and generation of pictures

by computers.

The PDL language is the result of trying to meet the following

requirements:

1. The language must be capable of describing,, both to humans and

computers, a large and interesting class of pictures.

2. The structure (syntax) and meaning (semantics) should be con-

tained in a picture description.

3. The basic forms of the language should be simple and natural.

4. Picture descriptions must be generative - that is, a reasonable

facsimile of a picture can be generated from its description.

50 The language should be used directly (explicitly) by comput,er

programs to solve analysis and generation problems.

6. There must be general algorithms for number 5 which apply to any

picture which can be described.

7. Descriptions should be (almost) independent of coordinate systems

and the number of levels of digitization.

25

8. The language must apply to pictures in two or three dimensions.

An evaluation of PDL in terms of the above requirements is given

in the last chapter.

3-2 PICTURE PRIMITIVES

3.201 DEFINITION OF A PRIMITIVE

Kirsch [I9641 suggests that the elementary or primitive components

of a picture be defined as those patterns "which are recognizable by

suitable character recognition equipment." The definition is slightly

changed here:

A picture primitive is any picture that can be recog-

nized (generated) by established hardware and software

techniques more conveniently than by expressing it (in PDL)

in terms of its subparts.

Thus, what constitutes a primitive is a matter of convenience and is

dependent on the application and picture class. For example, in character

recognition, the characters themselves may be primitives, or it may be

more advantageous to consider line and curve segments as primitives and

describe the characters in terms of these.

It is required that a primitive have two distinguished points, a

tail and a head. A primitive can be linked or concatenated to other

primitives only at its tail and/or head. Because there are only two

points of possible concatenation, a primitive can be represented as a

labeled directed edge of a graph, pointing from its tail to its head node I

(Figure 3.1); this will be a frequent and useful abstraction. Note that

generally, there is no inherent direction associated with a primitive

patternperse; the use of directed edges to represent primitives is merely I

convenient for explaining the description scheme.

head

Primitive p Abstracted Primitive

Figure 3.1 Representation of a Picture Primitive

In many applications, the absence of a specific visible pattern

in a particular area of a picture is a necessary part of its description.

An example is a photograph of some high energy particle physics reactions

(Ford [19631); the apparent stopping of a particle track and the later

appearance of several tracks emanating from the same vertex indicates

the presence of an unseen neutral particle (Figure 3.2). Blank (invis-

ilbe) and "don't care" patterns connecting disjoint primitives are also

27

extremely useful for describing simple geometric relations, such as those

between adjacent characters of a word and adjacent words in text. When

a relationship is to be described between disjoint primitives separated

by other patterns, the separating patterns are defined as "don't caren

primitives. Blank and "don't care" primitives are therefore allowed. -- I

visible track
of charged

particle

Figure 3.2 An Invisible Primitive

It is convenient to define one special primitive, the null point

primitive A, having identical tail and head. h consists only of its

tail and head point and will be represented as a labeled node in a graph.

3.2.2 DESCRIPTION OF A PRIMITIVE

A primitive is generally a member of a pattern class; the latter

may be described by a name, a tail and head specification, and a recog-

nition (generation) function. The syntax or structure of a primitive

28

is defined as the name of the pattern class to which it belongs; lower

case ALGOL (identifierjs (Naur et. al. [1963]) will be used to name

primitive pattern classes. For a primitive class x, let P(x) be

the set of all pictures in the class named x (i.e., the class with

syntax x); pictures, and thus members of a primitive class, will be

designated by the first few letters of the lower case Greek alphabet.

The value or semantics of a picture primitive CYE P(x), which is

contained in a given picture, is defined as the list:

value(a) = (tail(a), head(vl, v2, -.*, vn),

where tail(a) and head are the coordinates of the tail and head

of cy respectively and vl, v2, .O., vn are an arbitrary number of

attributes. The recognition function for 6'(x) is assumed to yield

the value of CY on success*

The description D(cr) of a primitive CYE k(x) is the pair:

D(cu! = (Ts(cr), TV(~)) = (x, value(a)),

where T and T are defined in section 2.2 of The last chapter.
S V

The null point primitive A has the description:

D(h) = (h, (tail(A), head(h)))

Example:

Let arc name the class of all two-dimensional pictures, 63(arc),

consisting of an arc of a circle subtending an angle of less than 180',

as defined by an 'arc recognizer"; the tail is the counterclockwise

extremity of the arc and the head is its clockwise extremity. Then

29

a particular arc a E P(arc) with radius r, tail (xl, yl), and

head (x2, y2) could be described:

D(a) = (arc, ((xl, yl), (x2, y2), r))

3.2.3 THE PRIMITIVE CONNECTIVITY ASSUMPTION

A picture can be represented as a directed graph, where the edges

are the abstracted primitives labeled by their primitive class names,

some nodes may be labeled A, and the graph connectivity mirrors the

tail/head concatenations of the primitives.

Definition:

A picture is connected if upon making each edge of' its corresponding

graph undirected, the resulting graph is connected.

The following assumption is then made: All pictures are connected.

That this is a reasonable assumption can be seen by considering the

extreme case of a picture consisting of a number of disjoint, unrelated

primitives. In this case, the geometric relation (coordinates) of each

primitive relative to the "origin" of the picture is usually meaningful;

the connectivity is obtained by linking the origin to each primitive by

blank primitives (Figure 3.4); ti and hi point to the tail and head

of primitive i in the figure.

30

h

I /
I / ,‘A’
I / //’
I /,JH
wdorigin

t bP'tbq'tbr'tbs

Figure 3.3(a) Labeled Picture

Figure 3.3(b) Corresponding Graph

Figure 3.3 An Extreme Case of a Connected Picture

31

3.3 PICTURE SYNTAX AND SEMANTICS

3.3-l THE PDL LANGUAGE-PRIMITIVE DESCRIPTION OF A CO7WECTED PICTURE

PDL (Picture Description Language) is a linear string language; a

sentence S in PDL (expressed "SePDL") provides the primitive structural

description, Ts, of a picture by naming all its primitives (their class

names) and their tail/head connectivity. The following syntax will

generate any sentence SePDL:

s -+P/s~bs)/(- S)ISLI(/SL)

SL -j sel(SLflbSL)I(- SL) / (/SL)

@b ++IxI-I* ,

where p may be any primitive class name (including A) and 9. is

any label designator (represented by a lower case ALGOL (identifier)).

Any SEPDL will also be called a PDL expression.

Example:

Ts(a) = (((- c) + ((a * ((b+ai) + c-b))) + c))

* ((a * ((bla) + (-b')))

x ((((/bi) + (- c)) + ((/ai) + c)) + (-(/bJ)))))

for the picture CY. .

Not only primitives, but all pictures have a tail and a head;

concatenations among pictures can occur only at their tail and head

positions. Consider the picture a: consisting of two subpictures al

and a2 such that "1 E p(Sl), o2 E P(S2) and Ts(a) = (Sl$JbS2), Sl,

S2 E PDL e Then the tail and head of Q according to Ts(o) is defined:

32

tail(a) = tail (al)

head(a) = head(a2) ~

In the same way as primitives, more complex pictures are often represented

by a directed edge of a graph. The interpretation of the binary concaten-

ation operators is given in Table 3-l; in the table, the symbol cat means

"is concatenated onto," and t and h indicate the tail and head

resultant picture. The meaning of the concatenation operators may

given by definitions of P(Tsb)) ; for example:

w$+s,)) = (a,, a21a1 E 6ys1) A a2 E WJ

A head e tail (C!,)]

T$) Interpretation Graph

(sl + s*) head cat tail(a2) __ . t s1 Ah

h

Ml x s*)

(sl - s2)

tail(CXl) cat tail(U2) -
/

s2

t
sl

head(CX1) cat head(Q2)

of the

also be

Table 301 The Binary Concatenation Operators

33

Table 3sl (continued)

T&a) Interpretation

(sl * s2) (tail(al) cat tail(a2)) -

A (head cat head(a2))

Graph

s2
t a ,h

5

a=alUa 2

a1 c ml)

a2 E Ns,)

Figure 3m4 illustrates the use of these operators for describing a line

drawing of an "A" and an 'IF"; typical members of each primitive class

are shown with arrows pointing from the tail to the head positions. The

structure of an "A" is built from its description.

The connectivity graph of a PDL expression will often be referred to;

in this case? the notation tail(S) and head(S) is used to indicate the

tail and head nodes of the graph of the PDL expression S e Thus S and

each picture in P(S) has a tail and head position. tail(S) and head(S)

will generically refer to both the pictures and the graph unless specifi-

cally stated otherwise.

Because of the freedom allowed in specifying primitive classes, a

PDL expression may be undefined for some primitives. For example, if

63(arc) is defined as in the example of section 3.2.2 and P(1) is the

T&A

\\dm z h ti VP
Primitive Classes

) = (dp+((\ dp+dm {*h)+dm

Ts(F) = (vp + (h X (VP + h))) t -
t

Figure 3.4 Primitive Structural Descriptions of an "A" and an "F"

class of all line segments with tail and head at their endpoints, then

the concatenation expressed by (1 * arc) can only have meaning for

those members of 63(e) and P(arc) that are geometrically compatible;

if 63(arc) is restricted so that any chord is less than m units in

length and b(1) is restricted to lines of length greater than 2 X m,

then (1 * arc) is always undefined, i.e., 6'((1 * arc)) is empty.

This is no problem theoretically since the connectivity graph is con-

structed by treating each primitive abstractly, regardless of whether the

concatenations are geometrically possible. It would, however, lead to

undefined results in generation and failures in analysis of pictures.

35

This anomaly is ignored henceforth by allowing b(Ts) to define an

empty set of pictures for some Ts .

The binary operators in conjunction with h are sufficient to

describe all possible tail/head concatenations between two pictures,

i.e., they are locally complete; Figure 3.5 enumerates and describes

all possible local concatenations. The unary operators - and / do

not describe concatenations, but allow the tail and head to be moved.

A notation of description equivalence is introduced ir. order to discuss

the unary operators, labeled expressions, and some formal properties of

PDL, For SL, S2 E PDL:

1. s1 is weakly equivalent to s* (sl SW Se) if there exists an

isomorphism between the graphs of SL and S2 such that corre- '

sponding edges have identical names.

2. sl is equivalent to S2 (Sl 5 S2) if

a. s1 ', S2’ and

b. tail(S1) = tail(S2)

and head = head(S2) .

The unary - operator acts as a tail/head reverser with the

following properties:

1. (- sl) Ew sl, SIE PDL

2. tail((-S1)) = head and head((- Sl)) = tail(SL) .

The purpose of PDL expressions with label designators, such as s',

is to allow cross-reference to that expression within a description;

with the / operator, this enables the tail and head to be arbitrarily

located. A PDL expression S1 is equivalent to the .value of the follow-

ing function g:

36

Concatenation C'escription

a

b

T-T
a

b

3
a

*
a

b

0 a

a a

-(a + b)

(a x b)

(a - b)

(a * b)

f(a+b) * 1)

Fig-we 3.5 Local Csmpleteness of. {t, X, -, *]

g(S') = if primitive(S) then Se -

else

if s = (SlIbbS2), ,q$+, x, -> *I,

J&g MS;) egg (s$)

else

if s = (p&L PI$-9 /I,

where primitive(S) = true if (1) S is a primitive class name, or

(2) s = s; where S 1 is a primitive class name, and false otherwise.

Concatenated label designators are interpreted as single labels; thus

((ai+b)j + ai)S ((ai'+,') + ai) .

Figure 3.6 illustrates the use of label designators and the /

operator to describe (a) a picture whose connectivity is equivalent to

that of the complete k-node graph, and (b) a line drawing of a three-

dimensional cube in 3-space; in the latter, the primitives are line

segments in the X, Y, and Z directions, where the 2 direction

points into the paper. The explanation of the / operator assumes

that any expression Se within a PDL expression has been recursively

transformed by the above function g into an equivalent expression so

that only primitive.s have label designators. Then it is required that

each primitive within the scope of a / operator, i.e., each primitive

that is part of some (/S) within the PDL expression, have a label

designator (this is part of the PDL syntax given earlier) and be identical

in name and label to one and only one primitive outside the scope of a

/ * The / is interpreted as a superposition or blanking operator.

Each primitive within its scope is another instance of its identical

38

bj

h

~~(a) = (((bi + a) * (((/bi) + d) + (/bJ)):) * ((a + bj) * C))

Figure 3.6(a) The Complete &-Node Graph with Directed Edges

Y 2

I/
X

Ts(& = (((x * ((yi + X) + (-Yj)))

* (WYi) + z) + ((x * (C-y) + (,xk + Y)))

+ (- z))) + (- (/Yj))))

* ((z + (/xk)) + C-z)))

Figure 3.6(b) A 3-Dimensional Cube

Figure 3.6 PDL Descriptions with Labels and /

39

outside primitive; the description of concatenations onto either one will

refer to the same primitive. Thus / allows multiple descriptions of

the same primitives and structures, effectively moving the tail or head

to a more convenient place for further concatenations. A formal defini-

tion of the meaning of / and label designators is given in section 3.4.2.

It is now possible to state completely the rules for determining the

tail and head of an expression S E PDL and of each CY. E P(S):

primitive(S)

else

if s = (s,er,s,), fib d+, x, -9 *I

else

ifi3

else

if S -

else

if S -

tail(S1) -4 > then
head(S2)

where the function g is defined earlier.

The primitive semantic or value description Tv((") of a picture Q:

is a list of the descriptions D(B) of those primitive pictures S con-

tained in a which have their connectivity and class names described in

Tsb) .

Example: A picture a consisting of a straight line segment

concatenated onto an endpoint of an arc might have:

40

Ts(a) = (line + arc)

TV(a) = ((line, ((xl, yl), (x2, Y,&, d),

(arc, ((x2, Y,), (x3, y,), r))),

where m is the line slope and r is the radius of the arc-

generating circle.

One more assumption is necessary in order to cc'mplete the PDL

description scheme. It is assumed that all pictures have a well-defined

origin from which a PDL description 'fstartstl; that is, any PDL description

S of a picture is interpreted as (A + S) where the tail and head of h

is the picture origin. The origin can be any convenient point in the

picture and is usually determined by either the digitization or the

generation mechanism. In analysis problems, this normally means that the

first primitive concatenated onto the origin is a b:,ank or "don't care'

primitive whose recognition function is equivalent to a search strategy

to find some interesting visible part of the picture.

3.3.2 HIEPARCHIC DESCRIPTIONS

The set of rules or grammar .& that describes (generates) the class

of pictures 63& will be a type 2 (context-free) phrase structure grammar

(Chomsky [19591) with the following restrictions. Each rule or production

is of the form:

S +pdll[pd121-----Ipdl,, n > 1, -

where S is a non-terminal symbol and pdl. 1 is any PDL expression with

the addition that non-terminal symbols are allowable replacements for

41

primitive class names. Sentences of .C(&) will consist of PDL expres-

sions; thus, the class of terminal symbols of & will be a subset of

{+t x, -7 *, --? /, (,)] U ~r~~Z~}U {desi;::;orJ . Non-terminal

symbols are denoted by upper case ALGOL (identifiersjs . Each grammar

1 will have one distinguished non-terminal symbol from which g(J) may

be generated; the symbol on the left part of the first production of &'

will be the distinguished symbol. Any sentence S E E(b) is assumed to

have one parse; that is, b will be an unambiguous grammar.

The hierarchic structural description Hs(a) of a picture a E P&,

having structural description Ts(a) E s(a) is defined as the parse of

T&a) according to k; Hs (a) is conveniently represented as a paren-

thesis-free tree. A simple example is given in Figure 3.7.

a: P+ AIHOIJSE

A + (dp + (TRIANGLE + dm))

HOUSE + ((vm + (h + (- vm))) * TRI.ANGLE)

TRIANGLE + ((dp + dm) * h)

x(-8 = C(dp + (((dp + d-m) * h) + dm)),

((m + (h + c--d)) * ((dp + dm * h))j

d p dm
\i

h- - -/l

Figure 3.7(a) J', L(b),
and Primitives

42

T&i) =

Hs (ai) :

5 tr2 a3

(cm+ (h+ (- w))) * ((dp + dm) * h)

i
HOUSE

h

vm

Figure 3.7(b) Examples and Parse of a "P"

Figure 307 Structural Descriptions of a Picture

The use of a formal grammar to describe picture classes has several

advantages. Alternatives in a production allow the same name to be

assigned to different structures that belong to the same pattern class.

Large classes of similarly structured pictures can be concisely defined

by recursive productions. For example, all tree st.ructures with "branches"

from primitive class b can be defined by the syntax:

TREE - bl(b + TREE) I(TREE x TREE)

43

Nodes or points in a picture may be named (and assigned properties by 3)

by rules of the form:

NODE + h

The rationale behind the selection of context-free grammars rather than

more complex ones is mainly one of simplicity; their form is simple,

they can generate PDL descriptions for a large, useful, and interesting

class of pictures, and there is a great deal of theoretical and practical

knowledge on their use in the description and analysis of string lan-

guages (Ginsburg [1966], Feldman and Gries [19671).

Corresponding to each rule of .& will be a semantic rule in 8 e

Two sets of semantic rules are postulated--a natural semantics 8, and

an imposed semantics 8 m" The natural semantics Hv(C!) of a picture

CI is a list containing the name, tail, and head of each non-terminal

symbol (syntax rule) in KS(a), where the tail and head of a non-terminal

symbol is defined as the tail and head of the PDL expression generated by

it. Any ai, i = 1, 2, 3, in Figure 3.7 would have:

Hv(~i) = ((P, (t, h)p), (HOUSE, (t, h)HOUSE), (TRIANGLE, (t, h)TRIANGLE)),

where (t, hJk is the tail and head of k .

The purpose of an imposed semantics is to take an action and assign

a value or set of values to a non-terminal symbol upon successful appli-

cation of its syntax rule during a parse. This acticn might be to com-

pute a function over the structures or picture described by the syntax

rule or to generate code for later execution. The last case would occur

when .& and & m were input to a compiler/compiler (Feldman [19661,

44

Reynolds [19651); the output would then be a picture processing system

for Q * A mechanism to express elements of dm has not been developed;

the natural semantics only is used here.

The description scheme for pictures can now be summarized:

The class of pictures of interest is generated by a given grammar

.& such that

and

% = +(&) p(Ts) ’

Then, the description of D(a) of any picture Q: E 65b is

D(a) = ((T&d, TV(d), (Hsb), f$b))),

where T&a) E x(J),

TV(a) is a list of the descriptions of all primitives of ~1,

Hs (a) is the parse of Ts(ar) according to b, and

Hvb) is the natural semantics of a .

3.4 PDL: FORMAL PROPERTIES AND BASIC THEOREMS

3.4.1 ALGEBRAIC PROPERTIES

The definition and interpretation of the PDL language can be viewed

as a picture or graph algebra over the set of primitive structural descrip-

tions under the operations +, -, X, *, -, and I * Elements (sentences

S E PDL) are considered equal if they are equivalent. A number of useful

algebraic properties are given below; it is assumed that

45

s, SL, sp S3 E PDL, eb E I+, X, -7 *I, fib-* d+, X, -3 0

1. Associativity:

Each of the binary concatenation operators is associative.

(a) ((Sl + Se) + S3) E (Sl + (S2 + S3))

(b) ((Sl X Se) X S3) s (sl x (s2 x s3))

Cc) ml - s*) - s3) = (sl - (s2 - s3N

(d) ((Sl * S2) * S3) = (sl * (s2 * s3))

This allows the elimination of parentheses from an expression whose

operators are identical. Thus, ((S1 + S2) + S) can be put in the
3

simpler form (Sl + S2 + S3), and (S1 - S2) - S3) in the form

(sl - s2 - s3) *

2. Commutativity:

(a) * is the only commutative binary operator.

(sl * s2) = (s2 * sl)

(b) X and - are "weakly" commutative.

(sl x SJ ‘, (s2 x q

(sl - Se) zw (s* - SJ

3* The - Operator:

- acts much like complementation in a Boolean algebra.

(a)
(-(sl + s2N = ((- s2) + (- sl))

(-(sl * s2)) = ((- s2) * (- SQ)

46

(b) - obeys a "de Morgan's law" with respect to X and - :

(-(sl x s2)) = Cl-- s*) - (- q)

(-(sl - s2)) 3 ((- s2) x (- sl))

Note that - reverses the order of the operands. The equiva-

lences of (a) and (b) are useful for moving the - within an

expression.

(c) Involution:

(-(- s)) = s

4. The / Operator:

(a) (/C/S)) z C/S)

(b) (/(SlflbS2)) = ((/s; fib (/s2))

Cc) c/c- s)) E (-C/s))

5. The Null Point Primitive h:

(a) (SObA) E (4bS)

(b) (Sf'b-xh) = s

(S * h) 9 S since (S * A) implies head(S) = tail(S)

(c) (-A)?'

(d) (A fibAh) = h

3.4.2 THE GRAPH OF A PDL EXPRESSION

By using some of the algebraic properties of the last section to

move unary operators and label designators as far as possible within an

expression,

obtained.

a standard form f(S) E PDL of an expression S can be

f(S) is defined:

47

f(S) = if (S = Sl V S = (/SL) V S = (- Sl) V S = (-(/Sl))) A primitive(Sl) -

then S

else

if s = (SlflbS2), #b d+, x, -9 "3, then wq plb f(S2))

else

if S = St - then f(dS))

else

if S = (-(Sl@S2)), # EE+, *I, then (f((-S2)) !J f((-S,))) - L

else

if s = (-(sl x s2)) then (f((- s2)) - f((- q))

else

if S = (-(Sl - - s2)) then (f((- s2)) x f((- SL)))

else

if S = (/(SlfibS2)), eib Ef+, XT -Y “3, then -

W(/sl)) fib f((/SJN

else

if S = (-(- Sl)) then f(Sl) -

else

if S = (-(/Sl)) V S = (/(- Sl)) then f((- -

else

if S = (/(/Sl)) then f((/Sl))

Example:

((-(ai+ b)) + (/(- ai)))

has the standard form:

((c-b) + (- ai)) + (-(/ai)))

43

f((/s$ 1)

The standard form f(S) of S has the properties:

1. f(S) = s,

2. the operand of each / is a primitive class name, and

3. the operand of each - is either a primitive class name or /

followed by a primitive class name.

The function definition is a case analysis of all possible forms of S

as given by the PDL syntax.

A valid PDL expression (vPDL) is one whose s-tandard form is such

that if (/p') appears in it one or more times for some primitive p

and label 1, then p' also appears once and only once outside the

scope of a / .

The graph, and therefore the primitive connectivity, described by a

vPDL S is defined by the following algorithm:

1. Transform S into standard form by applying the function f .

2. Replace each expression of the form (/pL) by a new primitive

Pi . This removes all / operators.

3. Generate the connectivity graph of the resulting expression.

4. Contract the tail and head nodes of each edge to the

corresponding nodes of p' .

5. Eliminate all edges of the form

The above algorithm formally defines the meaning of labeled expressions

and the / operator. A simple example is given in Figure 3.8.

49

((((ai + b) * (b + a)) * c) + (/ai))

step 2 ((((ai + b) * (b + a)) * c) + ai)
/

C

step 4 i
al

Figure 3.8 The Graph of a vPDL

3.4.3 BASIC THEOREMS

1. Connectivity Description

Each step in the formation of a graph of a vPDL can always be per-

formed and has a unique result. This leads to:

THEOIiEM 3.1:

Any vPDL describes a unique primitive connectivity.

This gives the assurance that one and only one primitive connectivity

is represented by a VPDL .

50

2. Completeness

THEOREM 3.2:

Any connected set of primitives can be effectively described by a

vPDL .

Proof:

The proof is by induction on the number n of connected primitives.

For n = 1, the VEIL is p, where p is the primitive class

name. Suppose that any connected set of n primitives can be

effectively described by a vPDL .

Consider (n + 1) connected primitives. Select n of these that

are connected, say pl, p2, p, . By the induction hypothesis,

their connectivity may be described by a vPDL:

sn = Sn(Pl' P2, * *-, P,)

(a) The first possibility is that the (n + l)st primitive, P,+~,

is connected by only one of its nodes to a primitive in Sn .

Then, there must exist at least one pi, 1 < i < n, whose tail or _ _

head, or both are connected to P,+~ .

The following connectivities are possible:

(1) head to head(pn+l)

(2) tadpi) to head(pn+l)

(3) head to tail(pn+l)

(4) tail(pi) to tail(pn+l)

51

Consider case (1):

Since Pl' P*t -se, Pn are connected, a "parch", described by

S i' can be found from head to head(such that:

tail(Si) = head and head = head(p) . (Figure 3.9(a).)

P n+l

Figure 3.9(a) head(pn+L) cat head

P n+l

Figure 3.9(b) head(pn+l) cat head A tail(pn+l.) & head

Figure 3.9 Theorem 3.2

52

The form of S i can be:

Si = (Sil + si2 + . . . + s. In.),
1

where Si j = (-pij) or S.. = p.. and pi
1J 1J -3 siPi, P29 ***, 'nl

j = 1, 2, ni .

(Parentheses are omitted in S i since + is associative.)

All the primitives in Si which are labeled in Sn are now given

the same label in Si . Call the resulting expression i . S1

Label uniquely all the unlabeled primitives of St ; attach the same

labels to the corresponding primitives in Sn . Call the resulting

expressions SLi and SLn respectively. Then the following vm)L

describes the connectivity of the (n + 1) primitives:

S *+I = ((SL, + (/SLi)) - Pn+l)

The remaining cases are handled by a similar construction.

(b) The only other possibility is that P,+~ is connected at both

of its nodes to S n ' Therefore, there exist pi and pj,

1 5 i, j I n, such that:

(1) head = head(pn+L) A (head = tail(pn+l)

v tail(pj) = head(pn+l))

or

(2) head = tail(pn+l) A (head = head(pn+l)

V tail(pj) = head(pn+l))

53

/

i

or

(3) tail(pi) = head(pn+l) * (head = tail(pn+l)

V tail(pj) = taiL(pn+l))

Or

(4) tail(pi) = tail(pn+l) A (head = headI:pn+l)

v tail(pj) = head(pn+l))

Consider the case:

head = head(pn+l) A head = tail(pn+l)

As in (a), there is a path, described by Si, from head

to head(similarly, there is a path that can be described

by S j from head to tail(Sn) . Si and Sj satisfy:

head = head(tail(Si) = head

head = tail(Sn), tail(Sj) = head .

(See Figure3.9(b),page 52.) The same labeling as in (a) is

done except that any primitive common to Si, S., and S is
J n

labeled in all three expressions. Call the resulting expressions

SLi, SLj, and SLn . Then the connectivity of the (n+ 1)

primitives is described by the vPDL:

S n+l = (U/SLj) + a, + (&X * Pn+l) *

The other cases are treated in a similar manner. Therefore,

the case of (n + 1) connected primitives is proven.

Q.E.D.

54

Note that, in general, more than one vPDL can be obtained to describe

the same connectivity; for example, in part (b) of the proof, a similar

argument would yield the vPDL:

s;+l = ((SL, + (/S$)) * W(/SLj)) + Pn+J)) *

Corollary 3.1 (Linear Cipher):

Any directed graph can be described by a vPDL .

Theorem 3.1 proves the completeness of a PDL with respect to the primitive

structural description of any connected set of primitives. Corollary 3.1

further suggests that graphs of various types may be represented and

possibly manipulated within PDL.

3. Moving the Tail and Head

The path construction used in the proof of Theorem 3.2 can be employed

to move the tail and/or head of a vPDL to any node(s) in the struc-

ture.

THEOPEM 3.3:

Given a vPDL Sl describing a set of connected primitives whose
2

corresponding graph has n nodes, it is possible to derive n -1

(and no more) other vPDL's, s*, S3' **+, Sn27 such that

(1) si zw S.
J

1.
1, j = 1, 2, n2

ifj

(3) Each Si, i = 2, n2, is equivalent to an expression

having one of the forms:

55

(a) ((/Sil) + CsLl + (/‘i,)))

(b) ((/Sil) + SLi)

(cl ml + (/s&

where SLl is obtained from S 1 by gi.ving the same labels to those

primitives in Sl that appear i-n Sil and/or Sj.2 .

Proof:

Since there are n nodes in the graph, there are n2 different

ways of assigning the tail and head. Therefore, given Sl with
2

its tail and head, there are n -1 other assignments that can be

made. Since the primitives are connected, a path can always be

found from the desired tail to tail(Sl) and from head to

the desired head. Using the construction in the proof of Theorem

3.2, expressions of the form (a) (or (b) when the new head = head(

or (c) when the new tail = tail(Sl)), can always be derived. Prop-

erties (1) and (2) follow immediately.

Theorem 3 allows one to take the origin (tail) of a picture at any

convenient place. It also assures access to any node in the graph when

building up descriptions.

4. An Adequate and Independent Set of Operators

The question naturally arises whether label designators and the /

operator are necessary or just convenient. Theorem 3.4 proves the

inadequacy of the system without these features.

THEOREM 3.4:

The operator set {+, X, *, -, -1 is not sufficient for the descrip-

tion of any connected set of primitives.

56

Proof:

Assume that / is not part of the PDL language. If (S,$]S,) is

contained in a vPDL S, the nodes

are inaccessible within S since only tail(SL) and head can

be used for further concatenations in S (by definition); furthermore,

the inaccessible node has at most two edges meeting at it, Consider

a picture whose connectivity is equivalent to that of the complete

4 node graph (Figure 3,6(a)); let each edge have the name x . Then

any description S of this connectivity must contain a subexpression

equivalent to (Xlflb,_*X2), where Xl = (-x) or x, X2 = (-x) or

X7 and @ b-* EEI-, x, -3 e * is not possible since (Xl * X2) does

not describe any subgraph of the graph; this also applies to (x1. * A) *

Finally, if only expressions of the form (X,#,-,X) appeared, the

equivalence (Xl$bb-xh) e Xl could be applied to obtain the above

form. But, each node must have 3 edges meeting at it. Since the

expression (x&,-*x2) ' eaves one node inaccessible with at most two

edges tied onto it, S cannot describe the picture.

Q.E.D.

However, there does exist an adequate and independent set of operators.

THEOPEM 3.5:

Any vPDL is equivalent to one that uses only the operator set

{+, -, / } . Moreover, these operators are independent.

57

Proof:

The following equivalent expressions demonstrate the adequacy of

E+, -* /I:

(sl * Se) = ((St + (- SJ) + (/sf))

(sl x s*) z ((s; + c/c- s;m + SJ

(sl - s2) = ((sl + (- $1) + us&

where i does not appear as a label in Sl or S2 . + is indepen-

dent of N and /, since it is the only concatenation operator.

- is independent since + and / cannot be used to describe the

connectivity:

(a +(- b))

/ is independent since - and + cannot alone describe the

connectivity:

a

((a + (- bi)) + (c/b? + (- c)))

Q.E.D.

The set {X, -, *], while unnecessary, is still very convenient,

especially in the description of pictures with simple structure.

58

CHAPTER 4

THE FORMAL DESCRIPTION OF SEVERAL PICTURE CLASSES

The examples of this chapter illustrate both the power and the

limitations of the PDL system as a formal picture description scheme.

Comparisons with some of the work surveyed in section 2.3 are made where

appropriate.

Primitive classes are defined informally by a pictorial sample, a

mnemonic name, and often a textual description, rather than by a detailed

definition of their recognition (or generation) functions. The latter

depends to a great extent on factors that are irrelevant at this point;

these include the amount of noise in a particular picture, the hardware

used for reading and displaying pictures, and the eventual purpose of the

description.

4.1 PARTICLE PHYSICS

In high energy particle physics, one of the most common methods

for obtaining the characteristics of an elementary particle is to

analyze the trajectory "trail" left by the particle and its byproducts

in a detector chamber, such as a bubble or spark chamber (Shutt [19671).

Several hundred thousand photographs of these trails might be taken in

a typical experiment. Because of the large numbers, involved and the

accuracy and quantity of computation required for each "interesting"

photograph, machine processing of the pictures is desirable.

59

Figure 4.1 contains a photograph of a typical event occurring in a

bubble chamber. In the left central part of the picture, the following

track configuration can be seen:

A l-l- particle entering from the bottom interacts with a proton P

producing two positive particles (+), two negative particles (-),

and an unseen neutral particle (Ki) . The neutral particle later

decays and produces the pair ll- and fl+ .

In addition to the particle tracks, the pictures usually contain

some identifying information (in a "data box"), such as frame number,

view, input beam characteristics, and date,and a set of Wfiducials",

which are marks on the chamber whose positions are precisely known.

Fiducials allow the tracks to be reconstructed in real space.

60

Figure 4.1 Event in Bubble Chamber

Photo By Courtesy of Dr. William Johnson, SLAC

61

Figure 4.2 gives the syntax for an abstracted particle physics pic-

ture. A negatively charged particle TM is assumed to enter a chamber

containing positive particles P and under the influence of a magnetic

field; TM enters from the left. The following types of reactions are

provided for:

(a) Interaction with P:

TM+ P - TM + TP

- TM + TP + TN

- TN

(b) Negative Particle Decay:

TM - TM+ TN

(c) Neutral Particle Decay:

TN - TM+ TP

(d) Positive Particle Decay:

TP - TP + TN

TP and TN represent positively charged and neutral particles respec-

tively. The notation used above is similar to the conventional physics

notation. The products of the reactions can themselves undergo the same

series of reactions; this can occur an indefinite numioer of times. The

chamber has four fiducials ("X's) and an identification box.

The descriptions (L(q) are ordered for left-to-right recognition

in that the lower left-hand fiducial, FI, appears first and its center

62

is then used as the tail for the descriptions of the rest of the fiducials,

FID, the identification box, ID, and the particle tracks PI . The

sketches of the primitives are only representative. For example, cm

and cp are the names of curves with negative and positive curvature

respectively; dp is a short line segment of approximately unit slope.

The blank and "don't care" primitives describe known and unknown dis-

tances between visible parts of the picture. The primitives eh and ev

would be precisely defined a priori since the fiducials are in fixed

positions relative to each other. On the other hard, es, the starting

primitive would be defined as a search strategy to find the lower arm of

the left-corner fiducial.

The use of h for the vertices of interaction, P and N, illus-

trate the ability of PDL to deal meaningfully with points as well as

edges. Physics pictures of this type are natural candidates for descrip-

tion by recursive syntaxes; the recursive definitions of TM, TP, and

TN are based on charge conservation and allow for an indefinite number

of well-formed reactions.

Figure 4.2(a) Sample Picture

63

bl I bo 0 CIil CP A
+ -b

dtn*

- DON'T CARE

Figure 4.2(b) Primitives I

PICTURE + (es + (FI + (FID X (ID X PT))))

FI + (dp + (dm X (dp X (A - dm))))
FID --) ((eh + X) + ((ev + X)) - (X + eh)))
ID --) ((eb + B) + ((ec + B) + ((ec + B) + (ec + B))))
PI

X

B

TM

M!?

MD

TP

TN
PD

P

+ (ep+TM)

--) ((dp X dd X ((- dp) X
-a bO/bl

-3 (cm+ MD)I(cm+ MP)Icm

+ (P + ((TM X TP) X TN))

+ (TM x TN)ITM

+ (CP + PD)IcP
--f (en + (N + (TM X TP)))

--) (TP X TN)ITP
+ A

(A - dd))

I(P + (TM x TP))

N + A

Figure 4.2(c) Syntax .&

Figure 4.2 Particle Physics Example

(P + TN)

64

4.2 KIRSCH'S 45’ RIGHT TRIANGLES

Figure 4.3 contains a syntax and examples of two-dimensional 45’

right triangles with the same point identifications or labels as that

given by Kirsch [lg64] (see discussion in section 2.3). The primitives

are defined as all translations over a two-dimensional grid of the samples

shown. Each point in a triangle is assumed to appear as an "X" on one

raster unit (square, grid point). --

When a picture is represented as finite grid of points, the possi-

ble coordinates of the tail and head of any picture (including h) are

restricted to the grid point coordinates. The definitions of the binary

operators as concatenations onto means that the expression (h+ h)

describes pictures where the coordinates of h are identical to those

of head(a), a E p(h) (the rightmost "X" in a); also, if D E p((h+v)),

QI is of the form X
xx* These interpretations are used for digitized

pictures.

The identification of the triangle points as interior (I), base

(B), hypoteneuse (H), right vertical leg (L), right angle (R),

and the vertices bounded by the hypoteneuse (V and W) is accomplished

by the rules:

In the examples, the subscript on each "X" indicates its label.

65

The right-triangle syntax will also generate expressions which do

not describe any pictures; this is an example of the problem discussed

in 3*3* DH and DI might not be the correct "length" for the *

concatenation; if this is the case, as in 3.3, the class of pictures

described by the particular T
S

is empty.

Figure 4.3(a) Primitives

RAT -+(((V + h) + (IRAT + (v + W))) * DH)

IRAT + (((B + h) + (IRAT + (v + L))) * DI)I(x + R)

DH +((d + H) + DH)ld

DI + ((d + I)+ DI)ld

V +A

W +A

R +A.

H +A

B -?A

L +A

I +A.

Figure 4.3(b) 3: Right-Angled xriangle

66

DI -

X

X

X

xI

X

X

xI

xI

xI

X

DH -

X

X

X

xH

X

X

xH

xH

xH

X

IRAT

xR

__
XL

'BXR

RAT -

4
XVXR

xw
xHXL

'?B'R

sh
xHXL

xHXIXL

xHXIxIXL

x~~x~x~x~
t

Figure 4.3(c) Examples

Figure 4.3 Right-Angled 45’ Triangle of Kirsch

4.3 SIMPLE BLOCK LETTERS AND A PAGE OF ENGLISH TEXT

A block version of the upper case letters of the English alphabet

is described in Figure 4.4. Parentheses, which are redundant because

of the associativity of the operators, are omitted. The PDL expressions

for each letter were formed so that the tail and head is located uniformly

throughout the alphabet on the "typographic" line; pictures containing

groups of letters and other symbols can then be characterized by PDL

67

dl: hl: * -

h2: -

Figure 4.4(a) Primitives

vl: It

v2:
t

R G I t h

c

\

t h

L
t h

t h t h

K \
t h t h

X
t h

Figure 4.4(b) Examples

68

A --) (a2 + ((a2 + g2) * h2) + g2)

B-t ((~2 + ((G + h2 + gl + (-(dl + ~1))) * h2) + gl + (-(dl + ~1))) * h2)
C + (((- gl) + v2 + dl + hl + gl + (-vl)) x (hl + ((dl + vl) X h)))
D + (h2 * (v3 + h2 + gl + (-(dl + ~2))))

E + ((~2 + ((~2 + h2) X hl)) X h2)
F 3 ((~2 + ((~2 + h2) X hl)) X A)

G + (((- gl) + v2 + dl + hl + gl + (- vl)) X (hl + ((dl + vl - hl) X A)))
H+ (v2 + (v2 X (h2 + (v-2 X (- ~2)))))

I -3 (773 x A)

J-t ((((- 91) + ~1) X hl) + ((dl + ~3) X A))
K + (~2 + (~2 x a2 x g2))

L --3 (v3 X h2)

M+ (~3 + g3 + a3 + (- ~3))
N -4 (v3 + 6@ + (v3 x A))
0 + (hl *((- gl) + v2 + dl + hl + gl + (-(dl + x12))))
P + ((~2 + ((~2 + h2 + gl + (-(dl + ~1))) * h2)) X h)

Q + (hl * ((- gl) + v2 + dl + hl + gl + (-(al + ((- gl) X gl) + ~2))))
R + (v2 + (h2 * (v-2 + h2 + gl + (-(al + ~1))) + g2)

S + ((((- gl) + vl) x hl) + ((dl+ vl + (-(gl+ hl+ gl))
+vl+al+hl+gl+(-vl))Xh))

T --) ((~3 + (hl x (- hl))) x h)
u --) ((((- d) + ~3) X hl) + ((dl + ~3) X A))
v + ((- g7) X a3 X A)
w + (((- ~5) + a3 + ~3) + (d3 X A))
X + (d2 + ((- g2) x a2 x g2))

Y + ((‘72 + ((- g2) X d-2)) X A)

Z + ((d3 - h2)x h2)

Figure 4.4(c) Primitive Structural Descriptions

Figure 4.4 Simple English Block Characters

69

easily. The description could be rewritten as a grammar taking advantage

of some of the common structures in the letters; for example, > appears

in P, R, S, and B . The expressions in Figure 4.4 can be compared to

the descriptions used by Narasimhan L19661 (see section 2.3) for generat-

ing the upper case English alphabet; because only two nodes of possible

concatenation are defined by a PDL description for each picture, it is

not necessary to explicitly number nodes and maintain node lists. For

a block letter P, Narasimhan's method would lead to the description:

P +(v 0 (((h2 * g1)[21; 1; 21

. (vl 0 dl)[22; 1; 11)[21; 1; 21

* h2)[22; 1; l])[ll, 221

where the primitives and node labels are:

1

v: 2

1

I
1

vl: 2

h2: 'J gl: 2

dl:
1

70

A page of text is broken into sentences, lines, words, and charac-

ters by the syntax of Figure 4.5. Blank primitives establish the connec-

tivity of words on a line (iws), characters within a word (its), and

lines (ils) . left, right and bottom are left, right, and bottom of the

page indicators. The PDL expressions of the last figure could be used

for the letters generated by CHAR. This type of syntax could conceivably

be the basis for analyzing and generating textual information.

f
origin

t-

THIS IS AN EXAMPLE OF A PAGE OF

TEXT DESCRIBED BY THE GRAMMAR G. ALL

LINES ARE LEFT JUSTIFIED

AT THE MARGIN. A SENTENCE MAY START

ANYWHEREONALINE. THEREARENO

BLANK LINES BETWEEN LINES OF TEXT.

G DESCRIBES A PAGE IN

TERMS OF CHAPACTERS WORDS SENTENCES

AND LINES.

Figure 4.5(a) Sample Page of Text

71

left:
t

right:
i

bottom:

margin: - - linewidth'

I

ils: I :4

\
\

start: \ I \ \ .

eh: *-----
-

:
ev: 11 I I

period: l iws : .---d its: e---a
--+ -

Figure 4.5(b) Primitives

PAGE -(start + (S + EOP))

s + SENTI(S + SENT)

SENT +(BEGINSEIvr + (L + (its + period)))

BEGINSENT -+iwsl(EOL + ((linewidth + left) + (ils + margin)))jh

L +LINEj(L X ((ils + margin) + LINE))

LINE +WORDI(LINE + (iws + WORD))

WORD +CHAR~(WORD + (its + CHAR))

CHAR +A/B/C IYIZ

EOP + (ev + bottom)

EOL + (eh + right)

Figure 4.5(c) I: Syntax For a Page of 'Text

Figure 4.5 A Page of English Text

72

4.4 CLOSED BOUNDARIES OF FIGURES

A description of the edge sequences comprising the boundary of a

figure can be easily expressed by a PDL grammar.

Example:

BOUNDARY -t (CURVELIST * h)

CURVELIST + CURVE/ (CURVELIST + CURVE)

CURVE+C~ j ~2 1 e....*. cn ,

where Ecf, i = 1, n} is the set of edge or curve types that may appear

in the figure.

The chromosome syntax given by Ledley et. al [19651 (see section 2.3)

could be directly rewritten as a PDL syntax by inserting + operators,

appropriate parentheses, and the final * A; the samples of Figure 2,3

would then be:

(arm) -+ (B + (arm))\((arm) + B 1 A

(side) -+ (B + (side))l((side) + B)I B I D

(submedian chromosome) 4 (((arm pair) + (armpair)) * h)

4.5 FLOW CHARTS

None of the previous examples require the use of label designators

and the I operator. Flow charts provide a good illustration of a

practical picture class for which the set {t., -, X, *, -1 is not

adequate. A notational convenience is introduced for the examples of

this section:

I

73

Consider a PDL expression with standard form,

5 “2
1

s = S(P1 , P2 , * * *, rnn, Pn+l' Pn+2, a'*, Pm 3)

where p 'i i ' 1 (i 5 n are the labeled primitives of the form and pi,

n<i<m
Tne

are the primitives without labels.
Ill P*P

Then Se 6 S(pl , P2 ,

*a", P, , Pn*l' Pn+2' "a, Pm) ; that is, the underbar on a label means

that all primitives already labeled in the standard form of the expression,
. .

and only those, are given the additional label, e.g., (a1 + b)'l- s (aiJ f b) .

This eliminates many redundant labels that would otherwise appear in the

standard form of the PDL descriptions generated by the flow chart syntaxes.

In a recent paper (B&m and Jacopini [1966]), Jacopini presents a

number of "base" diagrams into which a large class of flow charts may be

decomposed. The purpose here is not to pursue Jacopini's theoretical

results, but to provide a structural description of this class of flow

charts in terms of the base diagrams and their components. Figure 4.6(a)

contains samples of the primitives. The line segments with arrow heads

leading from enter, fn, and cond may be any sequence of concatenated

segments thus allowing the head of these primitives to be placed anywhere

in a picture relative to the tail. The box in fn is a functional box

and pred represents a predicate or test. cond may be either the true

or false branch of the predicate; the initial blank part at its tail

carries it to one of the vertices of the diamond of pred . The primi-

tives can be further described in PDL as concatenaticns of line segments

and circles, cond could be given a true or a false label, and character

strings could be defined within the boxes.

74

enter a--"

fntWh

cond rh
t

DELTA

t h
exit 0

t 0 'h

pred

i-h

Figure 4.6(a) Primitives

h

LAMBDA

PHI

OmGA

,

Figure 4.6(b) Diagrams

75

FLOWCHART

FC

JACOPINI

DELTA

PHI

LAMBDA

OMEGA

OMD

--) (enter + (FC + exit))

+ JACOPINI)(JACOPINI + F&)

+ DELTAIPHIlLAMBDAIOMEGAIfnlh

+ (pred + ((cond + F&) * (cond + FCC)))

- (((FCE + pred) * (- cond)) + cond)

+ (pred + ((cond + FCp) * cond))

--) ((((predi + cond) + (FC@- + OMD)) * A)

X ((/predi) + (cond + hi)))

--) hl(Pred + ((cond + (/hi)) X (cond + FC@)))l

(OMDti + (pred + ((cond + (/hi)) X (cond + FCe))))

Figure 4.6(c) Flowchart Syntax

76

0 0

---_
_

_---

i

Figure
4.6

Jacopini
Flow

C

harts
77

The base diagrams of Figure 4.6(b) are slight modifications of those

of Jacopini; the primitives fn and h will also be considered as base

diagrams. The hatched areas denote any base diagram or series of them.

The syntax of Figure 4.6(c) generates descriptions of all flow -

charts formed by the concatenation and composition of elements of

{DELTA, PHI, LAMBDA, OMEGA, fn, h), and "0 other; enter and exit are

included for completeness. An informal proof of this statement proceeds

as follows:

1. The syntaxes for DELTA, PHI, LAMBDA, and OMEGA generate

descriptions of each of their respective base diagrams; this

may be verified by drawing the graph of each expression by the

methods of section 3.4.2.

2. The recursions for each base diagram allow arbitrary composition

of diagrams.

3. The expressions generated by FC denote an indefinite series of

these diagrams.

4. With the enter and exit, 1, 2, and 3 above are the only expres-

sions generated by FLOWCHART .

5. The use of different label designators for FC wherever it

appears in the syntax ensures that the labels on h and pred

in OMEGA and OMD will be unique for each generation of the

OMEGA diagram. For example, FC could generate:

(JACOPINI + (JAcOPINI + (JAcOPINI + JAcomuW?fC)

which is equivalent to:

(JACOP~XVI + (JACOPINI~ + (JACOPINI~ + JAco~mIfCfCfc)))

78

This is illustrated in the example of Figure 4.6(d), where the

PDL expression for the OMEGA diagram in LAMBDA contains

A ilfc and pred ilfc , and that for the OMEGA in DELTA

contains A idlfcfc and pred idlfcfc

The second flow chart example shows how an algorithmic programming

language can be defined by the syntax of its flow charts in conjunction

with the syntax of its strings; the latter describes the allowable strings

in the language while the former denotes flow of control. The primitives

are identical with those of the last example. Figure 4.7(a) contains a

partial syntax for a simple ALGOL-like language. ASSIGNMENT statements,

BLOCKHEAD (e.g., begin(declaration list)), BLOCKTAIL (e.g., end),

AE ((arithmetic expression)), BE ((Boolean expression)), and VARIABLE

are not defined further since this would add nothing essential to the

example. The various statement types are similar to a subset of ALGOL 60

(Naur et. al. [1963]). GO TO statements are not included; they cannot

be translated, from their syntax alone, into a flow chart.

With the exception of ASSIGN, INIT, IFIC, and TEST, there is a

one-to-one correspondence between the elements of the flow chart syntax

of Figure 4.7(b) and the language syntax; each component of the language

translates into a flow chart component. Examples of the flow chart

elements are given in Figure 4.7(c); unlabeled hatched areas may contain

any diagram generated by STMNT . The same technique as the last example

guarantees unique labels for ASSIGN and TEST in the FOR diagram.

Several automatic flow chart generating programs have been developed.

Some of these require the programmer to inser; detailed flow charting

instructions or comments in his source code, ((e.g., Knuth [1963l).

79

PROGRAM

BLOCK

STATEMENTLIST

STATEMENT

BASIC

CONDITIONAL

FOR

STEPUNTIL

WHILE

IFTHEN

IFTHENELSE

PROGRAM

BLOCK

S

STMNT

BASIC

CNDTNL

ASSIGN

FOR

STEPUNTIL

WHILE

IFTHEN

IFTHENELSE

INIT

INC

TEST

+ BLOCK

+ BLOCKHEAD;STATEMENTLIST BLOCKTAIL

* STATEMENTjSTATEMENT; STATEMENTLIST
* BASICICONDITIONAL
+ ASSIGNMENTIFORIBLOCK
+ IFTHENI IFTHENELSE
+ STEPUNTILIWHILF

+ for VARIABLE - := AE step AE until AE do STATEMENT - -
--) for VARIABLE := AE while BE do STATEMENT - --
+ if BE then BASIC - -
-+ if BE then BASIC else STATEMENT

Figure 4.7(a) Small Language Syntax

+ BLOCK

+ (entry + (S + exit))
+ STMNTI (STMNT + Ss)
* BASICICNDTNL
--f ASSIGNjFORIBLOCKk
+ IFTHEN/ IFTHEXELSE
-a fn

+ STEPUNTILIWHILE
4 (INIT + ((((TESTES + cond) + smmr~)

* (- INc)) x ((/TEsT'~) + cond)))
+ ((((ASSIGN + TEST)~ + cond) * (- STmT~))

x ((/(ASSIGN + TESI-)~) + cond))

+ (pred + ((cond + BASIC') * cond))

-j (pred + ((cond + BASIC=) * (cond + STMNT=)))

-3 fn

--) fn

+ pred

Figure 4.7(b) Small Language Flow Chart Syntax

80

t-

_ STEFUNTIL

WHILE

(i) FOR

BASIC

IFTHEN

(ii) CNDTNL

ii

BASIC

IFTHENEISE

i) PROGRAM or BLOCK

Figure 4.7(c) Examples

Figure 4.7 String and Flow Chart Syntax for

a Small Algorithmic Language

81

Sherman [1966] describes the control syntax of a source language by a

series of descriptors, which are then used to produce a general flow

charting program for the language; however, Sherman is unable to handle

languages with recursively-defined elements. The methods presented in

the last example could serve as the basis for a general flow-charting

program, which does not have the above restrictions. Sutherland [19663

has designed and implemented a system for graphically specifying pro-

grams (on a computer-controlled display) and executing them; he uses an

unconventional set of primitive elements for the flow charts and the

computations. Flow charts could be drawn, syntactically analyzed, and

executed within the PDL system to provide a more conventional and

natural system of this type; a suitable set of semantic rules 8 m

would have to be designed along with the interactive components of the

system. Finally, it might be simpler for a compiler to deal with the

derived flow chart rather than the source prcgram for generating

efficient code.

It should be noted that the above applications are only educated

predictions by this writer, since the details of such PDL flow chart

generation and analysis systems have not been worked out.

4.6 SOME DESCRIPTION LIMITATIONS OF THF PDL SYSTEM

PDL is not a description panacea; the previous examples suggest

its range of application. Further experimentation is necessary in

order to precisely delimit the class of pictures for which useful

descriptions may be obtained. At this stage, nevertheless, it is

possible to enumerate some of its limitations and some possible extensions.

82

The class of PDL descriptions, X(4, that may be generated from

a context free grammar .& is theoretically limited (Chomsky [19591,

Ginsburg [1966l). Consider the description of an arbitrary "staircase"
n

of 'X"'s on a grid (Figure 4.8(a)). If the notation c a represents
i=l

a+a+...+a ,
. V /

n a's

and the primitives h and v are those of Figure 4.2, then the set

{(f [f h+ fvl)i~, m, _ n > 1-3,
i=l j=l k=l

where "['I and "1" indicate expression grouping, contains all possible

PDL staircase descriptions (without redundant parentheses) with constant

horizontal and vertical distances. This set, however, cannot be generated

by a context-free grammar since this would imply that

f((ab)mkd)n)elm, n, 1 2 13

is a context-free language.

Concatenation of picture elements is the only explicit relation in

PDL. The use of blank primitives allows many simple geometric relations

among disjoint picture elements to be expressed. There are a great many

other relations that one might like to see directly expressible in a

picture language. For example, 63((Sl + (b + S2)), where Sl and S2

describe picture components and b is a blank primitive, might be the

class of pictures such that the elements of some subset of 6'(Sl) is

contained within those of a subset of p(S2); alternatively, one might

83

X

X

xxxx

X

xxxx

X

xxxx

X

xxxx

X

xxxx

fh+ &I)
j=l k=l

Figure 4.8(a) Staircase of "X"'s

X

X

X

X

xx

X

X

X

xx

X

X

X

xx

(z1 [glh + &I)

Figure 4.8(b) Complex Relations Among Figures

84

Figure 4.8(c) More Than Two Concatenation Points on a Primitive

Figure 4.8 Some Description Limitations of the PDL System

want to say that some elements of p(S,) overlap those of p(S2),

(Figure 4.8(b)). In either case, the intended relation is not expressible

generally; if 63(Sl) and p(S2) are severely restricted and b defined

appropriately, then (Sl + (b + Sg)) might be satisfactory, but the

more complex relation is not obtious. A related difficulty is that of

relations depending on magnifications, rotations, and other transforma-

tions of pictures. In Figure 4.8(b), it might be desired to group the

small triangle with the small square; if a wide range of sizes and

rotations of these elements are possible, then a PDL description reflect-

ing this size grouping cannot be found.

Each primitive is restricted to only two points of possible conca-

tenation. There are many cases where more than two concatenation points

appear to be necessary. Some of these can be treated in a natural manner

85

by a judicious choice of the tail and head. In Figure 4.8(c), the circles

C and line segments e are primitives; c has both its tail and head at

the center of the circle. The multiple concatenation of the lines onto

the central circle can be expressed by adjoining blank primitives b to

each end of a line segment; then a description is:

P *(c + ((L + c) x (L + c) x (L + c) x (L + c)))

L-+(b+l+b)

One possible generalization of PDL to handle the above problems can

be suggested. A suitable extension of Anderson's predicates [1967] (see

section 2.3) would enable complex relations among picture components to

be described; these could be in the form of additions to each syntax rule.

Use could be made of the preservation of the topological relations among

picture components under a large class of transformations. For example,

if the primitive structural description of a picture a is:

T&a) = S(PL, p2> ..+, P,)

TV(a) = (D(B& D(B2), . .-, D(B,),

where

Bi "(Pi)' i = 1, n

and A represents a magnification or rotation transformation, then

Tsb) = Shl, %, . a., a)

TV(m) = (D(ABl), D(W2), a--, J&W,)),

where

86

These suggestions are left for future work. The important points

are:

1. a large, interesting, and useful class of pictures can be

described in a simple and natural manner within the PDL system,

and

2. the system is capable of extension without destroying its basic

simplicity.

87

CHAPTER 5

PICTURE PARSING

5 .l THE ANALYSIS PROBLEM

The basic information required for the analysis of a picture class

is:

(1) a grammar & defining the pictures Pa = U p(S), L(k) C PDL, -
SEqB)

and

(2) a recognition function for each primitive class named in .& 0

Then, given a set of pictures {ai/i = 1, n], the pattern recogni-

tion task is to discover whether Q'~ E 63&, i = 1, e-e) n; a more common

task, which is often called pattern detection, is to discover whether

there exists a Sic cYi such that Si E 63& --that is, whether some sub-

set of Cy i is in P I' The main purpose and important side effect, of

a successful recognition is to exhibit the picture description D(ai)

(or D(Si)). The entire analysis process is directed by the PDL

description of the picture class and will be called picture parsing.

The primitive recognition mechanism depends on the method of repre-,

senting pictures and the amount of pre-analysis that is done before

parsing. Several possibilities exist:

1. Digitized Pictures

If the pictures are presented for parsing in "raw" or preprocessed

digitized form, the recognition functions are picture pattern recognition

routines , possibly based on the receptor/categorizer model.

88

2. Representation By a List of Primitives

A list of the names and values of the primitives in a picture might

first be obtained by some means external to the PDL parsing system. Then,

primitive recognition during parsing occurs by searching these lists.

3. Graph Representation

In a similar manner as number 2 above, a picture might first be

represented as a graph with properties associated with the edges. At

the primitive level of the parse, graph matching routines could be used

to find primitives. This formulation is almost equivalent to several

graph isomorphism problems studied by Sussenguth [1964] -- Is a graph

G isomorphic to another graph G', to a subgraph of G', to a partial

graph of G' or to a partial subgraph of G' ? In the picture case,

G is the graph of some member of Xc(&) and '3' is the graph of the

picture under consideration.

4. PDL Primitive Descriptions

The input to the parse is a PDL primitive description, perhaps

obtained manually or as the output of a generation procedure. Since,

in general, many PDL descriptions are possible for the same picture, a

string analysis based on & would often fail, even if the picture were

in P I' However, a PDL expression can be transformed into a graph or

a list of primitives and the recognition treated as in number 2 or 3

above. (Carlbom [I9671 has written a program that transforms PDL

expressions into a primitive connection matrix.)

89

The last three examples are variations of each other and could be

handled by the same primitive recognition system, either graph matching

or list searching.

Most of the analysis superstructure will be applicable to a variety

of picture representations. The most interes-ting, challenging, and

practical parsing deals with the digitized picture directly; this will

be the main emphasis. One of the major advantages of this approach to

analysis is that the primitives in a digitized picture can be recognized

more easily than in ad hoc methods.

5.2 GOAL-ORIENTED PICTURE PARSING

String language analyzers that employ the syntax explicitly are

usually called syntax-directed (Floyd [1964], Shaw [1966bl, and Feldman

and Gries [1967] contain surveys of typical syntax-directed compiling

methods). Many of the same techniques are used for picture parsing.

There are several important differences between the recognition of

one-dimensional strings and two/three-dimensional pictures. These

differences lead to the selection of a goal-criented analysis scheme.

5.2.1 BOTTOM-UP AND TOP-DOWN AKALYZERS

5.2.1.1 SYNTAX ANALYSIS OF STRING LANGUAGES

Assume that P is the distinguished symbol of a grammar & . A

bottom-up parse of a string s starts with s and attempts to reduce

it to P by reverse applications of the productions of & . A top-

down parse does the opposite; starting with P, one searches for a

90

series of productions that eventually generate s . In the first case,

the parsing tree is built from the leaves to the root P; in the latter,

the tree is formed successively from the root. The same tree is built

in either case if s E X(&t) and 1 is unambiguous; Figure 5.1 illus-

trates the tree formation for both types. Mos; syntax-directed compilers

use a combination of these.

G: P -) (start + TRACK)

TRACK - beam ! (neg + PRS)
PRS -+ (PAIR + PRS) 1 PAIR

PAIR -+ (~0s x neg)
F

Partial
Bottom-Up
Analysis

3

(start + (neg + ((pos X neg) + (Pas X neg))))

Partial
Top-Down
Analysis

(start + (neg + ((pm X neg) + (Pas X w))))

Figure 5.1 Top-Down and Bottom-Up String Analysis

A bottom-up scheme will read several symbols and try to reduce

them as far as possible before continuing; when no more reductions can

be made to a substring, the next terminal symbol is read, composed, and

returned by an input routine, say GETNEXTSYMBOL(loc), where lot is

an index that points to the location of the next symbol in the input

string. The top-down method is goal-oriented or predictive in nature.

For example, an analyzer for the grammar of Figure 5.1 would initially

call a routine to find a P; the P routine would look for the input

string "(start +" and then call the routine TRACK if successful;

TRACK would first look for "beam" as the next set of input symbols;

if "beam" was not present TRACK would then look for "(neg +" and

call the routine PRS if successful. This process continues until

either the P routine is successful after re.sding the entire input

string, or P fails. At each stage, each element of the right part

of a production becomes a goal or prediction for the analyzer. When

a goal is a terminal symbol , the parser usually calls a logical or

Boolean routine, say LOOKFORSYMBOL(name,loc); the routine returns

true if the next input symbol (at lot) is equal to name, and false

otherwise. Alternatives in productions often cause false goals to be

generated and the analyzer must back-up and try again with another

alternative. Both systems parse from left to right-

5.2.1.2 SYNTAX ANALYSIS OF PICTURES

There exist picture processing analogs of these basic language

parsers. The "terminal" symbols of the input picture cy are just

the picture primitives contained in cy + The entire purpose of the

92

parse is to recognize these primitives - a pattern recognition task

analogous to the recognition of terminal symbols by the input devices

of computers - and group them into the structures described in L4 .

Given a grammar 0 with distinguished symbol P, a bottom-up

analysis of o! would probably start with a small connected set of

primitives of cy and attempt to combine them according to .& . (There

is the problem of where to look for the first few primitives.) When a

new primitive is required, a routine GETNEXTPRIMITIVE(loc) is called,

where lot is a list of two or three-dimensional picture pointers;

lot would depend on the tails and heads of the previous primitives found.

The routine would return the description of a primitive found at some

location of lot or an indication that no primitive was located there.

Unfortunately, the entire pattern recognition mechanism would have to

be incorporated at each of these calls since any primitive could be at

lot j also, any number of primitives could appear at these locations

and the ‘"wrong" one might be found. Searching for blank primitives in

such a system would be almost impossible. The grammar could be used to

produce a reduced list of possible primitives at each point; however,

this would result in a goal-directed system that is much more complex

than the pure one discussed next. For these reasons, this approach

was not taken. (The above arguments are not quite as significant if

the primitives were recognized before-hand as in possibilities 2, 3,

or 4 of section 5.1; however, this would be pushing the most difficult

problem outside of the parsing system.)

A pure top-down or goal-oriented analyzer starts with P and

attempts to generate from left to right, a sentence S E S(%) such

93

that S = Ts(cu) . When the goal is a primitive class name, the routine

LOOKFORPRIMITIVE(name,loc) is called, where lot specifies the coor-

dinates of the tail, head, or both of name, depending on the concatena-

tions expressed in the production containing or leading to name;

LOOKFORPRIMITIVE in turn calls one pattern recognition routine whose

sole purpose is to determine whether a member of P(name) is located

at lot in the picture. If the recognition is successful, the value

of the primitive is returned.

Explicit top-down analyzers for the syntax of Figure 5.1 illustrate

the approach; the method for string analysis .is essentially that of

Leavenworth [19641. The propositional connectives A ("and") and

V ("or") are to be interpreted from left-to-right in the McCarthy sense

(McCarthy [19631); i.e. A A B means if A then B else false and - - --

A V B means if A then true else B . - ---

1. Top-Down String Parser for & of Figure 5.1

Boolean Procedure P;

P := Lfs('(') A Lfs('start') A Lfs('+') A TRACK A Lfs(')');

Boolean Procedure TRACK;

TRACK := Lfs('beam') V (Lfs('(') A Lfs('neg') A Lfs('+') A PRS A

i-C')'));

Boolean Procedure PRS;

PRS := (Lfs('(') A PAIR A Lfs('+') A PRS A Lfs(')')) V PAIR;

Boolean Procedure PAIR;

PAIR := Lfs('(') A Lfs('pos') A Lfs('X') A Lfs('neg') A Lfs(')');

Lfs(name) returns true if the next symbol in the output string is name,

and false otherwise. The string pointer and its administation is omitted.

2. Top-Down Picture Parser for ,& of Figure 5.1

Boolean Procedure P(t,h);

P := Lfp('start',t,hs) A TP&CK(hs,h);

Boolean Procedure TRACK(t,h);

TRACK := Lfp('beam',t,h) V (Lfp('neg',t,hn) A PRS(hn,h));

Boolean Procedure PRS(t,h);

PRS := (PAIR(t,hp) A PRS

Boolean Procedure PAIR(t,h);

(hp,h)) V PAIR (t,h);

PAIR := Lfp('pos',t,hl) A Lfp('neg',t,h);

Lfp(name,t,h), the LOOKFORPRIMITIVE procedure, calls a pattern rec-

ognition routine to look for a member of b(name) with tail located

at t . If successful, it returns true and sets h to the head

coordinates of the found primitive.

The parameter t for the routines P, TRACK, PRS, and PAIR

is an input tail location that the goal m>ust satisfy; if the routine

is successful, the parameter h will be set to the head of the goal

by these procedures. The parser is executed by the call: P(w3~),

where erg is the picture origin and R denotes undefined. This

95

I

example omits several essential features that must be incorporated when

the full PDL operator set is used in the syntax; these are included in

the general parser.

A pure goal-oriented parser was selected for the PDL system for

the following reasons:

1. The language portion of the analysis (stepping through the

grammar &) is conceptually very simple.

2. The syntax directly expresses the algorithm for analysis.

3. It was conjectured (and verified later) that any inefficiencies

due to the back-up caused by false goals would be insignificant

compared to the primitive recognition time. Once a primitive

is recognized, it is stored; thus, if a goal fails, its

primitive may be used later in the analysis without re-

recognition.

4. Goal-oriented analysis is beneficial for primitive recognition.

Each primitive recognizer could include its own preprocessing

and often need not be as precise as a scheme that requires a

search for all primitives at any point in the analysis. The

same advantages hold over global methods that produce a list

of all the primitives in a picture. These advantages are

achieved because the concatenation operators in conjunction

with the previously found primitives teli the system where to

look for the next primitive.

As well as the use of two or three-dimensional tail and head

pointers, there are a number of other interesting differences between

string and picture parsing that must be taken into account in a

general parser:

96

1. Multiple Recognition

Consider a picture search for primitives that satisfy the expression:

(a+ (b Xb)) . The first element of 63(b) may be recognized twice

unless it is eliminated from the picture after it has been found; the

elimination procedure may be very complex when patterns overlap.

2. Commutative Expressions

The topological commutativity of the X and * operators can

result in recognition problems when the initial expressions of the

operands are identical. The expression (a + ((b + c) X b)) can be

represented by the tree:

C

If the first b found is the one on the left branch of the tree, then

the parse would try to find a c adjoined to it and fail. One solution

is to change the strictly left-to-right recognition if a failure OCCURS

in a commutative expression; in the above example, the search could

back-up after the failure and try (b X (b + c)), remembering that

the head of the expression is to be at the first b . A simpler solution,

when this confusion is possible, is to write the syntax so that both

expressions appear. For example:

A - (B * C)l(C * B)

D -) (E X F)I((F x E)' + (/((- E) f d)))

97

3. Detection

A similar difficulty can occur in a detection problem. If the

parse is looking for (a + a + (a x a)) in a picture whose primitives

have the tree:

a

a a

h a
a a

then a search that follows therightbranch of the tree will fail. Here

an elaborate back-tracking procedure would be necessary.

The difficulties of number 2 and number 3 are similar to those

that occur in the graph matching (isomorphism) problems mentioned earlier;

in general, there is no "optimum" technique to handle them.

4. Recursion

In string parsing, there is an identifiable beginning and end of

the input string; the picture analogs are the origin and an empty

picture. For real pictures, the latter is ncmt identifiable since even

after a successful analysis, there will be much noise and extraneous

data in a picture. Consider the syntax:

S - al(a + S)

98

Parsing success would occur on the recognition of the first element of

p(a) regardless of whether more a's were concatenated onto it. This

problem disappears for simple recursions if they appear as the first

alternative of a production.

5- The effect of - and N

Since the expression (A - B) can be rewritten as (A + ((- B) X A)),

only - is considered. An appearance of N interrupts the left-to-

right flow through the right parts of a production. For example, a

search for a picture part satisfying (a + (- (b + c))) would require

finding the primitive c after a is recognized; the parser could

make the transformation (a + (- (b + c))) E (a + ((- c) + (- b))) and

use the latter. This could be done more easily by transforming the

grammar before starting the parse so that - only applies to primitives.

These problems have to be treated in a completely general parser.

For the work reported here , some are ignored and others handled by simple

changes to the syntax; this will be noted when discussing the general

parser and the implemented system.

Explicit language and picture analyzers of the type illustrated

earlier require writing a new set of procedures for each grammar. General

language parsers that accept grammars as input and automatically produce

the equivalent of the explicit parsing procedures have been written and

used successfully (Irons [1961], Warshall [1961]). The same type of

system has been developed by this writer for picture parsers. The next

section discusses the general picture parsing algorithm on which the

implemented system is based.

99

5.3 A GENERAL PICTURE PARSING ALGORITHM

Each production of the grammar is assumed to have one of the forms:

A - @lb,@

A - @fibC?
A-D

A - (/P)

A- (UP)

A + (- (/P))

where fl b E if, x, *I, A is a non-terminal symbol, B and C are

non-terminal symbols possibly with labels, D is a non-terminal symbol

or primitive class name (either one possibly labeled), p is a

primitive class name with or without a label, and P is a label. This

will be called the PDL standard form of the grammar. -

A grammar can be put into standard form by employing the algebraic

properties of the operators and adding productions.

Examples:

1. I: A --) (- B)

B -) (c + d)

.B sf: A -t BM

BM- (D + C)

D- (-d)

c- (WC)

where 0 sf is the standard form of & .

100

3. &: A- b + (-A))lb

2. I: A- (b + c) - d) .b sf: A-' (B+C)

B - (Bl + Cl)

C - (D X L)

D- (-d)

Bl- b

Cl- c

L-1

& sf: A + (B + C)lb

C - (A + D)j(- b)

DA (-b)

B-b

The implemented system mechanically performs these transformations for

a subset of PDL; by maintaining appropriate pointers, a parse can be

exhibited in terms of the original grammar. It is believed, but not

formally verified, that a general grammar incorporating all features

of PDL can be transformed mechanically into standard form and that the

transformation is reversible; in this case, no generality is lost by

solving the parsing problem for grammars in PDL standard form.

The difficulties mentioned in the last section are handled in the

obvious way. The primitive recognizers are assumed to eliminate a

picture on a successful recognition so that multiple recognition is

not possible. The problems of commutative expressions and recursion

are resolved by suitable changes to the syntax as suggested. No pro-

vision is made for the detection difficulty. The reversal of the left-

to-right scan caused by the - and W operators can no longer occur

when the grammar is in standard form.

101

Two additional assumptions are made for convenience:

1. Only vPDL's are generated by & .

2. Left-recursive productions are not allowed. This is to be

interpreted as left recursion in the picture sense, not the

language sense. For example,

A -) (((A + b) + c) + d)le

is left recursive in the picture sense since the parentheses

are only used for grouping; this is also the case for:

A - ((A + (A + A)) + (A + b))lc

The last restriction is only made because left-recursive productions

have to be treated as a special case in top-down analyzers to prevent

the general algorithms from getting into infinite loops (Cheatham and

Sattley Clg643); generality is maintained since these productions may

be replaced by right-recursive ones.

The following algorithm will perform a goal-oriented parse of a

picture for any grammar in PDL standard form that has the above properties:

102

Boolean Procedure Parse(L, rpn, t, h);
if rph > Numberofalternatives(L) then Parse := false -
else

begin
R := Rightpart(L, rpn);
if Prim(R) then boo1 := Lookforprimitive(R, t, h) -
else

if Nonterminal then boo1 := Parse(R, 1, t, h) -
else

begin
boo1 := false;
hl := hdl := if Catop(R) = I*' A h # R then h c Q;

leftbool := Pzse(Leftop(R), 1, t, hdl);

begin

hdr := h;

if Catop(R) = '+' -
boo1 := Parse

else

if Catop(R) = 'X' -

while 1 boo1 A leftbool do -

then

(Rightop (R), 1, hdl, hdr)

boo1 := Parse(Rightop(R), 1, t, hdr)

else

if Catop(R) = '*' then -
begin hdr := hdl;

boo1 := Parse(Rightop(R), 1, t, hdr) end

if boo1 then h := hdr -
else

begin
hdl := hl;

leftbool := Tryagain(Getnode(Leftop(R)), t, hdl)

end

end -
end -
Parse := if boo1 then true else Parse(L, rpn+l, t, h) - ---

end

The formal parameters of Parse have the meanings

L: a non-terminal symbol with or without a label representing a

goal.

rpn: a right-part alternative number for the production whose left

part is L.

t: the coordinates of the expected tail of the goal. t will

always be defined.

h: either the coordinates of the expected head of the goal or

undefined (A) .

The auxiliary procedures called by Parse perform the following functions:

1. Numberofalternatives(x):

x=S or Sp where S is a non-terminal symbol. Numberof-

alternatives returns the number of rightparts of the production

whose left part is S .

2. Rightpart(x, n):

Rightpart returns the n th right part of the production whose

left part is the non-terminal symbol S, where x=S or

sp . If x is labeled, the same label is adjoined to the right

part.

3. Prim(x):

x = y or yp . Prim returns true if y is of the form:

p or (/p) or (-(/p)), where p is a labeled or unlabeled

primitive class name.

104

4. Lookforprimitive(x, t, h):

X is of the same form as the parameter of Prim.

t is the expected tail location of x .

h is the expected head location of x .

Lookforprimitive calls a pattern recognition routine that attempts

to find the primitive of x at the location defined by t and

h. If h is undefined (n), t is the only constraint on the

primitive; otherwise t and h must be satisfied by it. A

successful search will return true and the head location (h)

(if h = R at the call). If the primitive of x is labeled,

Lookforprimitive first checks to see if it was found previously;

if so, then a picture recognition is not necessary. A - in

X indicates that the head of the primitive must be at t and

(possibly) the tail of h . Lookforprimitive returns false if

all the constraints are not met.

5. Nonterminal(

This procedure is true if x = S or Se where S is a non-

terminal symbol; otherwise Nonterminal returns false.

6. Catop(x), Leftop(x), Rightop(x):

X is of the form (s&,s2) or (S,$,S,)', where Sl and S2

are non-terminal symbols possibly with labels and fib E I+, XJ *) .

Then Catop(x) = gb, Leftop(x) = Sl or St and Rightop(x) =
P S2 or S2 .

105

7. Tryagain(goal,t,h), Getnode(

Tryagain is called when the left operand of a binary rightpart is

successful but the right operand fails. Tryagain attempts to

find a picture satisfying another description generated by the

left operand. It is implicitly assumed that at each call of

Parse, a node is added to a parsing tree; this node or goal

contains the parameters of Parse and is linked to its superior

goal. The details of the tree construction appear in the listing

of the implemented system given in the next section.

Getnode retrieves the node constructed for the non-terminal

symbol x .

Tryagain(goal,t,h) examines the branch of the tree starting at

the node designated by goal and tries to find a parse of the

picture which (a) satisfies the tail and head constraints, t

and h, (b) has a description generated by one of the alter-

natives of the goal, and (c) is different from previous trials.

Tryagain returns true if successful and false otherwise.

If Parse is successful, it returns true and t and h will contain

the coordinates of the tail and head of the picture; otherwise, Parse

returns false. The first call of Parse is of the form: Parse(D,l,t,h),

where D is the designated symbol of the grammar, t is the origin and

h is undefined.

The flow in the left-to-right parsing algorithm is based on a case

analysis of the elements of the standard form. The algorithm can be

extended to include the construction of the parsing tree and natural

106

semantics as is done in the implemented system below; then a successful

parse of a picture cr would yield its description D(a) -

5.4 THE IMPLEMENTED PARSER

The primary purpose of the implementation was to investigate the

benefits of this approach to picture processing by actually analyzing

a non-trivial set of real pictures. For a number of reasons given in

Chapter 7, a class of pictures produced in high energy particle physics

was selected. These pictures - and all of the examples except the last

of Chapter 4 - can be described in PDL using the operators f> x, and

* alone.

The parser has been programmed for a subset of the PDL language

called SPDL (Simple Picture gescription Language). SPDL is restricted

to the operator set {+, X, *} but is otherwise identical to PDL. Most

of the discussion preceding the algorithm of the last section applies to

the SPDL parsing system also.

5.4.1 GENERAL DISCUSSION OF THE SPDL PARSEX

A schematic of the system organization is shown in Figure 5.2(a).

The SPDL syntax analyzer or parser is a general purpose program. For

a particular application, a set of primitive recognition routines is

added (or used from a library) and the defining picture grammar is input

as data. The area enclosed by dotted lines in the figure is the complete

analysis system. Two or three-dimensional pictures can be handled

without any changes to the programs. The system was programmed entirely

I r I
I Primitive and

Digitized
I SPDL I) Hierarchic

Pictures t I) Syntax
I . Analyzer Description
I t

_-__----- I

Figure 5.2(a) SPDL System Organization

0
1

Read and
Convert
Grammar

1

Read Picture
Origin

Get Next
Picture

A), r 1
Parse

Picture

1
output

Description or
Failure List

I

Figure 5.2(b) General Flow Chart of Program

Figure 5.2 The Implemented SPDL System

108

in FORTRAN IV (employing some library assembly language routines for the

display) and run on an IBM 760, Model 50, with 225Q Display Unit under

the OS/$C operating system (IBM [1966], IBM [1967], IBM [19651).

Figure 5.2(b) contains a general flow chart of the program. The

input productions of .& are of the form: A - (B@bC) or A 4 D, where

A is a non-terminal symbol, D is a non-terminal symbol or primitive

class name, fl b E c+, x> *I, and B and C may be any SPDL expression -

composed of primitive class names and non-terminal symbols; left-recursion

is not provided for. Symbols must be less than 5 characters in length.

Each production is first parsed (in the language sense) for well-formed-

ness and then converted to standard form. Internally, the grammar is

stored as a list structure to allow access to the definitions (right

parts) of all non-terminal symbols. Each primitive class name has a

pattern recognition routine number which is also read with the grammar.

The origin is a coordinate triple (x, y, z) defining the start point

for all SPDL descriptions; z is marked as undefined for 2-dimensional

pictures.

The main loop successively reads and parses pictures. The picture

input data consists of the coordinates of those parts of the picture

whose light intensity is less than a given threshhold (the details of

the digitization process and the picture data structures used are dis-

cussed in Chapter 6); the input may be from cards or magnetic tape. The

core of the system is the parser which is an iterative (non-recursive)

version of the algorithm presented in section 5.3. Figure 5.3 contains

the FORTRAN listing of the parse routine, PARSEP . Some of its features

deserve mention. The parsing tree and goals are administered by means

109

L
L
L
‘

Figure 5.3

110

Figure 5 .:,

111

L,, r:, 2.i.i
c;s*r:.:.<*..; lii::..tlt~.it****litt*****-- -~i*tft****.*****lt*****************

112

GU TU 50”
Cc4*rtir*****l*nacoc**~*****~*******~**?*~**********~*******************
L kKNOH R”“T,NES

tloc dK1Ttlb.9301
90” F(lRmATi~Ont~PbRS~P-GRAMI I I IS NOT CORRECT***‘)

Figure 5.3 The Parsing Subroutine

113

of a stack; the parsing tree and natural semantics are necessary data

for the parse and are easily obtained from the stack. The part of the

program that does the backtracking when a goal fails (FAILUREBACKUP

in the listing) also stores the primitives that were found by this goal

on a failure list.

When a goal is a terminal symbol, PARSEP ca2s the primitive

recognition system LFP (&ookforprimitive). LFP first searches the

failure list to see if the primitive was found previously. If not, the

main picture recognition routine is called; the latter is illustrated

in the simple examples of the next section. When a primitive is found,

its value is stored in a list and a pointer to this list is placed in

the stack; certain classes of primitives are eliminated from the picture

after recognition.

On a successful parse, the program prints a stack representation of

the parsing tree and natural semantics (the hierarchic description and

primitive structural description), and the primitive value list (the

primitive value description).

The 2250 cathode-ray tube display or "scope" visually shows the

evolution of the parse; the residue picture (the original minus the

eliminated primitives) and an abstract version of the recognized picture

are continuously displayed with markers pointing to the tail and head

of the last primitive found. This proved to be extremely useful for

evaluating the system and for debugging.

5.4.2. SIMPLE EXAMPLES

Two simple examples illustrate the input and output data formats,

the parsing stack and its evolution , and the form of the call to the

picture pattern recognition routines.

114

Example 1: Recognition of a Hand-Digitized A

A plot of a hand-digitized "A" is shown in Figure 5.4(a). The

digitizings were input from cards, "blown up" so they could be seen on

the scope, and then analyzed by the SPDL system. Figure 5.4(b) contains

the grammar for the picture class; the right parts may be punched in

free format across a card. The primitives are STRT, DP, DM, and HP;

DP, DM, and HP correspond to the primitives used in an earlier example

of a PDL expression for an "A" (Figure 3.4). The Lookforprimitive routine

(LFP) will call the primitive pattern recognition system (RECOGP) after

searching the failure list unsuccessfully; RECOGP is listed in Figure

5.4(c). The user inserts the particular primitive recognizers, in this

case, STRTOl, DP02, DM03, and HPO4, into RECOGP; the number (the

index of the computed GOTO) and primitive name associated with each

routine is input with the grammar. STRTOl finds the blank primitive

STRT by simply retrieving the closest point to the picture origin

(l,l,O) ("0" for the z coordinate indicates a 2-dimensional picture).

The remaining routines all use the general line recognizer discussed in

the next chapter; except for a small area around their tail and head, the

points comprising a line are eliminated after recognition. The output

after the successful parse of the "A" is listed in Figure 5.4(d). The

primitive value description (PRIMITIVE VALUE LIST...) contains the name,

the tail and head coordinates of each primitive ((XT,YT,ZT),(XH,YR,ZH)),

and any other attributes - in this case none - that were returned by the

recognition routine. The stack is interpreted from The top down (first

element down) as follows:

1-15

1.

2.

3.

4.

S is the stack index.

If NAIG'[S] is a non-terminal symbol, line S represents the

production named by it. The rightpart used by NAME[S] is

Rightpart(NAME[S],ALT[S]), where Rightpart is defined in

section 5.3. LSUC[S] points to the line of the stack defining

the structure generated by NAME[S] .

If NAME[S] is a primitive class name, ALT[S] points to its

value in the VALUE LIST (the indices in the VALUE LIST are

not shown).

If NAME[sl is blank, then line S represents a production

created by the program for the standard form. All of the

created productions in SPDL are of the form: (AfibB), where

A and B are created non-terminals. OP[S] contains fib .

LSUC[S] and RSUC[S] point to the stack entries for the left

and right operands respectively.

5. The comments at the beginning of the listing of PARSEP (Figure

5-3) explain the remainder of the entries.

The tree of Figure 5.4(e) is easily constructed from the parsing stack.

116

WINDOW PLOT....XL,YL,XH,YH= 1 950 60 1023

**

*XX++

* *

*G+ *)c

* *

* ic

** **

* * c
** **

x

**

*

**

*

**

**

*

**

*

**

*

**

*

9

**

3c

**

Figure 5.4(a) Plot of Hand-Digitized "A"

AA = (STRT + A)

A = ((DP + ((DP + DM) * HP)) + DM)

Figure 5.4(b) Syntax for A'S

Figure 5.4(c) The Primitive ?attern Recognition System

118

PICTURE PARSE WAS SUCCESSFUL . .

hATURAL SEMANTICS OF PICTURE

PARSING TREE...

S GX

1 1

2 5

3 806

4 9

5 25

6 21

7 802

8 17

9 13

10 802

11 a00

12 004

13 dC0

ALT SUP XSUP LSUC RSUC LOC TLPT HOPI NAME OP

1 0 1 2 0 1 3 54

1 1 2 3 4 1 3 54

9 2 4********** 1 11 14

1 2 3 5 0 1 14 54

1 4 2 6 -13 1 14 54

1 5 4 7 8 I 14 46

17 4 4**++*59312 1 19 22

1 b 3 9 12 1 22 46

1 8 4 10 11 1 22 30

25 9 4t****++**a 1 27 30

ss 9 Zj**++*+**** 1 35 38

41 8 34+****+*** 3 43 46

49 5 3+**a*a*+++ 1 51 54

AA

+

STRT

A

+

+

OP

*

+

OP

OM

HP

OM

PRIMITIVE VALUE LIST...

NAME XT YT ZT Xh YH ZH OTHER VALUES

STRT

DF

CP

OP

HP

cc

1 10 6 932 0

6 932 0 28 970 0

28 97c 0 52 1002 0

52 1002 0 72 970 0

20 970 0 72 970 0

72 970 0 96 930 0

Figure 5.4(d) Final Output After a Successful Parse

AA

DP + DM

Figure 5.,4(e) Parsing Tree Graph

Figure 5.4 Parsing a Digitized "A"

120

Example 2: Recursion and Backtracking

This example was run on an earlier version of the system that accepted

only primitive value lists as the picture representation; primitive rec-

ognition is done by searching these lists. The recursive grammar of

Figure 5.5(a) generates the SPDL expressions i$ (DP + DM)\nL 13,

where if a= (a+ (a+ (a+ (a+ . . . + (a+a;T; . . .)). DP and DM,

and the sawtooth input picture are illustrated in Figure 5.5(b); the

PICTURE VALUE! LIST contains the name, and tail and head coordinates of

each primitive. The goal S -((DP + DM) + S) (line 11 in the stack of

Figure 5e5(c)) fails on the last S (line 16); the parser then back-

tracks to line 11 (suP[suP[~~~~) and sets up the goal for the second

alternative of S: S - (DP + DM) 0 This goal is successful and the final

picture description is printed (Figure 5*5(d)).

S = ((DP + DM) + S)
S = (DP + DM)

Figure 5.5(a) Sawtooth Syntax (f (DP + DM))
i=l

PICTURE VALUE LIST

XT YT ZT XH YH ZH

ORGl 1 0 1 1 0

DP 1 1 0 5 5 0
DP g 1 0 l-3 5 0
Dp17 1 0 21 5 0
DM 5 5 0 9 10
"53 5 0 17 1 0
D%l 5 0 25 1 0
$ Figure 5.5 continued on next page.

121

Figure 5.5(b) Input Picture n=3

FAHSihG TRtE...

s GX

1 1

2 10

3 6

4 602

5 UC0

6 1

7 10

8 6

9 802

1c BOO

11 1

12 10

13 6

14 802

15 dClJ

14 1

ALT SUP XSUP LSUC t(suc LOG TLPT HDPT NAME OP

1 0 1

1 1 2

1 2 4

9 3 4

17 3 3

1 2 3

1 6 2

1 7 4

25 8 4

33 6 3

1 7 3

1 11 2

1 12 4

41 13 4

4s 13 3

3 12 3

2 0

3 6

4 5

5 h

6 7

7 0

d 11

Y 10

10 0

u**t*+

S

+

12 0

L3 16

14 15

o**++*

Cl*****

17 0

1 3 0

1 3 0

1 3 22

1 11 14

1 19 22

1 22 0

1 22 0

1 22 3H

1 27 30

1 35 38

1 38 0

1 38 0

1 38 54

1 43 46

1 51 54

1 54 0

+

OP

Ot‘l

S

+

+

DP

OM

s

+

+

DP

DM

S

Figure 5.5(c) Last Goal (S = 16) Leads to Failure

122

PICTURE PARSE WAS SUCCESSFUL..

hATURAL SEMANTICS OF PICTURE

PARSING TREE...

S GX

11

2 10

3 6

4 802

5 8CO

6 1

7 10

8 6

9 802

10 800

11 1

12 14

13 802

14 800

ALT

1

1

1

9

17

1

1

1

25

33

2

1

41

49

SUP XSUP LSUC RSUC

PRIMITIVE

NAM XT

DP 1

OM 5

OP s

DM 13

DP 17

DH 21

VALUE

YT

0 1 2 0 1 3 54

1 2 3 6 1 3 54

2 4 4 5 1 3 22

3 4 5 6 1 11 14

3 3 6 7 1 19 22

2 3 7 0 1 22 54

6 2 8 11 1 22 54

7 4 9 10 1 22 38

a 4 10 0 1 27 30

8 3 cl**+** 1 35 38

7 3 12 0 1 38 54

11 2 13 14 1 30 54

12 4 14 15 1 43 46

12 3 o****t 1 51 54

LIST...

ZT XH

0 5 5 0

0 9 1 0

0 13 5 0

0 17 1 0

0 21 5 0

0 25 1 0

YH 2H

FOC TLPT HDPT NAME OP

S

+

+

DP

Dk

S

+

+

OP

on

5

+

DP

DM

OTHER VALUES

Figure 5.5(d) Final Picture Description

123

S

DP + DM DP + DM

Figure 5.5(e) Graph of Parsing Tree

Figure 5.5 Sawtooth Parse

124

CHAPTER 6

PRIMITIVE RECOGNITION

This chapter describes the methods developed or modified by the

author for the recognition of line segments, "blob" patterns, and some

types of blank and don't care primitives. Most pictures contain line-

like elements and efficient general techniques for their recognition are

still lacking. Blobs are small connected sets of digitizings that are

either meaningful in their own right or may be combined to form primitives.

Both the characteristics of the recognizers and the computer data

structures depend to a limited extent on the picture digitization process.

The input pictures are assumed to be digitized by a device similar to the

Hummingbird machines.

6.1 HUMMINGBIRD AUTOMATIC FILM DIGITIZERS

"Hummingbird" is the name given to two spark chamber film digitizers

developed at the Stanford Linear Accelerator Center by J. Van der Lans

(Van der Lans [1967], Miller and Van der Lans [1967]). These machines

are high-precision flying spot scanners employing the electron beam in a

cathode ray tube (CRT) as a spot generator. The spots are deflected

across the face of the CRT in a TV-type raster scan mode. A lens system

images the spots on the film (35 mm. or 70 mm.). Behind the film is a

photomultiplier, which senses the amount of light passing through the

film at each spot position; the firing threshold of the photomultiplier

can be adjusted over 16 signal levels. The spot on the CRT sweeps

125

across Y scan lines with X least counts (identifiable spot positions)

per line, where Y may be 29, 21°, 2'19 or 212, and X is 212 or

214 , depending on the particular Hummingbird. The spot coordinates can

be defined as the pair (x, y) = (least count, scan line number); x and

y counters are synchronized with the spot sweep to allow the output of

the spot positions. Both digitizers are presently connected to the IBM

360 model 75 computer, but were earlier attached to a model 50S Orders

from the computer control the entire digitization process, including

moving of film and selected digitizing of windows (small rectangles) in

a frame.

The devices, in their normal mode of operation, return only the

center coordinates of each dark area across a scan line that produces

a photomultiplier signal below a given threshold. This results in a

significant data reduction but biases the digitizings: line-like dark

areas that are oriented in the y direction are very accurately digitized;

similar areas in the x-direction are poorly digitized and often bear little

resemblance to the actual picture. This is not a serious problem for

particle physics film since tracks are usually oriented in one direction.

For other types of patterns, this bias can make a picture unrecognizable;

experience with real film has indicated that, in many of these cases, a

multi-level rather than a binary digitization is necessary for recognition.

A complex and sophisticated programming system written by C. Dickens

(Dickens [1967a]) allows a user to control and view the digitization

process via the 2250 display, and associated light-pen and typewriter.

This includes:

1. viewing the digitized picture on the scope,

126

2. viewing enlargements of windows of the pictures and varying

the magnification factor,

3. selection of the particular Hummingbird,

4. setting of the photomultiplier threshold,

5. selection of the scan line density and least count,

6. specification of rectangular subareas of a frame for digitization,

7. adjustment of film and moving from frame to frame,

8. commands for the actual digitization, and

9. writing of the digitizations on magnetic tape or the line printer.

The Hummingbird output consists of the string of coordinates:

oYly12 0 - 0 Xln OY x 1 2 21x22 *'* x2n2o oYm~m-L"~ * * * xmn
m

A digitization of 1024 scan lines with 4096 counts per line was

assumed.

Y[i] points to the firs t hit for scan line i -; Y[i] = 0 if no

hits occurred.

where y. is the scan line number and x. x. 11 12 .* e x. are the locations
1 In. 1

of the "hits" on scan line yi 0 The points are ordered by x within y .

This leads to the picture data structure used by the primitive recognizers

in the SPDL system:

Xcount[i] = number of hits on scan line i, i = 1, 1024 .

Then Xcoord[Y[i]] to Xcoord[Y[i] + Xcount[i]-l] contains the

ordered list of x coordinates for the hits on scan line i .

The above structure was very convenient for accessing small windows

during primitive recognition.

127

6.2 RECOGNITION OF BLOBS

In many applications, blobs of various types are picture primitives.

Examples are: sparks appearing in particle physics spark chamber film;

blobs representing "bits" in a data box; and characters, such as letters,

digits, and punctuation. The tail and head are usually chosen at the

blob center, The formation of blobs is also a useful first step--equiv-

alent to preprocessing--for the recognition of more complex primitives.

The method for finding blobs is a simplified version of the cell

construction algorithm of Clark and Miller [1966l. (Given an ordered set

of coordinates EPi = (Xi9 yi) I (yi 5 yj) A (yi = yj 3 xi < xj), i < j,

i, j = 1, n] representing hits in a picture window, and values for the

parameters 6x, 6y, dy, and n min' the blob recognizer groups ordered

subsets of these points into cells (blobs) such that for each cell

c = {P Cl' c2' P 00*9 PC 3,
m

1. lxc.-xc./ <_ 6x and IY~.-Y~./ < SY,
1 J 1 J

2. i~,y~,~+jl I dy,
1

3. ICI > nmin9 where ICI is the number of points in cell C,

and

4. ICI is (almost) maximum.

Since the width of the dark areas in the x-direction is not known (see

last section), a dx parameter corresponding to dy was not included.

The output of the routine is an ordered list of the centers of gravity

of each cell (ordered in the same manner as the input). Pointers from

cells to their contained points and from points to their cells, if any,

are also computed.
128

The cell into which a point is placed is sometimes dependent on the

order of examination of the points and the cells. While this is not

desirable in general, the differences are insignificant compared to

errors introduced by the digitization process, photography, and other

"noise" producers.

6.3 A GENERAL PURPOSE LINE RECOGNIZER (GPLR)

6.3.1 THE LINE RECOGNITION PROBLEM

A straight line in the plane can be defined abstractly as the set

of points (x, y) satisfying the linear algebraic equation ax + by + c = 0,
._

where a, b, and c are constants (real numbers), and la/+/b/ # 0; this

line has no width, occupies no area, and has no irregularities. One cannot

find such a clean definition for the class of elements that a human might

call a line in a picture--indeed, what is interpreted as line-like depends

to a great extent on the "eyes of the beholder". Like most general concepts,

a precise definition is elusive; one can find patterns that are not called

lines in many cases , yet would satisfy particular attempts at line defi-

nition. A trivial example is two points in a picture; they define a line

exactly, but would rarely be interpreted in this way.

Examples of patterns that might be usefully classified as lines are

shown in Figure 6.1. Qualitatively, a rectangle of small width to length

ration can be placed over each line; the line roughly "fills" the rectangle

along its length. The points on each line satisfy a linear algebraic equa-

tion to within a given tolerance according to some criterion of goodness

of fit. Irregularities and difficulties that must be taken into account

in a general system include:

129

1, local non-linearity,

2. local linearity but in a different orientation than the line,

30 appearance in a field containing other patterns that may

intersect the line,

4, variable width, and

5. many gaps along the line length,

GPLR is designed to cope with these problems and recognize the variety

of line-like elements of Figure 6.1.

There have been a large number of techniques developed in the past

for line recognition. Most of these apply only to limited classes and/or

are often very complex logically. Local preprocessing is frequently

employed to reduce some of the irregularities mentioned above (Dinneen

119551, Unger [1959], Narasimhan [1964l). The most common method for

recognition of short, fixed-length line segments is simple template

matching (Bomba [1959], Roberts [lg@], Rosen and Nilsson [1966]). Hard-

ware or software line masks of fixed size and orientation are passed over

the picture; the classification decisions are based on correlations with

the masks, While this has proved successful for some pictures, it cannot,

for example, produce useful results for lines consisting of non-linear

blobs with many gaps unless the template size is large. The restriction

to a fixed template size means that the digitization accuracy must be

compatible with the properties of the line; in particular when the digi-

tization is too fine for a line, the line segments produced by fixed-size

templates might be meaningless. A variable size line template built into

hardware in the PEPR system of Pless and Rosenson (Pless et. al. G19-9651)

for bubble chamber photograph analysis overcomes this difficulty; the

e
0

0

x

\
I
\
I
I
J L14

v”
I
\

Figure 6.1 Examples of Line-Like Patterns

problem then becomes one of linking roughly collinear line segments

together. Another set of techniques that is frequently employed either

in direct recognition or for linking segments utilizes lfnear least

squares methods (Roberts 119631, Miller c19661, McGee C1966l). These

methods produce a good quantitative estimate of the l.inearity of the

data, .but usually require that the line be isolated. When lines are

overlapped with other patterns, the method has to be modified consider-

ably to keep on the "right track". Finally, several interesting line

following or linking techniques have been developed; these are usually

based on successive fitting and extrapolation along a line. The systems

for track recognition in particle physics pictures are generally of this

last type (Clark and Miller C1.9663, Marr and Rabinowitz [1966l, Moorhead

and Powell 119651)* This brief discussion is far from exhaustive, but

covers most of the major approaches to line recognition.

6.3.2 GPLR

The methods used in GPLR are a major extension and modification of

those employed by Marill et. al. [1963] for line segment formation in

their CYCLOPS-l system. Given a set of points representing digitizings,

their system works as follows:

The formation of line segments proceeds in three stages:
triplet formation, triplet chaining and segment connecting.
To form a triplet, we select a point and try to find two
nearby points which are onopposite sides of, and approximately
co-linear with, the original point. The chaining process
begins after all possible triplets have been formed. Two
triplets are joined provided they have two common points in
the proper order. For example, the triplets abc and bed
will form the segment abed 0 This segment may be extended
by combining it with other triplets according to the same
rule. When the current segment cannot be extended any further,

132

the process is repeated with the remaining triplets. Chaining
terminates when no segment can be extended further. (Marill et.
al. Ll9633).

Two segments are linked if they are close together, have similar curva-

tures and slopes about the vicinity of their endpoints, and can be

extrapolated to meet each other.

GPLR has a similar flow. It can be divided into four phases:

1. preprocessing by blobbing,

2. formation of collinear triples,

3. linking of triples into chains, and

4. merging chains into lines.

The digitized points are first blobbed by the routine described in

Section 6.1; this process not only reduces the data, smooths local

irregularities, and eliminates some noise, but it deliberately creates

gaps in lines. The appearance of gaps in line-like elements has been a

vexing problem; here, they will often assist the recognition. The

parameters 6x, 6y, dy and nmin are selected experimentally and

reflect some of the characteristics of the lines, the pictures in which

they are embedded, and the digitization process. The remainder of the

phases are almost independent of the digitization method. The output

of the blobbing phase is the set of ordered cell centers iPi = (Xi' Yi)

Ii = 1, n} .

The collinear triplet formation routine examines each point Pi,

i = 1, n-2 in turn and builds all triples T = (Pi, Pj, Pk), i < j < k,

such that

1. IXi - Xjl 5 Ax A lXi - Xkl <_ Ax A (Xj - Xkl I'&,

133

2. IYi - Yk I SAY, and

h.
3. -<

IPiPkl -
E9 where h.

J
is the length of the perpendicular from

P.
J

to the line segment defined by Pi and Pk9

and]PiPk/ is the length of that segment.

Ax, AY, and E are input parameters. Ax and Ay are functions of

the expected inter-cell distances and gap size; they restrict the points

under consideration to a small rectangle above P. . 1 It is generally

advisable to choose Ax and Ay so that there is more than one triple

emanating from a point Pi on a line; thus, one might have the triples:

(Pi, P. , Pk),
Jl 1

(Pi, P. , Pk),
Jl 2

(Pi, P. , Pk),
J2 1

etc., all of which are

on the same line. This built-in redundancy is valuable for recognition

through locally confused regions and where the local linearity of points

is not a constant function of the segment length. E is a co-linearity

test parameter and represents the allowable upper bound on the width to

length ration r of the minimum rectangle enclosing (Pi, Pj, Pk) O r

is computed by taking advantage of the following equalities:

r=2J- = 2 X ($IPiPklh.)

I PiPkl I PiPkl 2

2 X (Area of Triangle with vertices Pi, P., and Pk)
tz

lPiPj12

bi.(Yi+Y.) - h,.(
=

Yk+Yj) - kik(Yi+Yk) I

@x:k + Ay2
ik

where Ax ij =x.-x. .
J 1

The last formula is used by the program. There

134

is little in the literature on testing for collinearity of three points;

the above test derived by the author is simpler than one based on least

squares, yet reflects the intuitive notion of collinearity. The collinear-

ity test implicitly assumes that the line formed by a successful triple

is oriented from Pi to P.; the only instances when this might not be
J

true would be for some almost horizontal triples; the linking phase

provides for this possibility. This method for recognizing small line

segments (collinear triplets) is analogous to a variable-size template

matching process. When a triple passes the collinearity test, an

approximation to the angle that Pi and P k makes with the x-axis is

also computed.

The next phase links triples into collinear chains. Two triples

Ti = (P. , P. , Pi) and Tj E (Pj , Pj , Pj) are linked if ((i, = j,)
5 r2 3 1 2 3

A (i
3 = j,)) . Consequently, a chain consisting of n triples will

contain n+2 unique points. An approximate angle is computed for each

chain by averaging the angles of its triples. Chains are merged into

lines in the final step. Two chains are merged if they have at least

one point in common and their angles are within A@ of each other; Af3

is an input parameter.

A complete list of the parameters of GPLR is: (6x, EY, dy, nminj

h, AY, 5 f4 . The output consists of the number of lines found, the

angle of each line, the number of cells on each line, and a pointer list

for each cell indicating which lines, if any, it is a part of. The lines

recognized by GPLR may intersect each other; there Is an additional

routine that computes these intersection points for a selected line.

Lines may be selected by specifying a length, angle, and location tol-

erance.

135

GPLR has several advantages compared to other line recognition

schemes:

1. It is applicable to a wide variety of line-like elements

(Figure 6.1).

2. Pattern fields containing intersecting lines can be classified.

3. It is simple and relatively efficient.

There are, however, a number of pictures and applications for which

GPLR is not adequate. Physicists divide particle track analysis into

two distinct phases --scanning and measuring. Scanning corresponds to

basic pattern classification--does a track pattern of a given class or

set of classes exist in a picture, and if so, roughly where? The measure-

ment phase is concerned with the accurate computation of properties of

the previously recognized or scanned patterns. In terms of this dichotomy,

GPLR is a scanning or recognition system; more complex techniques are

required for accurate measurements. One can envision pictures where the

output of GPLR would have almost no meaning unless accompanied with some

auxiliary processing; for example, a window that is dense in random digi-

tizings would yield a large number of lines oriented in many directions.

If the co-linearity parameter, E, is not carefully selected, GPLR can

classify curves and even nonsense as lines. The following simplified

analysis of a "worst case" illustrates this point:

136

Assume that the points i, j, k, and P are located such that

lij/ = ljkl = Ikl/ = d,

and that the triples (i, j, k) and (j, k, 1) just pass the collinear-

ity test so that

Then (j = 8 = & =/ks . The two triples will be chained and the

difference between the angles of the lines formed by their end points

is 4 = 28 = 2 sin-l(z) M 2 sin-l(2e) , If this "worst case" occurred

for n+l triples, there would be a total angle change of 2n sin -l(z)

M 2n sin 324 . For large n, this could be disastrous; on the other

hand, curved segments could be recognized in this manner if additional

logic were inserted in the chaining routine to ensure that Drp does not

change sign.

With the proper choice of parameters, GPLR has proved to be extremely

effective for recognition within the SPDL system. Here the system is

directed to look for a member of a given class of lines in a specified

area of the picture; if lines are concatenated together, a "slop" param-

eter is used as a tolerance around the intersection points. The simple

digitized "A" of the last chapter was recognized in this way; Chapter 7

employs GPLR within SPDL in a complex setting.

The next section describes a non-trivial application of GPLR that

illustrates many of its strengths and weaknesses.

6.3.3 RECOGNITION OF BUBBLE CHAMBER TRACKS BY GPLR

Figure 6.2(a) is a plot of a set of digitizings from a bubble chamber

picture; the set is a modification of those that appeared in a picture in

Narasimhan's paper [1964]. The latter picture was re-digitized by hand,

simulating the Hummingbird. This picture is a particularly good test of

GPLR. It contains many lines, some of which are overlapping; the lines

vary in length, thickness, and point density; there are many gaps in the

lines and some of the picture elements may or may not be lines depending

on the interpretation. There are 304 digitizings in the picture.

The picture was input to GPLR. The results of the blobbing are

shown in Figure 6.2(b). Parameters used were 6x = 1, 6y = 3, dy = 2,

and n. =l. min The cells are numbered from the bottom of the figure

from 01 to 99 and then starting from 01 again near the top (mean-

ing 101); the low order digit of the cell number lies on the raster

unit nearest to the (floating point) cell center. 114 cells were

constructed. As can be seen by comparing Figures 6.2(a) and 6.2(b),

the essential details of the picture are retained.

138

l
* *

* l . t :

* * * t

t l *

l l l

:

* l

* f * . *

*

c

*
/

f
*

e
*

l

* * f

* I *

* t
* : t

:
t * .

e
* : .

I * r
l

: *

.
l

* *
l * *

* * *

t l *

:
. .

f

* *

t

F

*
*
*

*

:
*
r

* I
*

* I
* *

.
t

:
*

*
*

l

*

*
*

:

:
f

*

I

:

:

L

*

t

t
t

L
*

I

*

*

t

*

l

:

.
l

f

*

l

:
*

*

:

l

t * *
I

*
l

*

*

t
*

I

*

(I

c
*
a

*

*

1

l
*

*
I

*

*

*
:

i
.

*
*

L

*

I
*

*

l

I

*

l

t

*

l

l

:

*
: *

*

*

*

I

,

t

.

I

i *
t

I

II

*

*
/

* *

*

I
I

*

I

l

:
*

:

*

*

*

f

I

. I

f
* * *

t
t

l

I

i
*

. .
l

l

l

*

: *
t

I

l

*
(I

l
* * *

*
*

* *

Figure 6.2(a) Bubble Chamber Track Digitizings

139

Figure 6.2(b) Results of Blobbing

140

TRIPLET AND CHAIN LIST..Pl,PZ,P3,THETA,CHAIN
1 2 6 13 0.1405647E 01
2 2 6 20 0.1212025E 01
3 2 11 18 0.8645967E 00
4 4 7 9 0.2601173E 01
5 * 4 a 14 0.9994586E 00
6 4 8 19 0.1032961E 01
7 4 9 10 0.257376fE 01
a 4 9 18 0.2525295E 01
9 4 10 18 0.2525295E 01

21
-1
38
lb
23
26
29
34
41

10 4 14 19 0.1032961E 01 44
11 1 5 12 0.1186633E 01 22
12 1 5 21 0.1053314E 01 -1
13 3 11 13 0.2546183E 01 -1
14 3 16 22 0.1302C93E 01 52
15 3 20 23 0.2265534E 01 62
16 7 9 10 0.2475645E 01 29
17 7 9 18 0.2432966E 01 34
lti 7 9 20 0.2521343E 01 35
19 7 10 k8 0.2432966E 01 41
20 7 10 20 0.2521343E 01 -1
21 6 13 23 0.1496856E 01 -1
22 5 1% 30 0.130630aE 01 56
23 a 14 19 0.1048393E 01 44
24 a 14 24 0.1085174E 01 46
25 a 14 36 0. L124690E 01 -1
26 a 19 24 o.ioa5174E 01 61
27 a 19 36 0.1124690E 01 -1
28 a 24 36 0.1124690E 01 -1
29 9 10 ia 0.2414950E 01 41
30 9 10 20 0.2539306E 01 -1
31 9 10 23 0.2474900E 01 43
32 9 16 22 0.1190289E 01 52
33 9 16 33 0.124463aE 01 54
34 9 ia 23 0.2474900E 01 57
35 9 20 23 0.2474900E 01 62
36 9 22 33 0.1244638E 01 70
37 11 15 17 0.284615lE 01 -1
38 11 ia 33 0.7392734E 00 -1
39 11 20 32 0.16233alE 01 -1
40 10 15 13
41 10 18 23
42 10 ia 31
43 10 23 31
44 14 14 24
45 14 19 36
46 14 24 36
47 15 13 18
48 15 23 37
49 15 32 37
50 13 31 41
51 13 32 37

0.2982918E 01 -1
0.2471941E 01 57
0.2462920E 01 59
0.2462920E 01 73
0.1141033E 01 61
o.iiaoiaaE 01 -1
0.1180188E 01 -1
0.1243550E 00 -1
0.1069782E 01 -1
0.1069782E OL 79
O.lR37049E 01 -1
0.1227772E 01 79

52 16 22 33 0.1297785E 01 70
53 16 22 42 0.1304543E 01 72
54 16 33 42 0.1304543E 01 62
55 12 29 34 0.2553590E 01 77
56
i7

12
ii

30 39 0.1337052E 01 85
23 31 0.249809x 01 73

58 La 23 35 0.249a092E 01 -1
59 18 31 35 0.2498092E 01 78
60 35 41 0.1046000E 01 a7
61 24 36 0.1199903E 01 -1
62 20 23 31 0.2356194E OL 73

Figure 6.2(c) A Partial List of the Collinear Triples

141

Figure 6.2(d) Lines Found By GPLR

142

193 co-linear triples were formed with Ax = Ay = 12 and E = 0.05 .

Figure 6.2(c) lists the first 61 of these. Column 1 is the triple

number; columns 2, 3, and 4 contain the cell numbers comprising a triple;

column 5 is the angle of the triple in radians. Co.Lumn 6 represents the
-1

results of the chaining procedure. -1 indicates the end of a chain;

otherwise, the next triple number in the

starts the triple chain: (5, 23, 44, 61 1

The merging routine uses A0 = 0.2

chain appears. Thus, triple 5

The 14 lines that were found

are labeled in Figure 6.2(d). (Lines consisting of only 3 points are

not included.) Figure 6.2(e) lists these lines; for each line the follow-

ing data appears from left to right across the page: line number, first

point on line, coordinates of first endpoint, last point, coordinates of

last point, number of cells on the line, and approximate angle in radians.

LISTING OF THE 16 LINES FOUND BY MKLINE

LINE NO FSTPT X Y LSrPT x Y NU 3F PTS ANGLE
1 2 32,,75 953.50 23 34.33 966.00
2 2 32.75 953.50 33 48.33 969.33
3 4 52.00 953.50 64 1.67 991.00
4 4 52.00 953.50 36 60.00 969.00
5 1 13.33 453.67 110 31.50 1021.50
b 3 44.33 954.00 106 60.30 1017.00
7 3 44.33 954.00 47 27.33 977.00
II 15 32.00 961.00 89 49.67 1007.00
9 12 16.50 961.50 38 2.00 971.00

10 17 25.50 962.50 40 40.00 979.50
13 40 26.33 973.61 108 37.67 1020.00
14 70 12.00 9Y2.00 103 la.00 1016.00
15 a1 44.50 1002.50 112 48.00 1021.50
16 91 34.75 1010.50 103 la.00 1016.00

4 @.1451251E 01
4 O.HO19347E 90

22 0.2503973E 01
6 0.1123087E 01

20 0.1344435E 01
16 0.1316ZR5E 01

6 0.2226089E 01
15 .O.l240977E 01

4 0.25773’31E 01
4 0.8868051f 00

12 0.1353413E 01
6 0.1336846E 91
5 0.1333159E 01
4 0.28779ROE 31

Figure 6.2(e) Listing of the Lines Found by GPLR

143

Note that there are no lines numbered 11 or 12 due to the final merging

phase of GPLR. Figure 6.2(f) lists the lines, if any, that each cell is

part of; each bit in the hexadecimal word following the cell number repre-

sents a line; if there is a '1" in bit i, i = 0, 31, that cell is on

line i+l, where the bits of a word are numbered from 0 to 31 start-

ing from the low order bit. Thus cell 41 is on lines 3, 7, and 10 .

Several comments can be made on the results of this analysis (Figure

6.2(d)):

1. All obvious lines were found.

2. Some extraneous lines, such as L2, Lg' LIO' and L16 were

included. By restricting lines to consist of at least 5 cells,

these are eliminated (along with Ll).

3. L3, L5, LQ and La traverse successfully across confused

areas and intersect other lines.

4. The extension of La, through cells 96, 105, and 111 at its

top end, and through cells 6 and 2 at its bottom, was missed.

5. “7 could be merged with L3
by increasing ne to 0.3 s

This example can be considered a llworst case" for GPLR.

6.4 BLANK AND DON'T CARE PRIMITIVES

Since the concept of blank and don't care primitives originated as

part of the PDL system, their recognition is discussed only in the context

of the PDL picture parser.

The definition of a blank or don't care primitive must usually

include a characterization of the primitive classes that may be concate-

nated onto its tail and/or head, as well as the geometric constraints on

145

the relative locations of these classes. Assume that one is parsing a

picture according to the grammar:

P+(r+b+S)

S -3 ~11~21 . . . /sn, n>l

where r, sl, s2, sn are visible primitives and b is a blank

primitive. Then the b recognizer must discover the presence of some

member of 63(S) = Ep(si); often, this search can be reduced to finding
i=l

a feature that is common to all members of b(S) and is unique to P(S)

in the picture. The same statement can frequently be made when n = 1

in the above grammar; in the worst case, the recognition of b would

involve recognizing and obtaining a complete description of sl . If

the latter occurred, the recognition function for sl would be vacuous

and always return true.

Example 1:

Consider the primitive ep in the particle physics syntax of

Figure 4.2. Its purpose is to find the tail of some member of p(TM)

entering at the left edge of the picture. This can be done easily by

using GPLR locally in regions near the left edge to find the beginning

of a track cm; once this is accomplished, the recognizer for cm can

determine its extent, curvature, and perhaps, point density.

Example 2:

The page recognition syntax of Figure 4.5 employs the primitive

its as the inter-character spacing for letters in a word; this spacing

146

is variable within certain limits, depending on the printing process and

the letters. The recognition routine for its has only to find the

beginning (tail) of a letter; this can be done by counting point densities

along a line or by some other simple global test. The primitive recog-

nizers for the letters do the actual classification, but their location

has been previously discovered by its .

Blank primitives are used extensively in the application of the

next chapter. A variety of methods are employed, depending on the

severity of the geometrical constraints defined by the blank primitives

and the classes of primitives concatenated onto them.

147

CHAPTER7

SPARK CHAMBER FILM ANALYSIS BY THE SPDL EBYSTEM

The SPDL system was applied to the analysis of spark chamber film

produced in a high energy physics experiment, the "colliding beam"

experiment, conducted at Stanford University by Barber, Gittleman,

O'Neill, and Richter [1965, 19661. This film provided an excellent

test--in a real and non-trivial setting--of the approach to picture

processing that has been advocated and developed in the preceding

chapters.

The purpose of the physics experiment was to measure the angular

distribution of electron-electron scattering at an energy level of 600

MeV and over the angular range from 40' to 9Oo . Electron beams

were supplied by the Stanford Mark III linear accelerator. These were

circulated in opposite directions in two storage rings having a common

section; electrons from the two rings collide in the common section and

scatter in opposite directions. The scattering is observed via a set

of spark chambers and counters through which the electrons then pass.

Figure 7.1 shows the chamber-counter geometry. Each scattered electron

traverses successively through a 6 gap chamber, a 4 gap chamber,

and a shower chamber; the possible points of interaction (collision)

lie along the horizontal "median" line in the center of the figure.

30,000 photographs were taken of two views of the chamber and a

data box; a mirror arrangement was used to capture each information set

on one frame. 400 of the photographs contained "events" of interest.

The film has been manually analyzed and the results subjected to a

further computer analysis to obtain the angular distributions.

148

E b

I

3

Jo

7.1 CHARACTERISTICS OF THE PICTURES

A schematic of the film format is illustrated in Figure 7.2. The

side and front views appear on the left and right halves respectively.

The interaction points are along the central dotted horizontal. A possi-

ble event is indicated by a linear track of sparks through the upper 6

and 4 gap chambers and a similar track through the corresponding lower

chambers. It is possible for several events and an arbitrary number of

sparks to appear in the chambers. The configuration of sparks in the

shower chambers are used to assist in the identification of the particle

types. The central portion of the film contains a data box with digits

to the left and a coded version of these to the right. Information in

the data box includes the frame number (the top leftmost 4 digits),

roll number, electron beam phase, and date; the first 4 digits in the

coded box is the frame number. The "X"s beneath some of the chambers

are fiducial markers.

Figure 7.3 is an actual photograph of a cosmic ray shower passing

through the chambers. It illustrates the appearance of sparks and the

relative locations of the components on the film. In general, there is

considerable variation across the film; some of the fiducials, sparks,

and characters are clear, whereas others can barely be seen.

An event appears in the photograph of Figure 7.4(a) as indicated

by the collinear sparks in the 4 and 6 gap chambers. This picture was

digitized by the Hummingbird and displayed on the 2250; Figure 7.4(b)

is a photograph of the scope during the display. Because of the

Hummingbird characteristics discussed earlier, the digits are not

recognizable in most cases; the digitizings obtained for the remaining

150

‘\
I’

/“\
YV

AA

J A

/

x x

K!
X

/\ -

‘\I’ /\
I

\
3 .d
h

r(
;\:’ \

cc

t-
\

’
,x,

h -
4 - T k

1_ x x

x X

X

X

152

153

154

portions of the picture accurately portray the original. Printer plots

of the digitizings in several small windows of another member of this

picture class are shown in Figure T.?(a)-(d); these are typical areas

viewed by the primitive recognizers. The isolated digitizings in Figure

7.5(a) are background noise.

This picture class is an excellent test of the SPDL system for the

following reasons:

1. The pictures are not contrived. They are real pictures produced

in a physics experiment with no a priori thoughts about using

the SPDL system for this analysis.

2. There is a large amount of detail in each picture.

30 The pictures are well structured.

4. While the photography was very good, the inaccuracies, errors,

and noise that are common to most pictures appear here also.

Some of these are due to the variation of intensity of the

picture components, the non-uniformity of sparks, slipping of

the camera mirrors between frames, occasional malfunction of

parts of the data box, errors of digitization, and distortions

introduced by the flying spot scanner.

5. The pictures are representative of one class of particle physics

pictures that is produced in great quantity and requires detailed

analysis; this remark applies to the forseeable future.

7.2 THE GPAMMAR

Figure 7.6 lists the primitive names, the non-terminal symbols, and

the grammar defining the picture class for the colliding beam experiment

155

%

it %

*

9
0% YQ

it

+

Figure 7.5(a) Plot of Digitized Sparks

156

*

Figure 7.5(b) A Collinear Set of Sparks

157

Figure 7.5(c) Plot of a Fiduci.al

Figure 7.5(d) Top Part of Data Box Boundary

Figure 7.5 Printer Plots of Selected Digitized Areas

1-59

NPWIM= 25 PKIM PKSUJ

Hl5NU
tl4Gh
B4GL
t56GH
86GL
DItiT
LVNH
EVNT
IDS
NUFB
NOFT
NUSB
NUST
NULL
SHFB
SHFT
ShSB
SHST
STRT
XFB
XFT
XSB
XST

Figure 7.6(a)

2 1
21 2
12 3
22 4
15 5

4 6
23 I
14 a

3 9
Jl 10
20 11
10 1.2
19 13

1 14
18 15
lb 16
17 17
15 18

5 19
8 20
Y 21
6 22
7 23

Primitive Class Names

NPRDU= 74NUN-TERMINALS--
CUB 1
LFE 2
CFT 3
cnI 4
CLOM 5
CLO- 6
CSB 7
CST 0
DATA 9
FD46 10
FKVd 11
FT46 12
n14 13
HI40 14
n16 15
tl1ttl 16
LU4 17
LO40 18
LU6 19
LO60 20
5346 21
suvri 22
SPKK 23
ST46 24

Figure 7.6(b) Non-Terminal Symbols

160

Figure 7

CLtJH= ,STKT + , ‘“Ll . ,FH”W . SU”I() I 1

cc,1 = IBBNU . ,,“S + IDAT. + 11qs + LBNUI II I

“ATA= I “lGT.ll”S t onrn)I

LILT*= IUIGT.NULL)

S”YH= I I XSB + ;SB l . I XST + LST I I

FRVW , l XF,+ + Ch , . t XFT + CFT I i

CST = 15746 . SHiT 1

CFT = ,FTrb . SHFT 1

cm = 15846 . SHSB 1

Cl-I = lFh46 . SHFB ,

SW+&= NOPB

s&6- ILW.i.061

twLs=, h”FB

Ft%‘= lLW.LW.1

LC4 - lld4CL+cLO~.LU4U1

LO4 = NULL

Lee”= LOS

LU4”= NULL

CL0 = EVNT

CL0 = SPKK

SPHK= WLL

LC6 = Iln6GL+SPHKI.LUt.UI

LC6 = NULL

Lot.“= LUL

Lcbu= NULL

s,*Ll- NOST

ST4L.= IHlL .+I,41

FT4‘- NUPT

F74t.= ,Hl6 . til4,

HI4 - llll4GHtSPRKl.HI40~

H14 = NULL

“14”; HI4

tl140= NULL

Ch, = EVNH

CHI = SPHK

“lb = t~bb(iti t cni).ni60)
"16 = NULL

HlLD= HI6

Hlb”= NULL

I =

‘.6(c) Grammar for Colliding Beam Pictures

161

film; next to each primitive name is the number of its recognition sub-

rnutine. There are 23 primitive class names, 24 non-terminal symbols,

and 39 productions. The picture structure described by each non-terminal

symbol is:

CLBM: a colliding beam experiment picture -- - -

L’Di? : coded data box - - -

DATA: contents of the data box

view chamber. half of picture
,-___ , ' joottomf
Ifront((bottom]

c either a spark in a chamber cr an event

SPIKE a spark --

The parsing sequence defined by the grammar proceeds as follows:

The data box is first found (since it is obvious and an easily recognized

pattern), and the front and side views are then anal~yzed relative to its

tail (CLBM). The data box (CDB) is described as a left boundary (BB!W)

followed by an arbitrary number of digits (DATA) and a right boundary

(EBND); the number of digits is actually fixed at 22, but it is more

162

convenient to use a recursive production. The front and side views are

defined in terms of a bottom part ((XFB + CFB), (XSB + CSB)) and a

top part ((XFT + CFT), (XST + CST)) where (XFB, XSB, XFT, XST) are

fiducial X's; the chambers are located in fixed positions relative to

these. An arrow in Figure 7-2 points to each of the 4 fiducials used.

In each of the four parts, or quadrants, or the picture, the grammar

divides the analysis into two--the contents of the 4 and 6 gap chambers

(~~46, FT46, ~~46, FB46), and that of the shower chambers (SHST, SHFT,

SHSB, SHFB) . The 4 and 6 gap chambers may contain sparks (SPRK) and

events (EVNT,EVNH) . Recursive productions for the chamber descriptions

((L04, LO4D), (~06, LO6D), (HI4, HI4D), (H16, HI6D)) indicate that an

arbitrary n%umber of sparks and events can be present. LO4D, L06D, HI4D,

H16D, and, often, the null point primitive NULL are used to avoid

excessive backtracking during the analysis.

7a.J PRIMITIVE RECOGNIZERS

GPLR and the -blobSing routine form the basis of all recognition

functions. The picture components are grouped into meaningful structures

by blank primitives; the interaction between these and the primitive

classes to which they may be concatenated is noted in the descriptions

below. The picture origin is at the lower left-hand corner, and has the

coordinates (1, 1) *

1, Starting the Analysis

The recognition routine for STRT looks in a large centrally-

located window for a long vertical line, representing the left boundary

163

of the data box. The head of STRT is taken at the lowest (smallest

y-coordinate) point on this line.

2" 'The Data Box

Most of the recognition work for the data box boundaries (BBND)

is done by its preceding blank primitive (STRT or IDS); the ERND

routine verifies the length and angle of the line. The digits (DIGT)

in the data box are separated horizontally by an inTerdigit space (1x3)

of 29+lc raster units, IDS retrieves a small rectangular window -

around the expected location of the next digit and constructs blobs;

each blob is the size of a digit. The head of IDS is (x, y) where

X is the x-coordinate of the lowest cell found, if any, and y is the

y-coordinate of the tail of IDS . It is possible for 0 to 5 digits

to appear at any position; occasional malfunction of the data box results

in either 0 or more than 1 digit. If IDS finds no cells, a nominal

valiie is given to x and a flag is added to its value list. The DlGT

routine returns true if less than 6 cells are found in the vertical

strip above the head of IDS; otherwise false is returned and the right

boundary of the data box has probably been reached. DIGT computes the

actual digit represented by the location of each blob and puts this in

the value list. The head of DIGT is set to the coordinates of its

highest (largest y-coordinate) digit. The relationship between IDS

and DIGT is a good example of the role of a blank primitive: IDS

determines if something is in the window; DIGT does the detailed

recognition,

164

3. Fiducial Finding Routines

The approximate location of the fiducials relative to the tail of

the data box is known (within about 60 raster units in each of the x

and y directions); their accurate positions must be determined in

order to allow precise reconstruction of t‘ne picture in the 3-dimensional

space of the physics experiment, The tail of each fiducial primitive is

the tail of the data box CDB; their heads are defined as the intersec-

tion point of the two arms of the "X"; this is a case where it is con-

venient to define a primitive in terms of a don't care part (from the

data box to the X) and a visible part (the X). SFB, SFT, and XSB

are computed by a common routine which finds two intersecting line

segments satisfying length and angle tolerances. XST, the dotted

fiducial, appears as four symmetric blobs in the picture and a separate

routine calcillates the center of these,

4. Event and Spark Recognition in the 4 and 6 Gap Chambers

Each fiducial center is used as the tail for analysis of a quarter

of the picture. The routines defining the primitives NOSB, NOFB, NOST,

and NOFT retrieve the contents of the 4 and 6 gap chambers in each

quarter. If the chambers are empty, true is returned. Otherwise, cells

and Lines are const,racted by GPLR in each chamber and false is returned;

the cell parameters are chosen so that each cell represents a spark.

B~GL, BGGL, B~GH, and B6GH are blank primitives that point to the

next spark; if the chamber is empty, false is returned. Each spark is

then recognized as the first spark of an event (EVNT or EVNH) or an

isolated spark (SPRK -NULL); EVNT and EVNH represent events in the

165

lower and upper chambers respectively. An event is defined as a line

(at least three collinear sparks) in the 6 gap chamber that is collinear

with at least one spark in its corresponding 4 gap chamber. The number

of sparks and the line angle is computed for the value list of an event.

After an event or isolated spark is recognized, the sparks comprising the

pattern are eliminated and the blank primitives above will be called

again by the parser.

5- The Shower Chambers

The routines for the shower chamber primitives (SET, SHSB, SHFT,

SHFB) compute and return the coordinates of all sparks in these chambers.

The least satisfying, and most tedious and time-consuming aspects

of the design of the primitive recognizers were the selection of the

proper parameters for blob construction and GPLR, and the determination

of the relative locations of the picture components. This was done by

a detailed manual analysis of a printer plot of one picture. In any

future developments, it is clear that an on-line interactive graphics

system should be written to perform this task. This would provide a

much more efficient and accurate means for setting and testing the

parameters of the recognizers.

7.4 RESULTS OF THE PARSE

Pictures were digitized by the Hummingbird and stored on magnetic

tape for later analysis by the SPDL system. One picture was used to

debug the grammar and primitive recognizers, and set the recognition

routine parameters. Nine additional frames were then analyzed successfully.

166

Eight of these frames were selected at random from those containing

events; the remaining frame was arbitrarily chosen. Some adjustments

were made for the event recognition parameters and the chamber location

coordinates after the first run of the nine frames.

Figure 7.7 contains a photograph of the display after the analysis

of the picture of Figure 7.4. The display contains an abstracted version

of what has been recognized; each primitive, including blanks, is repre-

sented by a straight line segment terminating on the tail and head

coordinates of the primitive. "T" and "H" indicate the tail and head

of the last primitive found. Most of the primitive classes are identified

by name in the figure. Appendix A contains ZZ5O display photographs of

the remaining nine pictures. before the analysisand of their abstracted

plot after the analysis. A listing of the natural semantics and parsing

tree for frame 355 (Figures 7*4 and 7.7) is also included.

The contents of each data box was correctly identified in all frames

except one, including several missing positions and a multiple digit

position; in frame 406, the 4th digit (6) had too few digitizings and

was indistinguishable from the background. The number of sparks recog-

nized in each chamber was either correct, or one more than the correct

number as counted from the original photographs; the deviation was due

to the digitization process rather than the recognition mechanism. All

obvious events were found. In some frame quarters, lines in the 4 and

6 gap chambers that constituted events were not collinear within toler-

ance, or there were too few sparks in the 6 gap chamber to form a line

(less than 3), and the sparks were then considered isolated; this

occurred three times (see frames 312, 356, and 414 in Appendix A). More

167

168

complex logic in the event recognition routines could handle these cases;

however, a study of the instructions for manual recognition that are

given to technicians indicates that in ambiguous situations such as these,

there is often no clear-cut decision procedure (Gittelman [19671).

Approximately 1800 hits or digitizings were obtained for each picture.

The number of non-blank primitives recognized in the nine frames is large:

22 x 9 = 1998 data box digits (DIGT)

2 X 9 = 18 data box boundary elements (BBND)

4 x 9 = 36 fiducials (XST, XSB, XFT, XFB)

26 events (Em, Em)

249 sparks comprising events

173 isolated sparks (SPRK and SHST, SHSB, SHFT, SHFB)

Table 7ol contains the results of a timing run. Times were computed

with the interval timer on the IBM 360 (model 50); this timer counts in

60ths of a second. The "Total" column gives the total time elapsed (in

seconds) from the start of the analysis (exclusive of tape reading time)

until its completion for each frame. "Creation of Data Structure" con-

tains the time required to convert the raw digitizings into the data

structure used by the primitive recognizers. The parsing or analysis

time is broken into two distinct parts--goal administration, which is

everything except primitive recognition, and primitive recognition.

The most interesting and satisfying data gleaned from Table 7.1 are

the relatively small amount of time the system spends in goal administra-

tion (less than 5% of the total parsing time) and the primitive recogni-

tion times. The hard work and "guts" of picture analysis lies in

Frame Creation of Goal Primitive
Number Data Structure Administration Recognition

93 0.63 0.18 6.33

312 0.65 0.43 6.94

355 0.65 0.28 5.87

356 0.60 0.32 6.07

,375 0.68 0.30 7-15

403 0.65 0.32 6.10

406 0.62 0~23 :‘Q97

414 1.00 o-35 6.80

416 0.58 0.18 5.57

Total

7.14

a.02

6.90

6.99

8.13

7.07

6.82

8.15

6.37

Totals 6.06 2.59 56.80 65.45

'erage
limes 0.67 0.29 6.31 7.27

SPDL ANALYSIS OF COLLIDING BEAM EXPERIMENT FILM

TIMING DATA (In Seconds)

T Parsing

Table 7.1

primitive recognition and it is appropriate that a very high percentage

of processing time is devoted to this task. One can conclude that, for

this application, a simple goal-oriented parse is efficient. While the

programs were written with clarity in mind rather than efficiency, the

analysis times compare favorably with those of "one-of-a-kind' hand-coded

systems (Brown [1967], Miller [19671, Dickens [1967bj). In order to use

the colliding beam programs in a production system, some additions must

'be made. The distortions introduced by the digitization process and the

photography must be eliminated; the former is usually accomplished by a

calibration program (Brown [19663). The patterns formed by SPDL analysis

must then be reconstructed in real space. Finally, t,he results from all

the frames must be accumulated and subjected to statistical analysis.

Another significant feature of this application was the short period

of time required for the implementation. It took less than 1% man-months

for the development of the colliding beam grammar, the writing and de-

bugging of the primitive recognizers, and the picture analysis. The

reasons for this efficient implementation are:

1, Each primitive recognizer could be treated almost independently

of the others due to the SPDL environment in which it is used.

2. Analysis by parsing allows efficient debugging. The program

flow can be immediately obtained from the parsing stack. The

value and failure lists indicate exactly what has been found

and where.

3. The visual display of the parse, especially during backtracking,

enabled fast on-line detection of bugs,

4. All primitive recognizers used the general purpose blobbing and

GPLR routines.

The sample colliding beam pictures were successfully analyzed with-

out compromising the picture processing model or the PDL system. This

application demonstrates the usefulness and potential of the formal

description and parsing methods.

172

CHAPTER 8

CONCLUSIONS

A useful paradigm satisfies two criteria (Kuhn [1962]):

1. It must allow a better solution, in some sense, to a set of

problems that can be obtained outside of the model. (The

paradigm is clearly most exciting when the problems can only

be solved within it).

2. The solutions are sufficiently open-ended to suggest a large

number of interesting related problems.

The PDL system and its underlying picture processing model satisfy

these criteria. The preceding chapters contain discussions of the

system's advantages, limitations, and possible extensions. These are

now completed and summarized under two headings--summary of features

(criterion 1), and future work (corresponding to criterion 2).

8.1 SUMMARY OF FEATURES

The PDL picture description language is evaluated below in terms

of the requirements which were enumerated at the beginning of Chapter 3:

1. Descriptive Range

The examples of Chapter 4 and the application of Chapter 7 indicate

that many different classes of pictures can be described by PDL in a

meaningful way both to humans and machines.

2. Completeness of a Description

A PDL description contains the structure and meaning of the picture.

Imposed semantics must be added for complete descriptive capability.

3. A Simple and Natural Formalism

The PDL description scheme is certainly simple. Whether it is

natural or not is mainly a subjective judgement on the part of the

reader.

4. Generative Descriptions

The abstracted version of the picture produced during the parse

is actually a generation based on the picture PDL description. Any PDL

description contains in a usable form the information necessary for

generation.

5. Direct Use of the Language for Analysis and Generation

The PDL description explicitly directs the parse of pictures.

Preliminary work indicates that the generation schemes can employ

the description directly in a similar manner.

6. General Algorithms for Analysis and Generation

A general algorithm which applies to any picture which may be

described by PDL has been presented. Similar algorithms for generation

must await future work.

7* Independence of Digitization

The language is (almost) independent of the digitization mechanism;

the latter directly affects only the primitive recognize%-. Thus,

primitive and hierarchic structural descriptions are generally constant

174

within a given class of pictures regardless, for example, of whether a

rectangular or hexagonal grid system with either binary or grey-level

codes is used.

8. Applicability to n-dimensional Pictures

PDL structural descriptions are independent of the dimension of the

picture. Pictures in n-space for n > 3 can be described as well as

the normal 2 and 3 dimensional patterns.

The results of this research indicate that the developed picture

processing model has several advantageous features when compared with

other approaches. These include the generality of both the descriptive

and analysis mechanisms, the ability to describe meaningfully a large

and interesting class of pictures, the ease of implementation and

modification of an analysis system for a particular set of pictures,

and the simplification of the basic pattern recognition tasks due to

the directed nature of the parser.

8.2 FUTURF WORK

1. The PDL Language and Description Scheme

The PDL language should be extended so that more complex relations

among picture components may be expressed; a suggestion in this direction

is made in section 4.6. The development of a suitable picture processing

languageisadesirable first step before the introduction of an imposed

semantics; the imposed semantics of a PDL description can then be stated

in the picture processing language. At the same time, this could be used

to describe the algorithms of the primitive recognizers. Further work

on the theoretical properties of the PDL language should include an

investigation of methods for manipulating descriptions to prove equiva-

lence and weak equivalence; these results can then be compared with

graph matching techniques. A deeper study is warranted on the relation-

ship between picture transformations and their descriptions; transforma-

tions to be studied include the affine (matrix) transformation and

logical operations on pictures, such as complementation, union and

intersection.

2. Parsing and Implementation

An algorithm for converting grammars to PDL standard form is needed;

the implemented parser can then be generalized to treat the full language

without prior manual grammar conversion. Some study should be made on

the usefulness and techniques of embedding the PDL system in a general-

purpose programming language such as ALGOL or PL/l; the purpose is to

allow picture processing within a larger framework of computations.

30 Primitive Recognition

An interactive graphics system should be written for testing

primitive recognizers. This would also provide much insight into blank

and don't care primitives, and perhaps yield some more general techniques

for their recognition. Primitive recognizers using grey-level digitizing

(many intensity levels rather than binary) would extend the applicability

of the implemented system.

4. Generation

Generation of pictures may occur in a passive or an active mode,

or a combination of these. In all cases, it would be useful to embed

PDL in a general-purpose programming language to allow program computa-

tion of pictures. An interactive system where generation can be directed

by an on-line user requires methods for imposing semantics

generated pictures; design problems can then be treated in

By combining generation and.parsing, the computer would be

participate more effectively in the design process.

5. Data Structures

Most of the analysis time is spent accessing data for

recognition; it is expected that primitive generation will

on the

the system.

able to

primitive

consume an

equally proportional amount of time. For these reasons, the data

structures used at the primitive level are critical, and thus worthy

of deeper study. The parsing system at the non-primitive level has a

natural data structure determined by the form of PDL expressions; this

appears to allow efficient processing.

6. Applications

The extent of usefulness of the PDL system can only be determined

by implementing new applications. A number of obvious ones exist:

(a) analysis of spark, streamer, and bubble chamber film, perhaps

after three-dimensional reconstruction of the digitizings,

(b) flow chart generation and analysis,

Cc) analysis and generation of text including special characters,

for example, mathematical notation,

/

(d) analysis and generation of line drawings, such as electric

circuits and bridges,

(e) graph matching and manipulation, and

(f) description of algorithms for parallel processing.

This future work list could be easily extended and expanded. It is

clear that there remains a large number of interesting, useful, and

challenging problems.

178

APPENDMA

PARSING OUTPUT FOR COLLIDING BEAM PICTURES

The Appendix contains two photographs of the 2250 display for each

frame analyzed by the SPDL system. The first picture is the frame after

digitization by the Hummingbird; the second one is the abstracted version

of the picture at the completion of the parse. Frame 455 was used to set

parameters and debug the grammar and recognizers.

A listing of the parsing tree, natural semantics, and primitive

description of frame 355 follows the photographs. The "OTHER VALUES"

part of the value list is interpreted:

1. DIGT the digit represented by the data box code.

2.EVN; :
0

the angle in degrees and the number of sparks.

Note that the 2250 display is on a 1024 X 1024

grid, while the data is based on a 4096 X 1024

grid; for display purposes, the x coordinate

was divided by four. The output angle is based

on the data coordinates.

the number of sparks followed by the coordinates

1J FB
() x9 Y of the spark centers.

Frame 93

180

Frame 312

181

Frame 355

182

Frame 356

183

Frame 375

Frame 403

185

Frame 406

186

Frame 414

187

Frame 416

188

Frame 455

PICTUKF PARSE HAS SUCCESSFUL..

NATOdAL StMANTILS UF PICTURE

PAtiSING TRtt...

s GX ALT

1 1

2 13

3 836

4 9

5 17

6 33

7 HO0

8 29

9 AL6

10 25

11 37

12 46

13 810

14 42

15 816

16 37

17 46

18 810

19 42

20 dl6

21 37

22 46

23 RIO

24 42

25 616

26 37

27 46

2R 613

29 42

30 816

31 37

37 46

1

1

1

17

1

25

1

1

1

33

1

42

1

1

50

1

59

1

1

67

1

76

1

1

114

1

93

1

1

SUP XSUP LSUC RSJC LUC TLPT HOPT

0 1 2 3 1 3 677

1 2 3 4 1 3 677

2 4 0 0 1 11 14

2 > 5 123 I 14 677

4 4 6 0 1 14 420

5 L 7 6 1 14 420

6 4 0 0 1 19 22

6 3 Y 13 1 1Y 420

n 4 0 0 1 27 30

n 3 11 12G 1 30 420

10 4 IL 0 1 30 412

11 2 13 14 1 30 412

12 4 3 0 1 35 38

lL 3 15 16 1 35 412

14 4 0 0 1 44 47

14 3 17 0 1 47 412

16 2 1s 19 1 47 412

17 4 0 0 1 52 55

17 3 LO Ll 1 52 412

19 4 3 0 01 61 b4

1Y 3 22 0 1 64 412

21 2 23. 24 1 b4 412

22 4 0 0 1 69 72

22 3 2s 26 1 69 412

24 4 J ,I 1 78 81

24 3 27 0 1 81 412

26 2 28 29 1 81 412

27 4 3 0 1 86 69

27 3 30 31 1 86 412

29 4 0 0 1 95 98

29 3 3L 0 1 96 412

31 2 33 34 1 96 412

Frame 355 Parse Output

NAME

CLBM

STRT

CO8

REND

10s

DATA

OIGT

10s

DATA

DIGT

IDS

DATA

DIGT

IDS

DATA

OIGT

IDS

DATA

OP

+

.

+

+

.

+

.

l

l

.

+

33 810 101

34 42 1

35 816 110

36 37 1

37 46 1

38 RIO 118

39 42 1

40 816 127

41 37 1

42 46 1

43 810 135

44 42 1

45 816 144

46 37 1

47 46 1

48 810 152

49 42 1

50 aib 161

51 37 1

52 46 1

53 810 169

54 42 1

5s 816 178

56 37 1

57 46 1

58 H10 18b

59 42 1

60 816 195

61 37 1

62 46 1

63 aio LO3

64 42 1

65 B lb 212

66 37 1

67 46 1

68 RIO 220

69 42 1

32

32

34

34

36

37

37

3Y

39

41

42

42

44

44

46

47

Cl

4Y

49

51

52

52

54

54

56

57

57

59

SY

bi

62

bil

b4

b4

60

b7
67

4

3

4

3

2

4

3

4

3

2

.i

3

4

2

2

4

3

4

3

2

4

3

'+

3

2

4

3

4

3

2

4

3

4

3

2

4

3

0

I 5

0

37

38

0

40

0

42

43

c

45

0

47

48

0

su

0

52

>3

0

55

ll

57

5&

c

6G

0

62

03

0

05

0

67

*B

0
i-0

0

30

0

0

3Y

0

41

'1

3

44

0

46

0

0

49

0

51

0

0

52

0

56

0

0

59

5

61

0

0

64

0

bb

0

0

bY

0

71

1 103 106

1 lC3 412

1 112 115

1 115 412

1 115 412

1 120 123

1 120 412

1 129 132

1 132 412

1 132 412

1 137 140

1 137 412

1 146 149

1 149 412

1 149 412

I 154 157

1 154 412

1 163 166

1 lb6 412

1 166 412

1 171 174

1 171 412

1 180 1.93

1 183 412

1 183 412

1 18H 191

1 188 412

1 197 200

1 200 412

1 200 412

1 205 208

1 205 412

1 214 217

I 217 412

1 217 412

1 222 225

I 222 412

DIGT

IDS

DATA

DIGT

IUS

DATA

OIGT

IDS

DATA

DIGT

IDS

DATA

DIGT

105

DATA

DIGT

IDS

DA1 A

OIGT

IDS

DATA

DlGT

+

l

+

.

+

+

.

+

.

+

.

l

Frame 355 Parse Output cont.

70 “lo 229 69 4 5

71 37 1 69 3 72

72 46 1 71 2 73

73 *lo 257 72 Lt cl

74 42 1 72 3 75

75 dlb 246 74 4 0

7b 31 1 74 3 77

77 46 1 76 2 78

78 810 254 77 4 0

79 42 1 77 3 “0

60 tllb 263 79 4 0

81 37 1 79 3 a2

112 4b 1 Ml 2 33

83 RIO 271 82 4 0

84 42 1 8% 3 s5

85 Rlh 280 L14 4 3

86 37 1 64 3 37

a7 46 1 R6 2 88
sa a10 2ne 87 4 0
89 42 1 a7 3 90

90 Ulb 297 a9 4 0

Yl 77 1 8V 3 32

92 46 1 Yl L 93

93 BlO 305 92 4 0

94 42 1 9L 3 15

95 "16 314 94 4 0

96 37 1 94 3 97

97 46 1 96 i ‘9s

9a al0 322 97 4 0

99 42 1 97 3 100

100 Olb 331 9’) 4 J

101 37 1 99 3 1 d2

102 46 1 101 2 103

3

74

0

76
0

79

0

Hl

0

0

34

0

0

0

BY

3

91

0

0

94

0

VO

0

0

‘> 9

0

101

5

5

134

1 231 234

1 234 41%

1 234 412

I 239 242

1 239 412

1 248 251

1 251 412

1 251 412

1 25b 259

1 25b 412

1 265 260

1 Lb8 412

1 208 412

1 273 276

1 273 412

1 282 285

1 285 412

1 285 412

1 290 293

1 290 412

1 299 302

1 302 412

1 3C2 412

1 307 310

1 307 412

1 316 319

1 319 412

1 319 412

1 324 327

1 324 412

L 333 336

1 336 412

1 336 412

10s

DATA

DIGJ

IDS

DATA

OIGT

IDS

DATA

DlGT

IDS

DATA

OIGT

105

DATA

DIGT

IDS

DATA

DIGT

IDS

DATA

Frame 355 Parse Output cont.

192

103 CC10 339 102

104 42 1 102

105 816 348 104

106 37 1 104

107 46 1 106

108 810 356 107

109 42 1 107

110 816 365 109

111 37 1 109

112 46 1 111

113 810 373 112

114 42 1 112

115 816 382 114

116 37 2 114

117 50 1 116

118 810 390 117

119 H26 407 117

120 21 1 10

121 816 399 IZG

122 800 415 120

123 5 1 4

124 70 1 123

125 82 1 124

126 74 1 125

127 838 423 126

128 110 1 126

129 114 1 128

130 127 2 129

131 132 1 130

132 136 1 131

133 145 1 132

134 141 1 133

135 804 431 134

Frame 355 Parse Output cont.

4 0 0

3 102 106

4 2 0

3 137 3

2 138 109

4 0 0

3 113 111

4 0 0

3 112 0

2 113 114

4 0 0

3 115 116

4 0 3

3 111 0

2 110 119

4 3 3

3 120 121

3 121 122

4 l.iL 0

3 123 0

3 124 162

4 125 ,I

2 126 144

4 I27 12s

4 0 0

3 129 0

2 130 143

4 131 0

2 132 141

4 133 0

2 134 1 3 8

4 135 136

4 0 0

1 341 344

1 341 412

1 350 353

1 353 412

1 353 412

1 358 3.51

1 358 412

1 367 370

1 370 412

1 370 412

1 375 378

1 375 412

1 384 387

1 307 412

1 387 412

1 392 395

1 409 412

1 412 420

1 401 404

1 417 420

1 14 677

1 14 539

1 14 539

1 14 470

1 425 428

1 428 470

1 428 470

1 428 462

1 428 462

1 428 454

1 428 454

1 428 444

1 't33 436

DIG1

+

IDS

OATA

.

OIGT

+

IDS

DATA

.

OIGT

l

IDS

DATA

.

DIGT

NULL

+

IDS

dRND

FRVW

+

XFB

CFR

.

FB46

.

Lfl4

+

E4GL

193

136 154 1 134 2 137

137 814 439 136 2 0

138 149 I 133 3 139

139 136 2 138 2 14J

140 826 449 134 2 141

141 163 i 131 3 142

142 826 457 141 i 143

143 R28 465 129 5 144

144 78 1 125 3 143

145 840 4Y2 144 4 0

146 94 1 144 3 147

147 98 1 146 2 148

14n IYO 2 147 4 14Y

149 195 1 14H 2 150

150 222 1 149 4 151

151 231 1 150 L IS2

157 727 1 151 4 153

153 806 500 i52 4 3

154 717 1 152 5 155

155 H12 508 154 2 156

156 235 1 151 3 157

157 222 2 156 2 15ti

158 826 518 157 2 159

159 199 2 149 3 160

160 n76 526 159 2 161

161 830 554 147 3 lb2

162 54 1 123 3 163

163 66 1 162 2 104

164 58 1 165 4 lb5

165 842 559 164 4 lb6

166 101 1 164 3 167

167 106 1 lhb 2 lba

168 lit3 2 167 4 169

‘I

0

146

0

0

161

0

159

0

150

154

0

J

0

0

3

0

0

3

0

0

ia 2

166

0

0

181

3

1 441 444

1 441 444

1 451 454

1 451 454

1 451 454

1 459 462

1 459 462

1 467 470

1 14 539

1 494 497

1 497 539

1 497 539

1 497 531

1 497 531

1 497 523

1 497 523

1 497 513

1 502 505

1 510 513

1 5lC 513

1 520 523

1 570 523

1 520 523

1 528 531

1 528 531

1 536 539

I 14 677

1 14 677

1 14 606

1 561 564

1 564 606

1 564 606

1 564 598

c LU

EVNT

L04D

LD4

NULL

LO6

NULL

SUFB

l

XFT

CFT

.

F T46

Htb

.

+

B6GH

CHI

EVNH

HI60

HI6

NULL

HI4

NULL

SHFT

SDVW

+

XSB

CSB

.

5046

Frame 355 Parse Output cont.

194

169 123 1 1 a n

170 136 1 169

171 145 1 170

172 141 1 171

173 804 567 172

174 154 1 172

175 a14 bT5 174

176 149 1 171

177 136 2 176

178 826 585 177

179 163 2 lb9

180 826 593 179

1n1 H32 601 167

182 62 1 163

la3 844 630 182

184 86 1 lR2

185 90 1 184

ltih 181 2 185

187 186 1 186

108 222 1 187

189 231 1 iae
190 227 1 180

191 do6 638 190

192 217 1 190

193 d12 646 192

194 235 1 1flY

195 222 2 154

196 R26 656 195

197 199 2 11(7

198 R26 be.4 197

199 834 072 ld5

2 175 179 1 564 598

4 171 0 1 564 590

2 172 116 1 564 590

4 173 174 1 564 580

4 1 74 0 1 569 572

3 175 0 1 577 580

L 176 Iti1 1 577 5HO

3 177 0 1 587 590

2 17ti 0 1 587 590

2 179 0 1 587 590

3 189 0 1 595 598

21131 0 1 595 590

3 1131 J 1 603 606

3 ld3 184 1 14 677

4 Id4 18Y 1 632 b35

3 185 0 1 635 677

2 186 19Y 1 635 677

4 187 0 1 635 669

2 188 197 1 635 66Y

4 18Y 0 1 635 661

2 190 19+ 1 635 661

4 191 192 1 635 651

4 192 0 1 640 643

3193 0 1 648 651

2 194 19d 1 648 651

3 195 0 1 658 661

2 196 0 1 658 661

L 197 0 1 658 661

3 196 0 1 t.66 669

2 lY9 0 1 666 669

3 233 5 1 074 677

LO4

+

84GL

CL0

EVNT

LO40

LO4

NULL

LO6

NULL

SHSB

l

XST

CST

sr46

HI6

+

B6GH

CHI

EVNH

HlbO

Hl6

NULL

HI4

NULL

SHST

Frame 355 Parse Output cont.

PKlMlTIVt VALUE LIST...

NAM XT YT ZT XH YH ZH OTHER VALUES

SJRJ 1 1

BEND 2308 439

IDS 2308 439

DIGT 2358 43’3

IDS 2338 43Y

DIGT 2368 439

IDS 2368 439

DIGT 2347 439

ICS 7397 439

DIGT 2427 439

IDS 7417 439

OIGT 7455 439

IDS 24.55 439

OIGT 2484 439

10s 2484 439

DIGT 2515 439

IDS 7515 439

DIGT 2543 439

IDS 2543 439

DIGT 2571 439

10s 2571 439

DIGT 2600 +39

IDS 2600 439

DIGT 2629 439

IDS 2629 439

DtGT 2658 439

IDS 2658 439

OIGT 2685 439

10s ihe.5 439

OIGT 2715 439

IDS ?71!l 439

DIGT 2745 439

I"< 7745 439

c 23OY 43s

c 2308 550

0 233!1 43Y

0 233n 439

0 2368 435

0 2368 475

0 2397 43Y

0 2397 49d

0 2427 439

0 2+27 490

0 2455 439

0 2455 439

0 248+ ‘+3Y

0 2484 443

0 2515 439

0 2515 510

0 2543 439

0 2543 440

0 2571 439

0 2571 451

0 2600 439

0 26GO 452

0 2629 439

0 2629 443

.o 2b5d 4,9

0 265d 487

0 26M5 435

0 2bn5 43')

0 2715 439

0 2715 476

0 2745 439

0 2745 511

0 7772 +39

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

0

,I

0

3

5

5

0

0

6

0

1

1

0

4

0

3

6

Frame 355 Parse Output cont.

DIGT 2772 43-l

IDS 7772 439

“IGT 28’1” 4 3 Y

I cs ih’)rl 4 3 ‘7

D,GT 2d27 439

I cs >n27 439

DIGT >b’ib 4 3’)

10s 7856 434

DIGT 7884 43Y

IflS)dd4 4.3 9

DIGT 7912 439

IDS 7Y,2 419

UI(;T 7941 439

10s 7Y’+l 43P

NULL iY41 4 34

MBNU ?‘?“7 439

XFH 23i)d 4 ,Y

64C.L ,Y,r(D i ‘+ 7

EVhT 1’(,f,7 I’ 7 1

NULL /ciil6 24 7

NblL 79d6 241

SHFil /‘c?tib 147
IA4 2554

XFT 33flM 43s

RhCH 797E 7bG

EVNH ,143 5s7

N”,L 3471: 760

NU L /‘Yld I63

SHFT 297A 760
Rhb j5UY

XSH /.3tan 439

64c.L IJ33 242

EVNT 944 2bB

kLLL Iii33 i 4 2

0 2772 522

0 2893 439

I: 2t3Cd 43Y

li 2rlZI 43 i

” 2627 46 d

” LB>6 43Y

” Jii5b *62

0 2884 43 Y

il 2 if a’+ ‘,41!

0 2’412 $3’)

0 7912 t40

i: 2941 353

0 2’141 lb 7

0 2967 439

c, L’,/+l 43 3

,, 2‘dbP 54 7

” ;9nts 247

:, ihU/ 271

. iso7 a7

0 2Yi16 247

0 /Ye6 24 7

34

34 9
I

6 3436 797 3’+53 812 3472 024 3492 ~33 3487 543 3501

I

73 6

Frame 355 Parse Output COnt-

197

NULL 1033 242

SK.0 1033 242
171 lCO9

XST 730H 439 0 1727

06GH 1727 760 0 1047

EYNH 1047 605 r) 1095

NULL 1727 760 0 1727

NULL 1727 760 0 1727

SHST 1727 760 0 271
6552 1161 860 llbb

0 1033

0 1841
101 913

242 3

130 0 10 920 131 875 131 090 141 905 150 919 161 933 161 913
192 925 207

76G 0

005 0

720 c 71 7

760 ”

760 0

878 0 Y 1124 799 1128 814 1141 RZ5 1046 R32 1044 835 1140 945 1160
JO7

Frame 355 Parse Output cont.

198

REFERENCES

All GSG memos (marked with an asterisk below) are internal working

papers of the Graphics Study Group at the Stanford Li.near Accelerator

Center, and may be obtained from their respective authors at the follow-

ing address:

Stanford Linear Accelerator Center
P. 0. Box 4349
Stanford, California 94305

Adler, B., Fernbach, S., and Rotenberg, M. [1966]. Methods in Computa-
tional Physics, Alt, F. (Ed.). Volume 5, Academic Press, New York.

Alt, F. [19621. Digital pattern recognition by moments. J. ACM 9, 2
(April), 240-258.

Anderson, R. C19671. Syntax-directed recognition of hand-printed two-
dimensional mathematics. Proceedings of the ACM Symposium on
Interactive Systems for Experimental Applied Mathematics (to be
published).

Barber, W., Gittelman, B., O'Neill, G., and Richter, B. [1966l. Test of
quantum electrodynamics by electron-electron scattering. Physical
Review Letters 1.6, 24 (June), 1127-1130.

Barber, W.,Richter B., Gittelman, B., and O'Neill, G. [19651. Wide angle
electron-electron scattering on the Princeton-Stanford storage
rings. SLAC-DOC-73, Stanford Linear Accelerator Center, Stanford,
California, (September). Also presented at Oxford International
Conference on Elementary Particles.

BCS [19671. Character Recognition, British Computer Society, London.

Bledsoe, W., and Browning, J. [1959]. Pattern recognition and reading
by machine. Proceedings of The 1959 Eastern Joint Computer Conference,
225-232.

B'dhm, C., and Jacopini, G. [1966l. Flow diagrams, Turing machines, and
languages with only two formation rules. Comm. ACM 9, 5 (May),
366-371.

Bomba, J. [l9591. Alpha-numeric character recognition using local
operations. Proceedings of The 1959 Eastern Joint Computer
Conference, (December), 218-224.

199

Breeding, K. [19651. Grammar for a pattern description language. Report
No. 177, Department of Computer Science, University of Illinois (May)
(M.S. thesis).

*Brown, J. [19671. Preliminary study of calibration stability of
"Hummingbird" film digitizer. GSG Memo 5, Computation Group,
Stanford Linear Accelerator Center, Stanford, California (April).

Brown, J. F19671. Private communication.

Carlbom, J. [19671. An algorithm for transferring a PDL expression into
a primitive connection matrix. Computation Group, Stanford Linear
Accelerator Center, Stanford, California (unpublished).

Cheatham, T., and Sattley, K. [l9641. Syntax directed compiling.
[Spartan
Books, Inc., Washington, D. C., 31-57*

Chomsky, N. [19571. Syntactic Structures. Mouton and Co., London.

Chomsky, N. [19591. On certain formal properties of grammars.
Information and Control 2, 137-16~~

Chomsky, N. [19653.
Cambridge.

Aspects of the Theory of Syntax. M.I.T. Press,

Chow, C. [19571. An optimum character recognition system using decision
functions. IRE TYansactions on Electronic Computers EC-6, 4
(December), 247-254.

Clark, R. and Miller, W. [1966l. Computer based data analysis systems
at -4i-gonne. In Adler et al. [1966], 47-98.

Clowes, M. [1967al. Perception, picture processing and computers.
Machine Collins, N., and Michie, D. (Ed.), Oliver
and Boyd, London, 181-197.

Clowes, M. [1967b]. A generative picture grammar. Seminar paper no. 6,
Computing Research Section, Commonwealth Scientific and Industrial
Research Organization, Australia (April).

Dickens, C. [1967aJ. Systems for the Hummingbird at SLAC. Proceedings
of
Devices, Powell, B. W., and Seyboth, P. (Ed.), Max Planck Institut
fur Physik und Astrophysik, Munich {January), 62-72. Also published
as SLAC-PUB-255, Stanford Linear Accelerator Center, Stanford,
California.

Dickens, C. [19967b]. Private communication.

Dinneen, G. [l9551. Programming pattern recognition. Proceedings of the
1955 Western Joint Computer Conference, Institute of ,Radio Engineers,
94-100.

Eden, M. [1961l. On the formalization of handwriting. Proceedings of
Symposia in Applied Mathematics, American Mathematical Society 12,
83-88.

Eden, M. [1962l. Handwriting and pattern recognition. IRE Transactions
on Information Theory IT-a, 2, 160-166.

Feder, J. [1966l. The linguistic approach to pattern analysis--a liter-
ature survey. Technical Report 400-133, Department of Electrical
Engineering, New York University (February).

Feigenbaum, E., and Feldman, J. (Ed.)[19631. Computers and Thought.
McGraw-Hill, New York.

Feldman, J. [19661. A formal semantics for computer languages and its
application in a compiler-compiler. Comm. ACM 9, 1 (January), 3-9*

Feldman, J., and Gries, D. [19671. Translator writing systems. Report
No. CS 69, Computer Science Department, Stanford University (June).

Floyd, R. [19641. The syntax of programming languages--a survey. IEEE
Transactions on Electronic Computers EC-13, 4 (August), 346-353.

Ford, K. [19631. The World of Elementary Particles. Blaisdell Publish-
ing Company, New York.

Freeman, H. [19611. On the encoding of arbitrary geometric configurations.
IRE Transactions on Electronic Computers EC-lo, 2 (June), 260-268.

*George, J. 119671. Picture Generation based on the picture calculus. GSG
Memo 50, Computation Group, Stanford Linear Accelerator Center,
Stanford, California (December).

Ginsburg, S. [19661. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, New York.

Gittelman, B. [19671. Scanning instructions for the colliding beam film.
Stanford Linear Accelerator Center, Stanford, California (unpublished).

Grimsdale, R., Sumner, F., Tunis, C., and Kilburn, T. [19583. A system
for the automatic recognition of patterns. Paper No. 2792 M, The
Institution of Electrical Engineering (December), 210-221.

Guzman, A. [19671. Some aspects of pattern recognition by computer.
MAC-TR-37, Project MAC, Massachusetts Institute of Technology,
(February) (M.S. thesis).

Hu, M. [19621. Visual pattern recognition by moment invariants. IEEE
Transactions on Information Theory 8, 2 (February) 179-187.

IBM 119651. IBM operating system/360 concepts and facilities. Form
C28-6535-0, IBM Corporation, White Plains, New York.

201

IBM [lg661. IBM system/j60 FORTRAN IV language, Form C28-6514-4, IBM
Corporation, White Plains, New York.

IBM [lg671. IBM system/360 system summary. Form ~22-6810-8, IBM Corpora-
tion, White Plains, New York.

Irons, E. L19.9611. A syntax directed compiler for ALGOL 60. Comm. ACM
4, 1 (January), 51-55.

Kirsch, R. [1964]. Computer interpretation of English text and picture
patterns.IEEE Transactions on Electronic Computers X-13, 4
(August), 363-376.

Knuth, D. [19631. Computer-drawn flowcharts. Comm. ACM 6, 9 (September),
555-563.

Kuhn, T. S. [1962]. The Structure of Scientific Revolutions. The
University of Chicago Press, Chicago.

Leavenworth, B. [1964]. FORTRAN IV as a syntax language. Comm. ACM 7, 2
(February), 72-80.

Ledley, R. [1962]. Programming and Utilizing Digital Computers. McGraw-
Hill, New York, Chapter 8.

Ledley, R., Rotolo, L., Golab, T., Jacobsen, J., Ginsberg, M., and
Wilson, J. [19653. FIDAC: film input to digital automatic computer
and associated syntax-directed pattern recognition programming
system. In Tippett et al. [19651, Chapter 33.

Lipkin, L., Watt, W., and Kirsch, R. L-661. The analysis, synthesis,
and description of biological images. Annals of the New York
Academy of Sciences 128, 3 (January), 984-1012.

Marill, T., and Green, D. M. [196ol. Statistical recognition functions and
thedesign of pattern recognizers. IRE Transactions on Electronic Compu-
ters. EC-9, 4 (December), 472-477.

Marill, T., Hartley, A., Evans, T., Bloom, B., Park, 3., Hart, T., and
Dailey, D. [19631. CYCLOPS-l: a second-generation recognition
system. Proceedings of the Fall Joint Computer Conference, Spartan
Books, Washington, D. C., 27-33.

Marr, R., and Rabinowitz, G. [1966]. A software approach to the automatic
scanning of digitized bubble chamber photographs. In Adler et al.
[1966l, 213-258.

McCarthy, J0 [19633. A basis for a mathematical theory of computation.
Computer Programming and Formal Systems, Braffort, P. and
Hirschberg, D. (Ed.), North-Holland Publishing Company, Amsterdam,
33-70.

202

*McGee, W. [19661. A simple moment invariant. GSG Memo 8, Computation
Group, Stanford Linear Accelerator Center, Stanford, California
(June).

*Miller, W. [19661. Globs--soft and hard. GSG Memo 6, Computation Group,
Stanford Linear Accelerator Center, Stanford, California (April).

Miller, W. [1967b]. Private communication,

*Miller, W. and Shaw, A. [1967a]. A picture calculus. GSG Memo 40,
Computation Group, Stanford Linear Accelerator Center, Stanford,
California (June).

Miller, W. and Shaw, A. [1967b]. A picture calculus. Emerging Concepts
in Graphics, University of Illinois (November) (to be published).

Miller, W. and Van der Lans, J. [19671. System design for CRT film
scanning and measuring. SLAC-PUB-300, Stanford Linear Accelerator
Center, Stanford, California (April). Also presented at the Eighth
National Symposium of the Society for Information Display.

Minsky, M. [1961]. A selected descriptor-index bibliography to the lit-
erature on artificial intelligence, IRE Transactions on Human
Factors in Electronics (March), 30-55. Also in Feigenbaum and
Feldman [19631.

Moorhead, W., and Powell, B. (Ed.) [1$1653~ Programming for Flying Spot
Devices. European Organization for Nuclear Research, CERN 65-11,
Geneva (March).

Narasimhan, R. [l962]. A linguistic approach to pattern recognition.
Report No. 21, Digital Computer Laboratory, University of Illinois
(July) 0

Narasimhan, R. [1963al. A programming system for scanning digitized
bubble-chamber negatives, Report No. 139, Digital Computer Labora-
tory, University of Illinois (June).

Narasimhan, R, [1963b]. Syntactic descriptions of pictures and gestalt
phenomena of visual perception. Report No. 142, Digital Computer
Laboratory, University of Illinois (July).

Narasimhan, R. [1964]. Labeling schemata and syntactic description of
pictures, Information and Control 7, 151-179*

Narasimhan, R. [1966l. Syntax-directed interpretation of classes of
pictures. Comm. ACM 9, 3 (March), 166-1730

Naur, P. (Ed.) [19631. Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6, 1 (January), l-17"

Nilsson, N. [1965]. Learning Machines. McGraw-Hill,, New York.

203

Noyelle, Y. [19671* Implementation on the PDL-1 of a subset of the
picture calculus. Term project for CS 260, Computer Science
Department, Stanford University (Spring Quarter) (unpublished).

Pless, J., Rosenson, L., Bastien, P., Wadsworth, B.9 Watts, T., Yamamoto,
R ', Alston, M,, Rosenfeld, A., Solmitz, F,, and Taft, H. [1965].
A precision encoding and pattern recognition system (PEPR). Paper
submitted to the 1964 International Conference on High Energy Physics
at Dubna.

Randall, B., and Russell, L. [19641. ALGOL 60 Implementation. Academic
Press, London.

Reynolds, J. C19651. An introduction to the COGENT programming system,
Proceedings of the 20th National ACM Conference, 422-436.

Roberts, L. G. [1963J. Machine perception of three-dimensional solids.
Technical Report No. 315> Lincoln Laboratory, Massachusetts Institute
of Technology (May).

Rosen, C,, and Nilsson, Jo (Ed.) [1966l. Application of intelligent
automata to reconnaissance. AF 30(602)-4147, Stanford Research
Institute, Menlo Park, California (November).

Rosenfeld, A. and Pfaltz, J. L1966l. Sequential operations in digital
picture processing. J. ACM 1.3, 4 (October), 471-494.

Sebestyen, G. [1962l. Decision-Making Processes in Pattern Recognition.
The Macmillan Company, New York,

Selfridge, 0. G. [1955l. Pattern recognition and modern computers.
Proceedings of the 1-955 Western Joint Computer Conference, Institute
of Radio Engineers, 91-93-

*Shaw, A. C. [i966al. Pattern recognition bibliography. GSG Memo 4,
Computation Group, Stanford Linear Accelerator Center, Stanford,
California (January).

Shaw, A. C. [1966bI. Lectures notes on a course in systems programming.
Report No. CS 52, Computer Science Department, Stanford University
(December).

VShaw, A.C. C1967al. A proposed language for the formal description of
pictures. GSG Memo 28, Computation Group, Stanford Linear
Accelerator Center, Stanford, California (February).

*Shaw, A. C. [1967bI. A picture calculus--further definitions and some
basic theorems. GSG Memo 46, Computation Group, Stanford Linear
Accelerator Center, Stanford, California (June).

Sherman, H. 119591. A quasi-topological method for machine recognition
of line patterns. Proceedings of the International Conference on
Information Processing, UNESCO, Paris, 232-238.

204

Sherman, P. [1966]. FLCWTRACE, a computer program for flowcharting
programs. Comm. ACM 9, 12 (December), 845-854.

Shutt, R. (Ed.) [19671. Bubble and Spark Chambers. Volume II, Academic
Press, New York.

Sussenguth, E. H. [l9641. Structure matching in information processing.
Ph.D. thesis, Harvard.

Sutherland, W. [19661. On-line graphical specification of computer
procedures. Technical Report 405, Lincoln Labcratory, Massachusetts
Institute of Technology (May).

Tippet, J., Berkowitz, D., Clapp, L., Koester, C., and Vanderburgh, Jr.,
A. (Ed.) [1965]. Optical and Electra-Optical Information Processing.
M.I.T. Press, Cambridge, Massachusetts.

Uhr, L. and Vossler, C. [19631. A pattern-recognition program that
generates, evaluates, and adjusts its own operators. In Feigenbaum
and Feldman [1963], 251-268.

Unger, S. H. [19591. Pattern detection and recognition. Proceedings
of the IRE 46, 10, 1744-1750.

Van der Lans, J. [1967]. Hummingbird, automatic film digitizers at the
Stanford Linear Accelerator Center. Proceedings of the 1967 Inter-
national Conference on Programming for Flying Spot Devices, Powell,
B. W. and Seyboth, P. (Ed.), Max Planck Institut f& physik und
Astrophysik, Munich (January), 51-61. Also published as SLAC-PUB-251,
Stanford Linear Accelerator Center, Stanford, California.

Warshall, S. [19611. A syntax directed generator. Proceedings of the
AFIPS Eastern Joint Computer Conference, The Macmillan Company,
New York, 295305.

Zahn, C. C1966l. Two-dimensional pattern description and recognition
via curvaturepoints. SLAC Report No. 70, Stanford Linear Accelerator
Center, Stanford, California (December).

205

	slac-r-084a.pdf
	slac-r-084b.pdf
	slac-r-084c.pdf
	slac-r-084d.pdf
	slac-r-084e.pdf

