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CHAPTER1 

INTRODUCTION 

This thesis is concerned with the analysis and generation of pictures 

by computer. The name ftpicture processing" will be used to describe this 

subject area. While there is occasional reference to generation, the main 

emphasis is on the more difficult problem of analysis. The latter has 

been traditionally called pattern recognition or classification; here, 

analysis is interpreted more generally to mean the derivation of picture 

descriptions. 

A distinction between "natural" and "artificial" pictures can be 

made analogous to that between natural and artificial languages. Arti- 

ficial languages and subsets of natural languages can be effectively 

analyzed using formal methods for expressing and dealing with syntax 

and semantics. A similar approach has been developed here for the 

analysis of suitably restricted classes of pictures. Any picture whose 

component connectivity can be meaningfully described by a graph is a 

candidate for the system. This will be the operational definition of 

an artificial picture. 

Despite the introduction of a modest amount of theoretical material, 

the results of this thesis are essentially pragmatic. The direct appli- 

cability of this approach to real picture processing problems is demon- 

strated. In most cases, the discussion assumes tha; the pictures have 

been converted to machine-readable form by digitization hardware. 



1.1 HISTORY OF PROJEET AND CONTRIBUTIONS 

This research was started seriously during the spring of 1966. The 

advantages of representing pictures by graphs and using graph properties 

as an aid to their analysis were demonstrated by Clark and Miller [1966] 

in their particle physics film recognition system; a subsequent suggestion 

by Professor Miller that the model of graph theory might prove generally 

useful in picture processing was the original inspiration of this research. 

The developments were further influenced by the work of Narasimhan [1962- 

19661 in suggesting and applying linguistic methods for picture analysis 

and generation, and that of Kirsch Cl9641 in defining a number of out- 

standing problems resulting from a language interpretation of pictures.. 

Finally, the complexity of present systems and the author's early painful 

experiences in programming some picture manipulation routines confirmed 

the need for "a better way". 

A general picture processing model was first postulated; the basic 

requirement within this model was a formal picture description scheme. 

To this end, the PDL picture description language was conceived, developed, 

and applied during the fall of 1966 and winter of 1967 (Shaw [1967aJ); at 

the same time, the ideas and algorithms for parsing (analyzing) pictures 

were worked out. Research into methods for recognition of specific 

classes of elementary picture components continued in parallel with the 

above. An implementation of an analysis system was completed in the 

spring and the latter was applied to some spark chamber photographs 

during the summer of 1967. Concurrently, preliminary work was begun on 

the development of an interactive generation system based on the PDL 
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language (Noyelle [1967], George [1967]). The PDL language was found to 

be particularly well-suited as the notation for a "picture calculus"; the 

foundations of this calculus were laid in reports by Miller and Shaw 

[@@a, b], and some basic theorems were derived in Shaw [1967b10 

The original work and contributions of the author include: 

1. a simple and general picture processing model, 

2. a formal picture description scheme which allows the description 

of a large class of pictures in terms of their primitive elements, 

the relationships among primitives, and the meaningful structures 

formed by sets of primitives, and 

3. the concept and development of picture parsing--the description- 

directed analysis of pictures. 

In addition, an implementation and analysis has demonstrated the validity 

of this approach; a simple recognizer for a variety of line-like elements 

was developed for the application. In contrast to other methods, this 

approach offers the advantages of simplicity and generality for both 

description and analysis. 

1,2 ORGANIZATION 

The thesis is organized in a "top-down" manner, proceeding roughly 

from the general to the specific. The second chapter motivates and 

describes the picture processing model; related work is surveyed within 

this model. The details of the picture description scheme are presented 

in Chapter 3, including some of its formal properties. The following 

chapter illustrates its descriptive power and limitations by means of a 

series of picture description examples. Chapter 5 describes the 
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rationale and algorithms for a goal-oriented picture parser; the imple- 

mented system is presented. The next chapter is devoted to the construc- 

tion of primitive recognizers or pattern recognition routines for blobs, 

line segments, and blank primitives. The implemented system is applied 

to the analysis of spark chamber film and the results are given in 

Chapter 7. The final chapter lists a number of open problems and 

summarizes the major advantages of this approach. 

Algorithms and the meaning of some constructs are conveniently 

defined by recursive functions consisting of conditional forms and 

ALGOL-like statements, with symbol lists as data and arguments. 
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CHAPTER 2 

A LINGUISTIC MODEL FOR PICTURE PROCESSING 

The term "mode1" denotes the general framework or "paradigm" (Kuhn 

[1962]) within which workers pose and solve problems. Until recently, 

most theoretical work in pattern recognition has, either implicitly or 

explicitly, been based on the receptor/categorizer model (RCM) of Marill 

and Green [196ol. While many useful and interesting results have been 

produced, this model, nevertheless, has some very serious limitations 

which are discussed in the next section. 

2.1 THE RECEPIOR/CATEGORIZER MODEL 

The analysis of pictures or pattern recognition proceeds as follows: 

A picture is first reduced to a "feature" set by the receptor; this is a 

set of quantities which may represent anything from the raw digitized 

values (or analog signal) at one extreme to the results of a complex 

feature extraction process on the other. The feature set is then 

assigned to one of a finite number of classes or patterns by the cate- 

gorizer. The assignment is the recognized pattern class to which the 

picture supposedly belongs. It is often convenient to add a "rejectll 

class; when the input cannot be assigned to a known pattern, the cate- 

gorizer puts it in the reject class. 

There has been a tremendous quantity of research accomplished 

within this model (see the large pattern recognition bibliographies of 

Minsky [1961] and Shaw [ 1966al). Receptor work has included the 
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development and application of techniques for: 

1. noise reduction (preprocessing) such as smoothing (Unger [1959]) 

and local averaging (Selfridge [ 1955]), 

2. extraction of global features, such as moments (Alt [ 19621, Hu 

[1962]) and n-tuples (Bledsoe and Browning [1959]), 

3. topological feature extraction (Sherman [ 195’31, Rosenfeld and 

Rfaltz [1966l), 

4. curvature point characterization (Zahn [1967], Freeman [1961], 

and 

5. combining features into complex features (Uhr and Vossler [1963]). 

Most of the theory has dealt with the problem of categorization or 

classification. The principal technique is to treat the feature or 

measurement set as a point in a multidimensional space; the task of the 

categorizer then becomes one of partitioning the space so that measure- 

ments from pictures belonging to the same pattern class are 'close" 

(according to some metric) and measurements from pictures of different 

classes are far apart. The use and limitations of partitioning by 

hyperplanes or linear discriminants has been exhaustively treated; 

some non-linear discriminants, for example, polynomials have also been 

studied (Sebestyen [1962l). When information about the probability 

distributions of the measurements in each class is available, methods 

of statistical decision theory can be employed to partition the space 

(Chow [19571). Machine learning has been investigated in both the 

receptor and categorizer stage; in the former, measurements and weights 

on measurements have been learned successfully in some situations (Uhr 

and Vossler [1963]); in the latter, the use of adaptLve systems for 
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partitioning the space and for learning probabilities has received much 

attention (Nilsson [1965]). 

The RCM is the basis for many recognition systems, notably in 

character recognition (BCS [1967]). The model fails to be useful when 

analyzing complex pictures where the structure and interrelationships 

among the picture components are the important factors. To illustrate 

this point in a simple setting, consider the one-dimensional pattern 

recognition task required of a programming language translator, for 

example, an ALGOL 60 compiler (Randall and Russell [ 19641, Shaw [ 1966b]). 

One general purpose of the syntax analysis phase of the compiler is to 

categorize an input program into one of two mutually exclusive classes 

--the class of syntactically correct programs and its complement. 

Theoretically, one could envision a receptor which produces a feature 

vector from an input program; the categorizer then would determine in 

which of the two possible subspaces the feature vector lies. While 

this could be done in principle, it is never considered seriously because 

of the complexities involved; for example, what is the feature set for 

a program? Even if this approach were practically feasible for program 

classification, it would not produce the most important byproduct of a 

successful analysis, i.e., a description of the structure of the input 

program. Parenthetically, RCM is a recognition or analysis model and 

it is doubtful whether it would be of any value in picture generation. 

Richly-structured pictures that are difficult to analyze within the 

RCM include those produced by high energy particle physics reactions 

(Adler et al. [ 1966]), line drawings (Roberts [ 196.51, text (not isolated 

characters), and some biomedical pictures (Ledley et al. [1965]). What 

7 



is required in these examples is a description of the pictures in which 

the meaningful relations among their subparts are apparent. Unfortunately, 

there has been no general mechanism for either describing this type of 

picture or analyzing it; each application has required a "one-of-a-kind" 

system. In these systems, the appropriate place to apply the RCM is for 

the recognition of the basic components of the pictures. 

2.2 THE LINGUISTIC MODEL 

In a series of papers, Narasimhan [1962, 1963b, 1964, 19661 has 

forcefully stated the case for another approach to pattern recognition: 

Categorization, clearly, is only one aspect of the recognition 
problem; not the whole of it by any means. It is our conten- 
tion that the aim of any recognition procedure should not be 
merely to arrive at a 'Yes', 'No', 'Don't know' decision but 
to produce a structured description of the input picture. 
Perhaps a good part of this confusion about aims might have 
been avoided if, historically, the problem had been posed as 
not one of pattern recognition but of pattern analysis and 
description. (Narasimhan [1962]). 

This writer is in entire agreement with the above, and, in fact, was 

largely motivated by these and similar remarks to develop a linguistic 

model for picture processing. The important phrase in the above quota- 

tion is "structured description of the input picture". This thesis 

consists primarily of an interpretation of this phrase (the picture 

processing model), the ramifications of this interpretation (the PDL 

language and picture parsing) and the results of an implementation. 
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The linguistic model for picture processing is comprised of two 

parts: 

1. a general model within which pictures may 'be described (i.e., 

a meta-description formalism), and 

2. an approach to the analysis (and generation) of pictures based 

directly on their descriptions, 

The description D of a picture 0 will consist of two parts--a 

primitive or terminal symbol description T and a hierarchic description 

H; this can be written D(Q) = (T(a), H(a)) O T and H, in turn, each 

have a syntactical or structural component Ts and Hs, and a semantic 

or value component TV and Hv D I.e., 

T(a) = (Tsb), TV(d) 

H(a) = &(a), Hv(a)) . 

Ts(a) describes the elementary component classes or primitives in 

CI and their relationship to one another; TV(a) gives the values or 

meaning of the components of a . It should be noted that the primitives 

in Ts(a) denote classes; define p(Ts) as the sek of all pictures with 

primitive structure Ts . 

Example 1: 

Let 1 name the set of all straight line segments. Let c name 

the set of all circles. 1 and c are picture pr:imitives. Let 0 

denote the geometric relationship of intersection. 



Then, if a picture Q contains a line segment intersecting a circle, 

Ts(a) = J? 0 c; TV(a) could be the list (ve, v,), where vL is the 

pair of endpoint coordinates of I and vc is the center coordinates 

and radius of c . P(!. 0 c) is the set of all pictures consisting of 

a line segment intersecting a circle. 

Consider a set of rules or grammar & generating a language .C(&) 

whose "sentences" are primitive structural descriptions. Then, .& is 

said to describe the picture class pd = T~ci(b,~(Ts) . For a given 

picture Q: E Pa, Hs (a) is the ordered set of rules of & that were 

used to generate Ts(a); that is, Hs(a) is the "linguistic" structure 

or parse of Ts(a) according to .& . A one-to-one correspondence exists 

between the elements of a set of semantic or interpretation rules 8 

and the elements of & . Hvb) is defined as the result of obeying the 

corresponding semantic rule for each rule of .& used in H&a) . 

Example 2: 

Let .& be the phrase structure grammar (Chomsky [1957]): 

&' = {IX! -+ L, LC + C, LC - L 0 C, L + i, C 4 c}, where !, c, and 0 

are defined as in Example 1. Let 8 = {vLc := vL, vLC := VC, VLc := 

xsect(vL, vC), vL := vi, vC := v,}, where vi, ie{L, C, LC], is the 

value of the corresponding grammar rule and xsect is a function that 

computes the intersection(s) of a line with a circle. Then, L(b) = 

11, CT ! @ c] and P& = 6’(i) U b(c) U i’(! 0 c) . If Ts(a) = .! (3 c 

for a given a E 63&, Hs(a) could be the simple tree: 
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Hvb) could be the list structure: 

Several features of the description model require emphasis. It is 

important to note that the grammar must be capable of generating primitive 

structural descriptions of all pictures being considered. No restrictions 

are made on the form of any of the components of D . A final point is 

the essential difference between primitive and hierarchic descriptions; 

the "meaning" of a picture is expressed by both. Thus, several grammars 

may be used to generate the same class of primitive descriptions, but 

the hierarchic description of a picture and hence its meaning may be 

different for different grammars. Even more generally, the same picture 

class may be described by totally different primitive and hierarchic 

descriptions; the intended interpretation of the picture dictates its 

description. 

With the description model, the solution to the picture analysis 

problem can now be formulated: 

1. The elementary components or primitives which may appear in a 

class of pictures are named and given a meaning. 

2. The picture class is described by a generative grammar .& and 

associated semantics 8 . 

3. A given picture a: is then analyzed by parsing it according 

to & and & to obtain its description D(a); that is, .& 

and 8 are used explicitly to direct the analysis. 
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Conversely, picture generation can be viewed as the execution of 

descriptions. 

Descriptions are then not only the desired results of an analysis, 

but they also define the algorithms that guide the recognition. The 

advantages of this approach are: 

1. It defines a general strategy for analyzing -pictures; this 

implies that a general-purpose analysis program may be written 

for a formally defined description scheme. 

2. The design of the recognizers for the primitive components of 

a picture is simplified. Each recognizer may be defined inde- 

pendently of the others and thus may include its own prepro- 

cessing. In addition, directed recognition can be done more 

easily than global searches for all primitive components. 

30 Picture processing systems based on this model can be imple- 

mented quickly and reliably. 

As the structural complexity of pictures increases, the value of this 

description and analysis model becomes greater. At the lowest level, 

a picture is described by one primitive component; this may be analyzed 

using the RCM model. Each of the elementary components of more compli- 

cated pictures can also be recognized within the RCM model, Thus, the 

RCM model is included as a part or subset of the picture processing 

model. 

Much of the power of the model lies in the flexibility in the 

hierarchic description. If the purpose of an analysis is pattern 

classification, then the classification can be inserted directly in 

I or 9 so that the resulting description explicitLy contains the 
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pattern class. S(J) could include a description of the complement of all 

well-formed pictures; in this case , pictures that cannot be properly 

classified may be described as such. 

It should be mentioned that syntax-directed translation of programming 

languages (Irons [1961l, Floyd [19641, Feldman and Gries [1967], Shaw 

[1966b]) can be interpreted as the analysis of patterns of linear strings 

and thus put within the model. In this case, the primitive description 

is obtained immediately--the input program corresponds to T and the 
S 

meaning of the basic symbols of the language to T The grammar .& v . 

is generally a BNF grammar plus some constraints on the use of identifiers; 

the semantics 8 is most often a set of code-generating rules. The 

analysis of a well-formed program yields the syntactic structure of the 

program and an equivalent program in some other language. The similarity 

of the picture processing model to that used in translator writing is no 

accident; many of the ideas and results of language theory and compiler 

construction are used in later parts of this thesis. The name "linguistic 

model" is derived in part from the above considerations (Narasimhan [1962l 

first used this name as applied to picture processing). 

The next section surveys briefly those research efforts that are 

related to this one. The model is used as a common framework for the 

discussion. The purpose of the survey is to allow later comparisons, 

to assign credit for some of the early research that has influenced the 

present work, to illustrate the generality of the model, and to enable 

the reader to put this work in its proper perspective. 



2.3 TKE LINGUISTIC APPROACH To pImum PROCESSING: A BRIEF SURVEY 

The literature survey of Feder [1966] covers the few basic develop- 

ments up to and including 1965; since then, there has been a relative 

surge of activity. 

There are several early works that explicitly utilized primitive 

descriptions. Grimsdale et. al. [ 19581 produced geometric descriptions 

of hand-drawn line figures, such as alphabetic characters; the description 

consisted of an encoded list of the picture curves, their connectivity, 

and geometric properties. Sherman [1959l reduced a hand-printed letter 

to a graph, and then built a character description out of the topological 

and geometric features of the abstracted picture. Neither Ts nor TQ 

is defined formally in the above examples; p icture analysis (recognition) 

occurs by comparing or matching picture descriptions with descriptions 

of standard patterns. Eden [1961, 19621 presented a formal system for 

describing handwriting. The primitive elements are a set of basic 

"strokes" or curves; the value of each stroke is a pcint pair (the end- 

points) and a direction. Eden gave a set of rules & for concatenating 

or collating strokes to form letters and words. The description Ts 

of a word of handwriting is then a sequence of n-tuples of strokes, 

each n-tuple representing a letter. This is one of the first works 

where the author recognizes the benefits of a generative description: 

Identification by a generative procedure leads to a clear 
definition of the set of permissible patterns. The class of 
accepted patterns is simply the set which can be generated 
by the rules operating on the primitive symbols of the 
theory. (Eden [1962l). 

Unfortunately, Eden did not report any attempts at using his scheme for 

recognition purposes--perhaps, because of the complexities of actually 

trying to recognize handwriting; however, his descriptions were used for 

generation. 114 



The pioneering work in suggesting and applying a linguistic model 

for the solution of non-trivial problems in picture processing was done 

by Narasimhan [1962, I963a, b, 1964, 19661. He first proposed a general 

linguistic approach in 1962, calling it a "linguistic model for patterns"; 

he has since applied it to the analysis of bubble chamber photographs 

using a parallel computer [1963a, 1964, 19661, and to the generation of 

"hand-printed" English characters [ 19661. Narasimhan restricts his model 

to the class of pictures containing only thin line-like elements. Ts is 

a list of the "basic sets" and their connectivity, where basic sets refer 

to neighborhoods on the picture having specified topological properties, 

for example, the neighborhood about the junction of two lines or the 

neighborhood about an endpoint of a line. Two sets are said to be 

connected if there exists a "road" or line-like element between them. 

TQ 
is the value of the sets (their topological meaning) and the geometry 

of the connecting roads. A set of rules or grammar .& then describes 

how strings of connected sets may be combined into other strings and 

phrases; phrases are of the form: (name)((vertex list)), for example, 

ST(l, 2, 3), where the (vertex list) labels those points that may be 

linked to other phrases. Finally, there are additional rules of & for 

conbining phrases into sentences. The description Hs of a picture is 

then a list of sentences. Analysis proceeds from the "bottom up", first 

labeling all points as basic sets or roads, then forming phrases, and 

last of all, sentences. Narasimhan does not define a general form for 

L and D . In the bubble chamber application, .& is implicitly defined 

in the program itself. On the other hand, the generation of English 

"hand-printed" characters is explicitly directed by a finite-state 
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generative grammar .& and an attribute list 9, the latter specifying 

some geometric properties of the characters, for example position, length, 

and thickness. The primitives are simple geometric forms, such as straight 

lines or arcs; the definition of each primitive includes a set of labeled 

vertices to which other primitives may be attached. Productions or 

rewriting rules in b are of the form: 

S(ns) + Sl - S2(nS s ; nS s; 
12 1 

nS ,), 
2 

where S 1 is a terminal symbol (primitive name) or non-terminal symbol 

(phrase name), S2 is a terminal symbol, S is a non-terminal symbol--the 

defined phrase--, nS s is a list of the nodes of concatenation between 
12 

sl and s2' nsls and ns2s define the correspondence between the nodes 

of s 1 and S 2 and those of S, and nS 
is a node list labeling the 

nodes of S . Figure 2.1 illustrates Narasimhan's rewriting rules for 

generating the letter "PI', the primitives required, and the generated 

letters. In the above implementations, all nodes of possible concatena- 

tion must appear in the description; this is cumbersome for simple pictures 

such as the English alphabet, and might be unmanageable for more complex 

pictures. The system can only describe connected pictures and some other 

mechanism is required when dealing with pictures whose subparts are not 

connected. 

ml, 2, 3) - v * d’(=, 23; 2, 3; 2jl 

r* d'(l1, 23; 2, 3; 2) 

P'PE 

Figure 2.1(a) Rewriting Rules 
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Figure 2.1(b) Primitives 

or P 
1 

3 
2 

/ 

1 

r: 2 

3 

Figure 2.1(c) P and PE 

Figure 2.1 Narasimhan's Generation of the Letter "P" 

Kirsch [lg@+], in a stimulating article, argues that the proper 

way to view picture analysis is within a linguistic framework. Follow- 

ing this line of thought, he posed several problems: How does one 

1. express picture syntax or structure, 

2. generalize the idea of concatenation to several dimensions, 

3. describe geometric relations among picture components, 

4. do syntax analysis of pictures, and 

5. define picture primitives? 

Kirsch gives a two-dimensional context-dependent grammar for 45’ right 



triangles generated in a plane divided into unit squares; this is 

suggested as an illustration of the possible form of picture grammars. 

Figure 2.2 contains a sample production and a derived triangle. Here, 

Ts is a 2-dimensional 45’ right triangle with labeled unit squares (the 

primitives); TV is the meaning of the labels. There is no semantic 

portion 3 corresponding to the grammar. As Kirsch admits, it is not 

evident how this approach may be generalized for other pictures. It 

is also a debatable point whether context-sensitive grammars are desir- 

able since the analysis would be extremely complex. Lipkin, Watt, and 

Kirsch [I9661 argue persuasively for an "iconic" (image-like) grammar to 

be used for the analysis and synthesis of biological images within a 

large interactive computer system; however, the authors state that 

'we cannot at this time show examples of any except the most primitive 

form of picture grammar." This thesis offers a solution to some of the 

picture description problems posed by Kirsch for the class of pictures 

defined in Chapter 1. 

Figure 2.2(a) Sample Production: (Y l {L, I), B E fH, W) 
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Figure 2.2(b) A Derived Triangle 

Figure 2.2 Kirsch's Right Triangle Description 

Ledley [l962] and Ledley et. al. [1965] employed a standard BNF 

grammar to define picture classes. Their published method for the 

analysis of chromosomes Cl9653 illustrates this approach. Here, Ledley's 

"syntax-directed pattern recognition" is embedded in a large picture 

processing system that searches a picture for objects, recognizes the 

primitives of an object, performs a syntax analysis of the object 

description, and finally computes further classifications and some 

statistics on all the chromosomes found. The object primitives consist 

of five types of curves from which chromosome boundaries can be generated. 

An edge-following program traces the boundary of an object in the picture 

and classifies each boundary segment into one of the primitive classes; 

since the boundary is a closed curve, a linear string or ordered list of 

its segment types is sufficient for the description T . 
S 

If Ts 

represents a chromosome, the parse H 
S 

will contain a categorization 

of it as, for example, submedian or telocentric type; otherwise the 



parse fails, indicating the original object was not a chromosome. 

Figure 2.3 contains samples from chromosome syntax, examples of the 

basic curve types, and some chromosome descriptions. Ledley's work is 

an example of a direct application of artificial language analysis 

methods to picture classification. It is difficult to generalize this 

approach to figures other than closed curves unless relational operators 

are included as part of T * 
S’ 

in the latter case, the most difficult 

task is obtaining Ts, not parsing the resulting string. 

(arm) ::= B(arm)l(arm) B 1 A 

(side) ::= B(side)l(side) B 1 B 1 D 

(submedian chromosome) ::= (arm pair)(arm pair) 

Figure 2.3(a) Sample Productions 

Figure 2.3(b) Basic Curve Types 
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BCBABDBABCBABDBA BCBABEBA 

Submedian Telocentric 

Figure 2.3(c) Chromosome Examples 

Figure 2.3 Ledley's Chromosome Description 

Clark and Miller [‘Lg66] use the language of graph theory to describe 

spark linkages and the topology of physics "events" appearing in spark 

chamber film. These descriptions are embodied in computer programs that 

apply some graph theorems to assist in the decision-making process and 

perform the film analysis. The primitive elements of the pictures are 

sparks; a multi-list structure provides the description T S 
and T of v 

the spark connectivities. Hierarchic descriptions result from combining 

sparks according to their geometric and graph properties to form tracks 

and events. While an explicit linguistic approach is not employed, the 

underlying graph model acts as a formal descripticmn language. 

Very recently, Anderson [19671 and Clowes [1967 a, b] have reported 

some interesting research on the application of li.nguistic models to 



picture processing. In Clowes [1967al, a set .& of Boolean functions 

on pictures is used to define the syntactical classes for hand-written 

numerals; the successive execution of these functions from the bottom 

up serves to analyze and describe the pictures. Another approach, 

based on Chomsky's model for natural language syntax (Chomsky [1965]) 

was proposed by Clowes [1967b]. Until more experimentation is done, it 

is not clear how useful this model will be. Anderson [19671 syntactically 

analyzes pictures after their primitive elements have been characterized 

by conventional pattern recognition techniques. The value of a primitive 

is its name and 6 positional coordinates: X min' X center' X max' Y min' 

dimensional mathematical notation. The meaning of the notation is as 

follows: 

'i : the ith element (left to right order) of the right par t of 

the syntax rule. 

Pi : a partitioning predicate that Si must satisfy. C.. is the 
iJ 

.th 
J positional coordinate of S. . 1 

R: a predicate testing the spatial relationship among success- 

fully parsed elements of the right part of the syntax rule. 

ci : the six coordinates to be assigned to the ILeft part of the 

syntax rule in a successful parse. 

M: the semantic rule indicating an action to be taken or the 

meaning to be given to the rule. 

A top-down goal-directed method is used for analysis; the basic idea is 

Y center' Y max e Each syntax rule consists of four structural parts 

(elements of b) and one semantic part (element of 3) . Figure 2.4 

contains a syntax rule used in the recognition of hand-printed two- 
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to use the syntax directly to partition the picture space into syntactical 

units. Anderson has described several non-trivial classes of pictures, 

such as hand-written two-dimensional mathematical formulas, directed 

graphs, and flow charts; but, as of this writing, has tested the analysis 

only on simulated "hand-printed" data. The set partitioning strategy is 

inherently inefficient and there remains the question of what increases 

in efficiency can be obtained by the various devices he proposes. One 

of the virtues of this model is the use of predicates which allow the 

expression of complex relations among the picture parts. 

term 

Figure 2.&(a) Graphical Form of Replacement Rule 



term- 

Sl: expression Pl: '01 > '21 and '03 < '23 Cl: c21 

and c 04 ' '26 c2: c22 

se: horizline P2: $3 c3: '23 
s3: expression P3: cO1 > c21 and co3 < '23 c4: c34 
R: @ and co6 < ~2~ c5: '25 
M: (s1)/(s3) c6: '16 

Figure 2.4(b) Tabular Form of Replacement Rule 

Figure 2.4 Example of Anderson's Syntax Rules 

Underlying a large number of description schemes is the conceptual- 

ization of a picture as a graph; in the above survey, the models of 

Narasimhan, Sherman, and Clark and Miller are clearly of this type. 

Other picture processing efforts where a graph representation has proved 

useful include Breeding [19651 and Guzman [19671. 
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CHAFTER 3 

THE PDL PICTURE DESCRIPTION SYSTEM 

3.1 PURPOSE AND REQUIREMENTS OF A PICTURE DESCRIPTION LANGUAGE 

Two general applications may be envisioned for a formal picture 

description scheme: 

1. It can be a language of discourse about pictures for humans. 

2. As part of the picture processing model outlined in Chapter 2, 

it provides the basis for analysis and generation of pictures 

by computers. 

The PDL language is the result of trying to meet the following 

requirements: 

1. The language must be capable of describing,, both to humans and 

computers, a large and interesting class of pictures. 

2. The structure (syntax) and meaning (semantics) should be con- 

tained in a picture description. 

3. The basic forms of the language should be simple and natural. 

4. Picture descriptions must be generative - that is, a reasonable 

facsimile of a picture can be generated from its description. 

50 The language should be used directly (explicitly) by comput,er 

programs to solve analysis and generation problems. 

6. There must be general algorithms for number 5 which apply to any 

picture which can be described. 

7. Descriptions should be (almost) independent of coordinate systems 

and the number of levels of digitization. 
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8. The language must apply to pictures in two or three dimensions. 

An evaluation of PDL in terms of the above requirements is given 

in the last chapter. 

3-2 PICTURE PRIMITIVES 

3.201 DEFINITION OF A PRIMITIVE 

Kirsch [I9641 suggests that the elementary or primitive components 

of a picture be defined as those patterns "which are recognizable by 

suitable character recognition equipment." The definition is slightly 

changed here: 

A picture primitive is any picture that can be recog- 

nized (generated) by established hardware and software 

techniques more conveniently than by expressing it (in PDL) 

in terms of its subparts. 

Thus, what constitutes a primitive is a matter of convenience and is 

dependent on the application and picture class. For example, in character 

recognition, the characters themselves may be primitives, or it may be 

more advantageous to consider line and curve segments as primitives and 

describe the characters in terms of these. 

It is required that a primitive have two distinguished points, a 

tail and a head. A primitive can be linked or concatenated to other 

primitives only at its tail and/or head. Because there are only two 

points of possible concatenation, a primitive can be represented as a 



labeled directed edge of a graph, pointing from its tail to its head node I 

(Figure 3.1); this will be a frequent and useful abstraction. Note that 

generally, there is no inherent direction associated with a primitive 

patternperse; the use of directed edges to represent primitives is merely I 

convenient for explaining the description scheme. 

head 

Primitive p Abstracted Primitive 

Figure 3.1 Representation of a Picture Primitive 

In many applications, the absence of a specific visible pattern 

in a particular area of a picture is a necessary part of its description. 

An example is a photograph of some high energy particle physics reactions 

(Ford [19631); the apparent stopping of a particle track and the later 

appearance of several tracks emanating from the same vertex indicates 

the presence of an unseen neutral particle (Figure 3.2). Blank (invis- 

ilbe) and "don't care" patterns connecting disjoint primitives are also 
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extremely useful for describing simple geometric relations, such as those 

between adjacent characters of a word and adjacent words in text. When 

a relationship is to be described between disjoint primitives separated 

by other patterns, the separating patterns are defined as "don't caren 

primitives. Blank and "don't care" primitives are therefore allowed. -- I 

visible track 
of charged 

particle 

Figure 3.2 An Invisible Primitive 

It is convenient to define one special primitive, the null point 

primitive A, having identical tail and head. h consists only of its 

tail and head point and will be represented as a labeled node in a graph. 

3.2.2 DESCRIPTION OF A PRIMITIVE 

A primitive is generally a member of a pattern class; the latter 

may be described by a name, a tail and head specification, and a recog- 

nition (generation) function. The syntax or structure of a primitive 
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is defined as the name of the pattern class to which it belongs; lower 

case ALGOL (identifierjs (Naur et. al. [1963]) will be used to name 

primitive pattern classes. For a primitive class x, let P(x) be 

the set of all pictures in the class named x (i.e., the class with 

syntax x); pictures, and thus members of a primitive class, will be 

designated by the first few letters of the lower case Greek alphabet. 

The value or semantics of a picture primitive CYE P(x), which is 

contained in a given picture, is defined as the list: 

value(a) = (tail(a), head( vl, v2, -.*, vn), 

where tail(a) and head are the coordinates of the tail and head 

of cy respectively and vl, v2, .O., vn are an arbitrary number of 

attributes. The recognition function for 6'(x) is assumed to yield 

the value of CY on success* 

The description D(cr) of a primitive CYE k(x) is the pair: 

D(cu! = (Ts(cr), TV(~)) = (x, value(a)), 

where T and T are defined in section 2.2 of The last chapter. 
S V 

The null point primitive A has the description: 

D(h) = (h, (tail(A), head(h))) 

Example: 

Let arc name the class of all two-dimensional pictures, 63(arc), 

consisting of an arc of a circle subtending an angle of less than 180', 

as defined by an 'arc recognizer"; the tail is the counterclockwise 

extremity of the arc and the head is its clockwise extremity. Then 
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a particular arc a E P(arc) with radius r, tail (xl, yl), and 

head (x2, y2 ) could be described: 

D(a) = (arc, ((xl, yl), (x2, y2), r)) 

3.2.3 THE PRIMITIVE CONNECTIVITY ASSUMPTION 

A picture can be represented as a directed graph, where the edges 

are the abstracted primitives labeled by their primitive class names, 

some nodes may be labeled A, and the graph connectivity mirrors the 

tail/head concatenations of the primitives. 

Definition: 

A picture is connected if upon making each edge of' its corresponding 

graph undirected, the resulting graph is connected. 

The following assumption is then made: All pictures are connected. 

That this is a reasonable assumption can be seen by considering the 

extreme case of a picture consisting of a number of disjoint, unrelated 

primitives. In this case, the geometric relation (coordinates) of each 

primitive relative to the "origin" of the picture is usually meaningful; 

the connectivity is obtained by linking the origin to each primitive by 

blank primitives (Figure 3.4); ti and hi point to the tail and head 

of primitive i in the figure. 
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I / 
I / ,‘A’ 
I / //’ 
I /,JH 
wdorigin 

t bP'tbq'tbr'tbs 

Figure 3.3(a) Labeled Picture 

Figure 3.3(b) Corresponding Graph 

Figure 3.3 An Extreme Case of a Connected Picture 
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3.3 PICTURE SYNTAX AND SEMANTICS 

3.3-l THE PDL LANGUAGE-PRIMITIVE DESCRIPTION OF A CO7WECTED PICTURE 

PDL (Picture Description Language) is a linear string language; a 

sentence S in PDL (expressed "SePDL") provides the primitive structural 

description, Ts, of a picture by naming all its primitives (their class 

names) and their tail/head connectivity. The following syntax will 

generate any sentence SePDL: 

s -+P/s~bs)/(- S)ISLI(/SL) 

SL -j sel(SLflbSL)I(- SL) / (/SL) 

@b ++IxI-I* , 

where p may be any primitive class name (including A ) and 9. is 

any label designator (represented by a lower case ALGOL (identifier) ). 

Any SEPDL will also be called a PDL expression. 

Example: 

Ts(a) = (((- c) + ((a * ((b+ai) + c-b))) + c)) 

* ((a * ((bla) + (-b'))) 

x ((((/bi) + (- c)) + ((/ai) + c)) + (-(/bJ))))) 

for the picture CY. . 

Not only primitives, but all pictures have a tail and a head; 

concatenations among pictures can occur only at their tail and head 

positions. Consider the picture a: consisting of two subpictures al 

and a2 such that "1 E p(Sl), o2 E P(S2) and Ts(a) = (Sl$JbS2), Sl, 

S2 E PDL e Then the tail and head of Q according to Ts(o) is defined: 
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tail(a) = tail (al) 

head(a) = head(a2) ~ 

In the same way as primitives, more complex pictures are often represented 

by a directed edge of a graph. The interpretation of the binary concaten- 

ation operators is given in Table 3-l; in the table, the symbol cat means 

"is concatenated onto," and t and h indicate the tail and head 

resultant picture. The meaning of the concatenation operators may 

given by definitions of P(Tsb)) ; for example: 

w$+s,)) = (a,, a21a1 E 6ys1) A a2 E WJ 

A head e tail (C!,)] 

T$) Interpretation Graph 

(sl + s*) head cat tail(a2) __ . t s1 Ah 

h 

Ml x s*) 

(sl - s2) 

tail(CXl) cat tail(U2) - 
/ 

s2 

t 
sl 

head(CX1) cat head(Q2) 

of the 

also be 

Table 301 The Binary Concatenation Operators 
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Table 3sl (continued) 

T&a) Interpretation 

(sl * s2) (tail(al) cat tail(a2)) - 

A (head cat head(a2)) 

Graph 

s2 
t a ,h 

5 

a=alUa 2 

a1 c ml) 

a2 E Ns,) 

Figure 3m4 illustrates the use of these operators for describing a line 

drawing of an "A" and an 'IF"; typical members of each primitive class 

are shown with arrows pointing from the tail to the head positions. The 

structure of an "A" is built from its description. 

The connectivity graph of a PDL expression will often be referred to; 

in this case? the notation tail(S) and head(S) is used to indicate the 

tail and head nodes of the graph of the PDL expression S e Thus S and 

each picture in P(S) has a tail and head position. tail(S) and head(S) 

will generically refer to both the pictures and the graph unless specifi- 

cally stated otherwise. 

Because of the freedom allowed in specifying primitive classes, a 

PDL expression may be undefined for some primitives. For example, if 

63(arc) is defined as in the example of section 3.2.2 and P(1) is the 



T&A 

\\dm z h ti VP 
Primitive Classes 

) = (dp+( ( \ dp+dm {*h)+dm 

Ts(F) = (vp + (h X (VP + h) ) ) t - 
t 

Figure 3.4 Primitive Structural Descriptions of an "A" and an "F" 

class of all line segments with tail and head at their endpoints, then 

the concatenation expressed by (1 * arc) can only have meaning for 

those members of 63(e) and P(arc) that are geometrically compatible; 

if 63(arc) is restricted so that any chord is less than m units in 

length and b(1) is restricted to lines of length greater than 2 X m, 

then (1 * arc) is always undefined, i.e., 6'((1 * arc)) is empty. 

This is no problem theoretically since the connectivity graph is con- 

structed by treating each primitive abstractly, regardless of whether the 

concatenations are geometrically possible. It would, however, lead to 

undefined results in generation and failures in analysis of pictures. 
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This anomaly is ignored henceforth by allowing b(Ts) to define an 

empty set of pictures for some Ts . 

The binary operators in conjunction with h are sufficient to 

describe all possible tail/head concatenations between two pictures, 

i.e., they are locally complete; Figure 3.5 enumerates and describes 

all possible local concatenations. The unary operators - and / do 

not describe concatenations, but allow the tail and head to be moved. 

A notation of description equivalence is introduced ir. order to discuss 

the unary operators, labeled expressions, and some formal properties of 

PDL, For SL, S2 E PDL: 

1. s1 is weakly equivalent to s* (sl SW Se) if there exists an 

isomorphism between the graphs of SL and S2 such that corre- ' 

sponding edges have identical names. 

2. sl is equivalent to S2 (Sl 5 S2) if 

a. s1 ', S2’ and 

b. tail(S1) = tail(S2) 

and head = head(S2) . 

The unary - operator acts as a tail/head reverser with the 

following properties: 

1. (- sl) Ew sl, SIE PDL 

2. tail((-S1)) = head and head((- Sl)) = tail(SL) . 

The purpose of PDL expressions with label designators, such as s', 

is to allow cross-reference to that expression within a description; 

with the / operator, this enables the tail and head to be arbitrarily 

located. A PDL expression S1 is equivalent to the .value of the follow- 

ing function g: 
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Concatenation C'escription 
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b 

T-T 
a 

b 

3 
a 

* 
a 

b 

0 a 

a a 

-(a + b) 

(a x b) 

(a - b) 

(a * b) 

f(a+b) * 1) 

Fig-we 3.5 Local Csmpleteness of. {t, X, -, *] 



g(S') = if primitive(S) then Se - 

else 

if s = (SlIbbS2), ,q$+, x, -> *I, 

J&g MS;) egg (s$) 

else 

if s = (p&L PI$-9 /I, 

where primitive(S) = true if (1) S is a primitive class name, or 

(2) s = s; where S 1 is a primitive class name, and false otherwise. 

Concatenated label designators are interpreted as single labels; thus 

((ai+b)j + ai)S ((ai'+,') + ai) . 

Figure 3.6 illustrates the use of label designators and the / 

operator to describe (a) a picture whose connectivity is equivalent to 

that of the complete k-node graph, and (b) a line drawing of a three- 

dimensional cube in 3-space; in the latter, the primitives are line 

segments in the X, Y, and Z directions, where the 2 direction 

points into the paper. The explanation of the / operator assumes 

that any expression Se within a PDL expression has been recursively 

transformed by the above function g into an equivalent expression so 

that only primitive.s have label designators. Then it is required that 

each primitive within the scope of a / operator, i.e., each primitive 

that is part of some (/S) within the PDL expression, have a label 

designator (this is part of the PDL syntax given earlier) and be identical 

in name and label to one and only one primitive outside the scope of a 

/ * The / is interpreted as a superposition or blanking operator. 

Each primitive within its scope is another instance of its identical 
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bj 

h 

~~(a) = (((bi + a) * (((/bi) + d) + (/bJ)):) * ((a + bj) * C)) 

Figure 3.6(a) The Complete &-Node Graph with Directed Edges 

Y 2 

I/ 
X 

Ts(& = (((x * ((yi + X) + (-Yj))) 

* (WYi) + z) + ((x * (C-y) + (,xk + Y))) 

+ (- z))) + (- (/Yj)))) 

* ((z + (/xk)) + C-z))) 

Figure 3.6(b) A 3-Dimensional Cube 

Figure 3.6 PDL Descriptions with Labels and / 
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outside primitive; the description of concatenations onto either one will 

refer to the same primitive. Thus / allows multiple descriptions of 

the same primitives and structures, effectively moving the tail or head 

to a more convenient place for further concatenations. A formal defini- 

tion of the meaning of / and label designators is given in section 3.4.2. 

It is now possible to state completely the rules for determining the 

tail and head of an expression S E PDL and of each CY. E P(S): 

primitive(S) 

else 

if s = (s,er,s,), fib d+, x, -9 *I 

else 

ifi3 

else 

if S - 

else 

if S - 

tail(S1) -4 > then 
head(S2) 

where the function g is defined earlier. 

The primitive semantic or value description Tv((") of a picture Q: 

is a list of the descriptions D(B) of those primitive pictures S con- 

tained in a which have their connectivity and class names described in 

Tsb) . 

Example: A picture a consisting of a straight line segment 

concatenated onto an endpoint of an arc might have: 
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Ts(a) = (line + arc) 

TV(a) = ((line, ((xl, yl), (x2, Y,&, d), 

( arc, ((x2, Y,), (x3, y,), r))), 

where m is the line slope and r is the radius of the arc- 

generating circle. 

One more assumption is necessary in order to cc'mplete the PDL 

description scheme. It is assumed that all pictures have a well-defined 

origin from which a PDL description 'fstartstl; that is, any PDL description 

S of a picture is interpreted as (A + S) where the tail and head of h 

is the picture origin. The origin can be any convenient point in the 

picture and is usually determined by either the digitization or the 

generation mechanism. In analysis problems, this normally means that the 

first primitive concatenated onto the origin is a b:,ank or "don't care' 

primitive whose recognition function is equivalent to a search strategy 

to find some interesting visible part of the picture. 

3.3.2 HIEPARCHIC DESCRIPTIONS 

The set of rules or grammar .& that describes (generates) the class 

of pictures 63& will be a type 2 (context-free) phrase structure grammar 

(Chomsky [19591) with the following restrictions. Each rule or production 

is of the form: 

S +pdll[pd121-----Ipdl,, n > 1, - 

where S is a non-terminal symbol and pdl. 1 is any PDL expression with 

the addition that non-terminal symbols are allowable replacements for 
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primitive class names. Sentences of .C(&) will consist of PDL expres- 

sions; thus, the class of terminal symbols of & will be a subset of 

{+t x, -7 *, --? /, (, )] U ~r~~Z~}U {desi;::;orJ . Non-terminal 

symbols are denoted by upper case ALGOL (identifiersjs . Each grammar 

1 will have one distinguished non-terminal symbol from which g(J) may 

be generated; the symbol on the left part of the first production of &' 

will be the distinguished symbol. Any sentence S E E(b) is assumed to 

have one parse; that is, b will be an unambiguous grammar. 

The hierarchic structural description Hs(a) of a picture a E P&, 

having structural description Ts(a) E s(a) is defined as the parse of 

T&a) according to k; Hs (a) is conveniently represented as a paren- 

thesis-free tree. A simple example is given in Figure 3.7. 

a: P+ AIHOIJSE 

A + (dp + (TRIANGLE + dm)) 

HOUSE + ((vm + (h + (- vm))) * TRI.ANGLE) 

TRIANGLE + ((dp + dm) * h) 

x(-8 = C(dp + (((dp + d-m) * h) + dm)), 

((m + (h + c--d)) * ((dp + dm * h))j 

d p dm 
\i 

h- - -/l 

Figure 3.7(a) J', L(b), 
and Primitives 
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T&i) = 

Hs (ai) : 

5 tr2 a3 

(cm+ (h+ ( - w))) * ((dp + dm) * h) 

i 
HOUSE 

h 

vm 

Figure 3.7(b) Examples and Parse of a "P" 

Figure 307 Structural Descriptions of a Picture 

The use of a formal grammar to describe picture classes has several 

advantages. Alternatives in a production allow the same name to be 

assigned to different structures that belong to the same pattern class. 

Large classes of similarly structured pictures can be concisely defined 

by recursive productions. For example, all tree st.ructures with "branches" 

from primitive class b can be defined by the syntax: 

TREE - bl(b + TREE) I(TREE x TREE) 
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Nodes or points in a picture may be named (and assigned properties by 3 ) 

by rules of the form: 

NODE + h 

The rationale behind the selection of context-free grammars rather than 

more complex ones is mainly one of simplicity; their form is simple, 

they can generate PDL descriptions for a large, useful, and interesting 

class of pictures, and there is a great deal of theoretical and practical 

knowledge on their use in the description and analysis of string lan- 

guages (Ginsburg [1966], Feldman and Gries [19671). 

Corresponding to each rule of .& will be a semantic rule in 8 e 

Two sets of semantic rules are postulated--a natural semantics 8, and 

an imposed semantics 8 m" The natural semantics Hv(C!) of a picture 

CI is a list containing the name, tail, and head of each non-terminal 

symbol (syntax rule) in KS(a), where the tail and head of a non-terminal 

symbol is defined as the tail and head of the PDL expression generated by 

it. Any ai, i = 1, 2, 3, in Figure 3.7 would have: 

Hv(~i) = ((P, (t, h)p), (HOUSE, (t, h)HOUSE), (TRIANGLE, (t, h)TRIANGLE) ), 

where (t, hJk is the tail and head of k . 

The purpose of an imposed semantics is to take an action and assign 

a value or set of values to a non-terminal symbol upon successful appli- 

cation of its syntax rule during a parse. This acticn might be to com- 

pute a function over the structures or picture described by the syntax 

rule or to generate code for later execution. The last case would occur 

when .& and & m were input to a compiler/compiler (Feldman [19661, 
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Reynolds [19651); the output would then be a picture processing system 

for Q * A mechanism to express elements of dm has not been developed; 

the natural semantics only is used here. 

The description scheme for pictures can now be summarized: 

The class of pictures of interest is generated by a given grammar 

.& such that 

and 

% = +(&) p(Ts) ’ 

Then, the description of D(a) of any picture Q: E 65b is 

D(a) = ((T&d, TV(d), (Hsb), f$b))), 

where T&a) E x(J), 

TV(a) is a list of the descriptions of all primitives of ~1, 

Hs (a) is the parse of Ts(ar) according to b, and 

Hvb) is the natural semantics of a . 

3.4 PDL: FORMAL PROPERTIES AND BASIC THEOREMS 

3.4.1 ALGEBRAIC PROPERTIES 

The definition and interpretation of the PDL language can be viewed 

as a picture or graph algebra over the set of primitive structural descrip- 

tions under the operations +, -, X, *, -, and I * Elements (sentences 

S E PDL) are considered equal if they are equivalent. A number of useful 

algebraic properties are given below; it is assumed that 
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s, SL, sp S3 E PDL, eb E I+, X, -7 *I, fib-* d+, X, -3 0 

1. Associativity: 

Each of the binary concatenation operators is associative. 

(a) ((Sl + Se) + S3) E (Sl + (S2 + S3)) 

(b) ((Sl X Se) X S3) s (sl x (s2 x s3)) 

Cc) ml - s*) - s3) = (sl - (s2 - s3N 

(d) ((Sl * S2) * S3) = (sl * (s2 * s3)) 

This allows the elimination of parentheses from an expression whose 

operators are identical. Thus, ((S1 + S2) + S ) can be put in the 
3 

simpler form (Sl + S2 + S3), and (S1 - S2) - S3) in the form 

(sl - s2 - s3) * 

2. Commutativity: 

(a) * is the only commutative binary operator. 

(sl * s2) = (s2 * sl) 

(b) X and - are "weakly" commutative. 

(sl x SJ ‘, (s2 x q 

(sl - Se) zw (s* - SJ 

3* The - Operator: 

- acts much like complementation in a Boolean algebra. 

(a) 
(-(sl + s2N = ((- s2) + (- sl)) 

(-(sl * s2)) = ((- s2) * (- SQ) 
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(b) - obeys a "de Morgan's law" with respect to X and - : 

(-(sl x s2)) = Cl-- s*) - (- q) 

(-(sl - s2)) 3 ((- s2) x (- sl)) 

Note that - reverses the order of the operands. The equiva- 

lences of (a) and (b) are useful for moving the - within an 

expression. 

(c) Involution: 

(-(- s)) = s 

4. The / Operator: 

(a) (/C/S)) z C/S) 

(b) (/(SlflbS2)) = ((/s; fib (/s2)) 

Cc) c/c- s)) E (-C/s)) 

5. The Null Point Primitive h: 

(a) (SObA) E (4bS) 

(b) (Sf'b-xh) = s 

(S * h) 9 S since (S * A) implies head(S) = tail(S) 

(c) (-A)?' 

(d) (A fibAh) = h 

3.4.2 THE GRAPH OF A PDL EXPRESSION 

By using some of the algebraic properties of the last section to 

move unary operators and label designators as far as possible within an 

expression, 

obtained. 

a standard form f(S) E PDL of an expression S can be 

f(S) is defined: 
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f(S) = if (S = Sl V S = (/SL) V S = (- Sl) V S = (-(/Sl))) A primitive(Sl) - 

then S 

else 

if s = (SlflbS2), #b d+, x, -9 "3, then wq plb f(S2)) 

else 

if S = St - then f(dS)) 

else 

if S = (-(Sl@S2)), # EE+, *I, then (f((-S2)) !J f((-S,))) - L 

else 

if s = (-(sl x s2)) then (f((- s2)) - f((- q)) 

else 

if S = (-(Sl - - s2)) then (f((- s2)) x f((- SL))) 

else 

if S = (/(SlfibS2)), eib Ef+, XT -Y “3, then - 

W(/sl)) fib f((/SJN 

else 

if S = (-(- Sl)) then f(Sl) - 

else 

if S = (-(/Sl)) V S = (/(- Sl)) then f((- - 

else 

if S = (/(/Sl)) then f((/Sl)) 

Example: 

((-(ai+ b)) + (/(- ai))) 

has the standard form: 

((c-b) + (- ai)) + (-(/ai))) 
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The standard form f(S) of S has the properties: 

1. f(S) = s, 

2. the operand of each / is a primitive class name, and 

3. the operand of each - is either a primitive class name or / 

followed by a primitive class name. 

The function definition is a case analysis of all possible forms of S 

as given by the PDL syntax. 

A valid PDL expression (vPDL) is one whose s-tandard form is such 

that if (/p') appears in it one or more times for some primitive p 

and label 1, then p' also appears once and only once outside the 

scope of a / . 

The graph, and therefore the primitive connectivity, described by a 

vPDL S is defined by the following algorithm: 

1. Transform S into standard form by applying the function f . 

2. Replace each expression of the form (/pL) by a new primitive 

Pi . This removes all / operators. 

3. Generate the connectivity graph of the resulting expression. 

4. Contract the tail and head nodes of each edge to the 

corresponding nodes of p' . 

5. Eliminate all edges of the form 

The above algorithm formally defines the meaning of labeled expressions 

and the / operator. A simple example is given in Figure 3.8. 

49 



( ( ( (ai + b) * (b + a) ) * c) + (/ai)) 

step 2 ( ( ( (ai + b) * (b + a) ) * c) + ai) 
/ 

C 

step 4 i 
al 

Figure 3.8 The Graph of a vPDL 

3.4.3 BASIC THEOREMS 

1. Connectivity Description 

Each step in the formation of a graph of a vPDL can always be per- 

formed and has a unique result. This leads to: 

THEOIiEM 3.1: 

Any vPDL describes a unique primitive connectivity. 

This gives the assurance that one and only one primitive connectivity 

is represented by a VPDL . 
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2. Completeness 

THEOREM 3.2: 

Any connected set of primitives can be effectively described by a 

vPDL . 

Proof: 

The proof is by induction on the number n of connected primitives. 

For n = 1, the VEIL is p, where p is the primitive class 

name. Suppose that any connected set of n primitives can be 

effectively described by a vPDL . 

Consider (n + 1) connected primitives. Select n of these that 

are connected, say pl, p2, . . . . p, . By the induction hypothesis, 

their connectivity may be described by a vPDL: 

sn = Sn(Pl' P2, * *-, P,) 

(a) The first possibility is that the (n + l)st primitive, P,+~, 

is connected by only one of its nodes to a primitive in Sn . 

Then, there must exist at least one pi, 1 < i < n, whose tail or _ _ 

head, or both are connected to P,+~ . 

The following connectivities are possible: 

(1) head to head(pn+l) 

(2) tadpi) to head(pn+l) 

(3) head to tail(pn+l) 

(4) tail(pi) to tail(pn+l) 
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Consider case (1): 

Since Pl' P*t -se, Pn are connected, a "parch", described by 

S i' can be found from head to head( such that: 

tail(Si) = head and head = head(p) . (Figure 3.9(a).) 

P n+l 

Figure 3.9(a) head(pn+L) cat head 

P n+l 

Figure 3.9(b) head(pn+l) cat head A tail(pn+l.) & head 

Figure 3.9 Theorem 3.2 

52 



The form of S i can be: 

Si = (Sil + si2 + . . . + s. In. ), 
1 

where Si j = (-pij) or S.. = p.. and pi 
1J 1J -3 siPi, P29 ***, 'nl 

j = 1, 2, . . . . ni . 

(Parentheses are omitted in S i since + is associative.) 

All the primitives in Si which are labeled in Sn are now given 

the same label in Si . Call the resulting expression i . S1 

Label uniquely all the unlabeled primitives of St ; attach the same 

labels to the corresponding primitives in Sn . Call the resulting 

expressions SLi and SLn respectively. Then the following vm)L 

describes the connectivity of the (n + 1) primitives: 

S *+I = ((SL, + (/SLi)) - Pn+l) 

The remaining cases are handled by a similar construction. 

(b) The only other possibility is that P,+~ is connected at both 

of its nodes to S n ' Therefore, there exist pi and pj, 

1 5 i, j I n, such that: 

(1) head = head(pn+L) A (head = tail(pn+l) 

v tail(pj) = head(pn+l)) 

or 

(2) head = tail(pn+l) A (head = head(pn+l) 

V tail(pj) = head(pn+l)) 
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or 

(3) tail(pi) = head(pn+l ) * (head = tail(pn+l) 

V tail(pj) = taiL(pn+l)) 

Or 

(4) tail(pi) = tail(pn+l) A (head = headI:pn+l) 

v tail(pj) = head(pn+l)) 

Consider the case: 

head = head(pn+l) A head = tail(pn+l) 

As in (a), there is a path, described by Si, from head 

to head( similarly, there is a path that can be described 

by S j from head to tail(Sn) . Si and Sj satisfy: 

head = head( tail(Si) = head 

head = tail(Sn), tail(Sj) = head . 

(See Figure3.9(b),page 52.) The same labeling as in (a) is 

done except that any primitive common to Si, S., and S is 
J n 

labeled in all three expressions. Call the resulting expressions 

SLi, SLj, and SLn . Then the connectivity of the (n+ 1) 

primitives is described by the vPDL: 

S n+l = (U/SLj) + a, + (&X * Pn+l) * 

The other cases are treated in a similar manner. Therefore, 

the case of (n + 1) connected primitives is proven. 

Q.E.D. 
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Note that, in general, more than one vPDL can be obtained to describe 

the same connectivity; for example, in part (b) of the proof, a similar 

argument would yield the vPDL: 

s;+l = ((SL, + (/S$)) * W(/SLj)) + Pn+J)) * 

Corollary 3.1 (Linear Cipher): 

Any directed graph can be described by a vPDL . 

Theorem 3.1 proves the completeness of a PDL with respect to the primitive 

structural description of any connected set of primitives. Corollary 3.1 

further suggests that graphs of various types may be represented and 

possibly manipulated within PDL. 

3. Moving the Tail and Head 

The path construction used in the proof of Theorem 3.2 can be employed 

to move the tail and/or head of a vPDL to any node(s) in the struc- 

ture. 

THEOPEM 3.3: 

Given a vPDL Sl describing a set of connected primitives whose 
2 

corresponding graph has n nodes, it is possible to derive n -1 

(and no more) other vPDL's, s*, S3' **+, Sn27 such that 

(1) si zw S. 
J 

1. 
1, j = 1, 2, . . . . n2 

ifj 

(3) Each Si, i = 2, . . . . n2, is equivalent to an expression 

having one of the forms: 
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(a) ((/Sil) + CsLl + (/‘i,))) 

(b) ((/Sil) + SLi) 

(cl ml + (/s& 

where SLl is obtained from S 1 by gi.ving the same labels to those 

primitives in Sl that appear i-n Sil and/or Sj.2 . 

Proof: 

Since there are n nodes in the graph, there are n2 different 

ways of assigning the tail and head. Therefore, given Sl with 
2 

its tail and head, there are n -1 other assignments that can be 

made. Since the primitives are connected, a path can always be 

found from the desired tail to tail(Sl) and from head to 

the desired head. Using the construction in the proof of Theorem 

3.2, expressions of the form (a) ( or (b) when the new head = head( 

or (c) when the new tail = tail(Sl)), can always be derived. Prop- 

erties (1) and (2) follow immediately. 

Theorem 3 allows one to take the origin (tail) of a picture at any 

convenient place. It also assures access to any node in the graph when 

building up descriptions. 

4. An Adequate and Independent Set of Operators 

The question naturally arises whether label designators and the / 

operator are necessary or just convenient. Theorem 3.4 proves the 

inadequacy of the system without these features. 

THEOREM 3.4: 

The operator set {+, X, *, -, -1 is not sufficient for the descrip- 

tion of any connected set of primitives. 
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Proof: 

Assume that / is not part of the PDL language. If (S,$]S,) is 

contained in a vPDL S, the nodes 

are inaccessible within S since only tail(SL) and head can 

be used for further concatenations in S (by definition); furthermore, 

the inaccessible node has at most two edges meeting at it, Consider 

a picture whose connectivity is equivalent to that of the complete 

4 node graph (Figure 3,6(a)); let each edge have the name x . Then 

any description S of this connectivity must contain a subexpression 

equivalent to (Xlflb,_*X2), where Xl = (-x) or x, X2 = (-x) or 

X7 and @ b-* EEI-, x, -3 e * is not possible since (Xl * X2) does 

not describe any subgraph of the graph; this also applies to (x1. * A) * 

Finally, if only expressions of the form (X,#,-,X) appeared, the 

equivalence (Xl$bb-xh) e Xl could be applied to obtain the above 

form. But, each node must have 3 edges meeting at it. Since the 

expression (x&,-*x2) ' eaves one node inaccessible with at most two 

edges tied onto it, S cannot describe the picture. 

Q.E.D. 

However, there does exist an adequate and independent set of operators. 

THEOPEM 3.5: 

Any vPDL is equivalent to one that uses only the operator set 

{+, -, / } . Moreover, these operators are independent. 
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Proof: 

The following equivalent expressions demonstrate the adequacy of 

E+, -* /I: 

(sl * Se) = ((St + (- SJ) + (/sf)) 

(sl x s*) z ((s; + c/c- s;m + SJ 

(sl - s2) = ((sl + (- $1) + us& 

where i does not appear as a label in Sl or S2 . + is indepen- 

dent of N and /, since it is the only concatenation operator. 

- is independent since + and / cannot be used to describe the 

connectivity: 

(a +(- b)) 

/ is independent since - and + cannot alone describe the 

connectivity: 

a 

((a + (- bi)) + (c/b? + (- c))) 

Q.E.D. 

The set {X, -, *], while unnecessary, is still very convenient, 

especially in the description of pictures with simple structure. 
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CHAPTER 4 

THE FORMAL DESCRIPTION OF SEVERAL PICTURE CLASSES 

The examples of this chapter illustrate both the power and the 

limitations of the PDL system as a formal picture description scheme. 

Comparisons with some of the work surveyed in section 2.3 are made where 

appropriate. 

Primitive classes are defined informally by a pictorial sample, a 

mnemonic name, and often a textual description, rather than by a detailed 

definition of their recognition (or generation) functions. The latter 

depends to a great extent on factors that are irrelevant at this point; 

these include the amount of noise in a particular picture, the hardware 

used for reading and displaying pictures, and the eventual purpose of the 

description. 

4.1 PARTICLE PHYSICS 

In high energy particle physics, one of the most common methods 

for obtaining the characteristics of an elementary particle is to 

analyze the trajectory "trail" left by the particle and its byproducts 

in a detector chamber, such as a bubble or spark chamber (Shutt [19671). 

Several hundred thousand photographs of these trails might be taken in 

a typical experiment. Because of the large numbers, involved and the 

accuracy and quantity of computation required for each "interesting" 

photograph, machine processing of the pictures is desirable. 

59 



Figure 4.1 contains a photograph of a typical event occurring in a 

bubble chamber. In the left central part of the picture, the following 

track configuration can be seen: 

A l-l- particle entering from the bottom interacts with a proton P 

producing two positive particles (+), two negative particles (-), 

and an unseen neutral particle (Ki) . The neutral particle later 

decays and produces the pair ll- and fl+ . 

In addition to the particle tracks, the pictures usually contain 

some identifying information (in a "data box"), such as frame number, 

view, input beam characteristics, and date,and a set of Wfiducials", 

which are marks on the chamber whose positions are precisely known. 

Fiducials allow the tracks to be reconstructed in real space. 
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Figure 4.1 Event in Bubble Chamber 

Photo By Courtesy of Dr. William Johnson, SLAC 
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Figure 4.2 gives the syntax for an abstracted particle physics pic- 

ture. A negatively charged particle TM is assumed to enter a chamber 

containing positive particles P and under the influence of a magnetic 

field; TM enters from the left. The following types of reactions are 

provided for: 

(a) Interaction with P: 

TM+ P - TM + TP 

- TM + TP + TN 

- TN 

(b) Negative Particle Decay: 

TM - TM+ TN 

(c) Neutral Particle Decay: 

TN - TM+ TP 

(d) Positive Particle Decay: 

TP - TP + TN 

TP and TN represent positively charged and neutral particles respec- 

tively. The notation used above is similar to the conventional physics 

notation. The products of the reactions can themselves undergo the same 

series of reactions; this can occur an indefinite numioer of times. The 

chamber has four fiducials ("X's) and an identification box. 

The descriptions (L(q) are ordered for left-to-right recognition 

in that the lower left-hand fiducial, FI, appears first and its center 
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is then used as the tail for the descriptions of the rest of the fiducials, 

FID, the identification box, ID, and the particle tracks PI . The 

sketches of the primitives are only representative. For example, cm 

and cp are the names of curves with negative and positive curvature 

respectively; dp is a short line segment of approximately unit slope. 

The blank and "don't care" primitives describe known and unknown dis- 

tances between visible parts of the picture. The primitives eh and ev 

would be precisely defined a priori since the fiducials are in fixed 

positions relative to each other. On the other hard, es, the starting 

primitive would be defined as a search strategy to find the lower arm of 

the left-corner fiducial. 

The use of h for the vertices of interaction, P and N, illus- 

trate the ability of PDL to deal meaningfully with points as well as 

edges. Physics pictures of this type are natural candidates for descrip- 

tion by recursive syntaxes; the recursive definitions of TM, TP, and 

TN are based on charge conservation and allow for an indefinite number 

of well-formed reactions. 

Figure 4.2(a) Sample Picture 
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bl I bo 0 CIil CP A 
+ -b 

dtn* 

- DON'T CARE 

Figure 4.2(b) Primitives I 

PICTURE + (es + (FI + (FID X (ID X PT)))) 

FI + (dp + (dm X (dp X (A - dm)))) 
FID --) ((eh + X) + ((ev + X)) - (X + eh))) 
ID --) ((eb + B) + ((ec + B) + ((ec + B) + (ec + B)))) 
PI 

X 

B 

TM 

M!? 

MD 

TP 

TN 
PD 

P 

+ (ep+TM) 

--) ((dp X dd X ((- dp) X 
-a bO/bl 

-3 (cm+ MD)I(cm+ MP)Icm 

+ (P + ((TM X TP) X TN)) 

+ (TM x TN)ITM 

+ (CP + PD)IcP 
--f (en + (N + (TM X TP))) 

--) (TP X TN)ITP 
+ A 

(A - dd)) 

I(P + (TM x TP)) 

N + A 

Figure 4.2(c) Syntax .& 

Figure 4.2 Particle Physics Example 

(P + TN) 

64 



4.2 KIRSCH'S 45’ RIGHT TRIANGLES 

Figure 4.3 contains a syntax and examples of two-dimensional 45’ 

right triangles with the same point identifications or labels as that 

given by Kirsch [lg64] (see discussion in section 2.3). The primitives 

are defined as all translations over a two-dimensional grid of the samples 

shown. Each point in a triangle is assumed to appear as an "X" on one 

raster unit (square, grid point). -- 

When a picture is represented as finite grid of points, the possi- 

ble coordinates of the tail and head of any picture (including h ) are 

restricted to the grid point coordinates. The definitions of the binary 

operators as concatenations onto means that the expression (h+ h) 

describes pictures where the coordinates of h are identical to those 

of head(a), a E p(h) (the rightmost "X" in a ); also, if D E p((h+v)), 

QI is of the form X 
xx* These interpretations are used for digitized 

pictures. 

The identification of the triangle points as interior (I), base 

(B), hypoteneuse (H), right vertical leg (L), right angle (R), 

and the vertices bounded by the hypoteneuse (V and W) is accomplished 

by the rules: 

In the examples, the subscript on each "X" indicates its label. 
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The right-triangle syntax will also generate expressions which do 

not describe any pictures; this is an example of the problem discussed 

in 3*3* DH and DI might not be the correct "length" for the * 

concatenation; if this is the case, as in 3.3, the class of pictures 

described by the particular T 
S 

is empty. 

Figure 4.3(a) Primitives 

RAT -+(((V + h) + (IRAT + (v + W))) * DH) 

IRAT + (((B + h) + (IRAT + (v + L))) * DI)I(x + R) 

DH +((d + H) + DH)ld 

DI + ((d + I)+ DI)ld 

V +A 

W +A 

R +A. 

H +A 

B -?A 

L +A 

I +A. 

Figure 4.3(b) 3: Right-Angled xriangle 
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DI - 

X 

X 

X 

xI 

X 

X 

xI 

xI 

xI 

X 

DH - 

X 

X 

X 

xH 

X 

X 

xH 

xH 

xH 

X 

IRAT 

xR 

__ 
XL 

'BXR 

RAT - 

4 
XVXR 

xw 
xHXL 

'?B'R 

sh 
xHXL 

xHXIXL 

xHXIxIXL 

x~~x~x~x~ 
t 

Figure 4.3(c) Examples 

Figure 4.3 Right-Angled 45’ Triangle of Kirsch 

4.3 SIMPLE BLOCK LETTERS AND A PAGE OF ENGLISH TEXT 

A block version of the upper case letters of the English alphabet 

is described in Figure 4.4. Parentheses, which are redundant because 

of the associativity of the operators, are omitted. The PDL expressions 

for each letter were formed so that the tail and head is located uniformly 

throughout the alphabet on the "typographic" line; pictures containing 

groups of letters and other symbols can then be characterized by PDL 
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dl: hl: * - 

h2: - 

Figure 4.4(a) Primitives 

vl: It 

v2: 
t 

R G I t h 

c 

\ 

t h 

L 
t h 

t h t h 

K \ 
t h t h 

X 
t h 

Figure 4.4(b) Examples 
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A --) (a2 + ((a2 + g2) * h2) + g2) 

B-t ((~2 + ((G + h2 + gl + (-(dl + ~1))) * h2) + gl + (-(dl + ~1))) * h2) 
C + (((- gl) + v2 + dl + hl + gl + (-vl)) x (hl + ((dl + vl) X h))) 
D + (h2 * (v3 + h2 + gl + (-(dl + ~2)))) 

E + ((~2 + ((~2 + h2) X hl)) X h2) 
F 3 ((~2 + ((~2 + h2) X hl)) X A) 

G + (((- gl) + v2 + dl + hl + gl + (- vl)) X (hl + ((dl + vl - hl) X A))) 
H+ (v2 + (v2 X (h2 + (v-2 X (- ~2))))) 

I -3 (773 x A) 

J-t ((((- 91) + ~1) X hl) + ((dl + ~3) X A)) 
K + (~2 + (~2 x a2 x g2)) 

L --3 (v3 X h2) 

M+ (~3 + g3 + a3 + (- ~3)) 
N -4 (v3 + 6@ + (v3 x A)) 
0 + (hl *((- gl) + v2 + dl + hl + gl + (-(dl + x12)))) 
P + ((~2 + ((~2 + h2 + gl + (-(dl + ~1))) * h2)) X h) 

Q + (hl * ((- gl) + v2 + dl + hl + gl + (-(al + ((- gl) X gl) + ~2)))) 
R + (v2 + (h2 * (v-2 + h2 + gl + (-(al + ~1))) + g2) 

S + ((((- gl) + vl) x hl) + ((dl+ vl + (-(gl+ hl+ gl)) 
+vl+al+hl+gl+(-vl))Xh)) 

T --) ((~3 + (hl x (- hl))) x h) 
u --) ((((- d) + ~3) X hl) + ((dl + ~3) X A)) 
v + ((- g7) X a3 X A) 
w + (((- ~5) + a3 + ~3) + (d3 X A)) 
X + (d2 + ((- g2) x a2 x g2)) 

Y + ((‘72 + ((- g2) X d-2)) X A) 

Z + ((d3 - h2)x h2) 

Figure 4.4(c) Primitive Structural Descriptions 

Figure 4.4 Simple English Block Characters 
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easily. The description could be rewritten as a grammar taking advantage 

of some of the common structures in the letters; for example, > appears 

in P, R, S, and B . The expressions in Figure 4.4 can be compared to 

the descriptions used by Narasimhan L19661 (see section 2.3) for generat- 

ing the upper case English alphabet; because only two nodes of possible 

concatenation are defined by a PDL description for each picture, it is 

not necessary to explicitly number nodes and maintain node lists. For 

a block letter P, Narasimhan's method would lead to the description: 

P +(v 0 (((h2 * g1)[21; 1; 21 

. (vl 0 dl)[22; 1; 11)[21; 1; 21 

* h2)[22; 1; l])[ll, 221 

where the primitives and node labels are: 

1 

v: 2 

1 

I 
1 

vl: 2 

h2: 'J gl: 2 

dl: 
1 
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A page of text is broken into sentences, lines, words, and charac- 

ters by the syntax of Figure 4.5. Blank primitives establish the connec- 

tivity of words on a line ( iws), characters within a word (its), and 

lines (ils) . left, right and bottom are left, right, and bottom of the 

page indicators. The PDL expressions of the last figure could be used 

for the letters generated by CHAR. This type of syntax could conceivably 

be the basis for analyzing and generating textual information. 

f 
origin 

t- 

THIS IS AN EXAMPLE OF A PAGE OF 

TEXT DESCRIBED BY THE GRAMMAR G. ALL 

LINES ARE LEFT JUSTIFIED 

AT THE MARGIN. A SENTENCE MAY START 

ANYWHEREONALINE. THEREARENO 

BLANK LINES BETWEEN LINES OF TEXT. 

G DESCRIBES A PAGE IN 

TERMS OF CHAPACTERS WORDS SENTENCES 

AND LINES. 

Figure 4.5(a) Sample Page of Text 
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left: 
t 

right: 
i 

bottom: 

------ 
margin: - - linewidth' 

I 

ils: I :4 

\ 
\ 

start: \ I \ \ . 

eh: *----- 
- 

: 
ev: 11 I I 

period: l iws : .---d its: e---a 
--+ - 

Figure 4.5(b) Primitives 

PAGE -(start + (S + EOP)) 

s + SENTI(S + SENT) 

SENT +(BEGINSEIvr + (L + (its + period))) 

BEGINSENT -+iwsl(EOL + ((linewidth + left) + (ils + margin)))jh 

L +LINEj(L X ((ils + margin) + LINE)) 

LINE +WORDI(LINE + (iws + WORD)) 

WORD +CHAR~(WORD + (its + CHAR)) 

CHAR +A/B/C . . . . . . . IYIZ 

EOP + (ev + bottom) 

EOL + (eh + right) 

Figure 4.5(c) I: Syntax For a Page of 'Text 

Figure 4.5 A Page of English Text 
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4.4 CLOSED BOUNDARIES OF FIGURES 

A description of the edge sequences comprising the boundary of a 

figure can be easily expressed by a PDL grammar. 

Example: 

BOUNDARY -t (CURVELIST * h) 

CURVELIST + CURVE/ (CURVELIST + CURVE) 

CURVE+C~ j ~2 1 e....*. cn , 

where Ecf, i = 1, n} is the set of edge or curve types that may appear 

in the figure. 

The chromosome syntax given by Ledley et. al [19651 (see section 2.3) 

could be directly rewritten as a PDL syntax by inserting + operators, 

appropriate parentheses, and the final * A; the samples of Figure 2,3 

would then be: 

(arm) -+ (B + (arm))\((arm) + B 1 A 

(side) -+ (B + (side))l((side) + B)I B I D 

(submedian chromosome) 4 (((arm pair) + (armpair)) * h) 

4.5 FLOW CHARTS 

None of the previous examples require the use of label designators 

and the I operator. Flow charts provide a good illustration of a 

practical picture class for which the set {t., -, X, *, -1 is not 

adequate. A notational convenience is introduced for the examples of 

this section: 

I 
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Consider a PDL expression with standard form, 

5 “2 
1 

s = S(P1 , P2 , * * *, rnn, Pn+l' Pn+2, a'*, Pm 3 ) 

where p 'i i ' 1 ( i 5 n are the labeled primitives of the form and pi, 

n<i<m 
Tne 

are the primitives without labels. 
Ill P*P 

Then Se 6 S(pl , P2 , 

*a", P, , Pn*l' Pn+2' "a, Pm) ; that is, the underbar on a label means 

that all primitives already labeled in the standard form of the expression, 
. . 

and only those, are given the additional label, e.g., (a1 + b)'l- s (aiJ f b) . 

This eliminates many redundant labels that would otherwise appear in the 

standard form of the PDL descriptions generated by the flow chart syntaxes. 

In a recent paper (B&m and Jacopini [1966]), Jacopini presents a 

number of "base" diagrams into which a large class of flow charts may be 

decomposed. The purpose here is not to pursue Jacopini's theoretical 

results, but to provide a structural description of this class of flow 

charts in terms of the base diagrams and their components. Figure 4.6(a) 

contains samples of the primitives. The line segments with arrow heads 

leading from enter, fn, and cond may be any sequence of concatenated 

segments thus allowing the head of these primitives to be placed anywhere 

in a picture relative to the tail. The box in fn is a functional box 

and pred represents a predicate or test. cond may be either the true 

or false branch of the predicate; the initial blank part at its tail 

carries it to one of the vertices of the diamond of pred . The primi- 

tives can be further described in PDL as concatenaticns of line segments 

and circles, cond could be given a true or a false label, and character 

strings could be defined within the boxes. 
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enter a--" 

fntWh 

cond rh 
t 

DELTA 

t h 
exit 0 

t 0 'h 

pred 

i-h 

Figure 4.6(a) Primitives 

h 

LAMBDA 

PHI 

OmGA 

, 

Figure 4.6(b) Diagrams 
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FLOWCHART 

FC 

JACOPINI 

DELTA 

PHI 

LAMBDA 

OMEGA 

OMD 

--) (enter + (FC + exit)) 

+ JACOPINI)(JACOPINI + F&) 

+ DELTAIPHIlLAMBDAIOMEGAIfnlh 

+ (pred + ((cond + F&) * (cond + FCC))) 

- (((FCE + pred) * (- cond)) + cond) 

+ (pred + ((cond + FCp) * cond)) 

--) ((((predi + cond) + (FC@- + OMD)) * A) 

X ((/predi) + (cond + hi))) 

--) hl(Pred + (( cond + (/hi)) X (cond + FC@)))l 

(OMDti + (pred + ((cond + (/hi)) X (cond + FCe)))) 

Figure 4.6(c) Flowchart Syntax 
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0 0 

---_ 
_ 

_--- 

i 

--- 

Figure 
4.6 

Jacopini 
Flow

 
C

harts 
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The base diagrams of Figure 4.6(b) are slight modifications of those 

of Jacopini; the primitives fn and h will also be considered as base 

diagrams. The hatched areas denote any base diagram or series of them. 

The syntax of Figure 4.6(c) generates descriptions of all flow - 

charts formed by the concatenation and composition of elements of 

{DELTA, PHI, LAMBDA, OMEGA, fn, h), and "0 other; enter and exit are 

included for completeness. An informal proof of this statement proceeds 

as follows: 

1. The syntaxes for DELTA, PHI, LAMBDA, and OMEGA generate 

descriptions of each of their respective base diagrams; this 

may be verified by drawing the graph of each expression by the 

methods of section 3.4.2. 

2. The recursions for each base diagram allow arbitrary composition 

of diagrams. 

3. The expressions generated by FC denote an indefinite series of 

these diagrams. 

4. With the enter and exit, 1, 2, and 3 above are the only expres- 

sions generated by FLOWCHART . 

5. The use of different label designators for FC wherever it 

appears in the syntax ensures that the labels on h and pred 

in OMEGA and OMD will be unique for each generation of the 

OMEGA diagram. For example, FC could generate: 

(JACOPINI + (JAcOPINI + (JAcOPINI + JAcomuW?fC) 

which is equivalent to: 

(JACOP~XVI + (JACOPINI~ + (JACOPINI~ + JAco~mIfCfCfc))) 
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This is illustrated in the example of Figure 4.6(d), where the 

PDL expression for the OMEGA diagram in LAMBDA contains 

A ilfc and pred ilfc , and that for the OMEGA in DELTA 

contains A idlfcfc and pred idlfcfc 

The second flow chart example shows how an algorithmic programming 

language can be defined by the syntax of its flow charts in conjunction 

with the syntax of its strings; the latter describes the allowable strings 

in the language while the former denotes flow of control. The primitives 

are identical with those of the last example. Figure 4.7(a) contains a 

partial syntax for a simple ALGOL-like language. ASSIGNMENT statements, 

BLOCKHEAD (e.g., begin(declaration list) ), BLOCKTAIL (e.g., end ), 

AE ((arithmetic expression)), BE ((Boolean expression)), and VARIABLE 

are not defined further since this would add nothing essential to the 

example. The various statement types are similar to a subset of ALGOL 60 

(Naur et. al. [1963]). GO TO statements are not included; they cannot 

be translated, from their syntax alone, into a flow chart. 

With the exception of ASSIGN, INIT, IFIC, and TEST, there is a 

one-to-one correspondence between the elements of the flow chart syntax 

of Figure 4.7(b) and the language syntax; each component of the language 

translates into a flow chart component. Examples of the flow chart 

elements are given in Figure 4.7(c); unlabeled hatched areas may contain 

any diagram generated by STMNT . The same technique as the last example 

guarantees unique labels for ASSIGN and TEST in the FOR diagram. 

Several automatic flow chart generating programs have been developed. 

Some of these require the programmer to inser; detailed flow charting 

instructions or comments in his source code, ((e.g., Knuth [1963l). 
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PROGRAM 

BLOCK 

STATEMENTLIST 

STATEMENT 

BASIC 

CONDITIONAL 

FOR 

STEPUNTIL 

WHILE 

IFTHEN 

IFTHENELSE 

PROGRAM 

BLOCK 

S 

STMNT 

BASIC 

CNDTNL 

ASSIGN 

FOR 

STEPUNTIL 

WHILE 

IFTHEN 

IFTHENELSE 

INIT 

INC 

TEST 

+ BLOCK 

+ BLOCKHEAD;STATEMENTLIST BLOCKTAIL 

* STATEMENTjSTATEMENT; STATEMENTLIST 
* BASICICONDITIONAL 
+ ASSIGNMENTIFORIBLOCK 
+ IFTHENI IFTHENELSE 
+ STEPUNTILIWHILF 

+ for VARIABLE - := AE step AE until AE do STATEMENT - - 
--) for VARIABLE := AE while BE do STATEMENT - -- 
+ if BE then BASIC - - 
-+ if BE then BASIC else STATEMENT 

Figure 4.7(a) Small Language Syntax 

+ BLOCK 

+ (entry + (S + exit)) 
+ STMNTI (STMNT + Ss) 
* BASICICNDTNL 
--f ASSIGNjFORIBLOCKk 
+ IFTHEN/ IFTHEXELSE 
-a fn 

+ STEPUNTILIWHILE 
4 (INIT + ((((TESTES + cond) + smmr~) 

* (- INc)) x ((/TEsT'~) + cond))) 
+ ((((ASSIGN + TEST)~ + cond) * (- STmT~)) 

x ((/(ASSIGN + TESI-)~) + cond)) 

+ (pred + ((cond + BASIC') * cond)) 

-j (pred + ((cond + BASIC=) * (cond + STMNT=))) 

-3 fn 

--) fn 

+ pred 

Figure 4.7(b) Small Language Flow Chart Syntax 
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t- 

_ STEFUNTIL 

WHILE 

(i) FOR 

BASIC 

IFTHEN 

(ii) CNDTNL 

ii 

BASIC 

IFTHENEISE 

i) PROGRAM or BLOCK 

Figure 4.7(c) Examples 

Figure 4.7 String and Flow Chart Syntax for 

a Small Algorithmic Language 
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Sherman [1966] describes the control syntax of a source language by a 

series of descriptors, which are then used to produce a general flow 

charting program for the language; however, Sherman is unable to handle 

languages with recursively-defined elements. The methods presented in 

the last example could serve as the basis for a general flow-charting 

program, which does not have the above restrictions. Sutherland [ 19663 

has designed and implemented a system for graphically specifying pro- 

grams (on a computer-controlled display) and executing them; he uses an 

unconventional set of primitive elements for the flow charts and the 

computations. Flow charts could be drawn, syntactically analyzed, and 

executed within the PDL system to provide a more conventional and 

natural system of this type; a suitable set of semantic rules 8 m 

would have to be designed along with the interactive components of the 

system. Finally, it might be simpler for a compiler to deal with the 

derived flow chart rather than the source prcgram for generating 

efficient code. 

It should be noted that the above applications are only educated 

predictions by this writer, since the details of such PDL flow chart 

generation and analysis systems have not been worked out. 

4.6 SOME DESCRIPTION LIMITATIONS OF THF PDL SYSTEM 

PDL is not a description panacea; the previous examples suggest 

its range of application. Further experimentation is necessary in 

order to precisely delimit the class of pictures for which useful 

descriptions may be obtained. At this stage, nevertheless, it is 

possible to enumerate some of its limitations and some possible extensions. 
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The class of PDL descriptions, X(4, that may be generated from 

a context free grammar .& is theoretically limited (Chomsky [19591, 

Ginsburg [1966l). Consider the description of an arbitrary "staircase" 
n 

of 'X"'s on a grid (Figure 4.8(a)). If the notation c a represents 
i=l 

a+a+...+a , 
. V / 

n a's 

and the primitives h and v are those of Figure 4.2, then the set 

{( f [ f h+ fvl)i~, m, _ n > 1-3, 
i=l j=l k=l 

where "['I and "1" indicate expression grouping, contains all possible 

PDL staircase descriptions (without redundant parentheses) with constant 

horizontal and vertical distances. This set, however, cannot be generated 

by a context-free grammar since this would imply that 

f((ab)mkd)n)elm, n, 1 2 13 

is a context-free language. 

Concatenation of picture elements is the only explicit relation in 

PDL. The use of blank primitives allows many simple geometric relations 

among disjoint picture elements to be expressed. There are a great many 

other relations that one might like to see directly expressible in a 

picture language. For example, 63((Sl + (b + S2)), where Sl and S2 

describe picture components and b is a blank primitive, might be the 

class of pictures such that the elements of some subset of 6'(Sl) is 

contained within those of a subset of p(S2); alternatively, one might 
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X 

X 

xxxx 

X 

xxxx 

X 

xxxx 

X 

xxxx 

X 

xxxx 

fh+ &I) 
j=l k=l 

Figure 4.8(a) Staircase of "X"'s 

X 

X 

X 

X 

xx 

X 

X 

X 

xx 

X 

X 

X 

xx 

( z1 [ glh + &I) 

Figure 4.8(b) Complex Relations Among Figures 
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Figure 4.8(c) More Than Two Concatenation Points on a Primitive 

Figure 4.8 Some Description Limitations of the PDL System 

want to say that some elements of p(S,) overlap those of p(S2), 

(Figure 4.8(b)). In either case, the intended relation is not expressible 

generally; if 63(Sl) and p(S2) are severely restricted and b defined 

appropriately, then (Sl + (b + Sg)) might be satisfactory, but the 

more complex relation is not obtious. A related difficulty is that of 

relations depending on magnifications, rotations, and other transforma- 

tions of pictures. In Figure 4.8(b), it might be desired to group the 

small triangle with the small square; if a wide range of sizes and 

rotations of these elements are possible, then a PDL description reflect- 

ing this size grouping cannot be found. 

Each primitive is restricted to only two points of possible conca- 

tenation. There are many cases where more than two concatenation points 

appear to be necessary. Some of these can be treated in a natural manner 

85 



by a judicious choice of the tail and head. In Figure 4.8(c), the circles 

C and line segments e are primitives; c has both its tail and head at 

the center of the circle. The multiple concatenation of the lines onto 

the central circle can be expressed by adjoining blank primitives b to 

each end of a line segment; then a description is: 

P *(c + ((L + c) x (L + c) x (L + c) x (L + c))) 

L-+(b+l+b) 

One possible generalization of PDL to handle the above problems can 

be suggested. A suitable extension of Anderson's predicates [1967] (see 

section 2.3) would enable complex relations among picture components to 

be described; these could be in the form of additions to each syntax rule. 

Use could be made of the preservation of the topological relations among 

picture components under a large class of transformations. For example, 

if the primitive structural description of a picture a is: 

T&a) = S(PL, p2> ..+, P,) 

TV(a) = (D(B& D(B2), . .-, D(B,), 

where 

Bi "(Pi)' i = 1, . . . . n 

and A represents a magnification or rotation transformation, then 

Tsb) = Shl, %, . a., a) 

TV(m) = (D(ABl), D(W2), a--, J&W,)), 

where 
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These suggestions are left for future work. The important points 

are: 

1. a large, interesting, and useful class of pictures can be 

described in a simple and natural manner within the PDL system, 

and 

2. the system is capable of extension without destroying its basic 

simplicity. 
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CHAPTER 5 

PICTURE PARSING 

5 .l THE ANALYSIS PROBLEM 

The basic information required for the analysis of a picture class 

is: 

(1) a grammar & defining the pictures Pa = U p(S), L(k) C PDL, - 
SEqB) 

and 

(2) a recognition function for each primitive class named in .& 0 

Then, given a set of pictures {ai/i = 1, . . . . n], the pattern recogni- 

tion task is to discover whether Q'~ E 63&, i = 1, e-e) n; a more common 

task, which is often called pattern detection, is to discover whether 

there exists a Sic cYi such that Si E 63& --that is, whether some sub- 

set of Cy i is in P I' The main purpose and important side effect, of 

a successful recognition is to exhibit the picture description D(ai) 

( or D(Si) ). The entire analysis process is directed by the PDL 

description of the picture class and will be called picture parsing. 

The primitive recognition mechanism depends on the method of repre-, 

senting pictures and the amount of pre-analysis that is done before 

parsing. Several possibilities exist: 

1. Digitized Pictures 

If the pictures are presented for parsing in "raw" or preprocessed 

digitized form, the recognition functions are picture pattern recognition 

routines , possibly based on the receptor/categorizer model. 
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2. Representation By a List of Primitives 

A list of the names and values of the primitives in a picture might 

first be obtained by some means external to the PDL parsing system. Then, 

primitive recognition during parsing occurs by searching these lists. 

3. Graph Representation 

In a similar manner as number 2 above, a picture might first be 

represented as a graph with properties associated with the edges. At 

the primitive level of the parse, graph matching routines could be used 

to find primitives. This formulation is almost equivalent to several 

graph isomorphism problems studied by Sussenguth [1964] -- Is a graph 

G isomorphic to another graph G', to a subgraph of G', to a partial 

graph of G' or to a partial subgraph of G' ? In the picture case, 

G is the graph of some member of Xc(&) and '3' is the graph of the 

picture under consideration. 

4. PDL Primitive Descriptions 

The input to the parse is a PDL primitive description, perhaps 

obtained manually or as the output of a generation procedure. Since, 

in general, many PDL descriptions are possible for the same picture, a 

string analysis based on & would often fail, even if the picture were 

in P I' However, a PDL expression can be transformed into a graph or 

a list of primitives and the recognition treated as in number 2 or 3 

above. (Carlbom [I9671 has written a program that transforms PDL 

expressions into a primitive connection matrix.) 

89 



The last three examples are variations of each other and could be 

handled by the same primitive recognition system, either graph matching 

or list searching. 

Most of the analysis superstructure will be applicable to a variety 

of picture representations. The most interes-ting, challenging, and 

practical parsing deals with the digitized picture directly; this will 

be the main emphasis. One of the major advantages of this approach to 

analysis is that the primitives in a digitized picture can be recognized 

more easily than in ad hoc methods. 

5.2 GOAL-ORIENTED PICTURE PARSING 

String language analyzers that employ the syntax explicitly are 

usually called syntax-directed (Floyd [1964], Shaw [1966bl, and Feldman 

and Gries [1967] contain surveys of typical syntax-directed compiling 

methods). Many of the same techniques are used for picture parsing. 

There are several important differences between the recognition of 

one-dimensional strings and two/three-dimensional pictures. These 

differences lead to the selection of a goal-criented analysis scheme. 

5.2.1 BOTTOM-UP AND TOP-DOWN AKALYZERS 

5.2.1.1 SYNTAX ANALYSIS OF STRING LANGUAGES 

Assume that P is the distinguished symbol of a grammar & . A 

bottom-up parse of a string s starts with s and attempts to reduce 

it to P by reverse applications of the productions of & . A top- 

down parse does the opposite; starting with P, one searches for a 
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series of productions that eventually generate s . In the first case, 

the parsing tree is built from the leaves to the root P; in the latter, 

the tree is formed successively from the root. The same tree is built 

in either case if s E X(&t) and 1 is unambiguous; Figure 5.1 illus- 

trates the tree formation for both types. Mos; syntax-directed compilers 

use a combination of these. 

G: P -) (start + TRACK) 

TRACK - beam ! (neg + PRS) 
PRS -+ (PAIR + PRS) 1 PAIR 

PAIR -+ (~0s x neg) 
F 

Partial 
Bottom-Up 
Analysis 

3 

(start + (neg + ( ( pos X neg ) + ( Pas X neg ) ) ) ) 

Partial 
Top-Down 
Analysis 

( start + ( neg + ( ( pm X neg ) + ( Pas X w ) ) ) ) 

Figure 5.1 Top-Down and Bottom-Up String Analysis 



A bottom-up scheme will read several symbols and try to reduce 

them as far as possible before continuing; when no more reductions can 

be made to a substring, the next terminal symbol is read, composed, and 

returned by an input routine, say GETNEXTSYMBOL(loc), where lot is 

an index that points to the location of the next symbol in the input 

string. The top-down method is goal-oriented or predictive in nature. 

For example, an analyzer for the grammar of Figure 5.1 would initially 

call a routine to find a P; the P routine would look for the input 

string "(start +" and then call the routine TRACK if successful; 

TRACK would first look for "beam" as the next set of input symbols; 

if "beam" was not present TRACK would then look for "(neg +" and 

call the routine PRS if successful. This process continues until 

either the P routine is successful after re.sding the entire input 

string, or P fails. At each stage, each element of the right part 

of a production becomes a goal or prediction for the analyzer. When 

a goal is a terminal symbol , the parser usually calls a logical or 

Boolean routine, say LOOKFORSYMBOL(name,loc); the routine returns 

true if the next input symbol (at lot) is equal to name, and false 

otherwise. Alternatives in productions often cause false goals to be 

generated and the analyzer must back-up and try again with another 

alternative. Both systems parse from left to right- 

5.2.1.2 SYNTAX ANALYSIS OF PICTURES 

There exist picture processing analogs of these basic language 

parsers. The "terminal" symbols of the input picture cy are just 

the picture primitives contained in cy + The entire purpose of the 
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parse is to recognize these primitives - a pattern recognition task 

analogous to the recognition of terminal symbols by the input devices 

of computers - and group them into the structures described in L4 . 

Given a grammar 0 with distinguished symbol P, a bottom-up 

analysis of o! would probably start with a small connected set of 

primitives of cy and attempt to combine them according to .& . (There 

is the problem of where to look for the first few primitives.) When a 

new primitive is required, a routine GETNEXTPRIMITIVE(loc) is called, 

where lot is a list of two or three-dimensional picture pointers; 

lot would depend on the tails and heads of the previous primitives found. 

The routine would return the description of a primitive found at some 

location of lot or an indication that no primitive was located there. 

Unfortunately, the entire pattern recognition mechanism would have to 

be incorporated at each of these calls since any primitive could be at 

lot j also, any number of primitives could appear at these locations 

and the ‘"wrong" one might be found. Searching for blank primitives in 

such a system would be almost impossible. The grammar could be used to 

produce a reduced list of possible primitives at each point; however, 

this would result in a goal-directed system that is much more complex 

than the pure one discussed next. For these reasons, this approach 

was not taken. (The above arguments are not quite as significant if 

the primitives were recognized before-hand as in possibilities 2, 3, 

or 4 of section 5.1; however, this would be pushing the most difficult 

problem outside of the parsing system.) 

A pure top-down or goal-oriented analyzer starts with P and 

attempts to generate from left to right, a sentence S E S(%) such 
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that S = Ts(cu) . When the goal is a primitive class name, the routine 

LOOKFORPRIMITIVE(name,loc) is called, where lot specifies the coor- 

dinates of the tail, head, or both of name, depending on the concatena- 

tions expressed in the production containing or leading to name; 

LOOKFORPRIMITIVE in turn calls one pattern recognition routine whose 

sole purpose is to determine whether a member of P(name) is located 

at lot in the picture. If the recognition is successful, the value 

of the primitive is returned. 

Explicit top-down analyzers for the syntax of Figure 5.1 illustrate 

the approach; the method for string analysis .is essentially that of 

Leavenworth [19641. The propositional connectives A ("and") and 

V ("or") are to be interpreted from left-to-right in the McCarthy sense 

(McCarthy [19631); i.e. A A B means if A then B else false and - - -- 

A V B means if A then true else B . - --- 

1. Top-Down String Parser for & of Figure 5.1 

Boolean Procedure P; 

P := Lfs('(') A Lfs('start') A Lfs('+') A TRACK A Lfs(')'); 

Boolean Procedure TRACK; 

TRACK := Lfs('beam') V (Lfs('(') A Lfs('neg') A Lfs('+') A PRS A 

i-C')')); 

Boolean Procedure PRS; 

PRS := (Lfs('(') A PAIR A Lfs('+') A PRS A Lfs(')')) V PAIR; 



Boolean Procedure PAIR; 

PAIR := Lfs('(') A Lfs('pos') A Lfs('X') A Lfs('neg') A Lfs(')'); 

Lfs(name) returns true if the next symbol in the output string is name, 

and false otherwise. The string pointer and its administation is omitted. 

2. Top-Down Picture Parser for ,& of Figure 5.1 

Boolean Procedure P(t,h); 

P := Lfp('start',t,hs) A TP&CK(hs,h); 

Boolean Procedure TRACK(t,h); 

TRACK := Lfp('beam',t,h) V (Lfp('neg',t,hn) A PRS(hn,h)); 

Boolean Procedure PRS(t,h); 

PRS := (PAIR(t,hp) A PRS 

Boolean Procedure PAIR(t,h); 

(hp,h)) V PAIR (t,h); 

PAIR := Lfp('pos',t,hl) A Lfp('neg',t,h); 

Lfp(name,t,h), the LOOKFORPRIMITIVE procedure, calls a pattern rec- 

ognition routine to look for a member of b(name) with tail located 

at t . If successful, it returns true and sets h to the head 

coordinates of the found primitive. 

The parameter t for the routines P, TRACK, PRS, and PAIR 

is an input tail location that the goal m>ust satisfy; if the routine 

is successful, the parameter h will be set to the head of the goal 

by these procedures. The parser is executed by the call: P(w3~), 

where erg is the picture origin and R denotes undefined. This 

95 



I 

example omits several essential features that must be incorporated when 

the full PDL operator set is used in the syntax; these are included in 

the general parser. 

A pure goal-oriented parser was selected for the PDL system for 

the following reasons: 

1. The language portion of the analysis (stepping through the 

grammar &) is conceptually very simple. 

2. The syntax directly expresses the algorithm for analysis. 

3. It was conjectured (and verified later) that any inefficiencies 

due to the back-up caused by false goals would be insignificant 

compared to the primitive recognition time. Once a primitive 

is recognized, it is stored; thus, if a goal fails, its 

primitive may be used later in the analysis without re- 

recognition. 

4. Goal-oriented analysis is beneficial for primitive recognition. 

Each primitive recognizer could include its own preprocessing 

and often need not be as precise as a scheme that requires a 

search for all primitives at any point in the analysis. The 

same advantages hold over global methods that produce a list 

of all the primitives in a picture. These advantages are 

achieved because the concatenation operators in conjunction 

with the previously found primitives teli the system where to 

look for the next primitive. 

As well as the use of two or three-dimensional tail and head 

pointers, there are a number of other interesting differences between 

string and picture parsing that must be taken into account in a 

general parser: 
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1. Multiple Recognition 

Consider a picture search for primitives that satisfy the expression: 

(a+ (b Xb)) . The first element of 63(b) may be recognized twice 

unless it is eliminated from the picture after it has been found; the 

elimination procedure may be very complex when patterns overlap. 

2. Commutative Expressions 

The topological commutativity of the X and * operators can 

result in recognition problems when the initial expressions of the 

operands are identical. The expression (a + ((b + c) X b)) can be 

represented by the tree: 

C 

If the first b found is the one on the left branch of the tree, then 

the parse would try to find a c adjoined to it and fail. One solution 

is to change the strictly left-to-right recognition if a failure OCCURS 

in a commutative expression; in the above example, the search could 

back-up after the failure and try (b X (b + c)), remembering that 

the head of the expression is to be at the first b . A simpler solution, 

when this confusion is possible, is to write the syntax so that both 

expressions appear. For example: 

A - (B * C)l(C * B) 

D -) (E X F)I((F x E)' + (/((- E) f d))) 
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3. Detection 

A similar difficulty can occur in a detection problem. If the 

parse is looking for (a + a + (a x a)) in a picture whose primitives 

have the tree: 

a 

a a 

h a 
a a 

then a search that follows therightbranch of the tree will fail. Here 

an elaborate back-tracking procedure would be necessary. 

The difficulties of number 2 and number 3 are similar to those 

that occur in the graph matching (isomorphism) problems mentioned earlier; 

in general, there is no "optimum" technique to handle them. 

4. Recursion 

In string parsing, there is an identifiable beginning and end of 

the input string; the picture analogs are the origin and an empty 

picture. For real pictures, the latter is ncmt identifiable since even 

after a successful analysis, there will be much noise and extraneous 

data in a picture. Consider the syntax: 

S - al(a + S) 
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Parsing success would occur on the recognition of the first element of 

p(a) regardless of whether more a's were concatenated onto it. This 

problem disappears for simple recursions if they appear as the first 

alternative of a production. 

5- The effect of - and N 

Since the expression (A - B) can be rewritten as (A + ((- B) X A)), 

only - is considered. An appearance of N interrupts the left-to- 

right flow through the right parts of a production. For example, a 

search for a picture part satisfying (a + (- (b + c))) would require 

finding the primitive c after a is recognized; the parser could 

make the transformation (a + (- (b + c))) E (a + ((- c) + (- b))) and 

use the latter. This could be done more easily by transforming the 

grammar before starting the parse so that - only applies to primitives. 

These problems have to be treated in a completely general parser. 

For the work reported here , some are ignored and others handled by simple 

changes to the syntax; this will be noted when discussing the general 

parser and the implemented system. 

Explicit language and picture analyzers of the type illustrated 

earlier require writing a new set of procedures for each grammar. General 

language parsers that accept grammars as input and automatically produce 

the equivalent of the explicit parsing procedures have been written and 

used successfully (Irons [1961], Warshall [1961]). The same type of 

system has been developed by this writer for picture parsers. The next 

section discusses the general picture parsing algorithm on which the 

implemented system is based. 
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5.3 A GENERAL PICTURE PARSING ALGORITHM 

Each production of the grammar is assumed to have one of the forms: 

A - @lb,@ 

A - @fibC? 
A-D 

A - (/P) 

A- (UP) 

A + (- (/P)) 

where fl b E if, x, *I, A is a non-terminal symbol, B and C are 

non-terminal symbols possibly with labels, D is a non-terminal symbol 

or primitive class name (either one possibly labeled), p is a 

primitive class name with or without a label, and P is a label. This 

will be called the PDL standard form of the grammar. - 

A grammar can be put into standard form by employing the algebraic 

properties of the operators and adding productions. 

Examples: 

1. I: A --) (- B) 

B -) (c + d) 

.B sf: A -t BM 

BM- (D + C) 

D- (-d) 

c- (WC) 

where 0 sf is the standard form of & . 
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3. &: A- b + (-A))lb 

2. I: A- (b + c) - d) .b sf: A-' (B+C) 

B - (Bl + Cl) 

C - (D X L) 

D- (-d) 

Bl- b 

Cl- c 

L-1 

& sf: A + (B + C)lb 

C - (A + D)j(- b) 

DA (-b) 

B-b 

The implemented system mechanically performs these transformations for 

a subset of PDL; by maintaining appropriate pointers, a parse can be 

exhibited in terms of the original grammar. It is believed, but not 

formally verified, that a general grammar incorporating all features 

of PDL can be transformed mechanically into standard form and that the 

transformation is reversible; in this case, no generality is lost by 

solving the parsing problem for grammars in PDL standard form. 

The difficulties mentioned in the last section are handled in the 

obvious way. The primitive recognizers are assumed to eliminate a 

picture on a successful recognition so that multiple recognition is 

not possible. The problems of commutative expressions and recursion 

are resolved by suitable changes to the syntax as suggested. No pro- 

vision is made for the detection difficulty. The reversal of the left- 

to-right scan caused by the - and W operators can no longer occur 

when the grammar is in standard form. 

101 



Two additional assumptions are made for convenience: 

1. Only vPDL's are generated by & . 

2. Left-recursive productions are not allowed. This is to be 

interpreted as left recursion in the picture sense, not the 

language sense. For example, 

A -) (((A + b) + c) + d)le 

is left recursive in the picture sense since the parentheses 

are only used for grouping; this is also the case for: 

A - ((A + (A + A)) + (A + b))lc 

The last restriction is only made because left-recursive productions 

have to be treated as a special case in top-down analyzers to prevent 

the general algorithms from getting into infinite loops (Cheatham and 

Sattley Clg643); generality is maintained since these productions may 

be replaced by right-recursive ones. 

The following algorithm will perform a goal-oriented parse of a 

picture for any grammar in PDL standard form that has the above properties: 
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Boolean Procedure Parse(L, rpn, t, h); 
if rph > Numberofalternatives(L) then Parse := false - 
else 

begin 
R := Rightpart(L, rpn); 
if Prim(R) then boo1 := Lookforprimitive(R, t, h) - 
else 

if Nonterminal then boo1 := Parse(R, 1, t, h) - 
else 

begin 
boo1 := false; 
hl := hdl := if Catop(R) = I*' A h # R then h c Q; 

leftbool := Pzse(Leftop(R), 1, t, hdl); 

begin 

hdr := h; 

if Catop(R) = '+' - 
boo1 := Parse 

else 

if Catop(R) = 'X' - 

while 1 boo1 A leftbool do - 

then 

(Rightop (R), 1, hdl, hdr) 

boo1 := Parse(Rightop(R), 1, t, hdr) 

else 

if Catop(R) = '*' then - 
begin hdr := hdl; 

boo1 := Parse(Rightop(R), 1, t, hdr) end 

if boo1 then h := hdr - 
else 

begin 
hdl := hl; 

leftbool := Tryagain(Getnode(Leftop(R)), t, hdl) 

end 

end - 
end - 
Parse := if boo1 then true else Parse(L, rpn+l, t, h) - --- 

end 



The formal parameters of Parse have the meanings 

L: a non-terminal symbol with or without a label representing a 

goal. 

rpn: a right-part alternative number for the production whose left 

part is L. 

t: the coordinates of the expected tail of the goal. t will 

always be defined. 

h: either the coordinates of the expected head of the goal or 

undefined (A) . 

The auxiliary procedures called by Parse perform the following functions: 

1. Numberofalternatives(x): 

x=S or Sp where S is a non-terminal symbol. Numberof- 

alternatives returns the number of rightparts of the production 

whose left part is S . 

2. Rightpart(x, n): 

Rightpart returns the n th right part of the production whose 

left part is the non-terminal symbol S, where x=S or 

sp . If x is labeled, the same label is adjoined to the right 

part. 

3. Prim(x): 

x = y or yp . Prim returns true if y is of the form: 

p or (/p) or (-(/p)), where p is a labeled or unlabeled 

primitive class name. 
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4. Lookforprimitive(x, t, h): 

X is of the same form as the parameter of Prim. 

t is the expected tail location of x . 

h is the expected head location of x . 

Lookforprimitive calls a pattern recognition routine that attempts 

to find the primitive of x at the location defined by t and 

h. If h is undefined (n), t is the only constraint on the 

primitive; otherwise t and h must be satisfied by it. A 

successful search will return true and the head location (h) 

(if h = R at the call). If the primitive of x is labeled, 

Lookforprimitive first checks to see if it was found previously; 

if so, then a picture recognition is not necessary. A - in 

X indicates that the head of the primitive must be at t and 

(possibly) the tail of h . Lookforprimitive returns false if 

all the constraints are not met. 

5. Nonterminal( 

This procedure is true if x = S or Se where S is a non- 

terminal symbol; otherwise Nonterminal returns false. 

6. Catop(x), Leftop(x), Rightop(x): 

X is of the form (s&,s2) or (S,$,S,)', where Sl and S2 

are non-terminal symbols possibly with labels and fib E I+, XJ *) . 

Then Catop(x) = gb, Leftop(x) = Sl or St and Rightop(x) = 
P S2 or S2 . 
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7. Tryagain(goal,t,h), Getnode( 

Tryagain is called when the left operand of a binary rightpart is 

successful but the right operand fails. Tryagain attempts to 

find a picture satisfying another description generated by the 

left operand. It is implicitly assumed that at each call of 

Parse, a node is added to a parsing tree; this node or goal 

contains the parameters of Parse and is linked to its superior 

goal. The details of the tree construction appear in the listing 

of the implemented system given in the next section. 

Getnode retrieves the node constructed for the non-terminal 

symbol x . 

Tryagain(goal,t,h) examines the branch of the tree starting at 

the node designated by goal and tries to find a parse of the 

picture which (a) satisfies the tail and head constraints, t 

and h, (b) has a description generated by one of the alter- 

natives of the goal, and (c) is different from previous trials. 

Tryagain returns true if successful and false otherwise. 

If Parse is successful, it returns true and t and h will contain 

the coordinates of the tail and head of the picture; otherwise, Parse 

returns false. The first call of Parse is of the form: Parse(D,l,t,h), 

where D is the designated symbol of the grammar, t is the origin and 

h is undefined. 

The flow in the left-to-right parsing algorithm is based on a case 

analysis of the elements of the standard form. The algorithm can be 

extended to include the construction of the parsing tree and natural 
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semantics as is done in the implemented system below; then a successful 

parse of a picture cr would yield its description D(a) - 

5.4 THE IMPLEMENTED PARSER 

The primary purpose of the implementation was to investigate the 

benefits of this approach to picture processing by actually analyzing 

a non-trivial set of real pictures. For a number of reasons given in 

Chapter 7, a class of pictures produced in high energy particle physics 

was selected. These pictures - and all of the examples except the last 

of Chapter 4 - can be described in PDL using the operators f> x, and 

* alone. 

The parser has been programmed for a subset of the PDL language 

called SPDL (Simple Picture gescription Language). SPDL is restricted 

to the operator set {+, X, *} but is otherwise identical to PDL. Most 

of the discussion preceding the algorithm of the last section applies to 

the SPDL parsing system also. 

5.4.1 GENERAL DISCUSSION OF THE SPDL PARSEX 

A schematic of the system organization is shown in Figure 5.2(a). 

The SPDL syntax analyzer or parser is a general purpose program. For 

a particular application, a set of primitive recognition routines is 

added (or used from a library) and the defining picture grammar is input 

as data. The area enclosed by dotted lines in the figure is the complete 

analysis system. Two or three-dimensional pictures can be handled 

without any changes to the programs. The system was programmed entirely 
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Figure 5.2(b) General Flow Chart of Program 

Figure 5.2 The Implemented SPDL System 

108 



in FORTRAN IV (employing some library assembly language routines for the 

display) and run on an IBM 760, Model 50, with 225Q Display Unit under 

the OS/$C operating system (IBM [1966], IBM [1967], IBM [19651). 

Figure 5.2(b) contains a general flow chart of the program. The 

input productions of .& are of the form: A - (B@bC) or A 4 D, where 

A is a non-terminal symbol, D is a non-terminal symbol or primitive 

class name, fl b E c+, x> *I, and B and C may be any SPDL expression - 

composed of primitive class names and non-terminal symbols; left-recursion 

is not provided for. Symbols must be less than 5 characters in length. 

Each production is first parsed (in the language sense) for well-formed- 

ness and then converted to standard form. Internally, the grammar is 

stored as a list structure to allow access to the definitions (right 

parts) of all non-terminal symbols. Each primitive class name has a 

pattern recognition routine number which is also read with the grammar. 

The origin is a coordinate triple (x, y, z) defining the start point 

for all SPDL descriptions; z is marked as undefined for 2-dimensional 

pictures. 

The main loop successively reads and parses pictures. The picture 

input data consists of the coordinates of those parts of the picture 

whose light intensity is less than a given threshhold (the details of 

the digitization process and the picture data structures used are dis- 

cussed in Chapter 6); the input may be from cards or magnetic tape. The 

core of the system is the parser which is an iterative (non-recursive) 

version of the algorithm presented in section 5.3. Figure 5.3 contains 

the FORTRAN listing of the parse routine, PARSEP . Some of its features 

deserve mention. The parsing tree and goals are administered by means 
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Figure 5.3 The Parsing Subroutine 
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of a stack; the parsing tree and natural semantics are necessary data 

for the parse and are easily obtained from the stack. The part of the 

program that does the backtracking when a goal fails (FAILUREBACKUP 

in the listing) also stores the primitives that were found by this goal 

on a failure list. 

When a goal is a terminal symbol, PARSEP ca2s the primitive 

recognition system LFP (&ookforprimitive). LFP first searches the 

failure list to see if the primitive was found previously. If not, the 

main picture recognition routine is called; the latter is illustrated 

in the simple examples of the next section. When a primitive is found, 

its value is stored in a list and a pointer to this list is placed in 

the stack; certain classes of primitives are eliminated from the picture 

after recognition. 

On a successful parse, the program prints a stack representation of 

the parsing tree and natural semantics (the hierarchic description and 

primitive structural description), and the primitive value list (the 

primitive value description). 

The 2250 cathode-ray tube display or "scope" visually shows the 

evolution of the parse; the residue picture (the original minus the 

eliminated primitives) and an abstract version of the recognized picture 

are continuously displayed with markers pointing to the tail and head 

of the last primitive found. This proved to be extremely useful for 

evaluating the system and for debugging. 

5.4.2. SIMPLE EXAMPLES 

Two simple examples illustrate the input and output data formats, 

the parsing stack and its evolution , and the form of the call to the 

picture pattern recognition routines. 
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Example 1: Recognition of a Hand-Digitized A 

A plot of a hand-digitized "A" is shown in Figure 5.4(a). The 

digitizings were input from cards, "blown up" so they could be seen on 

the scope, and then analyzed by the SPDL system. Figure 5.4(b) contains 

the grammar for the picture class; the right parts may be punched in 

free format across a card. The primitives are STRT, DP, DM, and HP; 

DP, DM, and HP correspond to the primitives used in an earlier example 

of a PDL expression for an "A" (Figure 3.4). The Lookforprimitive routine 

(LFP) will call the primitive pattern recognition system (RECOGP) after 

searching the failure list unsuccessfully; RECOGP is listed in Figure 

5.4(c). The user inserts the particular primitive recognizers, in this 

case, STRTOl, DP02, DM03, and HPO4, into RECOGP; the number (the 

index of the computed GOTO) and primitive name associated with each 

routine is input with the grammar. STRTOl finds the blank primitive 

STRT by simply retrieving the closest point to the picture origin 

(l,l,O) ("0" for the z coordinate indicates a 2-dimensional picture). 

The remaining routines all use the general line recognizer discussed in 

the next chapter; except for a small area around their tail and head, the 

points comprising a line are eliminated after recognition. The output 

after the successful parse of the "A" is listed in Figure 5.4(d). The 

primitive value description (PRIMITIVE VALUE LIST...) contains the name, 

the tail and head coordinates of each primitive ((XT,YT,ZT),(XH,YR,ZH)), 

and any other attributes - in this case none - that were returned by the 

recognition routine. The stack is interpreted from The top down (first 

element down) as follows: 
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1. 

2. 

3. 

4. 

S is the stack index. 

If NAIG'[S] is a non-terminal symbol, line S represents the 

production named by it. The rightpart used by NAME[S] is 

Rightpart(NAME[S],ALT[S]), where Rightpart is defined in 

section 5.3. LSUC[S] points to the line of the stack defining 

the structure generated by NAME[S] . 

If NAME[S] is a primitive class name, ALT[S] points to its 

value in the VALUE LIST (the indices in the VALUE LIST are 

not shown). 

If NAME[sl is blank, then line S represents a production 

created by the program for the standard form. All of the 

created productions in SPDL are of the form: (AfibB), where 

A and B are created non-terminals. OP[S] contains fib . 

LSUC[S] and RSUC[S] point to the stack entries for the left 

and right operands respectively. 

5. The comments at the beginning of the listing of PARSEP (Figure 

5-3) explain the remainder of the entries. 

The tree of Figure 5.4(e) is easily constructed from the parsing stack. 
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Figure 5.4(a) Plot of Hand-Digitized "A" 

AA = (STRT + A) 

A = ((DP + ((DP + DM) * HP)) + DM) 

Figure 5.4(b) Syntax for A'S 



Figure 5.4(c) The Primitive ?attern Recognition System 
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PICTURE PARSE WAS SUCCESSFUL . . 

hATURAL SEMANTICS OF PICTURE 

PARSING TREE... 

S GX 

1 1 

2 5 

3 806 

4 9 

5 25 

6 21 

7 802 

8 17 

9 13 

10 802 

11 a00 

12 004 

13 dC0 

ALT SUP XSUP LSUC RSUC LOC TLPT HOPI NAME OP 

1 0 1 2 0 1 3 54 

1 1 2 3 4 1 3 54 

9 2 4********** 1 11 14 

1 2 3 5 0 1 14 54 

1 4 2 6 -13 1 14 54 

1 5 4 7 8 I 14 46 

17 4 4**++*59312 1 19 22 

1 b 3 9 12 1 22 46 

1 8 4 10 11 1 22 30 

25 9 4t****++**a 1 27 30 

ss 9 Zj**++*+**** 1 35 38 

41 8 34+****+*** 3 43 46 

49 5 3+**a*a*+++ 1 51 54 

AA 

+ 

STRT 

A 

+ 

+ 

OP 

* 

+ 

OP 

OM 

HP 

OM 

PRIMITIVE VALUE LIST... 

NAME XT YT ZT Xh YH ZH OTHER VALUES 

STRT 

DF 

CP 

OP 

HP 

cc 

1 10 6 932 0 

6 932 0 28 970 0 

28 97c 0 52 1002 0 

52 1002 0 72 970 0 

20 970 0 72 970 0 

72 970 0 96 930 0 

Figure 5.4(d) Final Output After a Successful Parse 



AA 

DP + DM 

Figure 5.,4(e) Parsing Tree Graph 

Figure 5.4 Parsing a Digitized "A" 
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Example 2: Recursion and Backtracking 

This example was run on an earlier version of the system that accepted 

only primitive value lists as the picture representation; primitive rec- 

ognition is done by searching these lists. The recursive grammar of 

Figure 5.5(a) generates the SPDL expressions i$ (DP + DM)\nL 13, 

where if a= (a+ (a+ (a+ (a+ . . . + (a+a;T; . . . )). DP and DM, 

and the sawtooth input picture are illustrated in Figure 5.5(b); the 

PICTURE VALUE! LIST contains the name, and tail and head coordinates of 

each primitive. The goal S -((DP + DM) + S) (line 11 in the stack of 

Figure 5e5(c)) fails on the last S (line 16); the parser then back- 

tracks to line 11 (suP[suP[~~~~) and sets up the goal for the second 

alternative of S: S - (DP + DM) 0 This goal is successful and the final 

picture description is printed (Figure 5*5(d)). 

S = ((DP + DM) + S) 
S = (DP + DM) 

Figure 5.5(a) Sawtooth Syntax (f (DP + DM)) 
i=l 

PICTURE VALUE LIST 

XT YT ZT XH YH ZH 

ORGl 1 0 1 1 0 

DP 1 1 0 5 5 0 
DP g 1 0 l-3 5 0 
Dp17 1 0 21 5 0 
DM 5 5 0 9 10 
"53 5 0 17 1 0 
D%l 5 0 25 1 0 
$ Figure 5.5 continued on next page. 
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Figure 5.5(b) Input Picture n=3 

FAHSihG TRtE... 

s GX 

1 1 

2 10 

3 6 

4 602 

5 UC0 

6 1 

7 10 

8 6 

9 802 

1c BOO 

11 1 

12 10 

13 6 

14 802 

15 dClJ 

14 1 

ALT SUP XSUP LSUC t(suc LOG TLPT HDPT NAME OP 

1 0 1 

1 1 2 

1 2 4 

9 3 4 

17 3 3 

1 2 3 

1 6 2 

1 7 4 

25 8 4 

33 6 3 

1 7 3 

1 11 2 

1 12 4 

41 13 4 

4s 13 3 

3 12 3 

2 0 

3 6 

4 5 

5 h 

6 7 

7 0 

d 11 

Y 10 

10 0 

u**t*+ 

S 

+ 

12 0 

L3 16 

14 15 

o**++* 

Cl***** 

17 0 

1 3 0 

1 3 0 

1 3 22 

1 11 14 

1 19 22 

1 22 0 

1 22 0 

1 22 3H 

1 27 30 

1 35 38 

1 38 0 

1 38 0 

1 38 54 

1 43 46 

1 51 54 

1 54 0 

+ 

OP 

Ot‘l 

S 

+ 

+ 

DP 

OM 

s 

+ 

+ 

DP 

DM 

S 

Figure 5.5(c) Last Goal (S = 16) Leads to Failure 
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PICTURE PARSE WAS SUCCESSFUL.. 

hATURAL SEMANTICS OF PICTURE 

PARSING TREE... 

S GX 

11 

2 10 

3 6 

4 802 

5 8CO 

6 1 

7 10 

8 6 

9 802 

10 800 

11 1 

12 14 

13 802 

14 800 

ALT 

1 

1 

1 

9 

17 

1 

1 

1 

25 

33 

2 

1 

41 

49 

SUP XSUP LSUC RSUC 

PRIMITIVE 

NAM XT 

DP 1 

OM 5 

OP s 

DM 13 

DP 17 

DH 21 

VALUE 

YT 

0 1 2 0 1 3 54 

1 2 3 6 1 3 54 

2 4 4 5 1 3 22 

3 4 5 6 1 11 14 

3 3 6 7 1 19 22 

2 3 7 0 1 22 54 

6 2 8 11 1 22 54 

7 4 9 10 1 22 38 

a 4 10 0 1 27 30 

8 3 cl**+** 1 35 38 

7 3 12 0 1 38 54 

11 2 13 14 1 30 54 

12 4 14 15 1 43 46 

12 3 o****t 1 51 54 

LIST... 

ZT XH 

0 5 5 0 

0 9 1 0 

0 13 5 0 

0 17 1 0 

0 21 5 0 

0 25 1 0 

YH 2H 

FOC TLPT HDPT NAME OP 

S 

+ 

+ 

DP 

Dk 

S 

+ 

+ 

OP 

on 

5 

+ 

DP 

DM 

OTHER VALUES 

Figure 5.5(d) Final Picture Description 
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S 

DP + DM DP + DM 

Figure 5.5(e) Graph of Parsing Tree 

Figure 5.5 Sawtooth Parse 
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CHAPTER 6 

PRIMITIVE RECOGNITION 

This chapter describes the methods developed or modified by the 

author for the recognition of line segments, "blob" patterns, and some 

types of blank and don't care primitives. Most pictures contain line- 

like elements and efficient general techniques for their recognition are 

still lacking. Blobs are small connected sets of digitizings that are 

either meaningful in their own right or may be combined to form primitives. 

Both the characteristics of the recognizers and the computer data 

structures depend to a limited extent on the picture digitization process. 

The input pictures are assumed to be digitized by a device similar to the 

Hummingbird machines. 

6.1 HUMMINGBIRD AUTOMATIC FILM DIGITIZERS 

"Hummingbird" is the name given to two spark chamber film digitizers 

developed at the Stanford Linear Accelerator Center by J. Van der Lans 

(Van der Lans [1967], Miller and Van der Lans [1967]). These machines 

are high-precision flying spot scanners employing the electron beam in a 

cathode ray tube (CRT) as a spot generator. The spots are deflected 

across the face of the CRT in a TV-type raster scan mode. A lens system 

images the spots on the film (35 mm. or 70 mm.). Behind the film is a 

photomultiplier, which senses the amount of light passing through the 

film at each spot position; the firing threshold of the photomultiplier 

can be adjusted over 16 signal levels. The spot on the CRT sweeps 
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across Y scan lines with X least counts (identifiable spot positions) 

per line, where Y may be 29, 21°, 2'19 or 212, and X is 212 or 

214 , depending on the particular Hummingbird. The spot coordinates can 

be defined as the pair (x, y) = (least count, scan line number); x and 

y counters are synchronized with the spot sweep to allow the output of 

the spot positions. Both digitizers are presently connected to the IBM 

360 model 75 computer, but were earlier attached to a model 50S Orders 

from the computer control the entire digitization process, including 

moving of film and selected digitizing of windows (small rectangles) in 

a frame. 

The devices, in their normal mode of operation, return only the 

center coordinates of each dark area across a scan line that produces 

a photomultiplier signal below a given threshold. This results in a 

significant data reduction but biases the digitizings: line-like dark 

areas that are oriented in the y direction are very accurately digitized; 

similar areas in the x-direction are poorly digitized and often bear little 

resemblance to the actual picture. This is not a serious problem for 

particle physics film since tracks are usually oriented in one direction. 

For other types of patterns, this bias can make a picture unrecognizable; 

experience with real film has indicated that, in many of these cases, a 

multi-level rather than a binary digitization is necessary for recognition. 

A complex and sophisticated programming system written by C. Dickens 

(Dickens [1967a]) allows a user to control and view the digitization 

process via the 2250 display, and associated light-pen and typewriter. 

This includes: 

1. viewing the digitized picture on the scope, 
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2. viewing enlargements of windows of the pictures and varying 

the magnification factor, 

3. selection of the particular Hummingbird, 

4. setting of the photomultiplier threshold, 

5. selection of the scan line density and least count, 

6. specification of rectangular subareas of a frame for digitization, 

7. adjustment of film and moving from frame to frame, 

8. commands for the actual digitization, and 

9. writing of the digitizations on magnetic tape or the line printer. 

The Hummingbird output consists of the string of coordinates: 

oYly12 0 - 0 Xln OY x 1 2 21x22 *'* x2n2o . . . . . oYm~m-L"~ * * * xmn 
m 

A digitization of 1024 scan lines with 4096 counts per line was 

assumed. 

Y[i] points to the firs t hit for scan line i -; Y[i] = 0 if no 

hits occurred. 

where y. is the scan line number and x. x. 11 12 .* e x. are the locations 
1 In. 1 

of the "hits" on scan line yi 0 The points are ordered by x within y . 

This leads to the picture data structure used by the primitive recognizers 

in the SPDL system: 

Xcount[i] = number of hits on scan line i, i = 1, 1024 . 

Then Xcoord[Y[i]] to Xcoord[Y[i] + Xcount[i]-l] contains the 

ordered list of x coordinates for the hits on scan line i . 

The above structure was very convenient for accessing small windows 

during primitive recognition. 
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6.2 RECOGNITION OF BLOBS 

In many applications, blobs of various types are picture primitives. 

Examples are: sparks appearing in particle physics spark chamber film; 

blobs representing "bits" in a data box; and characters, such as letters, 

digits, and punctuation. The tail and head are usually chosen at the 

blob center, The formation of blobs is also a useful first step--equiv- 

alent to preprocessing--for the recognition of more complex primitives. 

The method for finding blobs is a simplified version of the cell 

construction algorithm of Clark and Miller [1966l. (Given an ordered set 

of coordinates EPi = (Xi9 yi) I (yi 5 yj) A (yi = yj 3 xi < xj), i < j, 

i, j = 1, n] representing hits in a picture window, and values for the 

parameters 6x, 6y, dy, and n min' the blob recognizer groups ordered 

subsets of these points into cells (blobs) such that for each cell 

c = {P Cl' c2' P 00*9 PC 3, 
m 

1. lxc.-xc./ <_ 6x and IY~.-Y~./ < SY, 
1 J 1 J 

2. i~,y~,~+jl I dy, 
1 

3. ICI > nmin9 where ICI is the number of points in cell C, 

and 

4. ICI is (almost) maximum. 

Since the width of the dark areas in the x-direction is not known (see 

last section), a dx parameter corresponding to dy was not included. 

The output of the routine is an ordered list of the centers of gravity 

of each cell (ordered in the same manner as the input). Pointers from 

cells to their contained points and from points to their cells, if any, 

are also computed. 
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The cell into which a point is placed is sometimes dependent on the 

order of examination of the points and the cells. While this is not 

desirable in general, the differences are insignificant compared to 

errors introduced by the digitization process, photography, and other 

"noise" producers. 

6.3 A GENERAL PURPOSE LINE RECOGNIZER (GPLR) 

6.3.1 THE LINE RECOGNITION PROBLEM 

A straight line in the plane can be defined abstractly as the set 

of points (x, y) satisfying the linear algebraic equation ax + by + c = 0, 
._ 

where a, b, and c are constants (real numbers), and la/+/b/ # 0; this 

line has no width, occupies no area, and has no irregularities. One cannot 

find such a clean definition for the class of elements that a human might 

call a line in a picture--indeed, what is interpreted as line-like depends 

to a great extent on the "eyes of the beholder". Like most general concepts, 

a precise definition is elusive; one can find patterns that are not called 

lines in many cases , yet would satisfy particular attempts at line defi- 

nition. A trivial example is two points in a picture; they define a line 

exactly, but would rarely be interpreted in this way. 

Examples of patterns that might be usefully classified as lines are 

shown in Figure 6.1. Qualitatively, a rectangle of small width to length 

ration can be placed over each line; the line roughly "fills" the rectangle 

along its length. The points on each line satisfy a linear algebraic equa- 

tion to within a given tolerance according to some criterion of goodness 

of fit. Irregularities and difficulties that must be taken into account 

in a general system include: 
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1, local non-linearity, 

2. local linearity but in a different orientation than the line, 

30 appearance in a field containing other patterns that may 

intersect the line, 

4, variable width, and 

5. many gaps along the line length, 

GPLR is designed to cope with these problems and recognize the variety 

of line-like elements of Figure 6.1. 

There have been a large number of techniques developed in the past 

for line recognition. Most of these apply only to limited classes and/or 

are often very complex logically. Local preprocessing is frequently 

employed to reduce some of the irregularities mentioned above (Dinneen 

119551, Unger [1959], Narasimhan [1964l). The most common method for 

recognition of short, fixed-length line segments is simple template 

matching (Bomba [1959], Roberts [lg@], Rosen and Nilsson [1966]). Hard- 

ware or software line masks of fixed size and orientation are passed over 

the picture; the classification decisions are based on correlations with 

the masks, While this has proved successful for some pictures, it cannot, 

for example, produce useful results for lines consisting of non-linear 

blobs with many gaps unless the template size is large. The restriction 

to a fixed template size means that the digitization accuracy must be 

compatible with the properties of the line; in particular when the digi- 

tization is too fine for a line, the line segments produced by fixed-size 

templates might be meaningless. A variable size line template built into 

hardware in the PEPR system of Pless and Rosenson (Pless et. al. G19-9651) 

for bubble chamber photograph analysis overcomes this difficulty; the 
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Figure 6.1 Examples of Line-Like Patterns 



problem then becomes one of linking roughly collinear line segments 

together. Another set of techniques that is frequently employed either 

in direct recognition or for linking segments utilizes lfnear least 

squares methods (Roberts 119631, Miller c19661, McGee C1966l). These 

methods produce a good quantitative estimate of the l.inearity of the 

data, .but usually require that the line be isolated. When lines are 

overlapped with other patterns, the method has to be modified consider- 

ably to keep on the "right track". Finally, several interesting line 

following or linking techniques have been developed; these are usually 

based on successive fitting and extrapolation along a line. The systems 

for track recognition in particle physics pictures are generally of this 

last type (Clark and Miller C1.9663, Marr and Rabinowitz [1966l, Moorhead 

and Powell 119651)* This brief discussion is far from exhaustive, but 

covers most of the major approaches to line recognition. 

6.3.2 GPLR 

The methods used in GPLR are a major extension and modification of 

those employed by Marill et. al. [1963] for line segment formation in 

their CYCLOPS-l system. Given a set of points representing digitizings, 

their system works as follows: 

The formation of line segments proceeds in three stages: 
triplet formation, triplet chaining and segment connecting. 
To form a triplet, we select a point and try to find two 
nearby points which are onopposite sides of, and approximately 
co-linear with, the original point. The chaining process 
begins after all possible triplets have been formed. Two 
triplets are joined provided they have two common points in 
the proper order. For example, the triplets abc and bed 
will form the segment abed 0 This segment may be extended 
by combining it with other triplets according to the same 
rule. When the current segment cannot be extended any further, 
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the process is repeated with the remaining triplets. Chaining 
terminates when no segment can be extended further. (Marill et. 
al. Ll9633). 

Two segments are linked if they are close together, have similar curva- 

tures and slopes about the vicinity of their endpoints, and can be 

extrapolated to meet each other. 

GPLR has a similar flow. It can be divided into four phases: 

1. preprocessing by blobbing, 

2. formation of collinear triples, 

3. linking of triples into chains, and 

4. merging chains into lines. 

The digitized points are first blobbed by the routine described in 

Section 6.1; this process not only reduces the data, smooths local 

irregularities, and eliminates some noise, but it deliberately creates 

gaps in lines. The appearance of gaps in line-like elements has been a 

vexing problem; here, they will often assist the recognition. The 

parameters 6x, 6y, dy and nmin are selected experimentally and 

reflect some of the characteristics of the lines, the pictures in which 

they are embedded, and the digitization process. The remainder of the 

phases are almost independent of the digitization method. The output 

of the blobbing phase is the set of ordered cell centers iPi = (Xi' Yi) 

Ii = 1, n} . 

The collinear triplet formation routine examines each point Pi, 

i = 1, n-2 in turn and builds all triples T = (Pi, Pj, Pk), i < j < k, 

such that 

1. IXi - Xjl 5 Ax A lXi - Xkl <_ Ax A (Xj - Xkl I'&, 
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2. IYi - Yk I SAY, and 

h. 
3. -< 

IPiPkl - 
E9 where h. 

J 
is the length of the perpendicular from 

P. 
J 

to the line segment defined by Pi and Pk9 

and ]PiPk/ is the length of that segment. 

Ax, AY, and E are input parameters. Ax and Ay are functions of 

the expected inter-cell distances and gap size; they restrict the points 

under consideration to a small rectangle above P. . 1 It is generally 

advisable to choose Ax and Ay so that there is more than one triple 

emanating from a point Pi on a line; thus, one might have the triples: 

(Pi, P. , Pk ), 
Jl 1 

(Pi, P. , Pk ), 
Jl 2 

(Pi, P. , Pk ), 
J2 1 

etc., all of which are 

on the same line. This built-in redundancy is valuable for recognition 

through locally confused regions and where the local linearity of points 

is not a constant function of the segment length. E is a co-linearity 

test parameter and represents the allowable upper bound on the width to 

length ration r of the minimum rectangle enclosing (Pi, Pj, Pk) O r 

is computed by taking advantage of the following equalities: 

r=2J- = 2 X ($IPiPklh.) 

I PiPkl I PiPkl 2 

2 X (Area of Triangle with vertices Pi, P., and Pk) 
tz 

lPiPj12 

bi.(Yi+Y.) - h,.( 
= 

Yk+Yj) - kik(Yi+Yk) I 

@x:k + Ay2 
ik 

where Ax ij =x.-x. . 
J 1 

The last formula is used by the program. There 
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is little in the literature on testing for collinearity of three points; 

the above test derived by the author is simpler than one based on least 

squares, yet reflects the intuitive notion of collinearity. The collinear- 

ity test implicitly assumes that the line formed by a successful triple 

is oriented from Pi to P.; the only instances when this might not be 
J 

true would be for some almost horizontal triples; the linking phase 

provides for this possibility. This method for recognizing small line 

segments (collinear triplets) is analogous to a variable-size template 

matching process. When a triple passes the collinearity test, an 

approximation to the angle that Pi and P k makes with the x-axis is 

also computed. 

The next phase links triples into collinear chains. Two triples 

Ti = (P. , P. , Pi ) and Tj E (Pj , Pj , Pj ) are linked if ((i, = j,) 
5 r2 3 1 2 3 

A (i 
3 = j,)) . Consequently, a chain consisting of n triples will 

contain n+2 unique points. An approximate angle is computed for each 

chain by averaging the angles of its triples. Chains are merged into 

lines in the final step. Two chains are merged if they have at least 

one point in common and their angles are within A@ of each other; Af3 

is an input parameter. 

A complete list of the parameters of GPLR is: (6x, EY, dy, nminj 

h, AY, 5 f4 . The output consists of the number of lines found, the 

angle of each line, the number of cells on each line, and a pointer list 

for each cell indicating which lines, if any, it is a part of. The lines 

recognized by GPLR may intersect each other; there Is an additional 

routine that computes these intersection points for a selected line. 

Lines may be selected by specifying a length, angle, and location tol- 

erance. 
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GPLR has several advantages compared to other line recognition 

schemes: 

1. It is applicable to a wide variety of line-like elements 

(Figure 6.1). 

2. Pattern fields containing intersecting lines can be classified. 

3. It is simple and relatively efficient. 

There are, however, a number of pictures and applications for which 

GPLR is not adequate. Physicists divide particle track analysis into 

two distinct phases --scanning and measuring. Scanning corresponds to 

basic pattern classification--does a track pattern of a given class or 

set of classes exist in a picture, and if so, roughly where? The measure- 

ment phase is concerned with the accurate computation of properties of 

the previously recognized or scanned patterns. In terms of this dichotomy, 

GPLR is a scanning or recognition system; more complex techniques are 

required for accurate measurements. One can envision pictures where the 

output of GPLR would have almost no meaning unless accompanied with some 

auxiliary processing; for example, a window that is dense in random digi- 

tizings would yield a large number of lines oriented in many directions. 

If the co-linearity parameter, E, is not carefully selected, GPLR can 

classify curves and even nonsense as lines. The following simplified 

analysis of a "worst case" illustrates this point: 
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Assume that the points i, j, k, and P are located such that 

lij/ = ljkl = Ikl/ = d, 

and that the triples (i, j, k) and (j, k, 1) just pass the collinear- 

ity test so that 

Then (j = 8 = & =/ks . The two triples will be chained and the 

difference between the angles of the lines formed by their end points 

is 4 = 28 = 2 sin-l(z) M 2 sin-l(2e) , If this "worst case" occurred 

for n+l triples, there would be a total angle change of 2n sin -l(z) 

M 2n sin 324 . For large n, this could be disastrous; on the other 

hand, curved segments could be recognized in this manner if additional 

logic were inserted in the chaining routine to ensure that Drp does not 

change sign. 

With the proper choice of parameters, GPLR has proved to be extremely 

effective for recognition within the SPDL system. Here the system is 



directed to look for a member of a given class of lines in a specified 

area of the picture; if lines are concatenated together, a "slop" param- 

eter is used as a tolerance around the intersection points. The simple 

digitized "A" of the last chapter was recognized in this way; Chapter 7 

employs GPLR within SPDL in a complex setting. 

The next section describes a non-trivial application of GPLR that 

illustrates many of its strengths and weaknesses. 

6.3.3 RECOGNITION OF BUBBLE CHAMBER TRACKS BY GPLR 

Figure 6.2(a) is a plot of a set of digitizings from a bubble chamber 

picture; the set is a modification of those that appeared in a picture in 

Narasimhan's paper [1964]. The latter picture was re-digitized by hand, 

simulating the Hummingbird. This picture is a particularly good test of 

GPLR. It contains many lines, some of which are overlapping; the lines 

vary in length, thickness, and point density; there are many gaps in the 

lines and some of the picture elements may or may not be lines depending 

on the interpretation. There are 304 digitizings in the picture. 

The picture was input to GPLR. The results of the blobbing are 

shown in Figure 6.2(b). Parameters used were 6x = 1, 6y = 3, dy = 2, 

and n. =l. min The cells are numbered from the bottom of the figure 

from 01 to 99 and then starting from 01 again near the top (mean- 

ing 101 ); the low order digit of the cell number lies on the raster 

unit nearest to the (floating point) cell center. 114 cells were 

constructed. As can be seen by comparing Figures 6.2(a) and 6.2(b), 

the essential details of the picture are retained. 
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Figure 6.2(a) Bubble Chamber Track Digitizings 
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Figure 6.2(b) Results of Blobbing 
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TRIPLET AND CHAIN LIST..Pl,PZ,P3,THETA,CHAIN 
1 2 6 13 0.1405647E 01 
2 2 6 20 0.1212025E 01 
3 2 11 18 0.8645967E 00 
4 4 7 9 0.2601173E 01 
5 * 4 a 14 0.9994586E 00 
6 4 8 19 0.1032961E 01 
7 4 9 10 0.257376fE 01 
a 4 9 18 0.2525295E 01 
9 4 10 18 0.2525295E 01 

21 
-1 
38 
lb 
23 
26 
29 
34 
41 

10 4 14 19 0.1032961E 01 44 
11 1 5 12 0.1186633E 01 22 
12 1 5 21 0.1053314E 01 -1 
13 3 11 13 0.2546183E 01 -1 
14 3 16 22 0.1302C93E 01 52 
15 3 20 23 0.2265534E 01 62 
16 7 9 10 0.2475645E 01 29 
17 7 9 18 0.2432966E 01 34 
lti 7 9 20 0.2521343E 01 35 
19 7 10 k8 0.2432966E 01 41 
20 7 10 20 0.2521343E 01 -1 
21 6 13 23 0.1496856E 01 -1 
22 5 1% 30 0.130630aE 01 56 
23 a 14 19 0.1048393E 01 44 
24 a 14 24 0.1085174E 01 46 
25 a 14 36 0. L124690E 01 -1 
26 a 19 24 o.ioa5174E 01 61 
27 a 19 36 0.1124690E 01 -1 
28 a 24 36 0.1124690E 01 -1 
29 9 10 ia 0.2414950E 01 41 
30 9 10 20 0.2539306E 01 -1 
31 9 10 23 0.2474900E 01 43 
32 9 16 22 0.1190289E 01 52 
33 9 16 33 0.124463aE 01 54 
34 9 ia 23 0.2474900E 01 57 
35 9 20 23 0.2474900E 01 62 
36 9 22 33 0.1244638E 01 70 
37 11 15 17 0.284615lE 01 -1 
38 11 ia 33 0.7392734E 00 -1 
39 11 20 32 0.16233alE 01 -1 
40 10 15 13 
41 10 18 23 
42 10 ia 31 
43 10 23 31 
44 14 14 24 
45 14 19 36 
46 14 24 36 
47 15 13 18 
48 15 23 37 
49 15 32 37 
50 13 31 41 
51 13 32 37 

0.2982918E 01 -1 
0.2471941E 01 57 
0.2462920E 01 59 
0.2462920E 01 73 
0.1141033E 01 61 
o.iiaoiaaE 01 -1 
0.1180188E 01 -1 
0.1243550E 00 -1 
0.1069782E 01 -1 
0.1069782E OL 79 
O.lR37049E 01 -1 
0.1227772E 01 79 

52 16 22 33 0.1297785E 01 70 
53 16 22 42 0.1304543E 01 72 
54 16 33 42 0.1304543E 01 62 
55 12 29 34 0.2553590E 01 77 
56 
i7 

12 
ii 

30 39 0.1337052E 01 85 
23 31 0.249809x 01 73 

58 La 23 35 0.249a092E 01 -1 
59 18 31 35 0.2498092E 01 78 
60 35 41 0.1046000E 01 a7 
61 24 36 0.1199903E 01 -1 
62 20 23 31 0.2356194E OL 73 

Figure 6.2(c) A Partial List of the Collinear Triples 
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Figure 6.2(d) Lines Found By GPLR 
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193 co-linear triples were formed with Ax = Ay = 12 and E = 0.05 . 

Figure 6.2(c) lists the first 61 of these. Column 1 is the triple 

number; columns 2, 3, and 4 contain the cell numbers comprising a triple; 

column 5 is the angle of the triple in radians. Co.Lumn 6 represents the 
-1 

results of the chaining procedure. -1 indicates the end of a chain; 

otherwise, the next triple number in the 

starts the triple chain: (5, 23, 44, 61 1 

The merging routine uses A0 = 0.2 

chain appears. Thus, triple 5 

The 14 lines that were found 

are labeled in Figure 6.2(d). (Lines consisting of only 3 points are 

not included.) Figure 6.2(e) lists these lines; for each line the follow- 

ing data appears from left to right across the page: line number, first 

point on line, coordinates of first endpoint, last point, coordinates of 

last point, number of cells on the line, and approximate angle in radians. 

LISTING OF THE 16 LINES FOUND BY MKLINE 

LINE NO FSTPT X Y LSrPT x Y NU 3F PTS ANGLE 
1 2 32,,75 953.50 23 34.33 966.00 
2 2 32.75 953.50 33 48.33 969.33 
3 4 52.00 953.50 64 1.67 991.00 
4 4 52.00 953.50 36 60.00 969.00 
5 1 13.33 453.67 110 31.50 1021.50 
b 3 44.33 954.00 106 60.30 1017.00 
7 3 44.33 954.00 47 27.33 977.00 
II 15 32.00 961.00 89 49.67 1007.00 
9 12 16.50 961.50 38 2.00 971.00 

10 17 25.50 962.50 40 40.00 979.50 
13 40 26.33 973.61 108 37.67 1020.00 
14 70 12.00 9Y2.00 103 la.00 1016.00 
15 a1 44.50 1002.50 112 48.00 1021.50 
16 91 34.75 1010.50 103 la.00 1016.00 

4 @.1451251E 01 
4 O.HO19347E 90 

22 0.2503973E 01 
6 0.1123087E 01 

20 0.1344435E 01 
16 0.1316ZR5E 01 

6 0.2226089E 01 
15 .O.l240977E 01 

4 0.25773’31E 01 
4 0.8868051f 00 

12 0.1353413E 01 
6 0.1336846E 91 
5 0.1333159E 01 
4 0.28779ROE 31 

Figure 6.2(e) Listing of the Lines Found by GPLR 
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Note that there are no lines numbered 11 or 12 due to the final merging 

phase of GPLR. Figure 6.2(f) lists the lines, if any, that each cell is 

part of; each bit in the hexadecimal word following the cell number repre- 

sents a line; if there is a '1" in bit i, i = 0, 31, that cell is on 

line i+l, where the bits of a word are numbered from 0 to 31 start- 

ing from the low order bit. Thus cell 41 is on lines 3, 7, and 10 . 

Several comments can be made on the results of this analysis (Figure 

6.2(d)): 

1. All obvious lines were found. 

2. Some extraneous lines, such as L2, Lg' LIO' and L16 were 

included. By restricting lines to consist of at least 5 cells, 

these are eliminated (along with Ll ). 

3. L3, L5, LQ and La traverse successfully across confused 

areas and intersect other lines. 

4. The extension of La, through cells 96, 105, and 111 at its 

top end, and through cells 6 and 2 at its bottom, was missed. 

5. “7 could be merged with L3 
by increasing ne to 0.3 s 

This example can be considered a llworst case" for GPLR. 

6.4 BLANK AND DON'T CARE PRIMITIVES 

Since the concept of blank and don't care primitives originated as 

part of the PDL system, their recognition is discussed only in the context 

of the PDL picture parser. 

The definition of a blank or don't care primitive must usually 

include a characterization of the primitive classes that may be concate- 

nated onto its tail and/or head, as well as the geometric constraints on 
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the relative locations of these classes. Assume that one is parsing a 

picture according to the grammar: 

P+(r+b+S) 

S -3 ~11~21 . . . /sn, n>l 

where r, sl, s2, . . . . sn are visible primitives and b is a blank 

primitive. Then the b recognizer must discover the presence of some 

member of 63(S) = Ep(si); often, this search can be reduced to finding 
i=l 

a feature that is common to all members of b(S) and is unique to P(S) 

in the picture. The same statement can frequently be made when n = 1 

in the above grammar; in the worst case, the recognition of b would 

involve recognizing and obtaining a complete description of sl . If 

the latter occurred, the recognition function for sl would be vacuous 

and always return true. 

Example 1: 

Consider the primitive ep in the particle physics syntax of 

Figure 4.2. Its purpose is to find the tail of some member of p(TM) 

entering at the left edge of the picture. This can be done easily by 

using GPLR locally in regions near the left edge to find the beginning 

of a track cm; once this is accomplished, the recognizer for cm can 

determine its extent, curvature, and perhaps, point density. 

Example 2: 

The page recognition syntax of Figure 4.5 employs the primitive 

its as the inter-character spacing for letters in a word; this spacing 
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is variable within certain limits, depending on the printing process and 

the letters. The recognition routine for its has only to find the 

beginning (tail) of a letter; this can be done by counting point densities 

along a line or by some other simple global test. The primitive recog- 

nizers for the letters do the actual classification, but their location 

has been previously discovered by its . 

Blank primitives are used extensively in the application of the 

next chapter. A variety of methods are employed, depending on the 

severity of the geometrical constraints defined by the blank primitives 

and the classes of primitives concatenated onto them. 
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CHAPTER7 

SPARK CHAMBER FILM ANALYSIS BY THE SPDL EBYSTEM 

The SPDL system was applied to the analysis of spark chamber film 

produced in a high energy physics experiment, the "colliding beam" 

experiment, conducted at Stanford University by Barber, Gittleman, 

O'Neill, and Richter [1965, 19661. This film provided an excellent 

test--in a real and non-trivial setting--of the approach to picture 

processing that has been advocated and developed in the preceding 

chapters. 

The purpose of the physics experiment was to measure the angular 

distribution of electron-electron scattering at an energy level of 600 

MeV and over the angular range from 40' to 9Oo . Electron beams 

were supplied by the Stanford Mark III linear accelerator. These were 

circulated in opposite directions in two storage rings having a common 

section; electrons from the two rings collide in the common section and 

scatter in opposite directions. The scattering is observed via a set 

of spark chambers and counters through which the electrons then pass. 

Figure 7.1 shows the chamber-counter geometry. Each scattered electron 

traverses successively through a 6 gap chamber, a 4 gap chamber, 

and a shower chamber; the possible points of interaction (collision) 

lie along the horizontal "median" line in the center of the figure. 

30,000 photographs were taken of two views of the chamber and a 

data box; a mirror arrangement was used to capture each information set 

on one frame. 400 of the photographs contained "events" of interest. 

The film has been manually analyzed and the results subjected to a 

further computer analysis to obtain the angular distributions. 
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7.1 CHARACTERISTICS OF THE PICTURES 

A schematic of the film format is illustrated in Figure 7.2. The 

side and front views appear on the left and right halves respectively. 

The interaction points are along the central dotted horizontal. A possi- 

ble event is indicated by a linear track of sparks through the upper 6 

and 4 gap chambers and a similar track through the corresponding lower 

chambers. It is possible for several events and an arbitrary number of 

sparks to appear in the chambers. The configuration of sparks in the 

shower chambers are used to assist in the identification of the particle 

types. The central portion of the film contains a data box with digits 

to the left and a coded version of these to the right. Information in 

the data box includes the frame number (the top leftmost 4 digits), 

roll number, electron beam phase, and date; the first 4 digits in the 

coded box is the frame number. The "X"s beneath some of the chambers 

are fiducial markers. 

Figure 7.3 is an actual photograph of a cosmic ray shower passing 

through the chambers. It illustrates the appearance of sparks and the 

relative locations of the components on the film. In general, there is 

considerable variation across the film; some of the fiducials, sparks, 

and characters are clear, whereas others can barely be seen. 

An event appears in the photograph of Figure 7.4(a) as indicated 

by the collinear sparks in the 4 and 6 gap chambers. This picture was 

digitized by the Hummingbird and displayed on the 2250; Figure 7.4(b) 

is a photograph of the scope during the display. Because of the 

Hummingbird characteristics discussed earlier, the digits are not 

recognizable in most cases; the digitizings obtained for the remaining 
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portions of the picture accurately portray the original. Printer plots 

of the digitizings in several small windows of another member of this 

picture class are shown in Figure T.?(a)-(d); these are typical areas 

viewed by the primitive recognizers. The isolated digitizings in Figure 

7.5(a) are background noise. 

This picture class is an excellent test of the SPDL system for the 

following reasons: 

1. The pictures are not contrived. They are real pictures produced 

in a physics experiment with no a priori thoughts about using 

the SPDL system for this analysis. 

2. There is a large amount of detail in each picture. 

30 The pictures are well structured. 

4. While the photography was very good, the inaccuracies, errors, 

and noise that are common to most pictures appear here also. 

Some of these are due to the variation of intensity of the 

picture components, the non-uniformity of sparks, slipping of 

the camera mirrors between frames, occasional malfunction of 

parts of the data box, errors of digitization, and distortions 

introduced by the flying spot scanner. 

5. The pictures are representative of one class of particle physics 

pictures that is produced in great quantity and requires detailed 

analysis; this remark applies to the forseeable future. 

7.2 THE GPAMMAR 

Figure 7.6 lists the primitive names, the non-terminal symbols, and 

the grammar defining the picture class for the colliding beam experiment 
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Figure 7.5(a) Plot of Digitized Sparks 
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Figure 7.5(b) A Collinear Set of Sparks 
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Figure 7.5(c) Plot of a Fiduci.al 



Figure 7.5(d) Top Part of Data Box Boundary 

Figure 7.5 Printer Plots of Selected Digitized Areas 
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NPWIM= 25 PKIM PKSUJ 

Hl5NU 
tl4Gh 
B4GL 
t56GH 
86GL 
DItiT 
LVNH 
EVNT 
IDS 
NUFB 
NOFT 
NUSB 
NUST 
NULL 
SHFB 
SHFT 
ShSB 
SHST 
STRT 
XFB 
XFT 
XSB 
XST 

Figure 7.6(a) 

2 1 
21 2 
12 3 
22 4 
15 5 

4 6 
23 I 
14 a 

3 9 
Jl 10 
20 11 
10 1.2 
19 13 

1 14 
18 15 
lb 16 
17 17 
15 18 

5 19 
8 20 
Y 21 
6 22 
7 23 

Primitive Class Names 

NPRDU= 74NUN-TERMINALS-- 
CUB 1 
LFE 2 
CFT 3 
cnI 4 
CLOM 5 
CLO- 6 
CSB 7 
CST 0 
DATA 9 
FD46 10 
FKVd 11 
FT46 12 
n14 13 
HI40 14 
n16 15 
tl1ttl 16 
LU4 17 
LO40 18 
LU6 19 
LO60 20 
5346 21 
suvri 22 
SPKK 23 
ST46 24 

Figure 7.6(b) Non-Terminal Symbols 
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Figure 7 

CLtJH= ,STKT + , ‘“Ll . ,FH”W . SU”I( ) I 1 

cc,1 = IBBNU . ,,“S + IDAT. + 11qs + LBNUI II I 

“ATA= I “lGT.ll”S t onrn )I 

LILT*= IUIGT.NULL) 

S”YH= I I XSB + ;SB l . I XST + LST I I 

FRVW , l XF,+ + Ch , . t XFT + CFT I i 

CST = 15746 . SHiT 1 

CFT = ,FTrb . SHFT 1 

cm = 15846 . SHSB 1 

Cl-I = lFh46 . SHFB , 

SW+&= NOPB 

s&6- ILW.i.061 

twLs=, h”FB 

Ft%‘= lLW.LW.1 

LC4 - lld4CL+cLO~.LU4U1 

LO4 = NULL 

Lee”= LOS 

LU4”= NULL 

CL0 = EVNT 

CL0 = SPKK 

SPHK= WLL 

LC6 = Iln6GL+SPHKI.LUt.UI 

LC6 = NULL 

Lot.“= LUL 

Lcbu= NULL 

s,*Ll- NOST 

ST4L.= IHlL .+I,41 

FT4‘- NUPT 

F74t.= ,Hl6 . til4, 

HI4 - llll4GHtSPRKl.HI40~ 

H14 = NULL 

“14”; HI4 

tl140= NULL 

Ch, = EVNH 

CHI = SPHK 

“lb = t~bb(iti t cni ).ni60 ) 
"16 = NULL 

HlLD= HI6 

Hlb”= NULL 

I = 

‘.6(c) Grammar for Colliding Beam Pictures 
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film; next to each primitive name is the number of its recognition sub- 

rnutine. There are 23 primitive class names, 24 non-terminal symbols, 

and 39 productions. The picture structure described by each non-terminal 

symbol is: 

CLBM: a colliding beam experiment picture -- - - 

L’Di? : coded data box - - - 

DATA: contents of the data box 

view chamber. half of picture 
,-___ , ' joottomf 
Ifront( (bottom] 

c either a spark in a chamber cr an event 

SPIKE a spark -- 

The parsing sequence defined by the grammar proceeds as follows: 

The data box is first found (since it is obvious and an easily recognized 

pattern), and the front and side views are then anal~yzed relative to its 

tail (CLBM). The data box (CDB) is described as a left boundary (BB!W) 

followed by an arbitrary number of digits (DATA) and a right boundary 

(EBND); the number of digits is actually fixed at 22, but it is more 
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convenient to use a recursive production. The front and side views are 

defined in terms of a bottom part ((XFB + CFB), (XSB + CSB)) and a 

top part ((XFT + CFT), (XST + CST)) where (XFB, XSB, XFT, XST) are 

fiducial X's; the chambers are located in fixed positions relative to 

these. An arrow in Figure 7-2 points to each of the 4 fiducials used. 

In each of the four parts, or quadrants, or the picture, the grammar 

divides the analysis into two--the contents of the 4 and 6 gap chambers 

(~~46, FT46, ~~46, FB46), and that of the shower chambers (SHST, SHFT, 

SHSB, SHFB) . The 4 and 6 gap chambers may contain sparks (SPRK) and 

events (EVNT,EVNH) . Recursive productions for the chamber descriptions 

((L04, LO4D), (~06, LO6D), (HI4, HI4D), (H16, HI6D)) indicate that an 

arbitrary n%umber of sparks and events can be present. LO4D, L06D, HI4D, 

H16D, and, often, the null point primitive NULL are used to avoid 

excessive backtracking during the analysis. 

7a.J PRIMITIVE RECOGNIZERS 

GPLR and the -blobSing routine form the basis of all recognition 

functions. The picture components are grouped into meaningful structures 

by blank primitives; the interaction between these and the primitive 

classes to which they may be concatenated is noted in the descriptions 

below. The picture origin is at the lower left-hand corner, and has the 

coordinates (1, 1) * 

1, Starting the Analysis 

The recognition routine for STRT looks in a large centrally- 

located window for a long vertical line, representing the left boundary 
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of the data box. The head of STRT is taken at the lowest (smallest 

y-coordinate) point on this line. 

2" 'The Data Box 

Most of the recognition work for the data box boundaries (BBND) 

is done by its preceding blank primitive (STRT or IDS); the ERND 

routine verifies the length and angle of the line. The digits (DIGT) 

in the data box are separated horizontally by an inTerdigit space (1x3) 

of 29+lc raster units, IDS retrieves a small rectangular window - 

around the expected location of the next digit and constructs blobs; 

each blob is the size of a digit. The head of IDS is (x, y) where 

X is the x-coordinate of the lowest cell found, if any, and y is the 

y-coordinate of the tail of IDS . It is possible for 0 to 5 digits 

to appear at any position; occasional malfunction of the data box results 

in either 0 or more than 1 digit. If IDS finds no cells, a nominal 

valiie is given to x and a flag is added to its value list. The DlGT 

routine returns true if less than 6 cells are found in the vertical 

strip above the head of IDS; otherwise false is returned and the right 

boundary of the data box has probably been reached. DIGT computes the 

actual digit represented by the location of each blob and puts this in 

the value list. The head of DIGT is set to the coordinates of its 

highest (largest y-coordinate) digit. The relationship between IDS 

and DIGT is a good example of the role of a blank primitive: IDS 

determines if something is in the window; DIGT does the detailed 

recognition, 
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3. Fiducial Finding Routines 

The approximate location of the fiducials relative to the tail of 

the data box is known (within about 60 raster units in each of the x 

and y directions); their accurate positions must be determined in 

order to allow precise reconstruction of t‘ne picture in the 3-dimensional 

space of the physics experiment, The tail of each fiducial primitive is 

the tail of the data box CDB; their heads are defined as the intersec- 

tion point of the two arms of the "X"; this is a case where it is con- 

venient to define a primitive in terms of a don't care part (from the 

data box to the X ) and a visible part (the X ). SFB, SFT, and XSB 

are computed by a common routine which finds two intersecting line 

segments satisfying length and angle tolerances. XST, the dotted 

fiducial, appears as four symmetric blobs in the picture and a separate 

routine calcillates the center of these, 

4. Event and Spark Recognition in the 4 and 6 Gap Chambers 

Each fiducial center is used as the tail for analysis of a quarter 

of the picture. The routines defining the primitives NOSB, NOFB, NOST, 

and NOFT retrieve the contents of the 4 and 6 gap chambers in each 

quarter. If the chambers are empty, true is returned. Otherwise, cells 

and Lines are const,racted by GPLR in each chamber and false is returned; 

the cell parameters are chosen so that each cell represents a spark. 

B~GL, BGGL, B~GH, and B6GH are blank primitives that point to the 

next spark; if the chamber is empty, false is returned. Each spark is 

then recognized as the first spark of an event (EVNT or EVNH) or an 

isolated spark (SPRK -NULL); EVNT and EVNH represent events in the 
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lower and upper chambers respectively. An event is defined as a line 

(at least three collinear sparks) in the 6 gap chamber that is collinear 

with at least one spark in its corresponding 4 gap chamber. The number 

of sparks and the line angle is computed for the value list of an event. 

After an event or isolated spark is recognized, the sparks comprising the 

pattern are eliminated and the blank primitives above will be called 

again by the parser. 

5- The Shower Chambers 

The routines for the shower chamber primitives (SET, SHSB, SHFT, 

SHFB) compute and return the coordinates of all sparks in these chambers. 

The least satisfying, and most tedious and time-consuming aspects 

of the design of the primitive recognizers were the selection of the 

proper parameters for blob construction and GPLR, and the determination 

of the relative locations of the picture components. This was done by 

a detailed manual analysis of a printer plot of one picture. In any 

future developments, it is clear that an on-line interactive graphics 

system should be written to perform this task. This would provide a 

much more efficient and accurate means for setting and testing the 

parameters of the recognizers. 

7.4 RESULTS OF THE PARSE 

Pictures were digitized by the Hummingbird and stored on magnetic 

tape for later analysis by the SPDL system. One picture was used to 

debug the grammar and primitive recognizers, and set the recognition 

routine parameters. Nine additional frames were then analyzed successfully. 
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Eight of these frames were selected at random from those containing 

events; the remaining frame was arbitrarily chosen. Some adjustments 

were made for the event recognition parameters and the chamber location 

coordinates after the first run of the nine frames. 

Figure 7.7 contains a photograph of the display after the analysis 

of the picture of Figure 7.4. The display contains an abstracted version 

of what has been recognized; each primitive, including blanks, is repre- 

sented by a straight line segment terminating on the tail and head 

coordinates of the primitive. "T" and "H" indicate the tail and head 

of the last primitive found. Most of the primitive classes are identified 

by name in the figure. Appendix A contains ZZ5O display photographs of 

the remaining nine pictures. before the analysisand of their abstracted 

plot after the analysis. A listing of the natural semantics and parsing 

tree for frame 355 (Figures 7*4 and 7.7) is also included. 

The contents of each data box was correctly identified in all frames 

except one, including several missing positions and a multiple digit 

position; in frame 406, the 4th digit (6) had too few digitizings and 

was indistinguishable from the background. The number of sparks recog- 

nized in each chamber was either correct, or one more than the correct 

number as counted from the original photographs; the deviation was due 

to the digitization process rather than the recognition mechanism. All 

obvious events were found. In some frame quarters, lines in the 4 and 

6 gap chambers that constituted events were not collinear within toler- 

ance, or there were too few sparks in the 6 gap chamber to form a line 

(less than 3 ), and the sparks were then considered isolated; this 

occurred three times (see frames 312, 356, and 414 in Appendix A). More 
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complex logic in the event recognition routines could handle these cases; 

however, a study of the instructions for manual recognition that are 

given to technicians indicates that in ambiguous situations such as these, 

there is often no clear-cut decision procedure (Gittelman [19671). 

Approximately 1800 hits or digitizings were obtained for each picture. 

The number of non-blank primitives recognized in the nine frames is large: 

22 x 9 = 1998 data box digits (DIGT) 

2 X 9 = 18 data box boundary elements (BBND) 

4 x 9 = 36 fiducials (XST, XSB, XFT, XFB) 

26 events (Em, Em) 

249 sparks comprising events 

173 isolated sparks (SPRK and SHST, SHSB, SHFT, SHFB) 

Table 7ol contains the results of a timing run. Times were computed 

with the interval timer on the IBM 360 (model 50); this timer counts in 

60ths of a second. The "Total" column gives the total time elapsed (in 

seconds) from the start of the analysis (exclusive of tape reading time) 

until its completion for each frame. "Creation of Data Structure" con- 

tains the time required to convert the raw digitizings into the data 

structure used by the primitive recognizers. The parsing or analysis 

time is broken into two distinct parts--goal administration, which is 

everything except primitive recognition, and primitive recognition. 

The most interesting and satisfying data gleaned from Table 7.1 are 

the relatively small amount of time the system spends in goal administra- 

tion (less than 5% of the total parsing time) and the primitive recogni- 

tion times. The hard work and "guts" of picture analysis lies in 



Frame Creation of Goal Primitive 
Number Data Structure Administration Recognition 

93 0.63 0.18 6.33 

312 0.65 0.43 6.94 

355 0.65 0.28 5.87 

356 0.60 0.32 6.07 

,375 0.68 0.30 7-15 

403 0.65 0.32 6.10 

406 0.62 0~23 :‘Q97 

414 1.00 o-35 6.80 

416 0.58 0.18 5.57 

Total 

7.14 

a.02 

6.90 

6.99 

8.13 

7.07 

6.82 

8.15 

6.37 

Totals 6.06 2.59 56.80 65.45 

'erage 
limes 0.67 0.29 6.31 7.27 

SPDL ANALYSIS OF COLLIDING BEAM EXPERIMENT FILM 

TIMING DATA (In Seconds) 

T Parsing 

Table 7.1 



primitive recognition and it is appropriate that a very high percentage 

of processing time is devoted to this task. One can conclude that, for 

this application, a simple goal-oriented parse is efficient. While the 

programs were written with clarity in mind rather than efficiency, the 

analysis times compare favorably with those of "one-of-a-kind' hand-coded 

systems (Brown [1967], Miller [19671, Dickens [1967bj). In order to use 

the colliding beam programs in a production system, some additions must 

'be made. The distortions introduced by the digitization process and the 

photography must be eliminated; the former is usually accomplished by a 

calibration program (Brown [19663). The patterns formed by SPDL analysis 

must then be reconstructed in real space. Finally, t,he results from all 

the frames must be accumulated and subjected to statistical analysis. 

Another significant feature of this application was the short period 

of time required for the implementation. It took less than 1% man-months 

for the development of the colliding beam grammar, the writing and de- 

bugging of the primitive recognizers, and the picture analysis. The 

reasons for this efficient implementation are: 

1, Each primitive recognizer could be treated almost independently 

of the others due to the SPDL environment in which it is used. 

2. Analysis by parsing allows efficient debugging. The program 

flow can be immediately obtained from the parsing stack. The 

value and failure lists indicate exactly what has been found 

and where. 

3. The visual display of the parse, especially during backtracking, 

enabled fast on-line detection of bugs, 

4. All primitive recognizers used the general purpose blobbing and 

GPLR routines. 



The sample colliding beam pictures were successfully analyzed with- 

out compromising the picture processing model or the PDL system. This 

application demonstrates the usefulness and potential of the formal 

description and parsing methods. 
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CHAPTER 8 

CONCLUSIONS 

A useful paradigm satisfies two criteria (Kuhn [1962]): 

1. It must allow a better solution, in some sense, to a set of 

problems that can be obtained outside of the model. (The 

paradigm is clearly most exciting when the problems can only 

be solved within it). 

2. The solutions are sufficiently open-ended to suggest a large 

number of interesting related problems. 

The PDL system and its underlying picture processing model satisfy 

these criteria. The preceding chapters contain discussions of the 

system's advantages, limitations, and possible extensions. These are 

now completed and summarized under two headings--summary of features 

(criterion 1), and future work (corresponding to criterion 2). 

8.1 SUMMARY OF FEATURES 

The PDL picture description language is evaluated below in terms 

of the requirements which were enumerated at the beginning of Chapter 3: 

1. Descriptive Range 

The examples of Chapter 4 and the application of Chapter 7 indicate 

that many different classes of pictures can be described by PDL in a 

meaningful way both to humans and machines. 



2. Completeness of a Description 

A PDL description contains the structure and meaning of the picture. 

Imposed semantics must be added for complete descriptive capability. 

3. A Simple and Natural Formalism 

The PDL description scheme is certainly simple. Whether it is 

natural or not is mainly a subjective judgement on the part of the 

reader. 

4. Generative Descriptions 

The abstracted version of the picture produced during the parse 

is actually a generation based on the picture PDL description. Any PDL 

description contains in a usable form the information necessary for 

generation. 

5. Direct Use of the Language for Analysis and Generation 

The PDL description explicitly directs the parse of pictures. 

Preliminary work indicates that the generation schemes can employ 

the description directly in a similar manner. 

6. General Algorithms for Analysis and Generation 

A general algorithm which applies to any picture which may be 

described by PDL has been presented. Similar algorithms for generation 

must await future work. 

7* Independence of Digitization 

The language is (almost) independent of the digitization mechanism; 

the latter directly affects only the primitive recognize%-. Thus, 

primitive and hierarchic structural descriptions are generally constant 
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within a given class of pictures regardless, for example, of whether a 

rectangular or hexagonal grid system with either binary or grey-level 

codes is used. 

8. Applicability to n-dimensional Pictures 

PDL structural descriptions are independent of the dimension of the 

picture. Pictures in n-space for n > 3 can be described as well as 

the normal 2 and 3 dimensional patterns. 

The results of this research indicate that the developed picture 

processing model has several advantageous features when compared with 

other approaches. These include the generality of both the descriptive 

and analysis mechanisms, the ability to describe meaningfully a large 

and interesting class of pictures, the ease of implementation and 

modification of an analysis system for a particular set of pictures, 

and the simplification of the basic pattern recognition tasks due to 

the directed nature of the parser. 

8.2 FUTURF WORK 

1. The PDL Language and Description Scheme 

The PDL language should be extended so that more complex relations 

among picture components may be expressed; a suggestion in this direction 

is made in section 4.6. The development of a suitable picture processing 

languageisadesirable first step before the introduction of an imposed 

semantics; the imposed semantics of a PDL description can then be stated 

in the picture processing language. At the same time, this could be used 



to describe the algorithms of the primitive recognizers. Further work 

on the theoretical properties of the PDL language should include an 

investigation of methods for manipulating descriptions to prove equiva- 

lence and weak equivalence; these results can then be compared with 

graph matching techniques. A deeper study is warranted on the relation- 

ship between picture transformations and their descriptions; transforma- 

tions to be studied include the affine (matrix) transformation and 

logical operations on pictures, such as complementation, union and 

intersection. 

2. Parsing and Implementation 

An algorithm for converting grammars to PDL standard form is needed; 

the implemented parser can then be generalized to treat the full language 

without prior manual grammar conversion. Some study should be made on 

the usefulness and techniques of embedding the PDL system in a general- 

purpose programming language such as ALGOL or PL/l; the purpose is to 

allow picture processing within a larger framework of computations. 

30 Primitive Recognition 

An interactive graphics system should be written for testing 

primitive recognizers. This would also provide much insight into blank 

and don't care primitives, and perhaps yield some more general techniques 

for their recognition. Primitive recognizers using grey-level digitizing 

(many intensity levels rather than binary) would extend the applicability 

of the implemented system. 



4. Generation 

Generation of pictures may occur in a passive or an active mode, 

or a combination of these. In all cases, it would be useful to embed 

PDL in a general-purpose programming language to allow program computa- 

tion of pictures. An interactive system where generation can be directed 

by an on-line user requires methods for imposing semantics 

generated pictures; design problems can then be treated in 

By combining generation and.parsing, the computer would be 

participate more effectively in the design process. 

5. Data Structures 

Most of the analysis time is spent accessing data for 

recognition; it is expected that primitive generation will 

on the 

the system. 

able to 

primitive 

consume an 

equally proportional amount of time. For these reasons, the data 

structures used at the primitive level are critical, and thus worthy 

of deeper study. The parsing system at the non-primitive level has a 

natural data structure determined by the form of PDL expressions; this 

appears to allow efficient processing. 

6. Applications 

The extent of usefulness of the PDL system can only be determined 

by implementing new applications. A number of obvious ones exist: 

(a) analysis of spark, streamer, and bubble chamber film, perhaps 

after three-dimensional reconstruction of the digitizings, 

(b) flow chart generation and analysis, 

Cc) analysis and generation of text including special characters, 

for example, mathematical notation, 

/ 



(d) analysis and generation of line drawings, such as electric 

circuits and bridges, 

(e) graph matching and manipulation, and 

(f) description of algorithms for parallel processing. 

This future work list could be easily extended and expanded. It is 

clear that there remains a large number of interesting, useful, and 

challenging problems. 
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APPENDMA 

PARSING OUTPUT FOR COLLIDING BEAM PICTURES 

The Appendix contains two photographs of the 2250 display for each 

frame analyzed by the SPDL system. The first picture is the frame after 

digitization by the Hummingbird; the second one is the abstracted version 

of the picture at the completion of the parse. Frame 455 was used to set 

parameters and debug the grammar and recognizers. 

A listing of the parsing tree, natural semantics, and primitive 

description of frame 355 follows the photographs. The "OTHER VALUES" 

part of the value list is interpreted: 

1. DIGT the digit represented by the data box code. 

2.EVN; : 
0 

the angle in degrees and the number of sparks. 

Note that the 2250 display is on a 1024 X 1024 

grid, while the data is based on a 4096 X 1024 

grid; for display purposes, the x coordinate 

was divided by four. The output angle is based 

on the data coordinates. 

the number of sparks followed by the coordinates 

1J FB 
( ) x9 Y of the spark centers. 



Frame 93 

180 



Frame 312 

181 



Frame 355 

182 



Frame 356 

183 



Frame 375 



Frame 403 

185 



Frame 406 

186 



Frame 414 

187 



Frame 416 

188 



Frame 455 



PICTUKF PARSE HAS SUCCESSFUL.. 

NATOdAL StMANTILS UF PICTURE 

PAtiSING TRtt... 

s GX ALT 

1 1 

2 13 

3 836 

4 9 

5 17 

6 33 

7 HO0 

8 29 

9 AL6 

10 25 

11 37 

12 46 

13 810 

14 42 

15 816 

16 37 

17 46 

18 810 

19 42 

20 dl6 

21 37 

22 46 

23 RIO 

24 42 

25 616 

26 37 

27 46 

2R 613 

29 42 

30 816 

31 37 

37 46 

1 

1 

1 

17 

1 

25 

1 

1 

1 

33 

1 

42 

1 

1 

50 

1 

59 

1 

1 

67 

1 

76 

1 

1 

114 

1 

93 

1 

1 

SUP XSUP LSUC RSJC LUC TLPT HOPT 

0 1 2 3 1 3 677 

1 2 3 4 1 3 677 

2 4 0 0 1 11 14 

2 > 5 123 I 14 677 

4 4 6 0 1 14 420 

5 L 7 6 1 14 420 

6 4 0 0 1 19 22 

6 3 Y 13 1 1Y 420 

n 4 0 0 1 27 30 

n 3 11 12G 1 30 420 

10 4 IL 0 1 30 412 

11 2 13 14 1 30 412 

12 4 3 0 1 35 38 

lL 3 15 16 1 35 412 

14 4 0 0 1 44 47 

14 3 17 0 1 47 412 

16 2 1s 19 1 47 412 

17 4 0 0 1 52 55 

17 3 LO Ll 1 52 412 

19 4 3 0 01 61 b4 

1Y 3 22 0 1 64 412 

21 2 23. 24 1 b4 412 

22 4 0 0 1 69 72 

22 3 2s 26 1 69 412 

24 4 J ,I 1 78 81 

24 3 27 0 1 81 412 

26 2 28 29 1 81 412 

27 4 3 0 1 86 69 

27 3 30 31 1 86 412 

29 4 0 0 1 95 98 

29 3 3L 0 1 96 412 

31 2 33 34 1 96 412 

Frame 355 Parse Output 

NAME 

CLBM 

STRT 

CO8 

REND 

10s 

DATA 

OIGT 

10s 

DATA 

DIGT 

IDS 

DATA 

DIGT 

IDS 

DATA 

OIGT 

IDS 

DATA 

OP 

+ 

. 

+ 

+ 

. 

+ 

. 

l 

l 

. 

+ 



33 810 101 

34 42 1 

35 816 110 

36 37 1 

37 46 1 

38 RIO 118 

39 42 1 

40 816 127 

41 37 1 

42 46 1 

43 810 135 

44 42 1 

45 816 144 

46 37 1 

47 46 1 

48 810 152 

49 42 1 

50 aib 161 

51 37 1 

52 46 1 

53 810 169 

54 42 1 

5s 816 178 

56 37 1 

57 46 1 

58 H10 18b 

59 42 1 

60 816 195 

61 37 1 

62 46 1 

63 aio LO3 

64 42 1 

65 B lb 212 

66 37 1 

67 46 1 

68 RIO 220 

69 42 1 

32 

32 

34 

34 

36 

37 

37 

3Y 

39 

41 

42 

42 

44 

44 

46 

47 

Cl 

4Y 

49 

51 

52 

52 

54 

54 

56 

57 

57 

59 

SY 

bi 

62 

bil 

b4 

b4 

60 

b7 
67 

4 

3 

4 

3 

2 

4 

3 

4 

3 

2 

.i 

3 

4 

2 

2 

4 

3 

4 

3 

2 

4 

3 

'+ 

3 

2 

4 

3 

4 

3 

2 

4 

3 

4 

3 

2 

4 

3 

0 

I 5 

0 

37 

38 

0 

40 

0 

42 

43 

c 

45 

0 

47 

48 

0 

su 

0 

52 

>3 

0 

55 

ll 

57 

5& 

c 

6G 

0 

62 

03 

0 

05 

0 

67 

*B 

0 
i-0 

0 

30 

0 

0 

3Y 

0 

41 

'1 

3 

44 

0 

46 

0 

0 

49 

0 

51 

0 

0 

52 

0 

56 

0 

0 

59 

5 

61 

0 

0 

64 

0 

bb 

0 

0 

bY 

0 

71 

1 103 106 

1 lC3 412 

1 112 115 

1 115 412 

1 115 412 

1 120 123 

1 120 412 

1 129 132 

1 132 412 

1 132 412 

1 137 140 

1 137 412 

1 146 149 

1 149 412 

1 149 412 

I 154 157 

1 154 412 

1 163 166 

1 lb6 412 

1 166 412 

1 171 174 

1 171 412 

1 180 1.93 

1 183 412 

1 183 412 

1 18H 191 

1 188 412 

1 197 200 

1 200 412 

1 200 412 

1 205 208 

1 205 412 

1 214 217 

I 217 412 

1 217 412 

1 222 225 

I 222 412 

DIGT 

IDS 

DATA 

DIGT 

IUS 

DATA 

OIGT 

IDS 

DATA 

DIGT 

IDS 

DATA 

DIGT 

105 

DATA 

DIGT 

IDS 

DA1 A 

OIGT 

IDS 

DATA 

DlGT 

+ 

l 

+ 

. 

+ 

+ 

. 

+ 

. 

+ 

. 

l 
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70 “lo 229 69 4 5 

71 37 1 69 3 72 

72 46 1 71 2 73 

73 *lo 257 72 Lt cl 

74 42 1 72 3 75 

75 dlb 246 74 4 0 

7b 31 1 74 3 77 

77 46 1 76 2 78 

78 810 254 77 4 0 

79 42 1 77 3 “0 

60 tllb 263 79 4 0 

81 37 1 79 3 a2 

112 4b 1 Ml 2 33 

83 RIO 271 82 4 0 

84 42 1 8% 3 s5 

85 Rlh 280 L14 4 3 

86 37 1 64 3 37 

a7 46 1 R6 2 88 
sa a10 2ne 87 4 0 
89 42 1 a7 3 90 

90 Ulb 297 a9 4 0 

Yl 77 1 8V 3 32 

92 46 1 Yl L 93 

93 BlO 305 92 4 0 

94 42 1 9L 3 15 

95 "16 314 94 4 0 

96 37 1 94 3 97 

97 46 1 96 i ‘9s 

9a al0 322 97 4 0 

99 42 1 97 3 100 

100 Olb 331 9’) 4 J 

101 37 1 99 3 1 d2 

102 46 1 101 2 103 

3 

74 

0 

76 
0 

79 

0 

Hl 

0 

0 

34 

0 

0 

0 

BY 

3 

91 

0 

0 

94 

0 

VO 

0 

0 

‘> 9 

0 

101 

5 

5 

134 

1 231 234 

1 234 41% 

1 234 412 

I 239 242 

1 239 412 

1 248 251 

1 251 412 

1 251 412 

1 25b 259 

1 25b 412 

1 265 260 

1 Lb8 412 

1 208 412 

1 273 276 

1 273 412 

1 282 285 

1 285 412 

1 285 412 

1 290 293 

1 290 412 

1 299 302 

1 302 412 

1 3C2 412 

1 307 310 

1 307 412 

1 316 319 

1 319 412 

1 319 412 

1 324 327 

1 324 412 

L 333 336 

1 336 412 

1 336 412 

10s 

DATA 

DIGJ 

IDS 

DATA 

OIGT 

IDS 

DATA 

DlGT 

IDS 

DATA 

OIGT 

105 

DATA 

DIGT 

IDS 

DATA 

DIGT 

IDS 

DATA 
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103 CC10 339 102 

104 42 1 102 

105 816 348 104 

106 37 1 104 

107 46 1 106 

108 810 356 107 

109 42 1 107 

110 816 365 109 

111 37 1 109 

112 46 1 111 

113 810 373 112 

114 42 1 112 

115 816 382 114 

116 37 2 114 

117 50 1 116 

118 810 390 117 

119 H26 407 117 

120 21 1 10 

121 816 399 IZG 

122 800 415 120 

123 5 1 4 

124 70 1 123 

125 82 1 124 

126 74 1 125 

127 838 423 126 

128 110 1 126 

129 114 1 128 

130 127 2 129 

131 132 1 130 

132 136 1 131 

133 145 1 132 

134 141 1 133 

135 804 431 134 

Frame 355 Parse Output cont. 

4 0 0 

3 102 106 

4 2 0 

3 137 3 

2 138 109 

4 0 0 

3 113 111 

4 0 0 

3 112 0 

2 113 114 

4 0 0 

3 115 116 

4 0 3 

3 111 0 

2 110 119 

4 3 3 

3 120 121 

3 121 122 

4 l.iL 0 

3 123 0 

3 124 162 

4 125 ,I 

2 126 144 

4 I27 12s 

4 0 0 

3 129 0 

2 130 143 

4 131 0 

2 132 141 

4 133 0 

2 134 1 3 8 

4 135 136 

4 0 0 

1 341 344 

1 341 412 

1 350 353 

1 353 412 

1 353 412 

1 358 3.51 

1 358 412 

1 367 370 

1 370 412 

1 370 412 

1 375 378 

1 375 412 

1 384 387 

1 307 412 

1 387 412 

1 392 395 

1 409 412 

1 412 420 

1 401 404 

1 417 420 

1 14 677 

1 14 539 

1 14 539 

1 14 470 

1 425 428 

1 428 470 

1 428 470 

1 428 462 

1 428 462 

1 428 454 

1 428 454 

1 428 444 

1 't33 436 

DIG1 

+ 

IDS 

OATA 

. 

OIGT 

+ 

IDS 

DATA 

. 

OIGT 

l 

IDS 

DATA 

. 

DIGT 

NULL 

+ 

IDS 

dRND 

FRVW 

+ 

XFB 

CFR 

. 

FB46 

. 

Lfl4 

+ 

E4GL 
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136 154 1 134 2 137 

137 814 439 136 2 0 

138 149 I 133 3 139 

139 136 2 138 2 14J 

140 826 449 134 2 141 

141 163 i 131 3 142 

142 826 457 141 i 143 

143 R28 465 129 5 144 

144 78 1 125 3 143 

145 840 4Y2 144 4 0 

146 94 1 144 3 147 

147 98 1 146 2 148 

14n IYO 2 147 4 14Y 

149 195 1 14H 2 150 

150 222 1 149 4 151 

151 231 1 150 L IS2 

157 727 1 151 4 153 

153 806 500 i52 4 3 

154 717 1 152 5 155 

155 H12 508 154 2 156 

156 235 1 151 3 157 

157 222 2 156 2 15ti 

158 826 518 157 2 159 

159 199 2 149 3 160 

160 n76 526 159 2 161 

161 830 554 147 3 lb2 

162 54 1 123 3 163 

163 66 1 162 2 104 

164 58 1 165 4 lb5 

165 842 559 164 4 lb6 

166 101 1 164 3 167 

167 106 1 lhb 2 lba 

168 lit3 2 167 4 169 

‘I 

0 

146 

0 

0 

161 

0 

159 

0 

150 

154 

0 

J 

0 

0 

3 

0 

0 

3 

0 

0 

ia 2 

166 

0 

0 

181 

3 

1 441 444 

1 441 444 

1 451 454 

1 451 454 

1 451 454 

1 459 462 

1 459 462 

1 467 470 

1 14 539 

1 494 497 

1 497 539 

1 497 539 

1 497 531 

1 497 531 

1 497 523 

1 497 523 

1 497 513 

1 502 505 

1 510 513 

1 5lC 513 

1 520 523 

1 570 523 

1 520 523 

1 528 531 

1 528 531 

1 536 539 

I 14 677 

1 14 677 

1 14 606 

1 561 564 

1 564 606 

1 564 606 

1 564 598 

c LU 

EVNT 

L04D 

LD4 

NULL 

LO6 

NULL 

SUFB 

l 

XFT 

CFT 

. 

F T46 

Htb 

. 

+ 

B6GH 

CHI 

EVNH 

HI60 

HI6 

NULL 

HI4 

NULL 

SHFT 

SDVW 

+ 

XSB 

CSB 

. 

5046 
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169 123 1 1 a n 

170 136 1 169 

171 145 1 170 

172 141 1 171 

173 804 567 172 

174 154 1 172 

175 a14 bT5 174 

176 149 1 171 

177 136 2 176 

178 826 585 177 

179 163 2 lb9 

180 826 593 179 

1n1 H32 601 167 

182 62 1 163 

la3 844 630 182 

184 86 1 lR2 

185 90 1 184 

ltih 181 2 185 

187 186 1 186 

108 222 1 187 

189 231 1 iae 
190 227 1 180 

191 do6 638 190 

192 217 1 190 

193 d12 646 192 

194 235 1 1flY 

195 222 2 154 

196 R26 656 195 

197 199 2 11(7 

198 R26 be.4 197 

199 834 072 ld5 

2 175 179 1 564 598 

4 171 0 1 564 590 

2 172 116 1 564 590 

4 173 174 1 564 580 

4 1 74 0 1 569 572 

3 175 0 1 577 580 

L 176 Iti1 1 577 5HO 

3 177 0 1 587 590 

2 17ti 0 1 587 590 

2 179 0 1 587 590 

3 189 0 1 595 598 

21131 0 1 595 590 

3 1131 J 1 603 606 

3 ld3 184 1 14 677 

4 Id4 18Y 1 632 b35 

3 185 0 1 635 677 

2 186 19Y 1 635 677 

4 187 0 1 635 669 

2 188 197 1 635 66Y 

4 18Y 0 1 635 661 

2 190 19+ 1 635 661 

4 191 192 1 635 651 

4 192 0 1 640 643 

3193 0 1 648 651 

2 194 19d 1 648 651 

3 195 0 1 658 661 

2 196 0 1 658 661 

L 197 0 1 658 661 

3 196 0 1 t.66 669 

2 lY9 0 1 666 669 

3 233 5 1 074 677 

LO4 

+ 

84GL 

CL0 

EVNT 

LO40 

LO4 

NULL 

LO6 

NULL 

SHSB 

l 

XST 

CST 

sr46 

HI6 

+ 

B6GH 

CHI 

EVNH 

HlbO 

Hl6 

NULL 

HI4 

NULL 

SHST 
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PKlMlTIVt VALUE LIST... 

NAM XT YT ZT XH YH ZH OTHER VALUES 

SJRJ 1 1 

BEND 2308 439 

IDS 2308 439 

DIGT 2358 43’3 

IDS 2338 43Y 

DIGT 2368 439 

IDS 2368 439 

DIGT 2347 439 

ICS 7397 439 

DIGT 2427 439 

IDS 7417 439 

OIGT 7455 439 

IDS 24.55 439 

OIGT 2484 439 

10s 2484 439 

DIGT 2515 439 

IDS 7515 439 

DIGT 2543 439 

IDS 2543 439 

DIGT 2571 439 

10s 2571 439 

DIGT 2600 +39 

IDS 2600 439 

DIGT 2629 439 

IDS 2629 439 

DtGT 2658 439 

IDS 2658 439 

OIGT 2685 439 

10s ihe.5 439 

OIGT 2715 439 

IDS ?71!l 439 

DIGT 2745 439 

I"< 7745 439 

c 23OY 43s 

c 2308 550 

0 233!1 43Y 

0 233n 439 

0 2368 435 

0 2368 475 

0 2397 43Y 

0 2397 49d 

0 2427 439 

0 2+27 490 

0 2455 439 

0 2455 439 

0 248+ ‘+3Y 

0 2484 443 

0 2515 439 

0 2515 510 

0 2543 439 

0 2543 440 

0 2571 439 

0 2571 451 

0 2600 439 

0 26GO 452 

0 2629 439 

0 2629 443 

.o 2b5d 4,9 

0 265d 487 

0 26M5 435 

0 2bn5 43') 

0 2715 439 

0 2715 476 

0 2745 439 

0 2745 511 

0 7772 +39 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3 

0 

0 

,I 

0 

3 

5 

5 

0 

0 

6 

0 

1 

1 

0 

4 

0 

3 

6 
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DIGT 2772 43-l 

IDS 7772 439 

“IGT 28’1” 4 3 Y 

I cs ih’)rl 4 3 ‘7 

D,GT 2d27 439 

I cs >n27 439 

DIGT >b’ib 4 3’) 

10s 7856 434 

DIGT 7884 43Y 

IflS )dd4 4.3 9 

DIGT 7912 439 

IDS 7Y,2 419 

UI(;T 7941 439 

10s 7Y’+l 43P 

NULL iY41 4 34 

MBNU ?‘?“7 439 

XFH 23i)d 4 ,Y 

64C.L ,Y,r(D i ‘+ 7 

EVhT 1’(,f,7 I’ 7 1 

NULL /ciil6 24 7 

NblL 79d6 241 

SHFil /‘c?tib 147 
IA4 2554 

XFT 33flM 43s 

RhCH 797E 7bG 

EVNH ,143 5s7 

N”,L 3471: 760 

NU L /‘Yld I63 

SHFT 297A 760 
Rhb j5UY 

XSH /.3tan 439 

64c.L IJ33 242 

EVNT 944 2bB 

kLLL Iii33 i 4 2 

0 2772 522 

0 2893 439 

I: 2t3Cd 43Y 

li 2rlZI 43 i 

” 2627 46 d 

” LB>6 43Y 

” Jii5b *62 

0 2884 43 Y 

il 2 if a’+ ‘,41! 

0 2’412 $3’) 

0 7912 t40 

i: 2941 353 

0 2’141 lb 7 

0 2967 439 

c, L’,/+l 43 3 

,, 2‘dbP 54 7 

” ;9nts 247 

:, ihU/ 271 

. iso7 a7 

0 2Yi16 247 

0 /Ye6 24 7 

34 

34 9 
I 

6 3436 797 3’+53 812 3472 024 3492 ~33 3487 543 3501 

I 

73 6 
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NULL 1033 242 

SK.0 1033 242 
171 lCO9 

XST 730H 439 0 1727 

06GH 1727 760 0 1047 

EYNH 1047 605 r) 1095 

NULL 1727 760 0 1727 

NULL 1727 760 0 1727 

SHST 1727 760 0 271 
6552 1161 860 llbb 

0 1033 

0 1841 
101 913 

242 3 

130 0 10 920 131 875 131 090 141 905 150 919 161 933 161 913 
192 925 207 

76G 0 

005 0 

720 c 71 7 

760 ” 

760 0 

878 0 Y 1124 799 1128 814 1141 RZ5 1046 R32 1044 835 1140 945 1160 
JO7 

Frame 355 Parse Output cont. 
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