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SYNOPSIS 

In various problems of classical electrodynamics the solution is often found 

by solving the Boltzmann-Vlasov equation 

-$ $b (xi, t) = 0 , i = 1, 2, . . . , 6, 

under proper constraints in six-dimensional phase space. A perturbation repre- 

sentation of the charge distribution function $ is described in this paper. This 

representation is derived from the unperturbed distribution function tie by using 

a six-dimensional displacement vector r. It is shown that if < satisfies certain 
,._~ ._. 

constraints, then $ = [exp(-g * rrllt, satisfies the Boltzmann-Vlasov equation. 

The constraints which t must satisfy are dictated by none other than the Lorentz 

equation of motion of a charged particle. This constitutes one proof of the equivalence 

between the Boltzmann-Vlasov equation and the Lorentz equation. This proof may 

have advantageous aspects, especially in connection with perturbation calculations. 

As an example, the work of Lee, Mills and Morton on multipole oscillations of a 

throbbing beam is discussed in detail. The salient features of different kinds of 

phase spaces are compared by considering simple relativistic particle systems. 



I. INTRODUCTION 

The theory of classical electrodynamics is formally complete. There is avail- 

able an abundance of mathematical methods in this field. Yet, it is by no means an 

easy task to solve a specific problem, because new problems are ever increasing 

in complexity. In attempting to obtain useful results, efficiently and accurately, 

one is often bewildered by his freedom of choice between several usable approaches. 

It seems advisable to study the salient features of different methods and the rela- 

tions that exist between them. 

For a given charge-current distribution and known boundary conditions, 

Maxwell’s equations determine the electromagnetic field uniquely. Having deter- 

mined the field intensities, one may obtain the motion of the charged particles 

from the Lorentz equation and certain initial conditions. This knowledge of the 

particle motion, in turn, determines the charge-current distribution. If the latter 

4-current (i, p) were correct, the Maxwell field (5, ES-) obtained from it would be ml 

the same field as was used in the Lorentz equation which yielded the same 

4 -current. 

Instead of solving directly the Lorentz equation in 3-dimensional space, one 

may solve the so-called Boltzmann-Vlasov equation 1’2 for the charge distribu- 

tion function in 6-dimensional phase space. The latter equation is obtained by 

substituting the Lorentz equation into the Liouville equation (also known as the 

collisionless Boltzmann equation). From the charge distribution function, the 

4-current vector is determined readily. The use of Maxwell’s equations for de- 

termining the electromagnetic field from the 4-current is the same in both methods, 

and, in this paper, these equations will be assumed to have been solved whenever 

they need be. 
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The Lorentz equation, which we are discussing, is the microscopic Lorentz 

equation. The other Lorentz equation, macroscopic, is a consequence of the 

Boltzmann-Vlasov equation. 
3 

To compare the microscopic Lorentz equation with 

the Boltzmann-Vlasov equation is, in effect, to compare the two forms of the Lorentz 

equation. Hereafter, unless explicitly stated to be otherwise, the Lorentz equation 

is meant to be the microscopic equation. 

The electromagnetic fields ( E, B) which appear in the Lorentz equation con- *.. .‘.% 

sist of the fields applied externally and the fields induced by the electron beam itself. 

The induced fields are, supposedly, the microscopic fields; the charge- and the 

current-density of the beam are the sum of Dirac delta functions representing the 

contribution of individual point charges, 

P = F eqr - r,(t)) 
and 

In the Boltzmann-Vlasov equation one also uses the microscopic particle- 

density and the microscopic fields, so that this equation and the set of Maxwell 

equations constitute a closed system of equations for the beam-field problem. 
4 

This system of microscopic equations may then be averaged statistically. The 

resulting system is not a closed one, unless the correlation effects arising from 

the random parts of the fields are taken to be vanishingly small. This assumption 

is implied in Ref. 3 and will also be used in this paper. In other words, the micro- 

scopic fields will be assumed to be no different from the corresponding macro- 

scopic fields; only the kinetic quantities (velocity, momentum etc. ) may have 

random fluctuations. 
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The equivalence between the Lorentz equation and the Boltzmann-Vlasov equa- 

tion has been discussed by Watson’ and Chandrasekhar. 6 Each spatial or momen- 

tum variable x1 of a particle may be expressed as a function of time t and the 

six integration constants QI 
k 

required for specifying the initial conditions. If these 

’ k 
solutions x1 = ~‘(a! , t) of the Lorentz equation are substituted into the expression 

of the charge distribution function IL (xi, t) and if $ is such a function that, after 

the substitution, ti becomes a function of ok only, then dr/l/dt = 0, which is the 

Boltzmann-Vlasov equation. The fact that I,!J should be totally independent of t in 

the absence of collisions is well-known, and is usually proved by using the Liouville 

theorem. 
7 

This simple discussion seems to convey the thought that, if there are numerous 

particles in a system, it would be very hard, if not impossible, to solve the Lorentz 

equation because of the great number of integration constants. This thought, however, 

is often questionable. The well-known work of Pierce8 on electron-beam tubes con- 

tains many examples of the judicious solution of the Lorentz equation. In this paper 

a new proof of the equivalence between the two methods will be given, and their 

relative merits will be discussed. 

Let 5 (&, t) be the Lorentz force acting on a charged particle of charge 5 , 

rest mass 2, and relativistic mass mu, 

K = e(E + ux B). 
ryrh ,.uA 4.2 .-\ 

Let zK (r, t) be the kinetic momentum of this particle, 

2.K r-+’ = myu 

The Lore&z equation is simply 

(1. la) 

(1. lb) 

(1.2) 
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The first-order part of this equation may be obtained by inspection, 

=e ~B+uOxB fu XB 
( .* fM.1 ,*l MO (1.3) 

so may the second and higher orders. 

In these equations of successive orders, the zeroth excepted, the particle aspect 

of the Lorentz equation is destroyed, because u 0 
and u = u + u + u2 + . . . . are _a .z,*o ,.“l 

velocities at the same point (z, t) in 4-space, not the corresponding velocities of 

the same charged particle, which in the unperturbed case is located at the point 

(r, t) and in the perturbed case at (r’ t ,,I , ). To solve these equations is said to follow 
.A 

the Eulerian approach. 

The alternative procedure for solving the problem is the Lagrangian approach. 

One method of the latter approach makes use of the displacement vector < , defined by 

r’ = r + f(r,t), *a’i * m M” (1.4) 
f, =t1+i2+ . . . . . 

‘\ 

Any perturbed quantity may be expressed as a function of 5 and the supposedly 

known unperturbed quantities. When the Lorentz equation is so transformed, it may 

be separated into different orders without destroying the particle aspect. 

The first-order Lorentz equation in terms of the displacement vector was 

originally derived by Sturrock’ and Chu 10 by applying the variational principle to 

the action function of a general charge-field system. General expressions of the 

4-current were derived by Dedrick and Wilson 
11 

, using an integral theorem of the 

Taylor operator defined by <. All these derivations involve no small amount of 
.,,.a 

mathematical analyses. 

Subsequent to the works just mentioned, Dedrick and Chu 
12 formulated a gen- 

eral theorem in N-dimensional space, concerning the Jacobian of coordinate 
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transformation, the Taylor operator, and the Lagrange operator. Here we consider 

N = 3. Let 3 be the Jacobian of transformation from the unperturbed to the per- 

turbed coordinates. 

y 3 det 11~~ 1 ; 

po(r, t) = Tp(z’,t) . 

Let 5 be the Taylor operator, 

(1.5a) 

(1.5b) 

2-E exp(i * V) 
<,.( -96 

dp) = %J(p 

u(r’, t) = %(r,t) = uo+ i . .,..I .A -* r* .el 

(1.6a) 

(1.6b) 

(1.6~) 

Let E be the Lagrange operator. 

ii = exP(-,?a<). ,.," (1.7) 

The operator theorem proved in Ref. 12 is as follows: 

--- --- 
JZa = zax = s2JX =l, (1.8) 

where the operand is any infinitely differentiable function. 

According to this theorem, we obtain at once from Eqs. (1.5b) and (1.6b) 

P(z,t) = Epo(r, t) . vi* 

The current density may also be obtained easily by using an adjoint property 

--1 pertaining to the operators Z and x- ’ [see Eq. (6.8a) in Ref. 121 . 

i. e. , 

i 

. 
i(r, t) = B i. + pot . 

++A .* w ) 

(l-9) 

(1.10) 

Expressed in these forms, the 4-current may be separated into successive orders 

by simple inspection. 
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To obtain the corresponding form of the Lorentz equation we apply the Taylor 

operator on both sides of Eq. (1.2). Since 

EIJ = 5 e z + (z. +>),X (Ee B) (1. lla) 

and 

dZK Em =x 
dt 

= + u(r’, .,.A t)’ !‘](&) = & (E&)’ 

i.e., d:K z--.-. zz 
dt C nl b&o + j\)l ’ 

the resulting equation is the Lorentz equation in the Lagrangian approach: 

o +{) p- ($o+g.~o+JC-2]-1’2/ 

= Ee ,E, +(I.I~ + i)X (%e B) . 

(1. llb) 

(1.12) 

This equation may then be separated into different orders quite easily. The first- 

order equation is as given by Eq. (7.10) in Section VII. 

This brief review of the perturbation theory serves to show the effective use 

of the Taylor and Lagrange operators. In succeeding sections we will use these 

operators in G-dimensional phase space to discuss the perturbation solution of the 

Boltzmann-Vlasov equation. We choose 6-space over 8-space, 13’14715 because 

6-space is used in the majority of references, 16,17 including Hamilton’s early work. 

The use of 6-space does not hamper the relativistic treatment. No new mathemat- 

ical procedure is involved in adapting two more dimensions, time and energy. 

Speaking in general, either the covariant- or the contravariant-momentum 

components may be used as the non-spatial coordinates in a phase space. We will 

use the covariant-momentum components. This choice conforms to the usage of the 

Hamiltonian treatmentof dynamics, in which the spatial- and the covariant-momentum 
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components are the so-called conjugate variables. It can readily be shown that, 

when these variables are the coordinates, the determinant of the 6 x 6 metric tensor 

of the phase space is unity, regardless of the spatial coordinate system, whether it 

be Cartesian or curvilinear. When a certain canonical transformation is applied to 

the phase-space coordinates, the two groups of new coordinates remain conjugate 

to each other; but no new coordinate may retain its purely spatial or purely non- 

16,18 spatial character. The determinant of the new metric tensor remains unchanged, 

because the Jacobian of any canonical transformation of coordinates is unity. lg In 

the following discussion, this property of the metric tensor is not needed. 

- 7 - 



II. THE DISPLACEMENT VECTOR AND 

COORDINATE TRANSFORMATIONS 

Consider at the same time two simple systems of charged particles having 

one-tonne correspondence. One system is in the unperturbed state and the other 

in the perturbed state. An unperturbed particle is located at time t at the point 

7 in the phase space, having coordinates x1 referred to a given 6-dimensional .,. , 

coordinate system. The corresponding perturbed particle is located at the same 

time, t’ = t, at the point y’, having coordinates xl1 referred to the same co- 

ordinate system. 

These two phase points are related by the displacement vector as follows: 

7 =T+F, 
w.X .<.t 

This may, alternatively, be given by 

X J = xi + (i(Xk, t) . 

(2. la) 

Here, ti is the difference between the two i-th coordinates. The displacement 

vector r( 2, t ) is defined by the set of components 4 ‘(xk, t ), and vice versa. 

The components ( ‘, however, do not in general form a vector themselves. In 

other words, ,$’ + c1 except when the reference coordinate system is Cartesian. 

The first three coordinates (x1, x2, x3) may be designated to be the spatial 

coordinates, and the other three (x4, x5, x6) the momentum coordinates, either 

canonical- or kinetic-momentum as the case may be. Thus, the first three com- 

ponents of any vector are the spatial components, and the other three the non- 

spatial components. Each component of 7 is some function of the unperturbed w.. 

coordinate- and momentum-variables and the time. The three components of F 

pertaining to the momentum subspace are not independent of the three spatial com- 

ponents. They are connected by kinetic relations. These relations will be discussed 

later. 
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and 

Equations (2. la) and (2. lb) have their counterparts, namely, 

r = T1 
w - -Z’(J’A 

where 

and 

X1 
Ii = x - p(Xfk, t) , 

gfi(xfk, t) = 4’(xk,t) . 

(2.2a) 

(2.2b) 

(2.3a) 

(2.3b) 

Equations (2. lb) and (2.2b) may be interpreted from an alternative but equally 

valid point of view. The coordinates x1 and x Ii , so far understood to pertain to 

two different points in the same coordinate system, may also be considered to be 

the coordinates of one and the same phase point with reference to two different co- 

ordinate systems. Equations (2. lb) are the set of equations of coordinate trans- 

formation from the unperturbed to the perturbed system, While Eqs. (2.2b) are 

those of the inverse transformation. If the x (or x’ ) coordinate system is Cartesian, 

then the x’ (or x) system is curvilinear. 

The Jacobian J( x”/xk) of the transformation (2. lb) is the determinant of 

the 6 x 6 matrix (ax’ ‘/3xk) , i.e. , 

J(x+xk) = lax”/axk\- J. 

Similarly, 

J(x’/x,~) = axl/ax I . 
rk 

I 
-1 = J . 

(2.4) 

Any scalar, vector, or tensor function may be expanded into a series by operating 

upon the function with the Taylor operator 
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i. e. , 

Z ES 5 $ sat . . . . <“a-f-. . . . 3 , (2.6) 
n=O ax" axb 

where ta fb . . . . 4’ is a product of n factors, and every pair of repeated 

Latin indices implies summation over six components. For example, Taylor’s 

theorem is 

Conversely, 

I)& t) = X$(xl,t) . (2.7) 

@(xi, t) = 2-1p(x’i, t). (2.8) 

The inverse Taylor operator z1 -1 is closely related to the Lagrange operator 

$2, which is defined as follows : 
I 

L? z exp-- 
( ) 

ati 7 
ax1 

i.e. , 

a 
.,g+=-.... --Jrtatb. . . . tp . P-9) 

n=il axa axb 

Many properties of these operators have been discussed in Ref. 12. A general 

theorem is proved therein. This theorem is the extension of Eq. (1.8) to 

N-dimensions. 

- 10 - 



III. CHARGE DISTRIBUTION FUNCTIONS 

Let tie and + denote, respectively, the unperturbed and the perturbed charge 

distribution function. A certain number of identical charged particles in a 6-space 

phase element dx1dx2 . . . dx6 bear an electric charge dq . The charge distri- 

bution function is defined to be the charge density per unit phase element, Thus, in 

the unperturbed state, we have 

dq = tio(xi, t)(dx)6. (3.1) 

Here, (dx)6 E dx1dx2 . . . dx6 . In the perturbed state, these same particles 

in the corresponding phase element must have the same amount of charge. It is 

assumed that there occurs no collision between particles. Thus, we also have 

dq = $(x’i,t) &h# . (3.2) 

Since 

w’f = J(x”/xk)(d$ , 

i.e., 

J$(xRi, t) = $6(x’, t) , (3.3) 

we obtain from Eqs. (2.7) and (3.3) 

JZ’&( xi,t) = $,(x’, t) , (3.4) 

or simply, 

‘/J(& t) = who(xi7t) 7 (3.5) 

because fi J E = 1. In other words, the perturbed charge distribution function 

may be represented in general as the result of operating on the unperturbed dis- 

tribution function with the Lagrange operator. Once $ is represented in this form, 

it becomes a routine matter to separate $ into different orders of magnitude. For 
. . . 

example, using Eq. (2.9) and separating 4 ’ into different orders, e’ = e’, +<i + . . . , 
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we obtain 

(3.6a) 

(3.6b) 

etc. 

Equation (3.5) is the consequence of Eq. (3.3). In tensor language, the charge 

distribution function is a scalar density, not an absolute but a relative scalar of 

weight one. 20 Scalar densities of all kinds behave in the same manner. 

- 12 - 



IV. THE EQUATION OF CONTINUITY 

Let us consider the time developmentof the charge distribution function. As the 

time increases from t to t’, a certain phase point moves from xi to xl1 and 

a small phase element around this point changes from 6V to 6V’. In the absence 

of collisions, the number of charged particles under consideration remains the same. 

Thus, 

J rcl(x, t )W6 = J 
SV 

sv, $(x9 t’l@d 
= J $(x’, t’)(dxy . (4-l) 

6V’ 

The last integral over SV’ may be changed by a transformation of variables to 

an integral over 6V. Then Eq. (4.1) becomes 

J (4.3) 

6V 6V 

Here, t is considered fixed and t’ = t + 6t an auxiliary parameter. The equations 

of transformation of variables may be written as 

Ii 
X = xi + .$(xk, t’ ) , (,&-o ) (4.3) 

t-t ) 

which must exist because the solution to the initial-value problem of the physical 

system exists. The Jacobian 1 ax’/ax 1 also contains t’ as a parameter. Since 

6V is arbitrary, we must have 

ICI Q, t+lx’/axl = $(xi,t) . (4.4) 

From this equation, it then follows that 

l&ax1 m&xi,t’) = $(xi, t) . (4.4a) 

- 13 - 



Here, the Taylor operator Z: is as defined by Eq. (2.6) with <i = ti( xk, t’ ) 

instead of I’( xk, t ), which, in this case, vanishes. Operating on Eq. (4.4a) from 

the left with the Lagrange operator 9, which is also defined by 4 ‘( xk, t’), we 

obtain, because of D lax’/Bxl z: = 1, 

*(xi, t’) = n$(xi,t) . (4.5) 

The left-hand side of this equation may then be expanded into a series about the 

point (x1, t ) by using Taylor’s theorem. 

w’, t’) = 3-$(x’,t) , 
where 

Therefore, Eq. (4.5) becomes 

&b(xi, t) = s22(xi,t) . 

(4.6) 

(4.7) 

The phase-space coordinates x1 are considered fixed when $!J is operated on 

with T. The time variables t and t’ are considered fixed when $J is operated 

on with 0 . Thus, Eq. (4. ‘7) states tka t the Taylor development of $ with respect 

to time at a fixed phase point is equal to the Lagrange development of $ with respect 

to phase variables at fixed times. This is, perhaps, the most general form of the 

equation of continuity satisfied by $ or any scalar density. No dynamic principle 

is used in deriving Eq. (4. ‘7) save for the existence of the solution of the initial- 

value problem. Hence, Eq. (4.7) is valid, independent of dynamic principles in- 

cluding the theorem of Liouville. 
. . 

When 6t -0, we have c1 = x” - x1 = 6 x1--- 0 , We may then consider 

only the first-order terms in Eq. (4.7) and obtain 

bt g+ a (@xi) = 0. 
ax’ 
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Also to the first order, 6 xi ’ = i’l5t. Using this relation we obtain the equation 

of continuity in its usual form, namely, 

ti + a_ (l#Qlfii) = 0. at ax’ 
(4.8) 

Since x1 is an absolute contravariant vector, the function lGxl is a contra- 

variant vector density. The second term in Eq. (4.8) is the so-called density 

divergence 20 in a 6-space. This term is an invariant with respect to coordinate 

transformations in the same sense as a scalar density is. 

When Hamilton’s equations are satisfied, Eq. (4.8) becomes the Liouville 

equation, 

dlC, - ti -- 
dt at 

+ ii &. zz 0 
ax1 

because ax’/ax’ = 0 as will be discussed in the next section. This equation may 

be obtained more readily from Eq. (4.4), because 1 ax’/ ax ( = 1 according to 

the Liouville theorem, which follows from Hamilton’s equations. 

- 15 - 



V. THE BOLTZMANN-VLASOV EQUATION 

We differentiate Eq. (3.4) with respect to time. 

d% dJ - 
dt 

=zX$+ J 

Since 

L& z$ = 

( 

& + gk 
a 

7 

ax J 

l&x”, t) = 2 & ICl(x’,t) , 

Eq. (5.1) is the same as 

d*O 1 dJ -= 
dt 

J a ILo + JZ g . 

(5.1) 

(5.3) 

Operating on this equation with the Lagrange operator !Y2 used in Section III and 

using S2JB = 1, weobtain 

d’O ‘0 dJ 
---aF’ dt J > 

(5.3) 

The unperturbed state is supposedly a physically realizable state. Hence, in 

the absence of collisions, 

d*o - 0 -- 
dt 

(5.4) 

according to the Liouville theorem. Thus, the first term on the right of Eq. (5.3 ) 

vanishes. If the perturbed state is also physically realizable, the last term of 

Eq. (5.3) must also vanish. In other words, 

dJ -Jf= 0 (5.5) 

should also follow from the principles of dynamics, While this is obvious in view 

of the Liouville theorem, we will, nevertheless, give an explicit proof of Eq. (5.5) 

to elucidate its inner contents, which are most essential for the discussion of our 

subject. 
- 16 - 



In this connection, it is more convenient to consider the transformation of co- 

ordinates in 7- rather than B-space. We re-write Eq. (2. lb) as follows: 

ti 
X = x1 + (‘(Xk) . 

17 
Here,i and k rangefromlto7; x =t’; x7=t; t7 = 0. This set of 

equations (5.6) consists of the same six equations in the set (2. lb) and the 7th 

equation t’ = t . The Jacobian of the transformation in 7-space is the same as 

the one in 6 -space, because 

at' i"* 
i = 1, 2, . . . , 6. 

7= 

ax1 I 
a<-, i=7 
g- ' 

Let gij denote the covariant element of the metric tensor of the x-coordinate 

system and 2. 
lj 

the corresponding metric element of the x’ -system. Then, 

Taking the determinants of the matrices on both sides of this equation, we obtain 

where 

Hence, 

;= g.. 
I I 

and 
‘.I 

& ; 
I I ij ’ 

J = &?/a (5.7) 

and 

(5.8) 

In 7-space, d/d t = xl(a/axi) in the x-system and d/d t = x”(a/ax’l) in the 

xl-system. Thus, Eq. (5.8) may be written as 

1 dJ 1 a --ZY -7 
J dt (ii&$) - 

. 

,E ax1 

(5.9) 
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The first two terms on the right of this equation cancel each other, because both 

terms are equal to the absolute divergence of the 7-vector dg/dt . The vector 

dz is an infinitesimal, directed, line element in the ‘I-space. 
c 

dg = zidxl = ;.dx” . 
W.61 

The time derivative of this vector is 

dz/d t = ii? = ;r’ Ii e.x . 

Here, ii and 8. are the covariant base 
M&l 

vectors of the two coordinate systems. 

The absolute divergences of the same vector di/d t in two different coordinate 

systems are the same. Because of this, Eq. (5.9) becomes : 

- ,i 
1dJ ax aK’ 

zdi:=axl’-ax’ * (5.10) 

Since at’/at’ ’ = at/at = 0, Eq. (5.10) is valid in 7-space as well as in g-space. 

Hereafter, the Latin indices will again be considered to range from 1 to 6. 

To continue our proof, it is helpful to recognize that the six coordinate variables 

are three pairs of conjugate variables. Let xo, o ranging from 1 to 3, denote the 

three spatial (contravariant) coordinates. Let x 
3+o! denote the three momentum 

coordinates, canonical or kinetic as the case may be, x 
3+a = p, . Thus, 

a&’ aka aPQ 
--;=-+- 

ax1 ax& ap, 

(5.11) 

Each pair of coordinates (x”, p,) or (xo , x 3-Q ) are conjugate variables. 

In Eq. (5. ll), the ko are the three velocity components and the ficr the three 

force components (in the generalized sense) pertaining to a certain particle in the 

unperturbed state. According to the canonical equations of Hamilton, we have 

k” = ag/,/apa (5.12a) 
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and 

P, = - a3/,/axa . (5.12b) 

Here, 3, is the unperturbed Hamiltonian function. To be more specific, 

I( )I 

l/2 
P, - eAoo . (5.13) 

In this equation, V. = Vo(x, t ) is the scalar potential, A,,, = AOa(x, t ) the 

vector potential, and p, the canonical momentum; all entities pertain to the 

unperturbed state. From Eqs. (5.12a) and (5.12b) it is clear that 

aP a& 
- zz --. 

axa 
a PcY 

(5.14) 

Hence, Eq. (5.11) becomes 

aki 
- = 0. 
ax1 

(5.15) 

Similarly, the perturbed system is characterized by the Hamiltonian cxx’, P’, t) , 

lo! - eA’o )( 
l/2 

p’ - eA’ c!! )I CY * (5.16) 

Here, V’ = V (x’ , t ) and Ah 3 Ao( x’ , t ) . Following the same procedure 

as used in deriving Eq. {5.15), we find 

axrl 
7= 0. 
ax’l 

(5.17) 

Thus, both terms on the right of Eq. (5.10) should vanish because of Hamilton’s 

equations. This proves Eq. (5.5) in any general case, because J is finite. 

The general representation of the charge distribution function as given by 

Eq. (3.5) has thus been proved to satisfy the Liouville equation, provided that the 

two conditions as stated by Eqs. (5.4) and (5.5) are satisfied. ‘Ihe Liouville equa- 

tion becomes the Boltzmann-Vlasov equation, when the electromagnetic field 
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quantities in the Hamiltonian cw are consistent with the 4-current derived from 

the charge distribution function $, 

The Jacobian J is determined solely by the 6-dimensional displacement vector 

&w,t). T o satisfy Eq. (5.5), F must be such a vector function as to satisfy 
iv- 

Eq. (5.17). The latter equation is solved by the pair of Hamilton’s equations: 

- la! 
X 

apk 
(x’,p’,t) ; (5.18a) 

p; =-- a cik(X’,P’, t) . 

axlff 

(5.18b) 

The first equation of this pair is simply the definition of the 3-velocity vector, 

, (5.19) 

where y’ is the ratio of the relativistic mass to the rest mass, 

( 
ICY ICI ! 

P - eA )i P, - eAA )I 
l/2 

(5.20a) 

= [l - (&2)] -1’2 . (5.2Ob) 

The second canonical equation (5.18b) is usually known in classical electrodynamics 

as the Lorentz equation of motion of a charged particle. The Hamiltonian function 

:g may contain other interaction terms not included in Eq. (5.16). To solve for $ 

from the Boltzmann-Vlasov equation is, in all cases, the same as to solve for ? 

from the Lorentz equation. Each method of solution has its advantages. It should 

always be helpful to know the detailed connection between them. 

In Appendix A, it is shown that if tie satisfies the equation of continuity, then 

$ = Qtio will also satisfy this equation without requiring any condition on dJ/d t . 

In Section X we will discuss the velocity phase-space, for which dJ/d t f 0. 
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VI. FURTHER DISCUSSION OF THE DISPLACEMENT VECTOR 

To evaluate (l/J)(dJ/dt) in terms of the displacement vector, we first differ- 

entiate Eq. (2. lb) with d/d t, then with a/axle, and then apply contraction by 

putting P = i. Thus, 

ak" axk a . . 
7=-- 
ax” ad1 axk 

(xl+ q, . 

According to Eq. (5. lo), 

where 6: = 8xk/3x1 is the,Kronecker delta. 

Since, 

Eq. (6.2) becomes : 
. . 

ax1 axk 
- + -_ 

d ati 

axk ax” TTZ’ 

The first term on the right of this equation vanishes, because 

axk axk a$ axk axk ax' 
-. 
ax’l 

- 6; + --Ye 
7 = -. - - 7 = 0. 

ax ax’ ax’l ax ax1 IQ 

k 
1dJ ax d ati --= 
J dt ,in- ’ 

ax axk 

Considering the x-coordinate system to be Cartesian, we may easily write 

Eq. (6.3) in its vector form, namely, 

(6.1) 

(6.2) 

(6.3) 

(6.4a) 



i.e. , 

(6.4b) 

In these equations, the double dot product is performed as in the equation 

$5 : Fg = (&i)(pJ; 4 =$j = s.2 is the unity dyadic. Both Eq. (6.3) 

and Eqs.(6.4a) or (6.4b) are valid in any coordinate system. Equation (6.4b) can 

easily be separated into different orders of magnitude. The first two terms are as 

follows : 

(6.5a) 

(6.5b) 

To satisfy the condition [(l/J) dJ/d t], = 0 so that (d$/d t)l = 0, we must 

require that 

(6.6) 

identically. Thus 2 * & must be a constant or zero. If V’& were a non- 

vanishing constant, then according to Eq. (3.6a) $I would contain a small constant 

fraction of tie equal to (a$/ax')*, . This part is certainly of no interest in the 

perturbation problem and may be excluded from consideration. Therefore, we may 

simply require, instead of Eq. (6.6), 

If this is satisfied, then the Jacobian J is equal to unity, to the first order. 

Now we proceed to find the connection between the two parts of the displacement 

vector, the spatial and the momentum part. Let us denote 4 3+cY = G , and separate 
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the set of Eqs. (2. lb) into its two parts: 

KY 
X = xa+ 4” ; (6.8a) 

PLY = P, +xo, 

These yield, on differentiation with d/d t , 

(6.8b) 

102 ‘a 
U = .;+t ; (6.9a) 

* 1 Pa = P, + x, . (6.9b) 

In Eq. (6.9a), u: = xo and u’o = x’o are, respectively, the unperturbed 

and the correspmding perturbed particle velocity. 

Let g crp be the metric tensor elements of the 3-space evaluated at the point 

(r) and g’ 
VM 

ap the metric elements evaluated at the point (r’), g& = gap(i) . 
h”\ 

Then uoo = P 
gcrp u. 

and u’ = ’ I? a! gcYp - By definition, 

PcY = my0 uoa! + eA Oa ; (6.1Oa) 

p’o! = my’ u’ + eA’ a! cl! * 

Substituting these relations in Eq. (6.8b) we obtain 

(6. lob) 

X 
a 

= my0 gap ip + m y’g’ 
( alp 

_ y. gc,p) ( I.$ + 4’) + e (A; - Ada) 6 11) 

Equations (6.8a) and (6.8b) have their corresponding 3-dimensional vector 

forms , namely, 

r’ = r+ t 3 (6.12a) 
‘ti - I,*’ 

P’ =p+r) . (6.12b) 
\x\ Y.‘., cm* 

In a Cartesian coordinate system, ro = ro =x ap Pa 
3-m =pa =r , 

r’ ‘a! ‘cl! Ia, ‘3+cY =r cd =x ,andp’ =p =r . cd In curvilinear coordinate systems, 
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these relations are no longer true. From Eqs. (6.12a) and (6.12b) we obtain, 

in general, 

th = \:A . r’ - rh = jr” - rX) + Ii0 la! ro+ . . . . (6.12~) 
nc 

and 

VA = eh * P’ - ph = Xh - r;^ I” pa + . . . . . (6.12d) 
rlc /. 

Here, I:, u and rob are the 3-space Christoffel symbols 20,21 evaluated 

at the point r . ‘,W. 

Taking the time-derivatives of Eqs. (6.12a) and (6.12b) we obtain 

and 

(6.13a) 

Also, 

and 

&I, = $( F,' - ~~~ = (Fi-F,,)- I’$/$oFoO+.... . (6.13d) 

Equations (6.13a) and (6.13b) correspond to the two parts of the 6-dimensional 

vector equation, 

(6.14) 

It should be noted that two corresponding equations are consistent but not the 

same equations. 

From Eq. (6.12b), Eq. (6.13a), and the definitions (6.lOa) and (6. lob) we may 

easily derive the relation between 2 and i . This is .\*, 
. 

rl = myo( + m(r’ - Y~)(~~ +-I ) + e(A’ -,to) . +.A *IA m W’ 
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This equation corresponds to Eq. (6.11) and has the advantage over the latter of 

having no explicit dependence on the metric tensor. 

In many practical problems, (r’ - yo) may be assumed negligibly small. This 

is often true in either the slightly relativistic or the extremely relativistic case. 

If so, the second term on the right of Eq. (6.15) may be omitted. Furthermore, 

if p and p’ 
w H 

are the kinetic momentumor if .A0 and $ have only one com- 

ponent and may be absorbed into the scalar potential by a gauge transformation, 

then the third term may also be absent. In any case, if we denote by zK the 

kinetic part of V , then u* 

rl V+?K = myoi + m($ - yJ(u + i) . 
HO is.4 

(6.16) 
1.h. 3 

This equation may also be written as 

mko + .jd 1 
IIK = [1-(uo+~).(uo+~)c-2]1/2 - mYo20 ’ 

and conversely, 

(6.17a) 

(6.17b) 
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VII. THE LORENTZ EQUATION 

The vector u’ is the perturbed velocity of a certain particle at the phase point 

(x’, p’) and the time t’ = t . The vector ,F’ is the perturbed force (canonical or 

kinetic) on this particle at the same phase point and the same time. Thus, 

U’ z ll(x’, p’, t) = m$x, p, t) , 

i.e. , 

U’ = zu . 
rrr* n*L (7. la) 

Here, the Taylor operator Z is defined in the &space (xa!, p,) by Eq. (2.6). 

Similarly, 

F’ I F(x’, p’, t) = ZF(x, P, t), 
*xr. yw rEEI 

i.e. , 

F’= ZF . UC PAA (7. lb) 

Using these relations we obtain from Eq. (6.13a) and Eq. (6.13b) 

‘i= ZF-zO . (7.2b) I* 

Equation (7.2a) serves to define the different orders of the velocity vector, 

U = u + u + u + . . . . , intermsof t and 77. 
MO *l w2 For example, #.u *cI 

(7.3a) 

(7.3b) 

etc. Similarly, Eq. (7.2b) defines the different orders of the vector I$ and, in 

conjunction with Eq. (6.15), represents the Lorentz equation of motion. Since 

i = -&[m$(io+$)]+ zd$ e& - & (mYo~o+e$o) , 
W (7.4) 
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Eq. (7.2b) becomes 

&[myt(ko +J)l- &(myozo)= C(z- &e&j -(z. -5 eho). (7.5) 

The 3-vectors F and d(e$)/dt are evaluated in the usual manner. We have 
m 

F = wt. 

These yield 

d 
F-aT wq eA = 
v.t 

Using this and Eq. (7.2a), we obtain from Eq. (7.5) 

(7.6) 

The scalar product of this vector equation and the vector (u. + < ) is quite 
“v 

simple. This is 

d (my’c2) = (to + i) . Eez . 3-F 

(7.7) 

(7.3) 

The Lorentz equation in its present form may easily be separated into different 

orders, if y’ may be approximated by y. . In any case, 

yl = [I - juy)]-l’2 

= y. [I+ (y:/c2) .Z, - $. + . . . .] , (7.9a) 

* u << 1, and alternatively ,nO 
y’ = 2 2 

c )I l/2 

= Yo [1 k l+tlK. zK/m2yic2 ’ 1 + . . . . , (7.9b) 
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Also, 

i=l+iLl+ . 
YO YO 

( 2K +my 5 -% ‘) OW 

(7. SC) 

The first-order parts of Eqs. (7.7) and (7.8) are as follows: 

(7.11) 

These equations are, as they should be, precisely the same as obtained before. 
10 

In Ref. 10, y’ is represented by Eq. (7.9a). When uf, satisfies Eq. (7.10) and 

zl is obtained from Eq. (6. 15), the pair of Hamilton’s equations 

o! 
U 1 = (ka), = a sl/ap, and (iQl = - a&pax” 

will also be satisfied. Then, as proved earlier, [ (l/J)(dJ/d t)] 1 will vanish. This 

may also be shown directly by evaluating (d/d t) (2 * il) . This is 

where u Al is as given by Eq. (7.3a) and 5’ is obtained from Eq. 

Fl N4 

a 
NO 
u +ap.lFo 

) 
9 

WA 
(7.12) 

(7.2b), 

(7.13) 

Since 

-. F=O 

because of Hamilton’s equations, (d/d t)(z - &) = 0, i.e. , [(l/J)(dJ/dt)ll = 0 - 

Therefore, (d $/d t)l = 0 . 
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YIlI. CANONICAL VS. KINETIC PHASE SPACE 

In this section we will discuss the kinetic phase space explicitly and compare 

this with the canonical case. Sections II, III, and IV apply also to the case where 

P =P K, the kinetic momentum. The proof of Eq. (5.10) in Section V remains the 

same. The difference between the two cases appears when Hamiltonian functions 

are used and when the vector potential is present. 

In kinetic phase space the Hamiltonians have the following expressions: 

a0 
(x, p, t) = eVo + mc2 

( 

1 a 
1 + - m2c2 p PcY 

) 

l/2 

* 

( 
1 34 (x’, p’, t) = eV’+ mc2 

) 

l/2 
1 + - m2c2 p’% 

(8-l) 

(8.2) 

= 2 34 (XI p,t) * (8.3) 

Here, p, and P; are kinetic momentum components. Z is the Taylor oper- 

ator which, as defined by Eq. (2.6), may be written as 

( 

a 
.?Z = exp 4o - 

a 

axa 
+x,---- * 

apcv ) 

One of the two canonical equations remains the same, 

’ ,a! x = aS(x', P’, t)/apL , (8.4) 

but the other one must be replaced by 

a 
-pb, = s 

ae-4; ., P 
aeAb 

- (x’, p’, t) + - + x - - 
5 . 

> 
(8.5a) 

ax'Ol at ax' p ax'@- 

Here, 

a &qxf, p’, t) = aev’ - rbf”p $ p 
axta! axtff 

, (8.5b) 

in which I ‘I-1 
w 

denotes the 3-space Christ&e1 symbol evaluated at the point r’. 
w 
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Equation (8.4) is obvious; Eq. (8.5a) follows from the fact that, in kinetic phase 

space, the Lorentz equation is 

- 1 
P 
lm 

= e(E’+i X$) 
hEL 

Thus we again have 

a$ 

- zz- 

a l"o, 

a 

ap; 

a 

axta 
dc@L P’, t) 

and 

aX’l a&la 
y=-+ 

a Pb, 
- = 0, 

ax" ax'* aph 

because 

and 

afP a&‘@ 1 
-=-=- IcrP 

apk ap' p . my' 
g (8.7a) 

(8.7b) 

It then follows that, if the Lorentz equation is satisfied, 

1 dJ JdT = 0 and d* 0 dt= * 

Although these may be concluded from other simpler arguments, it seems instruc- 

tive to compare the underlying mathematics for both cases. 

There is another feature which distinguishes the kinetic from the canonical 

phase space. This concerns the velocity vector, which differs from the kinetic 

momentum vector only by a scalar factor. 

z = z/my = ;/cm2 + papo/c2) 1’2 . 
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Thus, 
cf 

U 
= ap, 

J- 34x, p, t) = & S/,(x, p, t) , 
a 

i. e. , 

$:(X3 PI t) = $)(x9 P, t) 9 (8.8) 

because 

SJ - 3, = eV - eV 0 

and this is independent of p . In kinetic phase space, u1 = u2 = . . . . = 0. WA ,AM w, 

In this respect, the velocity components u 
0 

or uo behave like coordinate 

variables xo and P, , and the kinetic phase space (,x0 , p,) is akin to the 

velocity phase space ( xo , uo) . 

From Eq. (7.2a) we obtain, in view of Eq. (8.8), 

i = (Z- l)Zo . 

Thus, Eq. (6.16) becomes 

(8.9) 

(8.10) 

The Lorentz equation (7. 7) or (8.6) may then be written as 

(Udt)[my’(;o+i,)] = 2 et:+ ~~~~ 2) - (8.11) 

The first-order part of this equation is, as it should be, the same as Eq. (7.10). 

In canonical phase space % = *J 
\K 

+ e$), 

( 1 g1 = 2 + [+ go] + [GO’-3/1] 

a.Jll a aSl a 

----- 
) ap, ax" ax" ap, 

$o. (8.12) 
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In kinetic phase space (p = ,pK) , 
em 

(’ [ 
drCI = a 

-+ u 01 a. 

dt 1 at 
0 - + P, 

axLY 
( ) o +&- $+ (pal,, .: ’ 

o! J CY 
where 

and 

are the first two orders of 

;), = P, + rip PV up . ( ) 

As discussed earlier, (d G/d t)l = 0 if til is as given by Eq. (3.6a), i.e. , 

(8.13) 

(8.14a) 

(8.14b) 

(8.15) 

d$ = -& - (tioll), 

and Tl satisfies the condition requirz by the Liouville theorem [(l/J)(dJ/dt)ll = 0 . 
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IX. AN EXAMPLE : MULTIPOLE OSCILLATIONS 

OF A BUNCHED BEAM 

Lee, Mills, and Morton 
22 

have described a self-consistent solution of multipole 

oscillations of a bunched electron beam in connection with their work on storage- 

ring beam instabilities. The bunched beam is circular in cross section with radius 

a_ and travels along the axial z-direction with a constant velocity. For our present 

purpose, the beam may be assumed to be enclosed in a circular waveguide of radius 

b_ , b >> a, and of infinite length in the z-direction. Iu the unperturbed state, the 

distribution of the charged particles in the beam is supposed to be axially symmetric, 

and the particles execute simple harmonic motion of small amplitudes in radial 

directions with a certain characteristic frequency w. determined by the electro- 

magnetic field acting on the beam. The transverse momentum of any particle is 

assumed to be negligibly small in comparison with its longitudinal momentum.Their 

problem is to determine whether such a beam may become unstable with respect to 

transverse oscillations of multipole symmetry. We will first describe their formu- 

lation of the unperturbed problem in kinetic phase-space, and then use a specific 

displacement vector to derive +I from which the charge and current densities, 

P 
1 

and i 
ml ’ 

are obtained. As discussed in previous sections, if the displacement 

vector satisfies the Lorentz equation, then I,J!J~ satisfies the Boltzmann-Vlasov 

equation, and vice versa. 

‘%’ The unperturbed state is characterized by the Hamiltoniani’ o and the charge 

distribution function tie. 

‘go = ; M ~“0 (x2 + y”) (9.1) 

qb = (eN/2r2a2)f(z -vOt) 6(pz-pzo)* h 6[&(p~+p~)+~Mw~~x2+y2-a2~ . 

(9.2) 
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In these equations, all quantities other than the independent variables (x, p, t) are 

constants; M = m 
( 

2 2 -l/2 1 - vo/c ) being approximately the relativistic mass, 

Pzo 
= Mvo and w. is certain characteristic frequency which defines the scalar 

potential such that 

ev 0 = (l/2) Mw; (x2 + y2) . P-3) 

The two &functions are Dirac functions. The function f( z -- vat) describes the 

degree of longitudinal bunching and is so normalized that N represents the total 

number of charged particles in the whole system, 
M 

I- f(z)dz = 1. 

-co 
The constant a_ will be shown to be the radius of the beam. 

Assuming that ,A0 = 0, we obtain from $ o 

and 

. 
Px = - Mw;x, ’ = 

pY 
-Mw;y, p, = 0, 

‘a! 
( ,( 

P’P -l/2 
x = Pa/m “-3 > 

. 

(9.4) 

(9.5) 

It can then be shown tbat 

dtio a .a a . a 
-= -+x - 
dt at axa 

+ PcY 
G- *O = O 01 

‘cy if x is replaced by pa/M, which is a valid approximation as long as wia2<< c2 . 

From 1/6 we obtain the charge density by integrating over the whole momentum 

space. 

PoC$, t) = 
/ 

Go (x9 P 9 t) (W3 

= (eN/na2) f (z -vat) LJ(a -K) , (9.6) 

where K = (x2 + y ) 
2 l/2 

and U(a -K) is the Heaviside unit-step function. Thus, 

the unperturbed beam is a circular beam of radius a_. The charge density inside 
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the beam (K < a) is uniform with respect to any transverse direction. Individual 

particles travel with a constant velocity v. along the z-direction and perform 

small harmonic motion on the transverse plane with a restoring force-constant 

M wi according to Eqs. (9.4). Similarly, the unperturbed current density is 

i:( r, t) = 
xr* J “Ly$o (x, P, t)(dp)3 , 

i.e., 

2.0 
. = zzvopo(r, t) l+ we/c *c [ ( 2 “) (a2 -K2)]-“2 

2 zz vOPo(r, t) , if w2a2 << c2 
N*r 0 . 

P-7) 

The electromagnetic fields F,. and B 
wo 

are the resultant fields arising from 

both the beam itself and whatever external sources there may exist. These fields 

are the solutions of Maxwell’s equations for the prescribed beam (io, PO) under 

certain boundary conditions which are required to account for the presence of 

material boundaries and external sources. The fields (E w1 o, zo) should satisfy the 

Lorentz equation, 

) ’ (9.8) 

in order that 3 o and ICI,, as given above, may characterize the unperturbed state 

correctly. 

When this beam-field system is perturbed, individual particles will execute 

orbits slightly different from the unperturbed ones. This will give rise to a small 

current- and charge-density (A, 1 p ), which will induce a weak field (E W.1 E3l), 

which in turn would act on the beam to give rise to small current and charge den- 

sities. The act of perturbation upon perturbation proceeds indefinitely. A physi- 

cally realizable ( self-consistent) first-order solution is represented by the 

quantities (iI, Pl) and (El, ~1 B ), when they simultaneously satisfy the Lorentz 

and Maxwell equations under appropriate supplementary conditions. 
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Now we consider an oscillatory perturbation of certain Z&pole symmetry 

represented by the following displacement vector in 3-space : 

& = e e-jwt [s KCOS1r#J - e&(2/1) sin!4 1 . 
In this equation, e denotes a small dimensionless parameter (E -x 1) and w an 

unknown frequency to be determined; (K, C#J, z) are the usual cylindrical coordi- 

nates, and (zK, e e ) the three covariant base vectors. It is to be noted that *$J’ -z 

fl is independent of the momentum variables and ,V . 5 = 0 . Taking the 

time-derivative of Eq. (9.9) and denoting e e -Wz F , we obtain 

jwK cos !$+ i cosP$ + K+sinl$ 1 

* 2 
sinL+~~~cosh#~ - UK j- Sin b#~ 

3 
. (9.10) 

The momentum-part t7, of the displacement vector < does not contribute 
VW 

to the charge density p . This may be seen easily by integrating the function 6 

over the momentum space to obtain P . 

P(2 t) = J I&(X, P, t)(dp$ = 
J 

Q ‘!J,(x, P, t)(dp)3 

= PO{&, t) + J- (Q - who (x, P, t) (dp)3 . 

The part of the integralld ( Sl - l)tio, which contains ‘7,) is a complete divergence 

in the momentum space. The volume integral of a divergence expression may be 

transformed to a surface integral and therefore vanishes because $. vanishes 

on the surface at \$I=“- 

Despite its null effect on p , the vector 2 is required for the representation 

of $. According to Eq. (8. lo), 
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1. e. , 
(9. lla) 

i.e. , 

(9. llb) 

Under this condition, z? = my0 < 1, i. e. , 
w., 

jwM K cos f@ + pK cos f$ + % sin !A$ 
K 1 

jwMK2 FShle$ - P+COSP$ - KP ’ Kl 
sin Q~#J . (9.12) 

The momentum-part of (z + ,rl) is 

a a 

- - 21 = - 
rl 

ap apcY 
la, * 

u-x 
(9.13) 

This equation applies to any spatial coordinate system. From Eq. (9.12) we obtain 

a -J&=0. 
ap u* 

Since i1 is independent of p , /*H 

Therefore, 

i * *Cl = a% * 5, + gj * z1 = 0 
% rh 

and [(l/J) (dJ/d t)] 1 = 0, whatever the unknown frequency w is. 

independent of p , then 
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This result may easily be verified by transforming El and $ to refer to 

Cartesian coordinates. We may also evaluate the divergence of the 6-vector I& 

directly. The latter is 

Fl = ? 5l K cos QI#J - ; 
2 -sinQ~#~ 

*. ~12 Q 

+ ; - j w.M K COS Q$ + pK COS a# - pA. 
r4 K 

2 2 
a sinQ$ )I . (9.14) 

Thus, 

because the 6-dimensional metric determinant E is unity. Here, we may note 

thati.y+ Bla except in Cartesian coordinates. 

The first-order distribution function is given in terms of il and 77 ‘41 as follows: 

I. e. , 

til = - & * (+o$) - 7& * (Go%) , 
* Y 

a*O aGO 
dJ1=-,c,. - - -21. aR * a.r 

(9.15) 

Since dtio/d t = 0 and z-g= 0, this $ 1 satisfies the Liouville equation 

(dIjl/d t)l = 0 which, however, should not be confused with the Boltzmann-Vlasov 

equation. Both equations are given by Eq. (8.13), but they differ in the coefficient 

(iQ1 * In the Boltzmann-Vlasov equation this coefficient is given by Eq. (8.14b); 

in the other 
. 

(P,), = (P),, = & . ,Fl 

and F ~1 is given by Eq. (7.13) . 
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It is quite plausible, though not assuredly, to believe that this +I has the 

appropriate functional form to enable one to calculate reliably (A, P 1) and (,El , 5). 

When the latter field intensities are calculated, one may then set up the Lorentz 

equation or the Ekoltzmann-Vlasov equation in order to determine the yet unknown 

frequency w . Whether the oscillation will grow or be damped depends on the 

imaginary part of this complex frequency. 

Using Eqs. (9.9), (9.12), and (9.15) we obtain 

6$(x, p, t) = ?(eN/2ir2a2 ) fjz-vot)qPz -Pzo)* 

cos 24 cos Q$I t- i sin 2$ sin Q$ 

2P P 
+ -%i 

M2 
sin21#1 cos Qc$ - $ cos ~C#J sin Q$ 

2 
wO x2 + y”) cos Q+ 

d’[&(pi+ pf)+ k M$(x2+y2 - a2)]. (9.16) 

Here, a’[~] = (d/dw)b[w] . Then, 

Since t 
441 

is independent of p in our present case, 
.+A 

= F(eN/za)f (z -vat) cos Q$ d(a - K). (9.19) 

(9.18) 

-39 - 



Noting that in kinetic phase-space LI~ = 0 and 

we obtain the current density 

Since d tie/d t = 0, the integrand may be transformed as follows : 

Hence, in view of the relation Fr . i. + $p . z. = 0, 

Thus, 

(9.20) 

(9.21) 

This result agrees with the corresponding expression obtained previously. 
9,lO 

On substitution of Eq. (9.9), A becomes 

A 
= ? (eN/na) f (z - vat - (jw/a) U (a - K) (sKK cos 14~ 

-zq 28-l sin n+ +zzvo cos Q@ d(a - K) > 1 . (9.22) 
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This expression of Al is the same as obtained by direct integration of the 

integral 

- 

in which $I is as given by Eq. (9.16) and ~6 is re- 

placed by p/M . 
u 

Both Eq. (9.19) and Eq. (9.22) agree with the corresponding expressions 

considered by Lee et al. 22 
-- The quadrupole case is particularly simple. When 

P = 2, wehave 

and 

$1 = Q&x - ZyY) , 

z1 = T( a P -,aypy) - jwMiI , **x x 

Gl = T(eN/27r2a2) f (z -vOt)d (pz - pz6) * 

[M-” (pt - pz) - w:( x2 - y”) + jwM-‘(xpx - ypy)l * 

b’ [ 2~ (~2 + P;) + ; Mw2, 
2 x+y2-a2 , 11 
a-K) 9 p1 = ? (eN/m) f (z -vOt) cos 24 6 

21 - j w po.il + ,.ttzPIVO * 

(9.23a) 

(9.23b ) 

(9.23~) 

(9.23d) 

(9.23e) 

As discussed earlier, from PI and iI one ob&ins EI and BI. The un- 

known complex frequency w , which determines the stability of the multipole 

oscillation, may then be obtained by two alternative procedures, one using the 

Boltzmann-Vlasov equation and the other the Lorentz equation. In most problems 

there are some simplifying approximations. For the present example, e(,zo +%zo x BO)I 

is replaced by - ,91 e V. = - :K M# K and VI r.w, = (my’y’ - vo,~o)l by Mil- ..s,, 

The two results obtained by these alternative methods should agree with each other 

to the desired degree of accuracy. If not, one or the other calculation may be im- 

proved upon, whichever is more convenient. 
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X. SUMMARY AND DISCUSSION 

The perturbed distribution function $(x, p, t) may always be represented by 

sltio( X, p, t) in terms of the unperturbed function I+!J~ and a 6 -dimensional displace- 

ment vector ((x, p, t) or sl( x, p, t) which defines the Lagrange operator Sz 
w 

according to Eq. (2.9). The total time-derivative dlCb/dt should vanish, because 

*0 represents a physically realizable state. When this is true and the displacement 

vector satisfies the Liouville theorem, Eq. (5.5), d$/dt will also vanish. 

The solution of an electrodynamical problem must not only satisfy the Liouville 

equation d$/dt = 0, but also be consistent with the Lorentz equation. If F is such 
*L 

that the latter equation is satisfied, then I,!J = s2 Go will satisfy the former, but 

not conversely. On the other hand, the Holtzmann-Vlasov equation is a combination 

of the two; it may be used instead of the Lorentz equation, and vice versa. 

Using vector notation we may write the 6-dimensional displacement in several 

equivalent forms. In the Cartesian system (? ‘, s) , 

(10.1) 

Here, the base vectors ii are orthogonal unit vectors ?Ii =zi’, 2. 
* ’ wl-‘& = 6;); 

‘i, G p . In the curvilinear coordinate system (x”, p,), xo = XQ(P) , 

P,= P,(Z $) t 

Here, g. . zk = d: and ; ;i - -i 
*in* = a.a 

w.1 VI 414 
=$. It may further be noted that 
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and 

These yield: 
-A 

ax 
.; z - = a Pa! e 

YNO! 4 
- = e .a 

axa' aph wcy 
WA * 

ai$ a Pa e .2i - =-- %.w(Y M3iA = 
axa! 

-A ' 
ax 

and 

Corresponding to the two parts of ? are,the 3-vectors 5 and q . 
AdA M” 

(10.3a) 

rl = aof = $qa . (10.3b) 
‘a* ** C-Y 

These two vectors must satisfy a consistency relation given by Eq. (8.10) in the 

case of kinetic phase-space and by Eq. (6.15) or Eq. (6.16) in the case of 

canonical phase-space. 

The canonical space is conceptually simpler because xo and p, are conjugate 

variables used in the Hamilton equations. On the other hand, the kinetic space is 

algebraically simpler, because in this space u =u 
v..’ it”, o . Here, the vector potential 

A does not appear in the Hamiltonian expression; one of the canonical equations ,A- 

must be modified to account for the presence of .$ [See Eq. (8.5a)] . 

Lagrange and Taylor operators are most convenient to use for perturbation 

calculations. They give rise to the desired series expansions, the first few terms 
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of which may be obtained easily, In kinetic phase-space the Lorentz equation 

satisfied by < and q is, according to Eqs. (7.2b) and (E-6), 
F +““’ 

e (20 +,Uo xISo)+ V = z:e(E+,zOx B), 
or, alternatively, 

e(E +tOxB) = s2J m 0 + .%)t() “Zo) + 77 ’ h-4 ‘I 
where J is the Jacobian given by Eq. (2.4) and QJ = C 

-1 
. From either of these 

two forms, it may easily be proved that the first-order part of the Lorentz equation 

is as given by Eq. (7.10) . 

When the relativistic mass my may be assumed constant for the whole system 

of particles, as assumed in the last section, the kinetic phase-space (xo, p,) is 

essentially a velocity phase-space (xo , u o). When y is not a constant, the veloc- 

ity space must be bounded because ( 2 ICC. The displacement vector < in the latter 

phase-space may be discussed in the same manner as that in the kinetic phase-space. 

If we again use c and 17 to correspond to the two parts of r, t = r’ - r and 
Wk.l” **I 

2 = $ -2, then the consistency relation has the very simple form ,? = i . 
w* 

In the velocity.phase-space, the equations of motion are the Euler-Lagrange 

equations derived from the Lagrangian expression, 

x(x,u,t) = mc2 fp. u -9 
*c u. 

(x,p,t) = mc2 
[ 

1 -(l -,u.$/c 2 l/2 ) I + er*A*s-eV. 

(10.4) 

The equations are as follows: 

1.e. , 

a2 
P, = -o 

au X* 

or 
ax pa = - 

a”cY 
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x” ’ 

(10.5a) 



aS p, = - 
ax@ 

a-42 

zz- 

Ilo axa' 

acli 
(P), = - 

axo u0 

. 
P = - VeV + (VeA) * u . 
WY h WNU. * 

i.e. , 

i.e., 

+ r h 
% 

ffP ( P/ 
P +uhP I ) 

A 
- I? 

4 
PhU6 , 

(lo. 5b) 

Here, the Lagrangian expression plays a role similar to that played by the 

Hamiltonian expression in the canonical phase-space. 

Any one of the different phase spaces may be derived from any other one by an 

appropriate transformation of coordinates. The charge distribution function is a 

scalar density; it transforms as a relative scalar of weight one. 
20 Let $*(x,u,t) 

be this function in velocity phase-space, 

then 

P(y) = .I- 
,,+* @,W(du)3 a (10.6) 

(/*(x,u,t) = )aPKJayJ$(xsPK9t) f 

where the Jacobian of coordinate transformation is 

(10.7a) 

(10.5%) 

While d$/dt = 0 for a physically realizable system, d$*/dt 6 0 unless y is 

a constant. The Liouville equation becomes, in velocity phase-space, 

d$* 
i.e., - - dt 

&,* = 0 . 
Y 

Since $I* = Cl*+:, si* being the corresponding Lagrange operator, and 



we obtain from Eq. (10.8) and the equation corresponding to Eq. (5.3) : 

dJ* 
- . 
dt 

(10.9) 

Here J* is the Jacobian of transformation from the unperturbed to the perturbed 

coordinates in velocity phase spaces, 

Operating on both sides of Eq. (10.9) from the left with J” C* and recalling that 

j”c * 9* = 1, we obtain, after canceling out the factor $G , 
. -* 

(10.10) 

This equation implies that jr = ( yo/y?5 . 

As shown in Appendix B, Eq. (10.10) agrees with the general formula Eq. (5.10). 

In a velocity phase-space, the first-order displacement vector rl should, therefore, 

satisfy 

& f-I1 
[ 

+ 5(log-gJ = 0 

in order that the Liouville equation (10.8) may be satisfied to the first order. This 

equation may further be transformed, thus, 

(10.11) 

The spatial and non-spatial variables in different phase spaces have, so far, been 

considered tacitly to be the genuine spatial and momentum or velocity coordinates. 

When canonical transformations are applied as in the Hamiltonian treatment of 

dynamics, the new variables X” and P a! are functions of both the spatial (xo) 

and the non-spatial (p,) variables. No new coordinate, Xo or Pa!, is a pure 

spatial or a pure non-spatial one. To call X” or P (y a spatial or non-spatial 

-46 - 



coordinate is a matter of nomenclature. 19 Let the new kind of phase spaces be 

called non-separable and the other kind separable. The 6-dimensional analyses 

discussed in this paper are applicable, without restriction, to both kinds of phase 

spaces. On the other hand, the 3-dimensional formulas are applicable only in sep- 

arable phase spaces. Even in the latter spaces, any vector and any tensor must 

obey the law of 6-dimensional point transformation of coordinates. According to 

Eq. (10.2) the non-spatial components of a 6-vector in a separable curvilinear 

phase-space are not the same as those obtained from the non-spatialcartesian 

components by a 3-dimensional transformation of spatial coordinates. 

In separable phase spaces the momentum part of the displacement vector2 does 

not enter into the expression of the charge density p(r , t), nor of the current 

density $E, t). The Lorentz equation (7.7) is also independent of rl . As long as 
yw 

no collision between particles is contemplated, one may, perhaps, question the 

advisability of using the Boltzmann-Vlasov equation of seven independent variables 

(x YPo’ t ) instead of the Lorentz equation of four space-time variables. This 

question can hardly be answered because each method has its merits and shortcomings. 

We may, however, note that the Boltzmann-Vlasov equation is a scalar equation which 

may represent an easier approach for certain problems than to solve the vector 

Lorentz equation directly. A deeper insight into the physical aspects of a certain 

probIem may always be gained by considering the charge distribution function and 

the various equations based on it. Such knowledge would be very helpful in justifying 

the use of certain simplifying approximations which may be needed. 

Strictly speaking, the spatial part of the displacement vector < in a separable 

phase-space may depend on both the spatial and the momentum variables (xo and p,). 

In Section IX, il is taken to be independent of p,. This assumption is, perhaps, 

generally possible if the random part of the unperturbed velocity (z. - <:. > ) is 
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at most a first-order small quantity. Then, it is permissible to substitute 

<$,> =~o(~, t) for z. in Eqs. (7.10) and (7.11). Then Al which is determined 

by these equations must be a function of (2, t ). In fact, 5 =I {(r , t) if the velocity 
,-!.I- 

function ,uo of the system of particles may properly be described by an Eulerian 

velocity-field zo(z, t) . 

The usual equation of continuity (4.8) is shown to be the limiting form of a general 

formula, Eq. (4.7). The latter formula bears some resemblance in form to the 

Fokker -Planck equation . 6, 23, 24 This is not surprising, because the impli- 

cation is simply that the transition probability in the Fokker-Planck equation could 

well be a scalar density in the 3-velocity space. 

In the absence of collisions Eq. (4.8) is valid, as long as $J represents the den- 

sity distribution of something which is conserved. No other dynamic principle is 

involved. About two decades ago, Vlasov’: noted the generality and the flexibility 

of this equation and applied it in his well-known work to varied subjects, such as 

the theory of crystals, electron plasma, striations in metals, and high frequency 

electron-beam tubes. He took the equation of continuity in g-space as an obvious 

extension of the one in 3-space, and has even indicated the feasibility of further 

‘a “02 extending it to 9- and higher 38-dimensional spaces (xo , x , x , . . . . ) . 

In the presence of collisions caused by sharply varying short-range forces between 

particles, the homogeneous Liouville equation becomes invalid. One must then use 

the celebrated Boltzmann equation, namely, 

dlCI atJ a-F= ( 1 at ~011. ’ 

The collision term 1,25,26 serves as a source term to maintain the conservation 

law. We shall proceed no further, because short-range forces are considered to 

be outside the realm of classical electrodynamics. 
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APPENDIX A 

CONCERNING THE EQUATION OF CONTINUITY 

In the unperturbed state, the equation of continuity satisfied by $‘,( xi, t) is 

given by 

al//, a - + 7 Go2 = 0 , 
at ax1 

( ) (i = I,2 ,..., 6). (A. 1) 

This may be written as 

a . 
--r 

ax1 
c ) 

Qoll’, = 0 , (i = 1,2, . . . . , 7) , (A. 2) 

where x7 = t, x7= 1, and L$ = z’ . As noted in Section IV, $,i, is a 
. . 

vector density and a ($oui)/9x’ a density divergence. The equation of continuity 

(A. 2) states that the density divergence of $ogo in 7-space must vanish. 
. . 

In the perturbed state, the corresponding scalar is a($u’)/ax’ . This may be 

transformed by using the perturbation representation $I = C$!J~, D being the 

Lagrange operator defined by Eq. (2.9) with (7 = 0 . 

a 
7 

ax’ 
i 1 

@) = ui 
5 (q)) + (Qlcb) g 

d po) + (m+bo) c- 1 f$ 
=aT 

- 

The last term is equal to 

in view of the adjoint property of the inverse Taylor operator [Eq. (6. 8a) in Ref.9). 

The total time-derivative of “Go may be transformed according to Eq. (5.3) and 
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Eq. (5. lo), thus 

; (wo) = Qk - +o(fg - ;,I . 

Using these relations we obtain 

i.e. , 

This proves that the density divergence indeed transforms like a scalar density 

from the unperturbed to the perturbed state. If I/J~ satisfies the equation of contin- 
. . 

uity, so must * = a*0 satisfy the corresponding equation a (+u’)/ax’ = 0 

regardless of the vanishing or non-vanishing of dJ/d t. 
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APPENDM B 

LIOUVILLE’S THEOREM IN VELOCITY PHASE-SPACE 

In canonical and kinetic phase spaces, Liouville’s theorem states that dJ/dt = 0, 

J = a (x’, p’)/a (x,p) being the Jacobian of transformation from the unperturbed 

to the perturbed coordinates. In the velocity phase-space, dJ*/d t is given by 

Eq. (10.10) and, in general, does not vanish. Here J* = a( x’, u’)/B(x,u). It 

seems instructive to derive Eq. (10.10) from Eq. (5.10) in curvilinear coordinates. 

The latter equation gives the general expression of dJ/‘d t in any phasespace. 

* ,a+01 
In the velocity phase-space, x’o = u’~ and x = ub . Thus 

ak’l au’O ai; 
7=- f- . 
ax’l 

(B. 1) 

The last term in this equation may be evaluated by using the following relation: 

i.e. , 

* , 1 
U =- 

a my’ 
$), * - my’ u ; 

3 
+ r$ grpr $ ll; . (B. 2) 

This equation is based on the definition pd, = my’ ud, . Differentiating uh with 

respect to u; and contracting, we obtain from Eq. (B. 2) 

ai; 1 ar’ 
- 
au',,~cr myI au; 

- [(i+),- rn;/‘u b] 

1 a 
+- - 

C (P'b ‘t 1 - my u 
my’ au; 

0 1 
+ r ,A aP glPr a 

8% ( ) u& . W 3) 
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Since 

we have 

y’= l-g 
( 

tpr , t 
up qc 

2 -l/2 

) , 

ay'/aul, = ( y13/c2) utu 

and 

We also have 

(p’)o = eEL - ulh 
a a 

7 eAb - - 
ax axfa 

e Ai 
> 

and 

a(bl)/au; = 0 . 

On substitution of these relations Eq. (B. 3) becomes: 

i.e. , 

Thus, 

aib 
- 

au: 

a;’ 
a 
au; 

-1 
= - 5% + u’ (T rra g 

( 

r@P 
+ rta, g 

+* 

w 
, 

Ia! C@ 
X 

) 

ag 
fQc7 

= - 5Lu’ - 
ra Y’ 

X 
u axta! 

. . 
a Z/ax+ = - 5 j’/yl . 

(B.4a) 

(B. 4b) 

(B.4c) 

(B.5a ) 

(B. 5b) 

(B. 6) 
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Similarly, the corresponding equation for the unperturbed state is 

. . 
a&l/ax1 = - 5 jo/yo . 

Hence, from Eq. (5. lo), i.e. , 

1 dJ* 
- ,i 

ax ai' 

~dt=---T&---J ' 

we obtain Eq. (10. lo), 

1 dJ* F rt = 5 --- . 

P. 7) 

(B. 8) 
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