
SLAC–PUB–9996
September 1995

An application framework and data model prototype for the BaBar
experiment*

D.R. Quarrie
Lawrence Berkeley National Laboratory, MS 50B-3238, 1 Cyclotron Road,

Berkeley, California 94720, USA

F.C. Porter

Physics Department 356-48, California Institute of Technology,
Pasadena, California 91125, USA

Contributed to Computing in High Energy Physics '95

Rio de Janeiro, Brazil

September 18-22, 1995

* Work supported in part by Department of Energy contract DE–AC03–76SF00515.

AN APPLICATION FRAMEWORK AND DATA MODEL

PROTOTYPE FOR THE BABAR EXPERIMENT

D.R. QUARRIE

Lawrence Berkeley National Laboratory, MS 50B-3238, 1 Cyclotron Road,

Berkeley, California 94720, USA

F.C. PORTER

Physics Department 356-48, California Institute of Technology,

Pasadena, California 91125, USA

The BaBar experiment is under construction, and will do physics with e
+
e
� colliding

beams in the 10 GeV center-of-mass energy region at the PEP-II accelerator at the Stan-
ford Linear Accelerator Center. This experiment is expected to accumulate of order 109

events per calendar year, with �rst data in 1999. The data must be stored e�ciently,
and must be easily accessible for multiple and frequent physics analyses. The application
framework must accommodate a variety of analysis modules and multiple input/ouput
streams. The BaBar collaboration has developed a prototype for the application frame-
work and data access, written in C++ using an object-oriented design philosophy.

1 Introduction

The BaBar experiment will do physics with e
+
e
� collisions in the 10 GeV center-

of-mass energy region at the PEP-II accelerator at the Stanford Linear Accelerator
Center. The principal objectives are CP violation and rare processes in decays of
B mesons. BaBar is under construction, with �rst data anticipated in 1999.

Of order 109 events per calendar year are expected, with over 108 interesting
hadronic events. The data must be stored e�ciently, and easily accessible for mul-
tiple and frequent analyses. The application framework must be
exible enough to
accommodate a variety of analysis modules and multiple input/ouput streams.

The BaBar collaboration1 has developed a prototype for the application frame-
work and data access, written in C++ using an object oriented design philosophy.
The application framework accommodates code from a variety of sources in both
online and o�ine environments. It allows access to event data from code written in
either C++ or FORTRAN 90. The data access is based on the Farfalla2 package.

2 BaBar Application Framework Prototype

The requirements on the framework are that it must accept input from multiple
sources, including sequential data�les, the online event server, and Monte Carlo
event generators. It must provide output to multiple destinations, including se-
quential data�les, the online event server and a null device. Both the input source
and output destination should be selectable at run-time. Events satisfying di�er-
ent physics criteria should be selectable and capable of being routed to di�erent
destinations. The framework should allow recon�guration without recompilation

or relinking in order to minimize the turn-around time for \what-if" analyses. It
should support both text-based and graphics-based user interfaces and must provide
support for code written in either C++ or FORTRAN 90.

2.1 Components of the Framework

The framework is based on the concept of modules. A module is a fragment of ex-
ecutable code that has a well-de�ned interface and performs a well-de�ned service.
The interface is imposed by requiring that each module inherit from an abstract
parent class. Generally modules are totally independent of each other, operating
purely on the basis of their own internal con�guration, data taking run speci�c
information and the input event data. A module might generate new information
which might be added to the existing event information or might perform a �l-
ter function based on the event characteristics or might perform some statistical
operation, integrating the results from multiple events.

Each module will provide an interface to the framework that includes a unique
name and functions that will be called at the beginning and end of the job, at the
beginning and end of each data taking run (i.e., when the run number changes) and
a per event function.

Several types of specialized modules are supported within the framework. These
include: Input Modules, acting as the source of data; Output Modules acting as the
sink of data and Filter Modules which can terminate or re-direct the subsequent
processing of an event based on its �lter criteria and the characteristics of the event.

Multiple modules can be combined into a sequence having a unique name. A
sequence may also include other sequences to provide an arbitrary nesting depth.

A path is a list of modules and sequences that begins at the input module
and terminates at the output module. The processing for a path may be prema-
turely terminated by the action of a �lter module. Multiple paths are supported,
corresponding perhaps to di�erent physics processes.

The concept and the organization of the class library are shown in Figure 1.

2.2 Framework User Interface

The Tcl3 package is used to supply a textual user interface. All Tcl commands are
available, and the framework itself adds several commands by which modules may
be associated with sequences and paths etc. The framework provides a class library
by which user written modules may add their own commands to the user interface,
thus providing a mechanism by which the internal adjustable parameters of such
modules may be modi�ed at run-time.

The prototype framework does not presently support a graphical user interface.

2.3 Support for C++ and FORTRAN 90

The framework provides direct support for modules written in C++ by an inher-
itance relationship from the default Module class. Modules written in FORTRAN
90 require a C++ wrapper but then have complete access to the event information.

Input Module

Output Module

Normal & Filter Modules

Executable

Module Sequence

Path

Framework
InputModule

OutputModule

UserModule

Sequence

N

1

N

1

1
N

N

N

N 1
1

1

A

Figure 1: Left: Framework concept; Right: Framework class diagram.

This is provided by a set of interface routines and C++ glue code that is automati-
cally generated from a set of interface de�nitions written in the Interface De�nition
Language (IDL) using an IDL to FORTRAN 90 compiler.4

3 BaBar Data Model Prototype

A prototype data model, called \Colias", has been created for BaBar, based on the
Farfalla2 package. Both Farfalla and Colias are written in C++. A partial interface
to the BaBar GEANT-based Monte Carlo simulation package exists.

3.1 Data Model Description

The data model uses the notion of a \tree", which is a hierarchy of nodes. The nodes
are \persistent" objects { that they can be stored and restored. However, it is the
nodes themselves which provide the knowledge of what is required for persistence,
rather than any abstraction. A node is implemented as a C++ class, the base class
in Farfalla is called F Node. To provide for BaBar enhancements to the Farfalla
class, an intermediate DATColiasNode class is provided, and all Colias nodes inherit
from this class. The class hierarchy for a portion of Colias is illustrated in Figure 2.

The \parent-child" association of nodes is maintained by Farfalla. The imple-
mentation of a collection (e.g., of SVTDigi objects) within a node is currently with
a simple array declaration, but we are investigating the use of the STL container
classes for this purpose (the CLHEP HepAList class has also been used).

There can be more than one kind of \tree" in a dataset, but the most common
one will be the event tree, containing the data for one event. There is, however,
already a second kind of \tree" which is used to identify the �le as a Colias �le.
Nodes are coded for each sort of data element in BaBar, at a coarse level. Thus

version
SimNode

version
RawDataNode

SVTRawNode

nDigis

version

SVTDigi

channel

chip

readoutSection

errorFlag

timeStamp

timeOverThreshold

version
EMCRawNode

nDigis

EMCDigi

channel

pulseHeight

timeStamp

version

(DcHitsNode)

nHits

DcHit

layer
wire
phiMid
driftDistMid
dEdxPH
rawHit
status

version

nHits

SVTClusterNode

SVTRawNode

version

run

record

date

type

time

EventNode
FileNode

version
date
time
program
user

version

(HitsNode)

version
SVTNode

layer
readoutSection
wafer
flag
gangGroup
width
afterGap
beforeGap
time
position
pulseHeight

SVTCluster

A

A

EventNode

SVTDigi

RawDataNode

1

N

F_Node

ColiasNode

Child

FileNode

1

N 1

Child
N

Figure 2: Left: A segment of the Colias prototype data model for BaBar; Right: A segment of the
Colias class hierarchy.

there are nodes for \event", \raw data" \calorimeter raw data", etc. These nodes are
arranged in the form of a \tree" to make up an event record, as shown in Figure 2.

There are several \standard" things that one can ask any node to do:

� Access the data: access to data is via accessor functions, typically in-line for
e�ciency. The actual data items are encapsulated, permiting changes in the
underlying implementation without a�ecting the user interface. For example,
the event number may be obtained by:

DATEventNode *event;

....

int eventNumber = event->record();

� Modify the data: again, access is via function calls. For example, the event
number may be set to 137 by: event->setRecord(137);.

� Write to a disk �le: typically, this will be done for the whole event tree, with
a call to: fstream diskFile; event->outputSubtree(diskFile);.

� Reading from a disk �le, is accomplished by: F inputTree(event,diskFile);

� Print out summary: for example, a mechanism is provided to print an entire
subtree: event->printSubtree(printFile);

� Create itself and add to the tree, with a call of the form F addChild(event,

rawData);. Here, the �rst argument is the pointer to the parent node, and
the second argument is the (returned) pointer to the node being created.

� Delete itself and free up memory.

3.2 Performance

With large expected datasets, it is important that the data model make e�cient use
of peripheral storage. Thus, Colias compresses the data in the I/O process. Each
node is responsible for its own compression, which is hidden from external view.
There is an overhead of 8-12 bytes per node from Farfalla, and an overhead of two
bytes per node in Colias to provide
exibility for changes. Because of the overhead,
it is not planned that the node structure will be �ne-grained, e.g., all calorimeter
digitizations are collected under a single node, rather than each in a separate node.

The process of reading and writing the data must be rapid enough to present
an acceptable overhead in analysis tasks. Several relevant timing studies have been
pursued.5 There is no �rm conclusion at this point, as the interpretation of timing
results is complicated by operating system aspects such as the way I/O is bu�ered
in memory. The sensitivity to these complications may be an indication that there
are no \order-of-magnitude" excesses in required time.

The data model must be
exible, in particular so that changes can be made, e.g.,
adding information, without losing the ability to process earlier datasets. Colias
provides for this with a \version" member in each node. The version is saved with
the node when it is written, and on input is examined to determine how to proceed.

BaBar uses computers from several vendors. At least part of the portability
problem is solved by the fact that Farfalla bases its I/O on the XDR \standard".

Acknowledgments

This work was supported in part by the Department of Energy, grant DE-FG03-92-
ER40701 and contract DE-AC03-76SF00098.

References

1. BaBar Technical Design Report, SLAC-R-95-457, March 1995.
2. C. Walter and R. Nolty, \The FARFALLA Programming Reference Guide

v1.5", July 4, 1994. Available in PostScript on WWW: http://www.slac.-
stanford.edu/BFROOT/doc/Computing/farfalla.

3. John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.
4. David R. Quarrie, \A Framework for Distributed Mixed Language Scienti�c

Applications", to be presented at this Conference.
5. Timing studies have been made by E. Frank, T. Glanzman, P. Muhl, and

S. Saxena, as well as related studies by the authors of Farfalla.

