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Abstract 
 

Collimators are used to eliminate halo particles from the beam. To relax the wakefield effects 
a gradual transition from a large to a small aperture is used. However, the existing computer 
codes face severe problems for long tapered transitions. Two main sources of the problems 
are the grid dispersion and the staircase geometry approximation. Using recently developed 
time domain numerical approach, which is able to model curved boundaries and does not 
suffer from dispersion in longitudinal direction, we calculate the short-range geometric 
wakefields of the TESLA and NLC collimators. Wake fields and corresponding integral 
parameters are given for bunches of different length. The numerical results are compared to 
measurements and to analytical estimations. The applicability range for the analytical 
formulas is highlighted. 
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1 INTRODUCTION 
 
The short-range wakefields of the collimators are of a special concern for future colliders with 
extremely small transverse emmitance of the beam. The longitudinal wakes increase the 
energy spread and the transverse wakes spoil projected emmitance of the beam.  
   The wakefield effects can be decreased by tapering the steps with small angles. To 
perform the optimization, one has to compute wakes numerically or analytically. 
Conventional codes face problems for smoothly tapered long transition. Using recently 
developed time domain numerical approach [1], which is able to model curved boundaries 
and does not suffer from dispersion in longitudinal direction, we calculate with high accuracy 
the short-range longitudinal and transverse wakefields of the TESLA and NLC collimators. 
   The numerical results are compared to measurements and to analytical estimations. 
The applicability range of analytical formulas is highlighted. Optimization of TESLA TTF2 
collimator’s geometry is considered. 
 

2 ANALYTICAL ESTIMATIONS 
 
This paper deals with circular collimator whose geometry is outlined in the Fig.1. 
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Fig.1. Geometry of the collimator 
 

As shown in [2], for small taper angles tan( ) / 1bρ α σ=  (σ  is a width of Gaussian 
bunch) the    collimator    is    in   the   inductive     regime    and the impedance estimations 
read 
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where ( )f z  is the pipe radius, 0 4Z c πΘ = , and 0Z  is the free space impedance. 



 

 3 NUMERICAL METHOD 
 
Consider a perfectly conducting structure S  and assume that the bunch is moving in domain 
Ω  with the velocity of light c  and is characterized by a charge distribution ρ . The bunch 
introduces an electric current ρ=j c  and  the following system has to be solved 
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ρ∇ ⋅ =D , 0∇⋅ =B   
     1µ−=H B , ε=D E , x∈Ω , 0× =n E , x S∈  

The full field ,D H   can be decomposed into the field of the bunch in free space 0 0,D H  
and a scattered field 
   0s = −D D D , 0s = −H H H .      (4) 
The scattered field can be presented by vector potential A :  
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 Substitution of formulas (5) into system (3) leads to the problem for the vector potential A   
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 A numerical scheme for the vector potential A  reads [1]: 
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where vectors  0h , sh  correspond to the fields 0H , sH  in representation (4). Scheme (7) 
approximates problem (6). nF  approximates the boundary conditions. Above we have split 
the discrete curl operator [3] T=C C  into the transversal operator 1

TC  and the longitudinal 
operator 2

TC  and θ  is a numerical parameter to be defined. If we note the longitudinal 
coordinate by z  and the transversal coordinates by ,r ϕ  , the operators have the form 
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With the time step c t z∆ = ∆  allowed by stability condition, the scheme has no 
dispersion in the longitudinal direction and a moving mesh can be employed easily. 

To reduce dispersion in the transversal direction minimal allowed value of 0.25θ =  is 
used. To overcome the staircase problem, the approach invented in [4] is adopted. 



    In the case of circular structure, the algorithm requires the same order of operations as 
the explicit FDTD method and for longitudinal case (monopole mode) and staircase geometry 
approximation our scheme with 0.5θ =  is reduced to the one presented in [5]. 

4 NUMERICAL RESULTS 
 
 The new numerical scheme is implemented in the code ECHO.  
  In the  first example we consider a circular collimator with parameters typical to 
TESLA project: 17.5a mm= , 0.4b mm= , 20c mm= , and Gaussian bunch with 0.3mmσ = .  
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Fig 2. Longitudinal wake dependence 

on the collimator angle 
   

Fig. 2 shows dependence  of the longitudinal loss factor (left)  
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versus the angle α  of the collimator. The black solid lines show the results obtained by the 
new code ECHO, the gray solid lines show the results from ABCI code [6], and the dashed 
line on the right picture shows analytical estimation obtained from the Yokoya’s  formula (1). 
The impedance (1) is inductive and the corresponding analytical loss factor is equal to zero. 
The wakes were calculated up to the angle 0.5oα =  that corresponds to the total collimator 
length 4m∼ . As it is seen the code ABCI shows wrong behavior of the curves for limit 

0α → . The ECHO curves follow analytical estimation (1) for small-angle collimators. On 
the right picture at 10oα =  ( tan( ) / 0.24)bρ α σ= =  the difference between analytical and 
numerical estimations is about 10% and at 5oα =  it is below 3%. 



Fig. 3 shows the dependence of the dipole kick factor (left) and kick spread (right) on 
the angle α  of the collimator. The solid lines show the results obtained by the code ECHO 
and the dashed lines show analytical estimations obtained from the Yokoya’s  formula (2) in 
Mathematica. The wakes were calculated up to the angle 0.5oα = . For small angles the 
ECHO curves follow the analytical estimation (2). On the right hand side picture at 20oα =  
( 0.5)ρ =  the difference between analytical and numerical estimations is about 7%.   
  Note that accuracy of the numerical results at given above test points 5 ,10 ,20o o oα =  is 
better than 1%. It was checked by recalculating the results for two and four times denser 
meshes. 
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Fig 3. Transverse wake dependence on the collimator angle 
 

The absolute error for the new code ECHO remains approximately on the same level 
regardless of the length of the collimator. ABCI requires a much more dense mesh for the 
same accuracy, strongly depending on the collimator length. 
   However, the relative error in the ECHO calculation increases for small angles since 
the sought wake fields aim at zero. 
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Fig 4. Wakes of the small angle collimator 

 



Fig.4. shows longitudinal (left) and transversal (right) wake potentials for the small-
angle collimator with angle 20mradα = . Dashed lines show analytical estimations (1), (2), 
and solid gray lines show the results from ECHO calculations. Numerical values of loss and 
kick factors are given at the Table 1.   
 

Loss, V/pC Kick, V/pC/mm / hσ  
TESLA NLC TESLA NLC 

5 1.46 33.6 2.24 
(135) 

12.8 

10 1.42 32.9 1.91 
(44.3) 

11.2 

20 1.42 - 1.74 
(13.4) 

10.6 

Analytical 0 1.65 10 
 

Table 1. Wake parameters of the collimators 
 
Estimated values for kick parameters for the set of NLC parameters: 17.5a mm= , 0.2b mm= , 

20c mm= , 20mradα = , 865L mm=  and Gaussian bunch with 0.1mmσ = . The kick factor 
calculated by ABCI I is given in parenthesis. 
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Fig 5. Geometry of the “step+taper” collimator 
 

As it is seen from the above calculations, the tapering actually reduces considerably 
the wakes of the collimator.  However, in order to obtain significant effect the collimator has 
to be too long. As alternative solution we consider “step+taper” geometry of the collimator 
shown in Fig.5. The effectiveness of such kind of geometry was proved in [7]. The set of 
parameters shown in Fig. 5 corresponds to TESLA TTF2 collimator at DESY [8]. The 
calculations are carried out for very short Gaussian bunch with 0.05mmσ = .  
Fig. 6 shows dependence of the loss factor, energy spread (left) and kick factor, kick spread 
(right) on the parameter d  (see Fig.5). As we see all functions have minimums and the value 

4.5d mm=  can be taken as the optimum. 
    Finally, we compare our numerical results with experimental data. In order to obtain 
experimental data a dedicated beam test chamber was constructed and installed at the  
1.19 GeV point in the SLAC linac [9]. The real collimator has square aperture. In our 
calculation it was approximated by circular collimator with the set of parameters: 19a mm= , 

1.9b mm= , 0c mm= , 335mradα = , 51L mm= . 
The measured data are given in the Table 2. The numerical results are simulated by 

ECHO and their accuracy is better than 1% (checked by thickening of the mesh). Analytical 



results outside of parenthesis are calculated in Mathematica and correspond to Yokoya’s 
formula (2). 
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Fig 6. Collimator geometry optimization 

 
The measured, simulated and analytically estimated results show good agreement for 

the Gaussian bunch with 1.2mmσ = . The factor tan( ) /bρ α σ=  is equal to 0.55 and the 
collimator is in inductive regime. 
 

Kick factors, V/pC/mm σ , mm 
Measured Simulated Analytical

1.2 1.2± 0.1 1.268 1.34  
0.65 1.4± 0.1 1.908 2.48  

 
Table 2.Comparison of the measured, simulated 

and analytical kick factors. 
 
   For the bunch with 0.65mmσ =  the data show disagreement. The factor 

tan( ) /bρ α σ=  is equal to 1.02 and inductive regime formula (1) is not applicable. The 
disagreement between simulated and measured data for bunch with 0.65mmσ =  is not 
understood and demands further investigations.  

CONCLUSION 
 
A new recently developed time domain numerical approach, which is able to model curved 
boundaries and does not suffer from dispersion in longitudinal direction is presented.  

The short-range geometric wakefields of the TESLA and NLC collimators are 
calculated for bunches of different length. The numerical results are confirmed by comparison    
to analytical estimations. 
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