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Abstract

In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led
to construction of multiple high current storage rings. Many of these new machines require feedback systems
to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital
signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on
three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control,
and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm
complexity, and control of time-varying beam and system dynamics. I will review existing implementations as
well as comment on promising future directions.
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Abstract

In the last decade demand for brightness in synchrotron
light sources and luminosity in circular colliders led to con-
struction of multiple high current storage rings. Many of
these new machines require feedback systems to achieve
design stored beam currents. In the same time frame the
rapid advances in the technology of digital signal process-
ing allowed the implementation of these complex feedback
systems. In this paper I concentrate on three applications
of feedback to storage rings: orbit control in light sources,
coupled-bunch instability control, and low-level RF con-
trol. Each of these applications is challenging in areas of
processing bandwidth, algorithm complexity, and control
of time-varying beam and system dynamics. I will review
existing implementations as well as comment on promising
future directions.

INTRODUCTION

In the last 10-15 years digital feedback became not only
an accepted tool in the accelerator community, but a critical
tool necessary for success of a modern storage ring. There
many applications of the digital feedback methods in dif-
ferent areas of machine operation including, but not limited
to, coupled-bunch instability control, low-level RF control,
orbit feedback, and luminosity optimization in colliders.

FEEDBACK FUNDAMENTALS

The objective in feedback control is to make some output
of a dynamic system behave in a desired way by manipu-
lating the input of that system. A general block-diagram
of such a system is shown in Fig. 1. The system consists
of the physical system (plant) the output of which we want
to control. The output signaly is measured by the sen-
sors and sent to the controller. The control objective might
be to keepy small (or close to some constant value) - this
is defined as aregulator problem. A different objective is
to make plant outputy follow some reference signalr -
a servomechanism problem. Controller in Fig. 1 can be a
regulator - then inputr is omitted - or a servo. In any case
controller determines the error between plant output and
desired value and, based on the knowledge of plant dynam-
ics, computes the control outputu. The control signal is
then applied to the plant via actuators.

Performance of a feedback system can be evaluated us-
ing many different approaches. For a servo problem time-
domain response characteristics are popular. These include
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Figure 1: Generalized block diagram of a feedback system

step response parameters such as rise time, settling time,
overshoot. Tracking errors in response to constant or lin-
early varying inputs are often used as well [1].

For a regulator application steady-state errors in re-
sponse to known disturbance spectra provide an important
performance measure. Such errors can be evaluated using
the root-mean square (RMS) or peak approaches. Another
important measure of feedback performance is the RMS or
peak actuator effort, especially important due to the finite
excursion ranges of physical actuators.

Multi-input multi-output systems

Many feedback control problems in storage rings in-
volve multiple inputs and outputs. An example of a MIMO
system is dynamic behavior of coupled-bunch instabilities.
Here each bunch can be considered as a harmonic oscillator
coupled to all other bunches. This results in a fully coupled
MIMO system with individual bunch positions being plant
outputs and bunch correction kicks as plant inputs. For a
single beam position sensor and a single correction kicker
the individual bunch signals are time multiplexed making
the system seem to be single-input single-output (SISO).

Feedback control of MIMO systems is computationally
intensive. In general, for anM -input N -output plant the
feedback controller must performM × N transfer matrix
computation. Each element of such matrix has dynamic be-
havior and can be implemented as an analog or digital filter.
In practice one tries to avoid full transfer matrix computa-
tion by using diagonal or sparse structures. Often the con-
troller can be reduced to a constant-coefficient matrix mul-
tiplication combined with a diagonal dynamic controller.

Digital feedback control

A digital feedback controller usually consists of one or
more analog-to-digital converters (ADCs) which digitize
analog sensor signals. These digitized signals are pro-
cessed by a linear or non-linear control algorithm to com-
pute actuator signals. A reference input for the servomech-
anism applications can be introduced in either continuous
or discrete-time domains. The output of the controller is
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usually applied to actuators via the back-end digital-to-
analog converters (DACs).

The feedback control algorithm is commonly imple-
mented as a linear time-invariant system using finite or in-
finite impulse response (FIR or IIR) structures. Nonlinear
control methods can sometimes offer better performance,
but are more difficult to analyze and design than linear con-
trollers. For certain applications, e.g. control of a dou-
ble integrator plant, non-linear control structures have been
well developed and analyzed [2, p. 581].

Control algorithm design methods can be separated into
two main classes: emulation of continuous-time controllers
and discrete-time design [2, p. 158]. The emulation ap-
proach is attractive since the design is done in the contin-
uous domain. It is especially useful if proven continuous-
time controllers already exist. However reliable discrete
emulation of such controllers requires significant oversam-
pling of the control bandwidth with suggested sampling
rate to control bandwidth ratios of 20 to 30 [1, p. 601].

Design of digital feedback controllers in the discrete-
time often uses proportional-integral-derivative (PID)
structures. Tuning and optimization of PID control is
straightforward, however PID designs are best suited to rel-
atively simple plant dynamics.

A more sophisticated design method is the state-space
control when the actuator signal is computed from the in-
formation on the internal states of the plant. Such an ap-
proach provides the designer with independent control of
all closed-loop plant poles. Since internal states of the plant
are rarely available in full, a parallel model of the plant dy-
namics (an estimator) is commonly used to estimate the
internal state of the plant. The estimator is normally used
in a closed loop configuration which adjusts the estimated
states using the error between estimator and plant outputs.
The next step in the control design is to use optimal con-
trol methods to design both the estimator and the state-to-
actuator matrix. Commonly used approaches include lin-
ear quadratic regulator steady-state optimal control which
minimizes the weighted quadratic sum of state and actua-
tor excursions. Optimal estimator design is often based on
a Kalman filter which optimizes state estimation using the
knowledge of process and sensor noise [2, p. 444].

Robust control design extends the notion of optimality
to include the sensitivity of the closed-loop system to vari-
ations in loop parameters and other uncertain terms.

Waterbed effect

The plant is subject to external disturbances which affect
the outputy. As one of the performance criteria of the con-
trol system one can consider the reduction of the transfer
gain from external disturbance input to plant output.

Let L(jω) to be the open-loop transfer function of a
SISO system. Then the sensitivity functionS(jω) =
(1 + L(jω))−1 determines transfer characteristics from an
input to a summing junction to its output.

The Bode integral theorem states that if the open-loop
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Figure 2: |S(jω)| for two loop gain settings as well as
open-loop is shown on the top plot, while the gain from the
input to the output of the plant is illustrated on the bottom.

transfer function has no poles in the right-hand plane (a
stable system) and there two or more poles than zeros, the
following equation holds

∫ ∞

0

log |S(jω)|dω = 0 (1)

According to this equation, if the sensitivity function is
reduced in some band of frequencies it must necessarily
increase elsewhere. For a system with a bandlimited loop
transfer function it can be shown [3, p. 89] that Eq. 1 leads
to a peaking phenomenon in the sensitivity function. Thus
a comparison with a waterbed: when one pushes down
|S(jω)| in one place it pops up in another.

The waterbed effect is illustrated in Fig. 2 for propor-
tional feedback around the plantP (s) = 100

s(s+2) . Applica-
tion of the feedback attenuates the unity open-loop sensi-
tivity function at low frequencies with moderate peaking
above 0.8 rad/s. When the feedback gain is raised, im-
provement of the low-frequency disturbance rejection is ac-
companied by increased peaking. Note, however, that the
bottom plot shows much smaller disturbance amplification
if the effect is measured at the plant’s output.

In order to achieve improvement with feedback three
techniques are traditionally used for waterbed effect mit-
igation. The first method is to consider not just the sensi-
tivity function, but its product with the plant transfer func-
tion P (jω). If sensitivity amplification occurs in a range of
frequencies where plant response is small, the overall ef-
fect is attenuated. However one must remember that noise
induced elsewhere in the feedback loop, e.g. additive sen-
sor noise, will be amplified byS(jω). Another method
is to use the knowledge of external disturbance spectra to
place sensitivity function peaks away from significant ex-
citations. Finally, for rejection of periodic disturbances one
can use the feedforward approach.
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FEEDBACK CONTROL OF
COUPLED-BUNCH INSTABILITIES

Control of transverse and longitudinal coupled-bunch in-
stabilities is critical for successful operation of the high-
current storage rings. Designers of the bunch-by-bunch
feedback systems used digital technology quite early on
due to two factors. They needed a way to implement one-
turn bunch delay which for large rings is more feasible
digitally. Also, bunch motion is sampled at the revolu-
tion frequency by a beam position monitor (BPM) mak-
ing this problem a natural fit for discrete-time processing.
Early feedback systems [4] only used digital delay while
the next generations of bunch-by-bunch feedback [5] com-
bined both digital delay and filtering.

It is convenient to model coupled-bunch instabilities as
a MIMO system consisting ofN coupled harmonic oscil-
lators. Such a structure in combination with a bunch-by-
bunch feedback controller is shown in Fig. 3. Longitudinal
or transverse positions of bunches are the outputs of the
plant while the voltage kicks are the inputs.

The goal of the feedback system is to stabilize the plant
transferG(s). A powerful control architecture in this case
is diagonal, i.e. bunch-by-bunch feedback. The correction
signal for a given bunch is computed based only on the mo-
tion of that bunch. It can be shown that a bunch-by-bunch
feedback system that acts equally on every bunch also acts
equally on every eigenmode. Since eigenmodes normally
differ only parametrically, bunch-by-bunch feedback can
provide simultaneous stabilization of all eigenmodes.

Three feedback designs capable of processing bunch sig-
nals at 2 ns intervals and controlling coupled-bunch insta-
bilities in the machines with thousands of bunches and hun-
dreds of unstable eigenmodes emerged in the 1990s. One
of these is the longitudinal feedback system currently in use
at ALS, BESSY-II, DAΦNE, PEP-II, and PLS, the second
was developed for KEK-B, and the third was designed by
the ELETTRA/SLS collaboration.

The SLAC/ALS/DAΦNE design is a longitudinal only
feedback system due to its use of downsampling [6]. The
system is very flexible and has been used to sample bunch
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Figure 3: Block diagram of the beam and the bunch-by-
bunch feedback system
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Figure 4: Magnitude (top) and phase (bottom) responses of
a dual-peak and peak-notch filters used in control and study
of quadrupole instabilities in DAΦNE e− ring

motion at 238–500 MHz and to process 120–1746 bunches.
The feedback correction signal is computed using either a
12-tap FIR algorithm or a12th order IIR filter.

The KEK-B feedback system processes every bunch on
every turn and, therefore, can be used for either trans-
verse or longitudinal feedback. The system parameters are
matched to KEK-B RF frequency of 508 MHz and har-
monic number of 5120. The control filter in this case is
a much simpler two-tap FIR [7].

Finally, the ELETTRA/SLS design bridges the gap be-
tween the first two systems. It is capable of processing
every bunch on every turn for transverse feedback using a
5-tap FIR filter to compute the correction signal. The sys-
tem can also be reconfigured for downsampled longitudinal
processing with longer, 10-tap FIR filters. Thus the ELET-
TRA/SLS design combines capabilities for transverse pro-
cessing of the KEK-B system with the relatively complex
control algorithms of the SLAC/ALS/DAΦNE system [8].

The value of digital feedback flexibility is seen in the
longitudinal feedback system at DAΦNE configured to si-
multaneously control both dipole and quadrupole insta-
bilities [9]. Due to large bunch length in this machine
the dipole feedback system can affect the quadrupole dy-
namics of the beam. Frequency separation of dipole and
quadrupole signals makes it possible to design feedback
controllers for simultaneous stabilization of both instabil-
ities. A filter design algorithm has been developed for this
task and allows independent control of gain and phase re-
sponses at and around these two frequencies. In Fig. 4
frequency responses of two control filters are presented.
The dual-peak filter has gain peaks centered at the syn-
chrotron frequency and its first harmonic with nearly equal
gains and+90 and−90 degrees phase shifts for dipole
and quadrupole oscillations respectively. The second filter
with a notch at the quadrupole frequency is used to allow
growth of quadrupole instabilities while maintaining con-
trol of dipole motion. Such a filter was used first to ver-
ify the existence of quadrupole instabilities and rule out
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Figure 5: A block diagram of one channel of PEP-II double-peaked comb filter

excitation of quadrupole motion via the dipole feedback
system. In addition, these filters have been used to con-
duct grow/damp measurements of the quadrupole coupled-
bunch instabilities [10].

LOW-LEVEL RF CONTROL

In the PEP-II collider sophisticated low-level RF feed-
back loops are used to reduce the effective fundamental
impedance of the RF cavities seen by the beam. This brings
down the longitudinal coupled-bunch instability growth
rates into the manageable range. Direct and comb feed-
back loops are the two main elements of low-level RF feed-
back providing impedance control over±1.3 MHz band
around the RF frequency. These wideband loops are com-
plemented by multiple slower hardware and software feed-
back loops used to maintain a consistent operating point of
the klystron, eliminate loop gain and phase changes with
the klystron output power shifts, reject periodic gap tran-
sients, etc. [11].

The achievable gain of the direct loop is determined by
the total group delay in the system. In order to minimize the
controller delay the direct loop processing is analog and has
a total of 86 ns of delay. Compare this with a single sam-
ple delay of 100 ns if using digital processing at 10 MHz.
To improve impedance reduction at the synchrotron side-
bands of revolution harmonics a double-peaked comb filter
loop is used. This comb filter applies significant additional
loop gain in a narrowband manner thus avoiding the group-
delay limitation of the direct loop. Such filter is adjusted
for a full turn of delay to obtain proper (periodic) phasing
at all revolution harmonics. One of the two channels of
this filter is illustrated in Fig. 5. The filter samples cavity I
and Q signals at 10 MHz resulting in 72 samples per turn.
The second order IIR filter is used to generate peaks at the
synchrotron sidebands as well as notches at the revolution
harmonics. The IIR filter is followed by a 32-tap FIR filter
which implements a group-delay equalizer as well as a low-
pass filter. The system allows for 25 ns steps in DAC clock
edge placement for improved one-turn delay matching.

GLOBAL ORBIT FEEDBACK

Application of feedback formalism to orbit feedback
started with the pioneering work of R. Hettel on local orbit
control in 1983 [12]. By 1989 a global orbit feedback sys-
tem was implemented and tested at NSLS VUV ring [13].
This system used analog signal processing and was lim-
ited to 4 position sensors and 4 corrector magnets. Later

systems used fast digital feedback capable of sampling at
1 kHz or faster and supporting tens and hundreds of BPMs
and correctors. Such systems were implemented and com-
missioned at the APS [14], ESRF [15], and many other
storage rings.

Global orbit feedback control algorithms utilize the in-
formation in response matrixR which relates small-signal
corrector changes∆~c and the resulting orbit shifts∆~x:

∆~x = R∆~c

The BPM-to-corrector transformation matrixRinv is
computed to minimize the error term|RRinv∆~x − ∆~x|
using direct matrix inversion or singular value decomposi-
tion [16].

A general block diagram of a global orbit feedback sys-
tem is shown in Fig. 6. Transverse position of the beam
is measured atN BPMs distributed around the ring. The
measured orbit is digitized and subtracted from a reference
orbit. The error signal is processed by the compensation
filter and transformed from the BPM space to the correc-
tor space usingRinv. Resulting correction terms are added
to reference magnet settings and applied to the corrector
magnets via DACs and power supplies.

Main technical challenges in fast global orbit feedback
are due to the distributed nature of the sensors and the actu-
ators. Correction computation generally requires the infor-
mation from all of the BPMs leading to adoption of reflec-
tive memory [14] and fast networking [17] communication
schemes. The choice of the control structure is by no means
obvious. While static correction is addressed by the inverse
response matrix, the compensation filter is very important
for achieving good dynamic performance, e.g. external dis-
turbance rejection. Most designs to date have used variants
of PID control as a compensation filter, optimal and ro-
bust controller designs should be explored. Placement of
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Figure 6: Block diagram of a global orbit feedback system
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Table 1: Comparison of three digital feedback applications in storage rings
Parameter Bunch-by-bunch feedback Global orbit feedback Low-level RF feedback
Processing domain Digital Digital Hybrid analog/digital
Processing rate 23–500 MHz 1–5 kHz 10 MHz
Control inputs/outputs 12–5120 16–160 2× 72
MIMO control Diagonal Inverse response matrix/diagonal Diagonal
Control complexity 12th order IIR 4th order IIR 2nd order IIR,32-tap FIR

the dynamic controller in the BPM, eigenvector, or correc-
tor basis strongly affects the closed-loop behavior of the
system. Control algorithm in the eigenvector basis would
allow one to better filter small eigenvalues which are more
sensitive to individual BPM errors. Finally, control filters
in the corrector basis provide a way to equalize system re-
sponse between fast and slow corrector magnets. Corrector
saturation issues are important in a practical system and are
partially addressed by the SVD algorithm.

SUMMARY

Table 1 summarizes the digital feedback applications in
high-current storage rings that were considered in this pa-
per. These applications cover a wide range of sampling
rates and input-output dimensions as well as a wide range
of control algorithm complexities. Diagonal control dom-
inates the MIMO feedback architectures, mostly due to
computational complexity limitations; even fully coupled
implementations separate dynamic control into a diagonal
structure. Analog feedback is still important, especially for
ultra-low group delay medium-to-wideband applications.
At the same time even analog feedback channels benefit
from integrated digital diagnostics.

Promising future directions for digital feedback in stor-
age rings involve higher sampling rates and ADC resolu-
tions. Faster sampling, in turn, leads to wider use of dig-
ital receiver structures to detect beam signals. Explosive
growth in commercial digital signal processing architec-
tures in the last 10 years resulted in powerful off-the-shelf
signal processing products which can be used to acceler-
ate feedback development cycles. Application of optimal
and robust control methods can help to improve both per-
formance and reliability of feedback systems.
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