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1 Introduction

Noether’s theorem in classical field theory allows for an iterative construction of invariant

classical actions [1]. Starting from a given Lagrangian that is invariant under some sym-

metry, one can iteratively construct interactions by adding extra terms to the action and

to the transformation rules, so that the final action is invariant. In the simplest case the

starting Lagrangian is free. In [2, 3] a construction of theories with global (=rigid) and/or

local symmetries within the Bogoliubov–Shirkov–Epstein–Glaser (BSEG) approach was

presented. This construction may be viewed as a quantum version of the classical Noether

method.

In the BSEG approach, the S-matrix is directly constructed in the Fock space of

free asymptotic fields as a formal power series. The coupling constant is replaced by a

tempered test function g(x) (i.e. a smooth function rapidly decreasing at infinity) which

switches on the interaction. Instead of obtaining the S-matrix by first computing off-shell

Green functions by means of Feynman diagrams and then applying the LSZ formalism,

the S-matrix is obtained by imposing causality and Poincaré invariance. The method

can be regarded as an “inverse” of the cutting rules: one builds n-point functions out of

m-point functions (m < n) by suitably “gluing” them together. The precise manner in

which this is done is dictated by causality and Poincaré invariance. It can be shown that

this process uniquely fixes the S-matrix up to local terms (for a brief introduction to the

BSEG method see section 3 of [2]; for more detailed accounts the reader is referred to

[4, 5, 6, 7, 8]).

The BSEG approach should not be regarded as a special renormalization scheme but

as a general framework in which the conditions posed by the fundamental axioms of

quantum field theory (QFT) on any renormalization scheme are built in by construction.

In this sense the quantum Noether construction in [2, 3] is independent from the causal

BSEG approach. The proposed quantum Noether conditions should hold in any other

formalism.

In the Lagrangian framework, powerful methods have been developed that allow for

a systematic cohomological analysis of local counterterms and anomalies [9]. The BRST-

BV method provides an efficient way of analysing Ward identities. In the BSEG operator

approach, Ward identities play a central role: they provide the quantum Noether con-

ditions (QNC) [2, 3]. Consistency then requires that in the (naive) adiabatic limit,

g(x) → 1, the constraints imposed by the QNC be equivalent to those obtained via the

antifield formalism. This issue was analysed in [10]. We will review and further elaborate

on these results in this contribution. In particular, we analyze in detail the issue of the

coboundary condition which we only touched upon in [10].
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The paper is organized as follows. In sections 2 and 3 the antifield formalism is

discussed. Section 4 is devoted to the discussion of the relation between the gauge

fixed and gauge invariant BRST cohomology. In section 5 we present an example that

illustrates aspects of the analysis in section 4. In section 6 we recall the quantum Noether

method and in section 7 we use the results of section 4 to analyse the general solution of

the quantum Noether conditions. The appendix contains a brief review of the off-shell

procedure used in BSEG computations.

2 Renormalization with Antifields

The problem of perturbative quantization of generic gauge theories in the Lagrangian

framework consists of renormalizing the theory while preserving an appropriate form of

gauge invariance at the quantum level. We briefly summarize the standard approach here

(we refer to [11, 12, 13] for reviews).

The first step is the introduction of an appropriate number of ghost fields. More

precisely, independent ghost fields are associated to each element of the generating set

of gauge transformations of the theory, ghosts-for-ghosts for each element of the gener-

ating set of reducibility operators, additional ghosts for the reducibility operators of the

reducibility operators, and so on. The collection of original gauge and matter fields and

of all the ghosts will be called fields and denoted φA in the following.

For each field φA, one introduces an antifield φ∗
A, which allows for a definition of

an odd graded Lie bracket, the antibracket, in the space of functionals of fields and

antifields4,

(·, ·) =
δR·

δφA

δL·

δφ∗
A

−
δR·

δφ∗
A

.
δL·

δφA
(2.1)

where right and left derivatives are defined by δF = (δRF/δzα)δza = δza(δLF/δzα).

Using the antifields, one couples to the original gauge invariant action the gauge trans-

formations with gauge parameters replaced by ghosts, and also the various reducibility

operators with their parameters replaced by ghosts-for-ghosts. This action can then be

completed to the so-called solution of the master equation S[φ, φ∗] at ghost number 0

satisfying

(S, S) = 0. (2.2)

The associated BRST differential s is canonically generated in the antibracket by the

solution of the master equation, s = (S, ·); it acts in particular on both the fields and the

antifields.
4We use DeWitt’s condensed notation.

3



For gauge-fixing purposes, a non-minimal sector is added to S. Usually, it consists

of adding auxiliary fields coupled to the antifields of the antighosts. Then one chooses

a gauge-fixing fermion Ψ that depends only on the fields of the original and the non-

minimal sector. After performing a canonical transformation generated by Ψ, the solution

of the master equation has an invertible kinetic part for the fields and can be used as a

starting point for perturbative quantization. Formal path integral arguments then show

the independence of correlation functions of BRST invariant operators on the choice of

the gauge-fixing fermion. One of the main problems is to investigate to what extent the

same property holds true in the renormalized theory.

In the power-counting renormalizable case, general results imply that the quantum

counterpart of (2.2) can be expressed in terms of the generating functional W [j, φ∗]

of connected Green functions in the presence of antifields5 as the anomalously broken

Slavnov–Taylor identity

jA
δLW

δφ∗
A

= h̄〈A〉, (2.3)

with A a local integrated functional of ghost number 1. Equivalently, when expressed

in terms of the generating functional Γ[φ, φ∗] of 1PI Green functions, the anomalous

Slavnov–Taylor identity (2.3) becomes the anomalous Zinn-Justin equation

1

2
(Γ, Γ) = h̄A ◦ Γ. (2.4)

The appropriate form of gauge invariance that a renormalizable theory should satisfy

at the quantum level is the non-anomalous Slavnov-Taylor identity, or equivalently the

non-anomalous Zinn-Justin equation.

The anomalous breaking A ◦ Γ satisfies the consistency condition

(Γ,A ◦ Γ) = 0, (2.5)

which implies to lowest non-trivial order in h̄ that the anomaly A satisfies the consistency

condition sA = 0. Because BRST exact anomalies can be absorbed by BRST breaking

counterterms at ghost number 0, a sufficient condition for the absence of the lowest order

anomaly is the vanishing of the BRST cohomology H1(s) in the space of local functionals

of fields and antifields at ghost number 1.

Suppose now that there are no non trivial anomalies and that, to lowest order, the

trivial anomalies have been canceled by BRST breaking counterterms. If one wants

5In the case of Yang–Mills gauge theories, the antifields that appear in the gauge fixed action corre-

spond to sources for the BRST variations of the fields. From the point of view of renormalization, they

are needed because not only the terms in the action, but also the non-linear BRST transformations, are

subject to quantum corrections.
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to preserve the non-anomalous Zinn-Justin equation to that order, the remaining finite

counterterms C must be BRST invariant, sC = 0. (In a regularization-renormalization

approach, it follows from (2.4) that the lowest order divergences D, which are integrated

local functionals in ghost number 0, are also required to be BRST invariant, sD = 0).

BRST exact counterterms can be absorbed by canonical field-antifield redefinitions. It

can then be shown that a sufficient condition that allows for an iterative proof of the

renormalizability of the theory, while preserving the non-anomalous Zinn-Justin equa-

tion, is the property of stability, namely that, to each element of the BRST cohomology

H0(s) in the space of local functionals of fields and antifields at ghost number 0, there

corresponds an independent coupling constant in the action.

Note that from the point of view of Green functions, the antifields are merely an

(extremely efficient) bookkeeping device, which tell how certain combinations of Green

functions with certain insertions of operators should be renormalized.

3 Cohomological Considerations

In this section, we discuss local BRST cohomology with antifields included (see [14] for

a review and references).

In the renormalization of gauge theories, an important part is played by local BRST

cohomology or, more precisely, by the cohomology groups of the BRST differential s at

ghost number 0 and 1 in the space F of local functionals of the fields and the antifields.

Even though the BRST differential that arises directly in the problem of renormalization

is the one associated to the non-minimal and gauge fixed solution of the master equation

S, the crucial point is that the cohomology is isomorphic to the canonical, gauge invariant

BRST cohomology of the minimal, non-gauge fixed solution of the master equation.

The information contained in the BRST cohomology groups involving the antifields

can be described entirely without these antifields. Indeed, consider an expansion of the

BRST differential in canonical form according to the canonical antifield number, which

consists of assigning degree 0 to the fields, degree 1 to the antifields of the original gauge

and matter fields, degree 2 to the antifields of the ghosts, degree 3 for those of the ghosts

for ghosts, etc., so that s = δ + γ + s1 + . . .. Here δ lowers the antifield number by 1

and is related to the original gauge invariant equations of motion. The operator γ is of

degree 0 and its action on the gauge and matter fields, after putting the antifields to zero,

corresponds to gauge transformations with gauge parameters replaced by ghosts, while

its action on the fields of the non-minimal sector is trivial. Finally, the operators sk are

of degree k. It turns out that at all positive ghost numbers g, the BRST cohomology

in F is isomorphic to the cohomology of the differential γ in the space of local on-shell
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functionals FW depending on the fields alone:

Hg(s,F) ' Hg(γ,FW ), g ≥ 0. (3.6)

By on-shell functionals, we mean equivalence classes of functionals modulo functionals

that vanish when the gauge invariant equations of motion of the original theory hold.

Furthermore, at ghost number −1, the BRST cohomology in F is isomorphic to the

space of equivalence classes of global symmetries of the original gauge invariant theory,

where two global symmetries are equivalent if they differ on-shell by a gauge symmetry.

This last space turns out to be isomorphic to the space of equivalence classes of conserved

currents modulo divergences of superpotentials and on-shell vanishing currents. For

irreducible gauge theories, at ghost number −2, the BRST cohomology in F is isomorphic

to the space of equivalence classes of global reducibility identities, i.e. to classes of

field dependent parameters of gauge transformations that make the corresponding gauge

symmetries vanish on-shell, modulo on-shell vanishing gauge parameters. This space

is, in turn, isomorphic to the space of equivalence classes of conserved superpotentials

modulo divergences of skew-symmetric rank 3 contravariant tensors (depending locally

on the original gauge and matter fields and their derivatives) and on-shell vanishing

superpotentials. The BRST cohomology (for irreducible gauge theories) in F in ghost

number less than −2 vanishes.

Because it is the gauge fixed form of the BRST symmetry that arises naturally in the

problem of renormalization, it is sometimes useful to describe the content of the local

BRST cohomology groups in terms of the gauge fixed theory, without the associated

antifields. In the gauge fixed form, the appropriate expansion of the differential s is

according to the gauge fixed antifield number, which consists of assigning antifield number

0 to the fields and antifield number 1 to all the antifields, so that s̃ = δg + γg + λg + . . ..

In this expansion δg lowers the gauge fixed antifield number by 1 and is related to the

gauge fixed equations of motion including the fields of the non-minimal sector. The

operator γg depends on the choice of gauge fixing and is of gauge fixed antifield number

0. Its action on the fields, after putting to zero the antifields, is often referred to as the

BRST symmetry, because it corresponds to a rigid, global symmetry of the gauge fixed

action. For generic gauge theories, this symmetry is only nilpotent on-the-gauge-fixed-

shell. Finally, the operator λg is of gauge fixed antifield number 1, and the dots indicate

operators of higher gauge fixed antifield number.

The cohomology classes corresponding to the operator γg naturally arise in an oper-

ator formalism like the one we discuss in section 6. We discuss the connection between

the gauge fixed and gauge invariant cohomology in detail in the next section.
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4 Gauge Invariant and Gauge Fixed Cohomology

Consider a solution S[φ, φ∗] of the master equation. The gauge invariant cohomology is

given by solutions of (S[φ, φ∗], A[φ, φ∗]) = 0 up to solutions of the form A = (S, B), where

A and B are local functionals of the fields and antifields. The equivalence classes [A]

are independent of the variables of the non-minimal sector B, C̄ and their antifields, and

there is no reference to any gauge fixing. Furthermore, the gauge invariant classes [A] can

be described in terms of antifield-independent quantities: they are completely determined

by classes [A0] satisfying γA0 ≈ 0, where trivial solutions are given by A0 ≈ γB0.

The consistency condition that arises in standard approaches to renormalization is

(S̃[φ, φ̃∗], Ã[φ, φ̃∗]̃) = 0 with Ã of ghost number 1 for the anomalies and of ghost number

0 for the counterterms, where S̃[φ, φ̃∗] = S(φ, φ̃∗ + δΨ
δφ

) is the gauge fixed action where

antifields are present. Here and in what follows tilded quantities refer to the gauge fixed

theory. Solutions of the form Ã = (S̃, B̃)̃ are trivial in the following sense: for g = 1, the

anomaly Ã can be absorbed by adding to the Lagrangian the BRST breaking counterterm

−B̃ and, for g = 0, the counterterm Ã can be absorbed by a canonical field/antifield

redefinition. Because the presence of the antifields allows an implementation of the

gauge-fixing as a (canonical) change of variables and because the non-minimal sector is

cohomologically trivial, it can be shown that the equivalence classes of solutions [Ã] are

isomorphic to solutions [A] of the gauge invariant cohomology.

The gauge fixed cohomology groups for any ghost number have been worked out in

appendix A of [10] (see also [15]). It is shown that the BRST cohomology in F at ghost

number g is isomorphic to the direct sum of two spaces:

• The first space is a linear subspace of Hg(γg,F g
W ), where F g

W is the space of on-

shell functionals (for the gauge fixed field equations). Each element of Hg(γg,F g
W )

determines a first order deformation of the gauge fixed action and the gauge fixed

BRST symmetry and the subspace is determined by requiring that the deformed

BRST symmetry is nilpotent (on the gauge fixed shell). An example of an element

of Hg(γg,F g
W ) that does not fulfill this condition, and thus does not correspond to

a local BRST cohomology class in F g
W is the Curci–Ferrari mass term [16, 17].

• The second space completing Hg(s,F) is isomorphic to the space of local BRST

cohomology classes in F , that, when expressed in terms of the gauge fixed variables

and after putting the antifields to zero, become γg exact on the gauge fixed shell.

This space can also be described in terms of conserved currents at ghost number

g+1 as we discuss below.

Our starting point is (A.3) of [10], which we explicitly spell out below. Recall that
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s̃ = δg + γg + λg + ... is the gauge fixed BRST differential. The nilpotency of s̃ implies

(δg)2 = 0, δgγg + γgδg = 0, δgλg + λgδg + (γg)2 = 0. (4.7)

The cocycle condition for the first subspace is given by

γgÃ0 + δgÃ1 = 0, (4.8)

λgÃ0 + γgÃ1 + δgÃ2 = 0, (4.9)

while the coboundary condition is

Ã0 = γgB̃0 + δgB̃1. (4.10)

Quantities that are denoted by a capital letter always refer to integrated quantities. Their

subscripts here and in what follows denote the (gauge fixed) antifield number. Eqs. (4.8)

and (4.10) show that [Ã0] is an element of H(γg,F g
W ). It was shown in detail in [10] that

the condition (4.9) is equivalent to the nilpotency of a deformed BRST charge.

Let jµ
0 be the BRST current that generates the transformations γgφA. Let also Ã0 =

∫
dnxL1 (the reason for the notation will be become clear in a moment) and Ã1 =

−
∫

dnx ∆φAφ̃∗
A. The un-integrated on-shell version of (4.8) and (4.9) is

γgφA δLL1

δφA
≈g ∂µjµ

1 , (4.11)

J (0)µA(
δLL1

δφA
) + ∆jµ

0 + γgjµ
1 ≈g ∂νT

[νµ], (4.12)

where J (0)µA(·) may involve spacetime derivatives acting on the quantity inside the paren-

thesis. The coboundary condition becomes

L1 ≈
g γgb0 + ∂µkµ

0 . (4.13)

Eq. (4.11) follows straightforwardly from (4.8) by noting that δg acting on antifields yields

the (gauge fixed) field equations. Eq. (4.11) implies that (jµ
0 +ejµ

1 ) is a conserved current

of the theory with Lagrangian L0 + eL1, where S̃(φ, φ∗=0) =
∫

dnxL0. Let (γg + e∆)φA

be the transformation rules generated by the modified BRST current. Relation (4.12),

or equivalently (4.9), expresses the fact that the modified BRST charge is nilpotent,

(γg +e∆)2 ≈′ O(e2) (see [10] for the details). Eq. (4.13) says that trivial solutions L1 are

the ones that are weakly BRST exact, up to a total divergence. That L1 of the form of

(4.13) indeed satisfies (4.11) and (4.12) is most easily seen on the equivalent formulations

(4.8) and (4.9). Furthermore, by a (somewhat involved) computation one can show that

(4.12) is equivalent to

~kAµ(
δLL1

δφA
) + 2γgjµ

1 ≈g ∂νT
′[νµ], (4.14)

8



where ~kAµ may contain derivatives with respect to the fields and their derivatives, i.e.

terms of the form kABµ ∂
∂φB ( δLL1

δφA ) etc.

The cocycle condition for the second subspace reads

δgC̃1 = 0, (4.15)

γgC̃1 + δgC̃2 = 0 . (4.16)

In un-integrated form, these read

∂µ l̄µ0 ≈g 0, (4.17)

γg l̄µ0 ≈g ∂νS
[νµ]. (4.18)

Eq. (4.17) is a straightforward rewriting of (4.15), while (4.18) is derived by a standard

application of descent equation techniques: we apply δg on (4.16) and use (4.7) and

(4.15) and the fact that d is acyclic. Notice that these conditions imply that l̄µ0 is a

BRST invariant conserved current. Furthermore, given a particular solution (L1, j
µ
1 )

of equations (4.11) and (4.14), the remaining ambiguity in jµ
1 is precisely the general

solution l̄µ0 of (4.17) and (4.18), i.e., (L1, j
µ
1 + l̄µ0 ) satisfies (4.11) and (4.14) iff l̄µ0 solves

(4.17) and (4.18).

The coboundary condition is

0 = γgD̃0 + δgD̃1 , (4.19)

C̃1 = λgD̃0 + γgD̃1 + δgD̃2 , (4.20)

which, in un-integrated form, reads

∂µρµ
0 ≈g −γgd̃0, (4.21)

l̄µ0 ≈g −γgρµ
0 + ∂νR

[νµ] . (4.22)

The derivation of these equations is similar to the ones in (4.17) and (4.18) (to derive

(4.22) act on (4.19) by γg and on (4.20) by δg and use (4.7)).

In summary, the cocycle condition of the gauge fixed cohomology,

(S̃, Ã)̃ = 0, Ã = Ã0 + (Ã1 + C̃1) + (Ã2 + C̃2) + . . . (4.23)

is equivalent to (4.8),(4.9),(4.15),(4.16), or in un-integrated form to (4.11), (4.12), (4.17),

(4.18), and the coboundary condition

Ã = (S̃, B̃)̃, B̃ = (B̃0 + D̃0) + (B̃1 + D̃1) + . . . (4.24)

is equivalent to (4.10),(4.19),(4.20), or in un-integrated form to (4.13), (4.21), (4.22). We

thus see that [Ã] is equivalent to ([Ã0], [C̃1]), respectively to ([L1], [l̄
µ
0 ]). This should be

contrasted with the case of the gauge invariant cohomology, where the antifield indepen-

dent part [A0] was sufficient to completely determine [A].
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5 An Example

In this section we illustrate with a simple example the discussion in the previous section.

In particular we demonstrate the emergence of non-trivial currents in specific gauges.

This example was also briefly discussed in [10]. We consider Maxwell theory coupled to

a free scalar Φ. The gauge invariant action is

S0 =
∫

dnx
(
−

1

4
F µνFµν −

1

2
∂µΦ∂µΦ

)
. (5.25)

The gauge invariant non-minimal solution of the master equation is

S(φ, φ∗) = S0 +
∫

dnx (A∗µ∂µC + C̄∗B), (5.26)

where C is the ghost field, C̄ is the antighost field and B is the BRST auxiliary field.

In the gauge invariant theory,
∫

dnx Φ is BRST closed, (S,
∫

dnx Φ) = 0, but not BRST

exact, so [
∫

dnx Φ] is a non-trivial class of H0,n(s|d).

We now consider fixing the gauge using the gauge fixing condition ∂µAµ = µΦ, where

µ is a mass parameter. The limit µ → 0 yields the well-known Lorentz gauge. The gauge

fixing fermion that implements this gauge is given by

Ψ =
∫

dnx C̄(
1

2
αB + ∂µAµ + µΦ). (5.27)

The gauge fixed action Sg = S(φ, φ̃∗ + δΨ/δφ) is equal to

Sg =
∫

dnx
(
−

1

4
F µνFµν −

1

2
∂µΦ∂µΦ − ∂µC̄∂µC + (

1

2
αB + ∂µAµ + µΦ)B

+Ã∗µ∂µC + ˜̄C
∗

B
)

. (5.28)

We now set the antifields to zero. As is well known, the BRST variation of the

antighost yields the gauge fixing condition,

γgC̄ ≈g 1

α
(∂µAµ + µΦ), (5.29)

where the field equation of B was used. Integrating we get

µ
∫

dnx Φ ≈g γg
∫

dnxαC̄. (5.30)

The action (5.28) is invariant under constant shifts of the antighost, δC̄ = ε. The

corresponding Noether current is given by

l̄µ0 = ∂µC = γgAµ. (5.31)

This current is BRST invariant,

γg l̄µ0 = 0. (5.32)
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Let us first consider the case µ = 0, i.e. the standard Lorentz gauge. In this case, the

current l̄µ0 is trivial since (4.22) and (4.21) are satisfied with ρµ
0 = −Aµ and d̃0 = −C̄ .

Furthermore,
∫

dnx Φ is non-trivial, as in the gauge invariant formulation (the relation

(5.30) just says that
∫

dnx C̄ is BRST closed).

We now discuss the case µ 6= 0. The relation (5.30) implies that
∫

dnx Φ is trivial.

The current l̄µ0 , however, is no longer trivial because (4.21) is not satisfied due to the last

term in (5.29). We thus see that in this gauge we lost one non-trivial class at the level

of L1 but gained another one at the level of jµ
1 .

There is an elegant reformulation of this discussion when antifields are present. As dis-

cussed,
∫

dnx Φ represents a non-trivial class in the gauge invariant formulation. Further-

more, the functional
∫

dnx C̄∗ has ghost number zero, is BRST closed, (S,
∫

dnx C̄∗) = 0,

but it is also BRST exact,
∫

dnx C̄∗ = (S,
∫

dnxB∗), and thus it represents the trivial

class. Notice that
∫

dnx C̄∗ generates (by the antibracket) arbitrary constant shifts of

the antighost C̄. This a trivial symmetry because it comes from a gauge symmetry: the

action (5.26) is invariant under local shifts of the antighost.

Let us now consider the gauge fixed case. A simple computation yields

µ
∫

dnx Φ = (Sg,
∫

dnx (B̃∗ + αC̄)) −
∫

dnx ˜̄C
∗

. (5.33)

We thus see that when µ = 0,
∫

dnx ˜̄C
∗

is trivial as in the gauge invariant formulation,

but when µ 6= 0 both
∫

dnx Φ and
∫

dnx ˜̄C
∗

represent the same cohomology class.

We would like to emphasize that the discussion so far was about possible countert-

erms in the quantum effective action (and, as we discuss in section 7, about the local

normalization ambiguity in the BSEG approach). There is a separate issue concerning

quantum operators and whether they are trivial inside correlation functions, as we now

discuss. Standard arguments imply that when an operator is BRST exact its correlation

functions with any gauge invariant operator Oi vanish,

〈T [(γgA)(x)O1(x1) · · ·On(xn)]〉 = 0, (5.34)

where A is any local operator. We can use this Ward identity with A = C̄ to show (the

well-known fact) that all correlation functions of the gauge fixing relation with gauge

invariant operators vanish. In our case this implies,

µ〈T [Φ(x)O1(x1) · · ·On(xn)]〉 = −〈T [(∂µAµ)(x)O1(x1) · · ·On(xn)]〉. (5.35)

This relation tells us that the correlation functions of the gauge variant operator ∂µAµ

are determined in this gauge by the correlation functions of the gauge invariant operator

Φ. Notice that the correlation functions 〈T [Φ(x)O1(x1) · · ·On(xn)]〉 are the same in all

gauges (since they involve gauge invariant operators) but the correlation functions of

〈T [∂µAµ(x)O1(x1) · · ·On(xn)]〉 depend on the gauge under consideration.
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We now integrate (5.35) over x,

µ〈T [
∫

dnx Φ(x)O1(x1) · · ·On(xn)]〉 = −〈T [
∫

dnx (∂µAµ)(x)O1(x1) · · ·On(xn)]〉. (5.36)

The left hand side is gauge invariant and (when the gauge invariant operators involve Φ)

non-zero. This then implies that in this specific gauge the operator

∫

M
dnx∂µAµ =

∫

∂M
dσnAn, (5.37)

is non-zero. Notice that the question of whether the boundary term vanishes is clearly

gauge dependent since the integrand is gauge dependent. In other words, the operator

∂µAµ is only locally d-exact.

The existence of currents (4.22) that are non-trivial because (4.21) is not satisfied

always implies that there are such non-trivial d-closed operators. Indeed, the conservation

of l̄µ0 in (4.22) implies only that

γgr ≈g 0, (5.38)

where ∂µρµ
0 ≈g r. Now consider the correlation function of

∫
dnx ∂µρµ

0 with arbitrary

number of gauge invariant operators. Naively, this should be equal to zero but because

of (5.38) we obtain

〈T [
∫

dnx (∂µρµ
0 )(x)O1(x1) · · ·On(xn)]〉 = 〈T [

∫
dnx r(x)O1(x1) · · ·On(xn)]〉, (5.39)

which is (generically) non-zero since the right hand side is a correlation function of gauge

invariant operators (and none is BRST exact). In contrast, when the current is trivial, r

is γg-exact and the correlation function on the right hand side vanishes.

These considerations indicate that at the level of operators there is an alternative

cohomology analysis to the one presented here and in the appendix of [10] where the

non-trivial currents are due to d having a non-trivial cohomology.

6 Quantum Noether Method

As already mentioned in the introduction, a construction of theories with global (=rigid)

and/or local symmetries within the Bogoliubov-Shirkov-Epstein-Glaser (BSEG) operator

approach was presented in [2, 3]. Recall that in this approach the S-matrix is constructed

perturbatively in the asymptotic Fock space as a formal power series

S(g) = 1 +
∞∑

n=1

1

n!

∫
dx4

1 · · · dx4
n Tn(x1, · · · , xn; h̄) g(x1) · · · g(xn). (6.1)

The coupling constant g is replaced by a tempered test function g(x) ∈ S (i.e. a smooth

function rapidly decreasing at infinity), which switches on the interaction. The n-point

12



operator-valued distributions Tn ∈ S ′ are the central objects, where S ′ denotes the space

of functionals on S. They should be viewed as mathematically well-defined (renormal-

ized) time-ordered products,

Tn(x1, · · · , xn; h̄) = T [T1(x1) · · ·T1(xn)] , (6.2)

of a given specific coupling T1, which is regarded as part of the definition of the theory

(for example T1 = i/h̄ : φ4 :). We note that the expansion in (6.1) is not a loop expansion.

Each Tn in (6.1) can receive tree-graph and loop-contributions. One can distinguish the

various contributions from the power of h̄ that multiplies them.

We are interested in constructing theories where the S-matrix is invariant under a

certain symmetry operation, generated by a well-defined operator Q in the asymptotic

Fock space:

[Q, S] = 0. (6.3)

The operator Q acting on asymptotic fields generates their asymptotic transformation

rules

[Q, φA} = −ih̄γ0φ
A, (6.4)

where [A, B} denotes a graded commutator. The latter are necessarily linear in the

asymptotic fields.

We would like to carry out the construction before the so-called adiabatic limit. Thus,

instead of working with (6.3), we require that

[Q, Tn(x1, . . . , xn; h̄)} =
n∑

l=1

∂

∂xµ
l

T µ
n/l(x1, . . . , xn; h̄) (6.5)

holds in the distributional sense for n ≥ 1 and for some T µ
n/l; we use the abbreviation

∂/∂xµ
l = ∂l

µ. For n = 1, Eq. (6.5) reads

[Q, T1} = ∂µT µ
1/1, (6.6)

and imposes restrictions on the starting point of the BSEG procedure, namely on the

coupling T1.
6 Once the coupling T1 has been determined, the rest of Eqs. (6.5) im-

pose relations between the constants left unspecified by the requirement of causality and

Poincaré invariance. This is analogous to the situation in the conventional Lagrangian

approach, where symmetry considerations restrict the possible terms in the Lagrangian

and then the corresponding symmetries at the quantum level impose certain relations

between the Z factors.

Since different non-linear transformations may have the same linear limit, it is not a

priori obvious whether a theory constructed by BSEG satisfying (6.3) has any underlying
6The distributions T

µ
n/l in (6.5) are then given by the T -products of (n−1) vertices T1 and one vertex

T1/1 at the lth position: T [T1(x1) · · ·T
µ
1/1

(xl) · · ·T1(xn)].
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non-linear structure at all. To address this issue one can work out the precise conse-

quences of the operator equation (6.5) in specific models and try to reproduce the Ward

identities derived in the Lagrangian approach, using the full non-linear transformation. 7

An alternative and complementary approach is to try to find a direct correspondence

between the Lagrangian approach and the BSEG formalism. The obvious advantage of

such an approach is that it will provide a model-independent connection between the two

approaches.

In order to establish such a connection to the Lagrangian approach, the symmetry

constraint (6.5) was reformulated into an equivalent, but more transparent formulation

based on the Noether method in [2]. Recall that in the Lagrangian approach Ward identi-

ties are derived using the conservation of symmetry currents inside correlation functions.

The proposal in [2, 3] is to adopt this approach in the operator formalism: we constrain

the local ambiguity by requiring that the corresponding Noether current be conserved

inside correlation functions.

We start by including in the theory the coupling gµj
µ
0 , where jµ

0 is the Noether current

that generates the asymptotic (linear) symmetry transformations of the fundamental

fields. Given such a current, one can obtain a corresponding interacting field operator

jµ
0,int.

8 We then propose, as a general Ward identity [3]:

∂µjµ
0,int = ∂µg j̃µ

1,int (6.8)

where j̃µ
1,int is another interacting current whose explicit form can be found in [3] but it

will not be needed here. One of the main results of [3] is that the interacting current at

tree level is exactly equal to the Noether current of the Lagrangian (non-linear) theory.

It follows that in the naive adiabatic limit, ∂µg = 0, (6.8) reduces to the standard Ward

identities. The condition (6.8) is a formal Laurent series in h̄ so this condition is actually

a set of conditions.

Using the fact that the right-hand side of (6.8) is linear in derivatives, one may

provide an alternative Ward identity, which does not contain any explicit reference to

g(x). The reformulation is based on the distributional identity (
∑n

i=1 ∂i)δ(x1 −x2)δ(x2 −

7This approach was followed in [18, 19] for the case of SU(n) gauge theory in the Feynman gauge

coupled to fermions where it was shown that (6.5) implies the Slavnov-Taylor identities for connected

Green functions.
8The perturbation series for the interacting field operator j

µ
0,int of a free field operator j

µ
0 is given by

the advanced distributions of the corresponding expansion of the S-matrix:

j
µ
0,int(g, x) = j

µ
0 (x) +

∞∑

n=1

1

n!

∫
d4x1 . . . d4xnAdn+1 [T1(x1) . . . T1(xn); jµ

0 (x)] g(x1) . . . g(xn), (6.7)

where Adn+1 denotes the advanced operator-valued distribution with n vertices T1 and one vertex j
µ
0 (x)

at the (n + 1)th position; g(xk) is a tempered test function, which, in the adiabatic limit, becomes the

coupling constant of the theory.
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x3)...δ(xn−1 − xn) = 0. It follows that if one considers a symmetrized insertion of jµ
0

(instead of (6.7)) then the term on the right-hand of (the symmetrized version of) (6.8)

becomes proportional to a total derivative, which can then be removed by modifying

the local ambiguity in correlation functions with one current insertion. This version of

the Ward identity was presented in [2]. By construction, the two Ward identities imply

exactly the same conditions on all correlators with no current insertions, but those that

have current insertions differ by the local terms just discussed. The Ward identity (6.8)

has the advantage that it involves the current jµ
0,int that renormalizes to become exactly

equal to the Noether current of the Lagrangian formulation (in the symmetrized Ward

identity the renormalization of jµ
0 involves the same terms, but with different combina-

torial coefficients). Furthermore, it is more straightforward to analyse the anomalies of

(6.8) than that of the symmetrized condition.

It was shown in [2, 3] that any theory with global/local symmetry that can be viewed

as deformation of a free theory can be constructed by using the symmetry condition

(6.8) (or the corresponding symmetrized condition) and the free Noether current jµ
0 as

a starting point. This class of theories includes all perturbative QFTs. In addition,

the equivalence of any theory consistently constructed in the BSEG formalism with a

Lagrangian theory was established. The following was shown there:

1. The sum of T1 and the tree-level normalizations that arise from the requirement

(6.8) coincides with the Lagrangian that is invariant under the non-linear transfor-

mations generated by jµ
0,int. This shows that the full non-linear structure is present

in the theory.

2. The interacting current jµ
0,int is renormalized by condition (6.8) in such a way that

it is, at tree level, exactly equal to the Lagrangian Noether current.

3. The loop normalization ambiguity is fixed in the same way as at tree level, provided

the anomaly consistency condition has only trivial solutions. This means that the

theory is stable under quantum correction.

It was also shown that condition (6.8) is equivalent to condition (6.5). The latter guar-

antees the invariance of the S-matrix under the corresponding asymptotic symmetry.

The consequence of all this is that the only information one needs in order to construct

a perturbative quantum field theory with a given global symmetry is a set of free fields

linearly realizing this symmetry. Even the first term in the S-matrix, which is usually

regarded as an input in the BSEG formalism, is now derived using the quantum Noether

condition.

Because the BSEG construction leads to the most general quantum field theory that is

compatible with causality and Poincaré symmetry, the quantum Noether condition allows
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a determination of all consistent quantum field theories with non-linear symmetries that

are compatible with the asymptotic symmetry represented by jµ
0 .

Further consistency requirements on the theory follow by considering multicurrent

correlation functions [10]. In particular, the two-current equation is

∂x
µT [jµ

0 (x)jν
0 (y)T1(x1) · · ·T1(xn)] = ∂µg j̃µν , (6.9)

for some j̃µν . In the case of a BRST symmetry, this additional constraint implements

the nilpotency of the BRST transformation in the quantum theory. More generally, the

two-current equation implements the algebra of symmetries.

The proofs given in [2, 3, 10] will not be repeated here. We discuss in the ap-

pendix, however, the so-called off-shell procedure. This alternative route to fix the local

ambiguities and local breaking terms within the on-shell formalism provides structural

(model-independent) information on the latter. It is this additional structural informa-

tion that allows us to establish a cohomological analysis of the local ambiguities and the

local anomalies within the BSEG operator approach.

Recently a new Ward identity was proposed within the BSEG approach [20, 21].

The so-called master Ward identity (MWI) is presented as a universal renormalization

condition that expresses the symmetries of the underlying classical theory. The MWI is

obtained by computing the difference,

∂µ
x1

T [W1(x1), . . . , Wn(xn)] − T [∂µW1(x1), . . . , Wn(xn)], (6.10)

using an algebraic equivalent of the Wick expansion formula (called N3 in [20]) and then

demanding that the result is preserved by renormalization (W1,...,Wn are polynomials

in free fields). We would like to emphasize that (as is well-known) the Wick expansion

formula is not the most general solution of the BSEG construction. Actually the authors

of [20] already encountered problems in reconciling (6.10) with known symmetries of

certain models under consideration. In particular, it was found that the interacting

Noether current in the case of massless Yang–Mills is not compatible with the MWI and

the normalization condition N3, see formulae (157-160). Furthermore, in the case of the

non-abelian Higgs model, the distributions Tn fulfilling the MWI have to be modified

due to certain non-linear couplings introduced by the BRST symmetry. The resulting

n-point distributions TN
n violate the MWI and N3 as stated below formula (215). Since

the MWI does not capture the full non-linear structure of symmetries (as these examples

show), it seems likely that the theory satisfying MWI will have more anomalies and not

be stable under quantum corrections.
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7 Gauge Fixed Cohomology and the QNM

In [2, 3] the constraints imposed by the quantum Noether condition were analysed to all

orders. Let Ln denote the local normalization ambiguity of Tn

Tn[T1(x1) . . . T (xn); h̄] = Tc,n[T1(x1) . . . T (xn); h̄] + n!
i

h̄
Ln(h̄)δ(x1, . . . , xn) , (7.11)

where Tc,n denotes a reference splitting solution. At tree level, this is defined by using the

Feynman propagator in tree-graphs. The Lagrangian is then identified with the tree-level

contribution to L = L0 + eL1 + . . . [2]. Here L0 is the Lagrangian of the free theory,

and e is the coupling constant of the theory9. It was shown in [2, 3] that the condition

imposed by (6.8) on the local terms Ln coincides with the equations obtained in the

classical Noether method. These considerations, thus, lead to an BSEG construction of

all theories which are associated at the classical level with a Lagrangian invariant under

some (non-linear) symmetry.

A particular case of theories where the construction applies is that of gauge theories,

the relevant global symmetry being the BRST symmetry. In this case one can obtain the

most general local terms compatible with gauge invariance using the antifield formalism.

The objective of [10] was to show that the set of solutions of the quantum Noether

conditions coincides with the set of solutions given by the antifield method.

In this case, the one-current quantum Noether condition (6.8) implies

γgL1 = ∂µL
µ
1 − ∆φA δLL0

δφA
, (7.12)

whereas the two-current Noether condition (6.9) yields

JµA
0 (

δL1

δφA
) + γgjµ

1 + ∆jµ
0 = ∂νT

[νµ]
1 + JµA

1 (
δLL0

δφA
). (7.13)

Eq. (7.12) defines ∆φA. It was shown in [3] that these transformations are generated by

jµ
1 , and that furthermore j1 is related to L1 by

jµ
1 = −Lµ

1 +
∂L1

∂(∂µφA)
γgφA . (7.14)

Because these equations coincide with (4.11) and (4.12), the most general solution

(L1, j
µ
1 ) are given by the gauge fixed BRST cocycles discussed in section 4. Thus, we see

that the QNC correctly gives the cocycle conditions of the gauge fixed cohomology.

We now turn to the issue of the coboundary terms. First consider the terms of the

form (4.13). Inserting them in (6.1) we see that they are indeed trivial: total derivatives

9We use the convention of keeping the coupling constant explicit, in which case the adiabatic limit is

g(x) → 1.

17



can be ignored in the (naive) adiabatic limit, and the asymptotic fields satisfy their field

equation. Furthermore, BRST exact terms vanish when acting on physical states (since

the latter are BRST closed).

Let us now consider the coboundary condition (4.21) and (4.22),

∂µρµ
0 = −dA δLL0

δφA
− γgd̃0, (7.15)

l̄µ0 = −γgρµ
0 + dµA δLL0

δφA
+ ∂νR

[νµ] . (7.16)

Recall that the starting point in the BSEG procedure is a set of asymptotic fields and

their commutation relations, or equivalently their propagators. From these data one may

construct a gauge fixed Lagrangian L0 that yields these propagators. As we discussed,

the gauge fixed Lagrangian and the gauge fixed BRST current are associated with a

gauge invariant Lagrangian L and a corresponding BRST current. Suppose now that we

change variables and choose another gauge, such that the resulting gauge fixed action

changes only by a total derivative. The propagators of the gauge fixed theory remain

invariant under this combined operation, but the BRST current can change. Clearly, the

theory constructed using either the original or the new BRST current is the same. In

this sense the difference between the two BRST currents is a trivial current. In other

words, currents that can be removed by a combined change of gauge and of variables are

trivial. The current l̄µ0 satisfying (7.15) and (7.16) is such a case. Indeed, consider the

change of variables and gauge

φA → φA + edA, Ψ → Ψ − ed̃0 , (7.17)

where Ψ is the gauge fixing fermion. The gauge fixed Lagrangian changes by

L0 → L0 + edA δLL0

δφA
+ eγgd̃0 = L0 − e∂µρµ

0 , (7.18)

where we used (7.15). The change of variables and of gauge entails a change in the

BRST current. The details are somewhat involved but the final answer is that the

original current changes by a current el̄µ0 of the form (7.15) and (7.16). This analysis tell

us that one should include all non-trivial currents l̄µ0 in the Noether procedure.
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A Off-Shell Procedure

The purpose of this appendix is to review the so-called off-shell procedure presented

in [2]. In order to avoid any misunderstandings, it should be stressed that the (well-

defined) off-shell formalism is nothing else than a shortcut to fix the local ambiguities

and local breaking terms within the on-shell BSEG formalism 10. The advantage of the

off-shell procedure is that it provides structural (model-independent) information on the

latter, which allows us to establish a cohomological analysis of the local normalization

ambiguity.

The symmetrized quantum Noether condition11 is given by [2]:

∂µJ
µ
n (x1, · · · , xn; h̄) =

n∑

l=1

∂l
µJ

µ
n/l = 0, (A.20)

where

J µ
n/l = T [T1(x1) · · · j

µ
0 (xl) · · ·T1(xn)]. (A.21)

We use the abbreviation ∂/∂xµ
l = ∂l

µ. For n = 1 we have the condition J µ
1 (x1) = jµ

0 (x1).

We start the quantum Noether construction [2] by noting that having satisfied our

fundamental quantum Noether condition (A.20) for all m < n, Eq. (A.20) at the nth

10The field operators of the BSEG construction fulfill the free field equations and in this sense the

formalism is on-shell.
11As mentioned in section 6, this symmetrized condition is equivalent to the Ward identity (6.8),

∂µj
µ
0,int = ∂µgj̃

µ
1,int, in its implications on physical correlation functions with no current insertions (see

[3] for an explicit proof). The Ward identity (6.8) can be written in terms of T -products as

∂x
µTn+1

[
T1(x1) . . . T1(xn); jµ

0 (x)
]

= −

n∑

j=1

Tn

[
T1(x1) . . . ̂T1(xj) . . . T1(xn); j̃µ

1 (x)
]
∂xj

µ δ(xj − x) . (A.19)

These distributions get smeared out by g(x1) . . . g(xn)g̃(x), where the test-function g̃ differs from g. One

easily verifies that the symmetrization in all variables (smearing out (A.19) by g(x1) . . . g(xn)g(x)) just

leads to the symmetrized quantum Noether condition (A.20). As is described in the main text, the

two Ward identities lead to a different normalization of correlators with current insertions, but one can

readily obtain the normalization needed to satisfy (A.20) from the normalization needed to satisfy (6.8)

(and vice versa) using the fact that the former is a symmetrized version of the latter. The explicit local

normalization terms at order n of the one-current correlators are given explicitly in [3] for both Ward

identities.
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order can be violated by a local distribution An(h̄) (which we shall call local breaking

term) only:

∂µJ
µ
n (x1, · · · , xn; h̄) =

n∑

l=1

∂l
µJ

µ
n/l = An(h̄). (A.22)

The conventional inductive BSEG construction may be applied to work out the conse-

quences of (A.20) and to fix the local terms An(h̄) in (A.22). However, there is an alterna-

tive route which was worked out in great detail in [2], and this under the name “off-shell

formulation of the inductive hypothesis”. To understand how this off-shell formulation

simplifies the calculation of local on-shell terms An(h̄) arising from tree-level contractions,

the traditional way to do such a calculation should first be described in more detail: In

order to obtain the local terms, one first constructs 12 Tc,n[j
µ
0 (x1)T1(x2)...T1(xn)], dif-

ferentiates with respect to the variable of the current and symmetrizes in all variables.

Tc,n[j
µ
0 (x1)T1(x2)...T1(xn)] involves many terms and there will be a large number of can-

cellations after differentiating and symmetrizing. In particular, one already knows from

Eq. (A.22) that all non-local terms will cancel one another. So the idea (which gets im-

plemented with the help of the off-shell trick) is to concentrate on possible local terms,

anticipating the cancellation of all non-local terms.

By induction hypothesis, one has for all m < n,

m∑

l=1

∂l
µJ

µ
m/l = 0 . (A.23)

However, the assumption that the quantum Noether method works successfully means

that there exist local normalizations such that (A.20) is satisfied when the field equations

are satisfied. Therefore one rewrites –just as a trick– the induction hypothesis (A.23)

by relaxing the field equations of the fields φA (which will be denoted by KABφB in the

following):
m∑

l=1

∂l
µJ

µ
m/l = ∗RA;m(h̄)KABφBδ(m)∗, m < n . (A.24)

It should be stressed again that the off-shell terms on the right-hand side are understood

just as a calculational device to fix the local on-shell terms An(h̄) out of tree contractions

in the next inductive step (n−1) → n. In the following, the stars * are always used within

the exact equations of the BSEG construction, as in (A.24), in order to indicate these off-

shell terms. Note that all these terms are just zero within the BSEG on-shell formalism.

Nevertheless, the off-shell terms have a well-defined meaning and can be constructed

straightforwardly with the help of BSEG quantities. The uniqueness of these terms will

be discussed below.

The crucial point of the construction is that exactly those terms that are proportional

to the field equations are the only source of the local on-shell terms An(h̄) in the next

12 Tc denotes the natural splitting solution, i.e. the Feynman propagator is used in tree-graphs.
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step of the induction within tree-level contractions: at order n the so-called relevant

contractions, namely the contractions between the φB in the right-hand side of (A.24)

and φ within another local term, lead to the local terms. This implies, in particular, that

no local term arises from terms in the causal distribution at the order n that are products

of more than two T products. This is in accordance with the diagrammatic picture of

creation of local terms that was discussed in [2]. In this manner one gets the following

general formula for the local on-shell term Ac,n arising through tree-level contractions at

level n [2]:

Ac,n(tree) =
∑

π∈Πn

n−1∑

m=1

∂µJ
µ
m(xπ(1), . . . , xπ(m)) Nn−mδ(xπ(k+1), . . . , xπ(n))︸ ︷︷ ︸

relevant contractions

(A.25)

where it is understood that only relevant contractions are made on the right-hand side.

The factors Nn−m are tree-level normalization terms of the T -products 13 solution that

contain (n − m) T1 vertices. In all equations, Wick-ordering is always understood.

Now we have to identify the field-equation terms RA;m(h̄)KABφBδ(m) in (A.24). Let

us recall that, generically, after natural splitting (this refers to tree-level graphs, for loop

graphs one uses some reference-splitting solution) we end up with

∂µJ
µ
c,m = Ac,m. (A.26)

The assumption that the quantum Noether method works successfully means that the

(on-shell) anomaly Ac,m is a divergence up to terms Bm which vanish when the free-field

equations are used, i.e.

Ac,m = ∂µAµ
c,m + ∗Bm∗ , (A.27)

where Aµ
m,c and Bm are some local distributions (since Ac,m is local). This decomposition

is not unique since one can move derivatives of field-equation terms from Bm to Aµ
c,m.

This freedom is fixed by demanding that Bm contain no derivatives of field equations (for

details see [2], section 4.2); thus, we can identify Bm with the right-hand side of (A.24),

while the divergence term ∂µAµ
c,m can be canceled by the introduction of an additional

normalization term of the T -product J µ
n/l.

An additional ambiguity is related to the additional global symmetries of the free

action. If we make the transformation

Aµ
c,m → Aµ

c,m + j̃µδm; RA;m → RA;m − γ̃φA , (A.28)

where j̃µ is a Noether current that generates the additional symmetry transformations

γ̃φA, then the right-hand side of (A.27) remains unchanged. The meaning of this ambi-

guity is that different symmetries can mix with each other. In general, one must include
13When one refers to local normalization terms in tree graph contributions in BSEG they are always

defined with respect to the natural splitting (see footnote 12).
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in the construction all currents that have non-trivial commutation relations among them-

selves. In the case of BRST symmetry, we have seen in the main text that one should

include all non-trivial global currents of ghost number 1 in the construction in order to

correctly account for all cohomology.

Having identified the field-equation terms as the only source of local terms out of tree

contractions and having clarified the ambiguities due to the field equation we can use

the off-shell trick to analyse the quantum Noether condition — first at tree level. Let us

define

γ(m−1)φ
A =

1

m!
RA;m(h̄0); m > 1. (A.29)

We have explicitly shown in [2, 3] that,

γφA =
k∑

m=0

gmγmφA, (A.30)

are symmetry transformation rules that leave the Lagrangian invariant (up to total deriva-

tives):

L =
k′∑

m=0

gmLm, (A.31)

where k and k′ are integers (which may be infinity). The Lagrangian L is determined

from the tree-level normalization conditions as follows,

Lm =
h̄

i

Nm

m!
, for m > 1, (A.32)

where Nm denotes the local normalization ambiguity of Tm[T1(x1)...T1(xm)] in tree graphs

defined with respect to the natural splitting solution. For m = 1, L1 = (h̄/i)T1. Note

that we regard (A.32) as the definition of Lm within the BSEG approach. Details can

be found in [2] where we also discuss the QNC at loop level.
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