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Abstract

Extraordinarily high fields generated by focused lasers are envisioned to accel-
erate particles to high energies. In this paper, we develop a new method to
calculate laser acceleration in vacuum based on the energy exchange arose from
the interference of the laser field with the radiation field of the particle. We apply
this method to a simple accelerating structure, a perfectly conducting screen with
a round hole, and show that how to optimize the energy gain with respect to the
hole radius, laser angle and spot size, as well as the transverse profile of the laser.
Limitation and energy scaling of this acceleration method are also discussed.

Submitted to Phys. Rev. ST Accel. Beams

∗Work supported by Department of Energy contracts DE–AC03–76SF00515 and DE–AC03–78SF00098.



I. INTRODUCTION

Acceleration of charged particles by laser fields in vacuum can be calculated as

∆Uacc = e

∫
E · vds , (1)

where ∆Uacc is the energy gain, e is the charge, E is the electric field, v is the particle’s

velocity, and the integral is taken along the particle’s path. In a straight orbit approximation,

when v in Eq. (1) is considered as a constant unperturbed velocity, according to Lawson-

Woodward theorem [1], laser acceleration in vacuum is only possible in a close proximity to

material boundaries. The acceleration occurs because currents and charges induced by the

laser field in the material distort the incident electromagnetic field in a way which gives a

nonzero value for the integral.

A direct calculation of the integral in Eq. (1) requires solving Maxwell’s equations in the

vicinity of the material boundaries. In most cases, this leads to a formidable electromagnetic

problem and requires extensive numerical computations. Only very simple geometries of the

problem allow an analytical calculation of the energy gain directly from Eq. (1) (see, e.g.,

[2, 3]).

In this paper we develop a new method to calculate the energy gain ∆Uacc. It is based on

the energy balance equation for the electromagnetic field energy and the particle’s energy,

and requires only knowledge of the radiation field in the far zone. In its most general formu-

lation, it is no limited to vacuum and straight orbits—it can also be used for acceleration in

a medium (e.g., inverse Cherenkov acceleration), and curvilinear orbits (such as in inverse

FEL acceleration). Palmer mentions this method in Ref. [1] in the context of one of the

explanations of the mechanisms of acceleration.

To demonstrate advantages of the new method, we apply it to a relatively simple problem:

laser acceleration of a particle passing through a round hole in a perfectly conducting metal

screen. The assumption of perfect conductivity of the metal is valid if the laser frequency

is smaller than the plasma frequency for the metal. Two different laser illuminations are

considered: first with a higher-order laser mode, and second with two-crossed Gaussian laser

beams. Note that crossed Gaussian lasers are used in the LEAP experiment at Stanford

University [4] and in the proposed E-163 experiment at SLAC [5]. In the limit when the

hole radius a tends to zero, we show that our result agrees with direct calculation of the
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integral (1). Taking into account the effect of a damage threshold for materials, we show

how our calculations allow also to optimize the gain for given laser parameters, and find the

limits of this acceleration method.

II. RELATION BETWEEN RADIATION FIELDS AND ENERGY GAIN

Consider a bunch passing through a hole in a perfectly conducting metal screen, as

shown in Fig. 1. The hole may have arbitrary shape, although in subsequent sections we

will assume that it is round, with radius a. At the time of passage, the bunch is irradiated

by a laser pulse, and due to the interaction with the laser light, particles in the bunch will

be accelerated or decelerated depending on the phase of the laser wave.

We introduce a surface of large radius R enclosing a volume V which includes the accel-

eration area. Eventually, we will assume R → ∞. Initially, at t → −∞, a particle in the

bunch and a laser pulse are located outside of the surface S. After the interaction, when

t→ ∞, they will leave the volume V .

S

z

V

FIG. 1: Layout of a vacuum laser acceleration experiment. A perfectly conducting screen with a

round hole of radius a is located at z = 0. Initially, a particle and a laser pulse are at position 1

outside of the volume V .

We will use the energy balance equation for the electromagnetic field (see, e. g. [6, 7]):

∂

∂t

∫
dV
E2 +H2

8π
+

∫
V

dV j · E = −
∫

S

S · n dS ,
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where the integration goes over the volume V with the surface boundary S, n is a unit vector

in the outward direction normal to the surface, j is the current density, S is the Poynting

vector, S = (c/4π)E × H, and H is the magnetic field. Integrating this equation over time,

from t = −∞ to t = ∞, and taking into account that at t = ±∞ there is no electromagnetic

field inside the volume V , we find

∫
∞

−∞

dt

∫
V

dV j · E = −
∫

∞

−∞

dt

∫
S

S · n dS .

The current density j includes the current associated with the moving point charge, j =

evδ(r(t)), where r(t) is the particle’s orbit, and the current in the metal. The latter, however,

does not contribute to the integral
∫
dV j · E, because this integral is equal to the energy

deposited inside the metal due to the ohmic heating, which is neglected in the limit of perfect

conductivity. Hence the integral reduces to e
∫

∞

−∞
v · E dt taken along the orbit. It is equal

to the energy gain (or loss, if negative) ∆U of the particle due to the interaction with the

field. Hence

∆U = −
∫

∞

−∞

dt

∫
S · n dS . (2)

Note that this formula is exact, it is valid for arbitrary curvilinear motion of the particle

under the influence of an external field.

In calculation of fields, it is convenient to use the Fourier transform, which we define as




E(ω)

H(ω)


 =

1

2π

∫
∞

−∞

dteiωt




E(t)

H(t)


 . (3)

Using the Parseval’s theorem we find

∆U(E ,H) = − c
2

∫
∞

−∞

dω

∫
Re [E(ω) × H

�

(ω)] · n dS

= −c
2

∫
∞

−∞

dω

∫
Re (E(ω) · E

�

(ω)) dS , (4)

where the asterisk denotes complex conjugate, and we used the relations H = n × E and

n ·E = 0 valid in the far zone. Below we will use the notation ∆U(E ,E) for the last integral

in Eq. (4) to indicate both fields involved in the calculation of ∆U .

The field entering Eq. (4) is a superposition of the laser field, E
LS, and the particle’s

field, E
PS:

E = E
LS + E

PS , (5)

4



where the letter “S” in the subscript indicates that these are the fields in the presence of the

screen. For what follows, we will also need a notation the laser field without the screen E
L,

and the beam field without the screen, E
P. We define the radiation fields E

LR and E
PR as

a difference between the field with the screen and the field in free space: E
LR = E

LS − E
L,

E
PR = E

PS − E
P. The radiation fields are generated by currents flowing in the screen. The

fields E
LS and E

PS can be considered as a superposition of fields without the screen and the

radiation fields,

E
LS = E

L + E
LR , E

PS = E
P + E

PR . (6)

Substituting Eq. (5) into Eq. (4) we obtain several terms. The term ∆U(ELS,ELS)

corresponds to the integrated energy flow of the laser light through the surface S without

the beam. This term vanishes because we assume that there are no losses in the screen and

hence the incoming laser energy is equal to the outcoming one. The term ∆U(EPS,EPS)

describes the energy radiated by the particle passing through the hole in the screen when

there is no laser field. This term scales as a square of the particle’s charge and is not relevant

to the acceleration. Only the cross term

−c
∫

∞

−∞

dω

∫
Re (ELS · E

PS∗

) dS , (7)

is responsible for the acceleration of the particle.

For calculation, it is convenient to cast Eq. (7) into a different form. Using second

equation in Eq. (6) we will represent Eq. (7) as a sum of two terms. The first one involves

the particle’s field without the screen:

−c
∫

∞

−∞

dω

∫
Re (ELS · E

P∗

) dS .

This term describes interference of the charge’s Coulomb field in vacuum with the laser field.

In the limit R → ∞, this term vanishes because the Coulomb field moves with the charge

with velocity v < c, and the laser light propagates with the speed of light c. Since we assume

that the laser pulse overlaps with the particle in the vicinity of the hole, at large distance

from the hole these two fields will be separated in space. Hence, the particle’s acceleration

is given by the second term:

∆Uacc = −c
∫

∞

−∞

dω

∫
Re (ELS · EPR∗

) dS , (8)
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for which we use the notation ∆Uacc. Notice that the presence of the field E
PR in this

equation indicates that a particle can only be accelerated if it radiates.

Although in the above derivation we referred to the layout of the acceleration experiment

outlined in Fig. 1, our result is not limited by this specific arrangement. With a slight

modification, it can also be used for calculation of the energy gain for other accelerator

schemes, such as, e.g., inverse FEL or inverse Cerenkov acceleration.

In our calculations of the radiation field below we will assume that the particle moves

with a constant velocity. Hence, we will neglect the effect of the laser field on the particle’s

orbit, as well as the effect of radiation reaction. Such an approximation describes linear

acceleration proportional to the laser electric field.

III. DIFFRACTION RADIATION ON A ROUND HOLE

Following the approach developed in the previous section, we will first calculate the

radiation field E
PR of the particle. We now assume that the hole in the screen is round,

with radius a, and consider a relativistic particle moving along the axis of the screen with

a constant velocity v close to the speed of light. In the limit of large Lorentz factor, γ � 1,

the radial electric and azimuthal magnetic fields of the particle are:

EP
r (r, z, t) = HP

θ (r, z, t) =
eγr

[r2 + γ2(z − vt)2]3/2
. (9)

To calculate the radiation field in the far zone we will use diffraction formulae [7–9].

This approach is valid, if the reduces wavelength of the radiation λ = λ/2π is much smaller

than the radius of the hole a, and the diffraction angle is small, θ � 1. According to the

diffraction theory [7], the field behind the screen E
PS, at large distance R → ∞ and z > 0,

can be calculated by integration of the incident field E
P on the screen at z = 0:

E
PS =

eikR

R

i

2π
k ×

∫
aperture

e−ikrn × E
PdS , (10)

where r = (x, y) is the two-dimensional vector in the plane of the hole, k is the wavenumber

vector in the direction of the radiation, and n is the unit vector perpendicular to the surface

of the hole. The integration in Eq. (10) goes over the cross section of the hole.

Equation (10) is derived in [7] for the case when the incident wave propagates in free

space. In our problem the incident field is the Coulomb field carried by the particle. In this
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case, Eq. (10) gives the total field behind the screen including the field of the particle, and

to find the radiation field, we need to subtract the Coulomb field of the electron. The latter

can be calculated as the same integral Eq. (10) in the limit a→ ∞, that is when the screen

is removed. The result of such a subtraction will be an integral, with the sign opposite to

that in Eq. (10), in which the integration goes over the screen surface, rather than the hole

[8]:

E
PR = E

PS − E
P = −e

ikR

R

i

2π
k ×

∫
screen

e−ikrn × E
PdS . (11)

A more rigorous proof of this equation can be found in Ref. [9].

The particle’s field on the screen is given by Er(r, 0, t) and Hθ(r, 0, t) in Eq. (9). Fourier

transformation of these fields defined by Eq. (3) gives:

EP
r (r, ω) = HP

θ (r, ω) ≈ ke

πcγ
K1

(
kr

γ

)
, (12)

where k = ω/c, K1 is the modified Bessel function, and we have used v ≈ c in the above

expression.

In the limit of large γ, the angle of the radiation relative to the z axis, θ, is small, θ � 1.

Substituting Eq. (12) into Eq. (11) and neglecting higher-order terms in θ, we find that

E
PR has the radial component only,

EPR
r = −ke

ikR

R

∫
∞

a

rdrEr(r, ω)J1(krθ)

= − ek
2

πγc

eikR

R

∫
∞

a

rdrK1

(
kr

γ

)
J1(krθ) , (13)

The integration in the last formula can be carried out analytically [10],

EPR
r = A(ω, θ)

eikR

R
(14)

with

A(ω, θ) =
e

πγc

ka

θ2 + γ−2

[
θJ2(kaθ)K1

(
ka

γ

)
− 1

γ
J1(kaθ)K2

(
ka

γ

)]
.

This formula agrees with the rigorous solution of the diffraction radiation problem obtained

in Ref. [11], if one takes the limit γ � 1, ka� 1 of their result. In the limit λ� aγ−1 (but

λ still much less than a) we have [8],

A(ω, θ) = − e

πc

θ

θ2 + γ−2
J0(kaθ) , (15)
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which in a small-angle approximation yields:

A(ω, θ) = − e

πc

θ

θ2 + γ−2
. (16)

Since the hole radius a drops out from the last equation, it is also valid in the limit a→ 0,

when there is no hole in the screen. In this limit, it is usually called the transition radiation.

Using Eq. (4) it is easy to show that the total radiated energy is given by the integral

c
∫
4π
dΩ

∫
∞

0
dωA2(ω, θ) , where the first integral goes over the solid angle Ω = 4π. Hence the

spectral density of the diffraction radiation d2U/dωdθ per unit angle θ is

d2U

dωdθ
= 2πθcA2 .

Integration over the angle θ gives the spectrum of the radiation dU/dω:

dU

dω
= 2

∫
∞

0

dθ
d2U

dωdθ
=

2

π

e2

c
F

(
ak

γ

)
, (17)

where

F (x) = x2
[
K0 (x)K2 (x) −K1 (x)2]

with Kn – the modified Bessel functions of the second kind. The factor of 2 in the integral

in Eq. (17) takes into account that radiation is symmetric in the forward and backward

directions. The function F has a logarithmic singularity at x = 0.

To find the total radiated energy, we integrate the spectrum over the frequency

Urad =

∫
∞

0

dP

dω
d ω =

3π

8

e2γ

a
. (18)

It is interesting to note that Urad is equal to twice the electromagnetic energy of a moving

charge in the region r > a.

IV. ACCELERATION BY A HIGHER-ORDER LASER MODE

For the laser field, as in Ref. [3], we first consider a radially polarized TEM10 mode with

the transverse field:

EL
⊥

(r, z, t) = E0e
ikLz−iωLtw0

w

r

w
exp

(
− r

2

w2
− ikLr

2

2f
+ 2iψ

)
, (19)
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where ωL is the laser frequency, kL = ωL/c = 2π/λL, the laser waist with a size w0 is assumed

to be located at the screen, hence

w2 =w2
0

(
1 +

z2

z2R

)
, zR =

kLw
2
0

2
,

f =z +
z2R
z
, ψ = arctan

(
z

zR

)
. (20)

The choice of this higher-order mode is motivated in part by the fact that it matches the

radial polarization of the diffraction radiation in Eq. (14) and is expected to produce better

acceleration for the same laser energy.

Equation (10) (with the superscript “P” substituted for “L”) enables us to calculate the

diffraction of the laser field through the round hole. First, we Fourier transform Eq. (19):

E
L(r, z, ω) =

1

2π

∫
∞

−∞

dteiωtEL
r (r, z, t)

=E0δ(ω − ωL)eikzw0

w

r

w
exp

(
− r

2

w2
− ikr

2

2f
+ 2iψ

)
. (21)

Putting this expression into Eq. (10) yields

ELS
r (z > 0) = E0δ(ω − ωL)

eikR

R

(−k)
w0

∫ a

0

drr2J1(krθ)e−r2/w2

0 , (22)

where, as was defined in Section II, the superscript “LS” stands for the diffracted laser field.

Note that for a→ ∞, Eq. (22) can be integrated to yield:

ELS
r (z > 0, a→ ∞) = −E0δ(ω − ωL)

eikz

z

k2w3
0θ

4
exp

(
−k

2w2
0θ

2

4

)
, (23)

which is consistent with Eq. (21) in the limit z → ∞.

As was pointed out in Section II, it is convenient to represent the diffracted laser field as

a sum of the original laser field (when the screen is absent), and the field E
LR due to the

radiation of the currents in the screen, E
LS = E

L + E
LR . For the radiation field, we have

ELR
r = E0δ(ω − ωL)

eikR

R

k

w0

∫
∞

a

drr2e−r2/w2

0J1(krθ) . (24)

This field was calculated in the region z > 0. However, due to the symmetry of the screen,

it is symmetric about the point z = 0. In the region z < 0, θ is then taken to be the

angle relative to the (−z) axis; here ELR
r represents the reflected waves propagating in the

direction opposite to the incident laser beam.
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We now calculate the acceleration of this laser mode using the energy balance Eq. (8). Ig-

noring a pure phase factor, and noting that both fields E
LS and E

PR have radial polarization,

the energy gain of the particle is

∆Uacc =

∣∣∣∣ c2
∫

∞

−∞

dω

∫
S

dS[ELS
r (EPR

r )∗ + (ELS
r )∗EPR

r ]

∣∣∣∣ . (25)

In the region where z < 0, only the reflected field E
LR can interfere with the radiation field

since they propagate in the same direction (to the left of the screen in Fig. 1). Writing∫
S
dS = R2

∫
dΩ = 2πR2

∫
∞

0
θdθ and inserting Eqs. (22) and (24), we have

∆Uacc =
2πcE0kL

w0

∣∣∣∣ −
∫

∞

0

θdθ
ek2

L

πγc

∫
∞

a

rdrK1

(
kLr

γ

)
J1(kLrθ)

∫ a

0

dr′(r′)2e−(r′)2/w2

0J1(kLr
′θ)

+

∫
∞

0

θdθ
ek2

L

πγc

∫
∞

a

rdrK1

(
kLr

γ

)
J1(kLrθ)

∫
∞

a

dr′(r′)2e−(r′)2/w2

0J1(kLr
′θ)

∣∣∣∣ .
(26)

Using the orthogonality of Bessel functions

∫
∞

0

θdθJν(krθ)Jν(kr′θ) =
δ(kr − kr′)

kr
, (27)

we obtain

∆Uacc =
2eE0kL

γw0

∫
∞

a

r2dre−r2/w2

0K1

(
kLr

γ

)
. (28)

Let us first assume that kL � γ/w0 and use the approximation K1(x) ≈ 1/x. Introducing

the laser diffraction angle αd = 2/(kLw0) the condition for the approximation can be also

written as αd � γ−1. Equation (28) then yields

∆Uacc ≈ eE0w0e
−a2/w2

0 = 4e

√
2PL

c
exp

(
− a

2

w2
0

)
, (29)

where the average power carried by this mode is

PL =
c

8π

∫
z = 0 plane

dSEL
rH

L
r

=
c

8π
E2

02π

∫
∞

0

rdr
r2

w2
0

exp

(
−2r2

w2
0

)
=
c

32
E2

0w
2
0 . (30)

Equation (29) shows an important result: in order to accelerate a particle the laser beam

should also irradiate the material wall of the screen. If the focal size of the laser light is so

small that it does not touch the metal, w0 � a, the acceleration diminishes exponentially.
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For optimal acceleration, we should have a < w0 with the maximum energy gain in units of

mc2:

∆γmax = 4
√

2

√
PL

P0
, (31)

where P0 = m2c5/e2 ≈ 8.7 GW. For a 1 TW laser, we find ∆γmax ≈ 60.

In a general case of arbitrary relation between kL and γ/w0, Eq. (28) can be rewritten as

∆γacc = 4
√

2

√
PL

P0
G(A,B) , (32)

where

G(A,B) = 2B

∫
∞

A

dxx2e−x2

K1(Bx) ,

A =
a

w0
, B =

kLw0

γ
=

2

γαd
. (33)

The maximum of G is 1 when A = B = 0. When B = 0, G(A, 0) = e−A2

—this is the

approximation used in Eq. (29). When a = A = 0,

G(0, B) =

[
1 − B

2

4
exp

(
B2

4

)
Γ

(
0,
B2

4

)]
, (34)

where Γ(0, Z) =
∫

∞

Z
dte−t/t is the incomplete Gamma function. As shown in Appendix A,

Eq. (34) agrees with direct integration of Eq. (1) in the absence of a hole, confirming the

validity of this approach.

V. ACCELERATION BY TWO-CROSSED GAUSSIAN LASER BEAMS

Another laser acceleration scheme employs a pair of linearly polarized laser beams with

the Gaussian fundamental mode focused to the screen and crossed at a small angle to

the z axis. If the two identical lasers are out of phase by π, the transverse components

cancel while the longitudinal components add. In the absence of a beam-passage aperture,

the acceleration has been directly calculated by integrating the longitudinal field along the

beam trajectory [3]. Here we calculate the energy gain from the energy balance Eq. (8). It

is sufficient to consider one tilted laser since the total energy gain of two-crossed laser beams

is simply twice as large.

First, we calculate the laser field in presence of the screen, following closely the derivation

of Section IV. The Gaussian fundamental mode for a small tilt angle α � 1 at the screen
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location z = 0 is

EL
x (r, z = 0, ω) ≈ E0δ(ω − ωL)eikx sinα exp

(
− r

2

w2
0

)
. (35)

The diffraction integral can be evaluated as [7]

ELS
x (z > 0) = E0δ(ω − ωL)

−ikeikR

R

∫ a

0

rdr exp

(
− r

2

w2
0

)
J0(krξ) , (36)

where ξ = (θ2 + α2 − 2θα cos φ)1/2, and φ is the azimuthal angle of the wave vector k with

respect to the z axis. In the region where z < 0, the total laser field is the incident field and

the reflected field given by

ELR
x = E0δ(ω − ωL)

ikeikR

R

∫
∞

a

rdr exp

(
− r

2

w2
0

)
J0(krξ) . (37)

To compute Eq. (8), we note that |ELS ·EBS∗| = |ELS
x EBR

r cosφ| and make use of the Bessel

function expansion [10]

J0(krξ) =

∞∑
m=−∞

Jm(krθ)Jm(krα)eimφ . (38)

Integration over φ picks up only m = ±1 terms. Then following the integration steps of

Section IV, we find

∆Uacc =2
2eE0kL

γ

∫
∞

a

rdrK1

(
kLr

γ

)
exp

(
− r

2

w2
0

)
J1(kLrα)

≈4eE0w0

∫
∞

a/w0

dxe−x2

J1

(
2α

αd
x

)
, (39)

where the extra factor of 2 on the right hand side takes into account two-crossed laser beams,

and we have assumed that kL � γ/a to use K1(x) ≈ 1/x for the approximate expression.

For a vanishing hole as a→ 0, we have

∆Uacc = 2eE0w0
αd

α

[
1 − exp

(
−α

2

α2
d

)]
, (40)

in agreement with Ref. [3] when the injection point is at zI = −∞ and the extraction point

is at zF = 0. At the optimal tilt angle αopt ≈ 1.1αd, the maximum energy gain is 1.3eE0w0.

For an arbitrary a, Eq. (39) can be used to obtain the optimal tilt angle and the maximum

energy gain (see Figs. 2 and 3). As shown in Fig. 3, the maximum energy gain in units of

mc2 can be approximated by

∆γmax ≈ 3.6

√
PL

P0
exp

(
− a

2

w2
0

)
. (41)
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Here PL = cE2
0w

2
0/8 is the total laser power for the two-crossed Gaussian beams. Comparing

with Eq. (29), the energy gain of the two-crossed Gaussian laser beams has essentially the

same exponential dependence on the radius of the hole. For the same laser power, the

radially polarized TEM10 mode is more effective for acceleration (by about a factor of 1.6)

because it matches the polarization of the diffraction radiation in this accelerating structure

(see Section VI B for more discussions).

0 0.5 1 1.5 2

aêw0

0.4

0.6

0.8

1

α
o
p
t
ê
α
d

FIG. 2: The optimal tilt angle as a function of the hole radius for the tilted Gaussian laser beam.
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×
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FIG. 3: The maximum energy gain of two-crossed laser beams evaluated at the optimal tilt angle

from Eq. (39) (solid line), and compared with the approximate Eq. (41) (dashed line).
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VI. DISCUSSION

A. Limitation due to material damage

Results of previous sections suggest that the laser should irradiate the acceleration struc-

ture, which is subject to material damage at a certain threshold laser fluence. Considering

the case of the higher-order laser mode in Section IV, we rewrite Eq. (32) as

∆γacc = 4
√

2

(
UL

w2
0P0tL

)1/2

w0G(A,B) ≈
(
FL

P0tL

)1/2

γλLBG(A,B) , (42)

where UL is the laser flash energy, tL is the laser pulse duration, and FL ≈ UL/w
2
0 is the

laser fluence. Since the laser fluence at the material damage threshold is known to be Fth ≈
2 J/cm2 for sub-ps laser pulses [12], Eq. (42) allows us to optimize the laser spot size or the

diffraction angle at the damage threshold for a given laser pulse duration. Figure 4 shows the

optimal diffraction angle that maximizes BG(A,B) in Eq. (42). We see that (αd)opt ≈ 1/γ

(i.e., (w0)opt ≈ γλL/π) when A = a/w0 < 1. At the optimal B0 = kL(w0)opt/(γ), we have

B0G(A,B0) ≈ 0.8 for a small A from Fig. 5. If we take a typical short-pulse laser with

tL ∼ 100 fs, the maximum fractional energy gain limited by the fluence damage threshold is

approximately
∆γmax

γ
≈ 0.8λL

√
Fth

P0tL
≈ 4 × 10−3 . (43)

Since the effective interaction distance is on the order of the Rayleigh length, we have

zR = πw2
0/λL ≈ γ2λL/π at the optimal spot size. The effective acceleration gradient is

∆Uacc

zR
≈ 8 × 10−3γmc2

γ2λL/π
≈ 6

γ
GeV/m . (44)

For a 50 MeV electron (i.e., γ ≈ 100), the energy gain is about 200 keV from Eq. (43), and

the acceleration gradient is about 60 MeV/m according to Eq. (44), in agreement with the

expected performance of the E-163 proposal [5]. Finally, for the 100 fs laser pulse considered

here, the flash energy required to operate at the damage threshold and at the optimal spot

size scales as

UL ≈ Fthw
2
0 ≈ 2 × 10−6γ2 mJ . (45)
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FIG. 4: The optimal laser diffraction angle as a function of the hole radius at the material damage

threshold.
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FIG. 5: The function B0G(A,B0) in Eq. (42) evaluated at the optimal spot size or diffraction

angle.

B. Optimal Laser Profile

As was pointed out in Section V, the radially-polarized TEM10 mode is more effective for

laser acceleration than the tilted Gaussian fundamental mode because it matches better with

the diffraction radiation pattern. For optimal acceleration, one might consider to shape the

laser transverse profile in such a way that achieves maximum acceleration for a given laser

power. It is easy to see from calculations in Section IV, that for the optimum acceleration

the angular distribution of the reflected laser light ELR must match exactly the angular
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distribution of the particle’s radiation. In the case a� w0, this means (see Eq. (16)):

ELR
r = E0w0δ(ω − ωL)

eikz

z

θ

θ2 + γ−2
. (46)

The corresponding laser power PL ≈ (ln γ)cE2
0w

2
0/4 for γ � 1. Integrating the energy

balance Eq. (8) then yields:

∆γmax = (2 ln γ)eE0w0 = 4
√

ln γ

√
PL

P0
. (47)

We see that the optimal laser profile (with the angular distribution of the transition ra-

diation) only improves the maximum energy gain by a small factor ∼ √
ln γ even for an

ultra-relativistic particle.

VII. CONCLUSION

In summary, linear acceleration by a laser field in vacuum is only possible if a particle

radiates in passing the accelerating structure. In this paper, we express the energy gain by

the particle as an interference integral of the laser field and the radiation field in the far

zone and hence avoid calculation of any near field that accelerates the particle. We apply

this new method to study laser acceleration in a simple accelerating structure (a conducting

screen with a beam-passing hole) and to optimize gain for given laser parameters. We show

that for optimal acceleration, the laser should irradiate on the accelerating structure (i.e.,

the dimension of the hole should be less than the laser spot size), and the laser diffraction

angle (as well as the crossing angle in the case of the two-crossed Gaussian beams) should be

comparable to the radiation opening angle γ−1. Limited by the damage threshold fluence, the

maximum energy gain in this accelerating structure is proportional to the electron energy,

but the acceleration gradient scales as γ−1.

APPENDIX A: COMPARISON WITH DIRECT CALCULATION OF ACCEL-

ERATION

In the case with no hole, a = 0, when the screen stops the laser beam from propagating

to z > 0 region the energy gain in a laser field can be calculated directly. Particles will be

accelerated by the laser beam in z < 0 region and stop interacting with the laser beam after
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passing through the screen. (In the absence of the screen, laser would decelerate electrons

in z > 0 region so that the net energy gain is zero.)

For the laser mode given by Eq. (19), the longitudinal electric field can be found from

the Maxwell equation ∇ · EL = 0 and is approximated by

EL
z ≈ i

kL

∇⊥ · EL
⊥

=
i

kL

1

r

∂

∂r
(rEL

r )

=E0e
ikLz−iωLtw0

w

[
i

kL

2

w

(
1 − r2

w2

)
+
r2

wf

]
exp

(
− r

2

w2
− ikLr

2

2f
+ 2iφ

)
. (A1)

Consider a relativistic particle moving in the z-direction along the axis of the system,

r = 0 and z = vt, the energy gain can be obtained by integrating the longitudinal laser field

alone the particle trajectory from z = −∞ to z = 0 (the location of the screen):

∆Uacc =

∫ 0

−∞

dzeEL
z (r = 0, t = z/v) =

2eE0

kLw0

∫ 0

−∞

dz
i

(1 − iz/ZR)2
exp

[
ikLz

(
1 − c

v

)]

=eE0w0

[
1 − B

2

4
exp

(
B2

4

)
Γ

(
0,
B2

4

)]
, (A2)

where B = kLw0/(γ), and the square bracket term describes the gain reduction due to

relative slippage of the particle to the laser field. This expression is identical to Eq. (34)

derived using the energy balance Eq. (8). An approximate expression of Eq. (A2) is given

in Ref. [3].
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