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1 Introduction

The concept of p-brane democracy was introduced by Townsend [1]. The basic idea is that the

non-perturbative d=4 string theory treats various p-branes on equal footing. U-duality [2], which

is related to a discrete version of E(7) symmetry of N=8 supergravity [3], removes the distinction
between p = 1 wrapping modes of the string and other p-branes with p > 1 of d = 10 theory and

their wrapping modes. U-duality manifests itself in particular in the symmetry of the entropy of
extreme black holes under E(7;Z) [4]. As a result of 1/8 of unbroken supersymmetry one can

prove [5] that the entropy depends only on the conserved charges which transform as one 56-
dimensional fundamental multiplet of E(7). The entropy is therefore given by the unique quartic

invariant of E(7) constructed from one fundamental multiplet of charges. The independence of
the moduli at fixed values of conserved charges follows directly from unbroken supersymmetry.

An analogous picture was found in d = 5 where the corresponding entropy is given by a triple
invariant of E(6) constructed from one 27-dimensional fundamental representation of E(6) [6, 5].

It is worth mentioning that in each case the unique expression for the entropy is protected by the
supersymmetric non-renormalization theorem from quantum corrections.

In view of these facts it looked rather puzzling that the entropy formulas for non-extreme black

holes in d = 5 [7] and in d = 4 [8] have been recently suggested in a form of triple and quartic
invariants respectively based in each case on two fundamental representations of E(6) (E(7)) in

d = 5 (d = 4). The first 27 (56) in d=5 (d=4) corresponds to the number of solitons and the
second one to the number of anti-solitons.

The purpose of this letter is first to obtain the duality invariant entropy and temperature

formulas for non-extreme black holes of N=8 supergravity in d=4. We will present a simple
formula for the product of the entropy and temperature ST in terms of the eigenvalues of the

supersymmetry charges. The formula for the entropy will involve only the mass of the black
hole and the central charge matrix and will generalize the previously known formulas of this

kind for N=4 supergravity. There is nothing puzzling about this formula since there is only one
N × N antisymmetric complex central charge matrix ZAB with A, B = 1, . . . , N in the theory

and no obvious room for branes and anti-branes. The central charge is invariant under E(7) and

transforms covariantly under the global SU(8) symmetry.

Starting from this formula we will introduce the second SU(8) covariant charge YAB as a

function of the parameter of the deviation of the theory from extremality r0 and of the central
charge ZAB. The total procedure is very much in spirit of Dirac’s treatment of constrained

systems: originally one has more variables then necessary to describe the physical states. The

symmetries of the theory have enough room to be manifest when all of these variables are present.
The variables are constrained, however. If one would like to describe the system only in terms of

unconstrained variables one has to solve the constraints and break some of the symmetries.

Our auxiliary variable YAB will serve the following purpose: whereas the central charge ZAB

will be represented as an antisymmetric function of branes and anti-branes, which changes its

sign when branes are changed into anti-branes, the auxiliary variable YAB will be constructed as
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a symmetric function of branes and anti-branes.

Starting with our two 56 of SU(8) which have a very clear interpretation via an E(7) symmetric
constraint between Z’s and Y’s, we will then rewrite our entropy formula in terms of a symmetric

function of 56 “brane-numbers” and 56 “anti-brane-numbers” as in [7, 8] using the quartic invari-
ant of E(7) applied to two multiplets. In this way we will confirm the entropy formulas suggested

in [7, 8] and explain the origin of the two multiplets in a covariant manner.

Moreover, our way of derivation of the formulas of the non-extreme black holes will suggest
the new interpretation which will go under the name “brane-anti-brane democracy” and will state

not only the equal rights of various p-branes but also the equal rights of states with positive and
negative charges. This can be understood as follows. For the non-extreme configurations the

integer charges (pI , qI), I = 1, . . . , 28, will be given by the antisymmetric combinations of branes
and anti-branes

pI = mI − m̄I , qI = nI − n̄I . (1)

This means that the charges can be positive or negative, depending on whether n > n̄ and
m > m̄ or vice versa. The non-extreme entropy will depend on (mI , nI) and on (m̄I , n̄I) in some

symmetric way, which reflects the degeneracy of the non-extreme black holes entropy on the sign
of charges.

For the extreme solutions again the charges can be positive or negative in each of the 28
groups, the entropy being degenerate in this signs. Note that the brane (mI , nI) and anti-brane

numbers (m̄I , n̄I) can only be non-negative numbers in the extreme limit. The charges are given

by the number of branes

(pI)extr = (|pI |)extr = mI , (qI)extr = (|qI |)extr = nI , (2)

for those values of I for which the charges are positive and by the number of anti-branes

(pI)extr = (−|pI |)extr = −m̄I , (qI)extr = (−|qI |)extr = −n̄I , (3)

for those values of I for which the charges are negative. Therefore the entropy for all solutions

with all possible values of charges in all gauge groups in extreme limit will depend only on absolute
values of all charges (|pI |, |qI |). Since we will consider even non-extreme black holes in the context

of supersymmetric theories, the CPT as well as C transformation will be defined in terms of the
transformations of the supersymmetry generators. The CPT transformation on supersymmetry

charges acts as follows: Q → iQ∗. This results in Pµ → Pµ and Z → −Z∗. This is realized in
terms of charges as p → p and q → −q. Therefore CPT on branes and anti-branes act as follows:

n ⇐⇒ n̄ , m ⇐⇒ m , m̄ ⇐⇒ m̄ . (4)

The charge conjugation C acts on supersymmetry generators as follows: Q → iQ and Q∗ → −iQ∗,
which results in Pµ → Pµ, Z → −Z, Z∗ → −Z∗. This leads to

n ⇐⇒ n̄ , m ⇐⇒ m̄ . (5)
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2 Supersymmetry algebra, temperature and entropy of

non-extreme black holes

There exists a simple relation [9] between the product of temperature T and entropy S of black

holes in supersymmetric theories and the parameter of the deviation of the theory from extremality
r0:

2πS T = r0 ≡
r+ − r−

2
. (6)

This parameter r0 defines the distance between the event horizon r+ and the inner horizon r− of
the non-extreme black holes.

We will derive the universal formula for 2πS T = r0 in terms of supersymmetry charges by using

the symplectic form of the supersymmetry algebra [10]. The d=4 N-extended supersymmetry
algebra is most conveniently described for massive states at rest in terms of 2N -component spinors.

In doublet form they are given by

Qa
α =







QαA

Q∗αA





 ,
Qa

α = QαA for a = 1, . . . , N, α, β = 1, 2 ,

Qa
α = Q∗αA = εαβQ∗A

β for a = N + 1, . . . , 2N .
(7)

These spinors satisfy a symplectic reality condition Q∗a
α = εαβΩabQ

b
β with

εαβ = −εαβ = (iσ2)αβ, Ωab = −Ωab =
(

0 I
−I 0

)

, (8)

and the supersymmetry algebra in a symplectic form is

{Qa
α, Qb

β} = εαβ







Z MI

−MI Z∗





 ≡ εαβ Λab . (9)

The 2N × 2N matrix Λab is written in terms of N ×N numerical antisymmetric complex matrix
ZAB, , Z∗AB and the mass. The numbers ZAB are the eigenvalues of the central charge operators

in a given supermultiplet. Any complex antisymmetric matrix ZAB can be brought to the normal
form using some U(N) rotation [11]. For example, for N = 4 and for N = 8 respectively we get

Z̃AB = iσ2

(

z1 0
0 z2

)

, Z̃AB = iσ2











z1 0 0 0
0 z2 0 0
0 0 z3 0
0 0 0 z4











, (10)

where zi are non-negative real numbers, i = 1, . . . N/2. We used the following notation: Z̃12 =
−Z̃21 = z1, . . . , Z̃78 = −Z̃87 = z4.

In terms of the mass of the black hole and the central charge the product of the entropy and

temperature for N=4 case can be written as

(2πS T )2 = r2
0 ≡ (M2 − |z1|2)(M2 − |z2|2)

M2
≥ 0 , (11)
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and for N=8 case as

(2πS T )2 = r2
0 ≡ (M2 − |z1|2)(M2 − |z2|2)(M2 − |z3|2)(M2 − |z4|2)

M6
≥ 0 . (12)

The product of temperature and entropy then has a simple representations in terms of the

eigenvalues of the supersymmetry generators.

(2πS T )2 = r2
0 =

det1/2{Qc
α, Qb

γ}
[ 1
4N

Ωacεβγ{Qc
α, Qb

γ}]N−2
. (13)

This formula is completely symmetric in terms of 32 supersymmetry generators of N=1, d=11
supersymmetry in case we study N=8, d=4 theory and symmetric in 16 supersymmetry generators

of N=1, d=10 theory when we study N=4, d=4 theory.

As long as 2πS T = r0 6= 0 the black holes are non-extreme. The extreme ones have r0 = 0,
which means that some supersymmetry charges have to have zero eigenvalues. Those with the

non-vanishing area of the horizon and entropy have vanishing temperature.

r0 = 0 , T = 0 , S 6= 0 . (14)

The extreme ones with the vanishing area of the horizon S = A/4π = 0 usually do not have a

well defined temperature since the horizon is singular.

The analysis performed in this section shows that one can describe the geometry starting with
the simplest solutions related to the normal form of the central charge matrix ZAB and derive the

formulas of the type (11), (12). The result can then be generalized to the form in which it is no
longer necessary to assume that the central charge matrix is diagonal.

3 Thermodynamics of black holes in N=2,4,8 supergrav-

ity

In this section we will use the known results for the non-extreme black holes in N=4 supergravity

[9] and represent them in the form suitable for generalization to N=8 theory. The entropy given
by 1/4 of the area was found in [9] to be equal to

S = π(r0 + M + Σ)(r0 + M − Σ) , (15)

where Σ is the dilaton charge of the black hole. Using the fact that

Σ = −z1z2

M
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one can show that the entropy is equal to

SN=4 = π
(

r0 +
√

r2
0 + (z1 + z2)2

) (

r0 +
√

r2
0 + (z1 − z2)2

)

. (16)

It is easy to get the entropy formula in pure the N=2 supergravity by setting z2 = 0

SN=2 = π
(

r0 +
√

r2
0 + (z1)2

)2

. (17)

The generalization of N=4 formula to the N=8 theory is straightforward

SN=8 = π
(

r0 +
√

r2
0 + (z1 + z2 + z3 + z4)2

)1/2 (

r0 +
√

r2
0 + (z1 + z2 − z3 − z4)2

)1/2

(

r0 +
√

r2
0 + (z1 − z2 + z3 − z4)2

)1/2 (

r0 +
√

r2
0 + (z1 − z2 − z3 + z4)2

)1/2

. (18)

This expression agrees with the non-extreme black hole solution with four-charges [12] upon

identification of central charges of N=8 theory performed in [4]. There is one more important
criterion for the validity of this formula: at the extreme limit r0 = 0 the mass of the solution

becomes equal to the largest of the eigenvalues, for example, z1 ≡ Z , which depends on the
conserved charges and on moduli:

Mextr = |Z ((p, q), φ∞) | . (19)

According to universality of the supersymmetric attractors [5], near the horizon all central charges

besides the largest one |Z| have to vanish, i.e. z2 = z3 = z4 = 0, and any of these expressions for
N=2,4,8 has to reduce to

Sextr = π|Z ((p, q), φh[(p, q)]) | , (20)

so that the entropy depends only on conserved charges (56 in N=8, 12 in N=4, 2 in N=2). The

central charge ZAB enters the local supersymmetry transformations rules, since it is a charge of
the graviphoton.

To switch from the SU(8) basis to the SO(8) basis in the general case of N=8 theory when
neither ZAB nor ζij are in the normal form, we will use

ζij =
1

2
√

2
ZAB(γij)A

B (21)

with the inverse relation

ZAB =
1

4
√

2
ζij(γ

ij)A
B , (22)

where the matrices (γij)A
B, i, j = 1, . . . , 8, form the algebra of SO(8). In the normal frame they

corresponds to linear combinations

ζ1 ≡ ζ12 =
1√
2
(z1 + z2 + z3 + z4) , ζ2 ≡ ζ34 =

1√
2
(z1 + z2 − z3 − z4) ,

ζ3 ≡ ζ56 =
1√
2
(z1 − z2 + z3 − z4) , ζ4 ≡ ζ78 =

1√
2
(z1 − z2 + z3 − z4) . (23)
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The entropy formula can now be rewritten as follows:

S = π(det)1/4
{

r0δik +
√

(r0)2δik − 2ζijζ
∗
jk

}

. (24)

Here we can also use the diagonal basis, and consider the case where only ζ1 = ζ2 and ζ3 = ζ4 are

not vanishing (they still can be complex) and we get

S =
4

∏

i=1

{

r0 +
√

(r0)2 + 2ζiζ∗
i

}1/2

. (25)

This formula describes in particular the entropy of the non-extreme U(1) × U(1) axion-dilaton

black holes in which both gauge groups have electric as well as magnetic charges [9].

Now we can introduce the auxiliary SU(8) multiplet (YAB, Y ∗AB), which is a function of r0

and (ZAB, Z∗AB). First, let us again switch to the SO(8) basis

YAB =
1

4
√

2
Υij(γ

ij)A
B , Υij =

1

2
√

2
YAB(γij)A

B . (26)

The definition of our new multiplet Y is the following:

(r0)
2δik − 2ζijζ

∗
jk ≡ −2ΥijΥ

∗
jk . (27)

Thus we have a non-linear relation (27) between the parameter of deviation of extremality, central

charges of the theory (ZAB, Z∗AB) and new auxiliary SU(8) multiplet (YAB, Y ∗AB). The expression
for the entropy which was given only in terms of r0 and central charges can be rewritten using

the auxiliary multiplet Υ as

S = π(det)1/4
{

r0δik +
√

−2ΥijΥ∗
jk

}

. (28)

It will be useful from now to use the basis with 28 real electric and 28 real magnetic charges

ζij = Qij + iP ij , Υij = Q′
ij + iP ′ij , (29)

ζ∗ij = Qij − iP ij , Υ∗ij = Q′
ij − iP ′ij . (30)

The charges A ≡ (P ij, Qij) are related to the conserved charges a ≡ (pij , qij) via moduli A = V a.

For our auxiliary multiplet A′ ≡ (P ′ij, Q′
ij) we will assume the same relation A′ = V a′ with

a′ ≡ (p′ij , q′ij), it is consistent with the constraint (27). One more step is to define the symmetric

and antisymmetric combinations of the original and the auxiliary multiplets:

P ′ij + P ij = M ij , Q′
ij + Qij = Nij , (31)

P ′ij − P ij = M̄ ij , Q′
ij − Qij = N̄ij . (32)

Our constraint (27) simplifies to

(r0)
2δik = −2(M ijM̄ jk + NijN̄jk) . (33)
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One can exclude r0 completely, using the constraint (33), and rewrite the entropy formula entirely

in terms of these two 56s of SU(8) (M, N) and (M̄, N̄) as follows:

S = 2π(det)1/4
{

2
√

M ijM̄ jk + NijN̄jk +
√

(M + M̄)ij(M + M̄)jk + (N + N̄)ij(N + N̄jk)
}

.

(34)

To rewrite this formula in terms of 56 branes and 56 anti-branes we have to review some

elements of N=8 theory [3]. We consider the theory in the symmetric gauge with fixed local
SU(8) symmetry. In this gauge the scalars are taken to be the coordinates of the coset space

E7

SU(8)
. The matrix V describing the scalars forms an element of E(7) before the local gauge fixing

and has 133 entries, but when unitarity constraint V = V † is imposed, it depends only on 35

complex scalars. In this gauge the hidden symmetry acts on the charges as well as on moduli as
follows

a =
(

p
q

)

, a −→ Ea , V −→ hV E−1 , A = V a =
(

P
Q

)

−→ hA . (35)

Here E is an element of E(7) and h is the global SU(8) which is the residual symmetry after
gauge fixing, which preserves the gauge. It follows that the global symmetry of A = V a is the

SU(8) symmetry. The same transformation rules apply to the the auxiliary multiplet of E(7) , a′

and the corresponding SU(8) partner of it with E(7) blind, which transforms only under SU(8),

A′.

a′ =
(

p′I

q′I

)

, a −→ Ea′ , V −→ hV E−1 , A′ = V a′ =
(

P ′

Q′

)

−→ hA′ . (36)

As already explained in the Introduction, we will build a symmetric and antisymmetric combina-

tion of our two E(7) multiplets and call them branes and anti-branes, respectively.

a =
(

pij

qij

)

=
(

(m − m̄)ij

(n − n̄)ij

)

, a′ =
(

p′ij

q′ij

)

=
(

(m + m̄)ij

(n + n̄)ij

)

. (37)

The symmetric and antisymmetric SU(8) partners of these two E(7) multiplets are

A′ + A =
(

M ij

N ′
ij

)

, A′ − A =
(

M̄ ij

N̄ ′
ij

)

. (38)

The moduli matrix V = V † in the symmetric gauge is a function of the matrix yij,kl which defines
the inhomogeneous coordinates of E7

SU(8)
. E(7) acts on the 70 coordinates yij,kl by fractional

transformation

y′ =
B + yD

A + yC
. (39)

and A, B, C, D are 28 by 28 constant matrices defined in [3].

Having introduced all these objects, which in addition to charges contain an auxiliary multiplet

a′, we will proceed from the other side and use the entropy formulas (24), (28). The question is
whether our entropy (34)

S
{

(M, N), (M̄, N̄)
}
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can be proved to depend only on (m, n) and (m̄, n̄) and not on moduli V . Equivalently one may

try to show that the 70 moduli are functions of (m, n) and (m̄, n̄). By using only the E(7) duality
symmetry of the theory or the SU(8) subgroup of it we cannot prove that the entropy does not

depend on moduli. However, fortunately, the symmetry of the entropy is larger: the original
formula (24) for the entropy in terms of central charges in addition to an SU(8) symmetry of

ζij, ζ
∗ij has a CPT symmetry under ζij −→ −ζ∗ij, C symmetry under ζij −→ −ζij as well as a

U(1) symmetry ζij −→ −eiαζ ij. Therefore we can use the global U(8) symmetry of the entropy.

The entropy for the most general solution can be therefore reduced to the expression which it

has for the simplest solution in the normal frame.

S = 2π(det)1/4
{

r0δik +
√

−2ΥijΥ∗
jk

}

= 2π(det)1/4
{

r0δik +
√

−2Υ̃ijΥ̃∗
jk

}

. (40)

This can be further presented as

S = 2π(det)1/4
{

2
√

NijN̄jk +
√

+(N + N̄)ij(N + N̄)jk

}

, (41)

which is equal to

S = 2π(
√

N12 +
√

N̄12)(
√

N34 +
√

N̄34)(
√

N56 +
√

N̄56)(
√

N78 +
√

N̄78) . (42)

It has been found in [8] that 3 moduli of the normal frame solution are functions of 8 branes and

anti-branes. Therefore it was possible to present an entropy in a form where it depends only on
ñ, ˜̄n which are the normal form representative of the E(7) multiplets (m, n), (m̄, n̄).

S = 2π(
√

n12 +
√

n̄12)(
√

n34 +
√

n̄34)(
√

n56 +
√

n̄56)(
√

n78 +
√

n̄78) . (43)

It was suggested in [8], following the related observation in d=5 theory in [7], to consider the
entropy formula, generalizing the normal frame solution to an E(7) invariant form.

S = 2π
∑

i,j,k,l

√

TÂB̂ĈD̂f Â
i f B̂

j f Ĉ
k f D̂

l , i, j, k, l = 1, 2 , Â, B̂, Ĉ, D̂ = 1, . . . , 56 , (44)

where TÂB̂ĈD̂ is the quartic invariant considered in [4], and f Â
1 = (mij, nij), f Â

2 = (m̄ij, n̄ij).

The mysterious part of this formula was the appearance of two full E(7) multiplets, and the
interpretation of this multiplets since the classical solution depends only 28 vector fields. Now we

are in a position to prove this formula for the entropy of non-extreme black holes and explain the
origin of the second multiplet.

We start with our U(8) symmetric formula (34) which depends on two SU(8) multiplets and

is invariant under E(7). We could rewrite this formula as a function of the moduli and the
“brane-numbers” and “anti-brane numbers” (m, n, m̄, n̄) i.e.

S
{

(M, N), (M̄, N̄)
}

= Ŝ {(m, n), (m̄, n̄), yij,kl} . (45)
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However, we see from equation (43) that the entropy in the normal frame can be written as a

function of the “brane-numbers” and “anti-brane-numbers” alone. This shows that in the normal
frame, all the moduli appearing in the function Ŝ are determined as functions of (n, n̄).

Snormal {(0, ñ), (0, ˜̄n)} = Ŝnormal {(0, ñ), (0, ˜̄n), ỹij,kl(ñ, ˜̄n)} . (46)

The E(7) symmetric generalization of the left hand side of this equation due to the uniqueness

of the quartic invariant 3 is given by the formula (44). For this to be consistent with the right
hand side of eq. (46) moduli in this formula have to transform under E(7) via it dependence on

ñ, ˜̄n. Therefore the transformed value of the moduli according to eq. (39) will provide the generic

expression for the 70 moduli as functions of all branes and anti-branes yij,kl ((m, n), (m̄, n̄)).

Thus we conclude that entropy of the the non-extreme black holes is duality invariant and has

a nice symmetric C-invariant form given in eq. (44) as conjectured in [8]. Under C-conjugation

f1 ⇐⇒ f2 . (47)

Thus the entropy can indeed be written entirely in terms of branes and anti-branes, which however

are not independent but satisfy an E(7) symmetric constraint (33), which allows to express the
moduli in terms of branes and anti-branes:

(r0)
2δik = −2(M ijM̄ jk + NijN̄jk) = −2

(

(ā†V †)ij(V a)jk + (ā†V †)ij(V a)jk

)

. (48)

In the normal frame this set of constraints becomes

r2
0 = 2N12N̄12 = 2N34N̄34 = 2N56N̄56 = 2N78N̄78 . (49)

Together with diagonal form of relations A = V a, A′ = V a′

N12 = V12
12n12 , N34 = V34

34n34 , N56 = V56
56n56 , N78 = V78

78n78 , (50)

N̄12 = V12
12n̄12 , N̄34 = V34

34n̄34 , N̄56 = V56
56n̄56 , N̄78 = V78

78n̄78 , (51)

this leads to
(V1)

2n1n̄1 = (V2)
2n2n̄2 = (V3)

2n3n̄3 = (V4)
2n4n̄4 , (52)

where as before we have simplified the notation, e.g. n12 ≡ n1, V12
12 ≡ V1. Thus we have derived

from our U(8) covariant constraint the fact established in [8] that three values of moduli,

(

V2

V1

)2

=
n1n̄1

n2n̄2
,

(

V3

V2

)2

=
n2n̄2

n3n̄3
,

(

V4

V3

)2

=
n3n̄3

n4n̄4
, (53)

are the functions of 4 branes and 4 anti-branes. This seemed earlier to be a mysterious property
of the solution. We have established this property by introducing into the theory an auxiliary

SU(8) multiplet constrained to the original one in E(7) symmetric way. This has allowed to realize
the degeneracy of the entropy formula in the signs of the charges in each of 28 gauge groups in a

3One could also have a symplectic quadratic invariant of E(7) but it would not have a correct supersymmetric
limit and will not match the normal frame solution
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manifest way. Thus the entropy formula (44) given in terms of two E(7) multiplets by Cartan’s

quartic invariant, when the 2 multiplets are constrained as in eq. (48), is the entropy formula for
non-extreme black holes in N=8 supergravity.

In conclusion, we have found entropy formulas for N=8 supergravity black holes in terms of

central charges (18), (24) which interpolate between Schwarzschild solution with all central charges
vanishing ZAB = 0, Reissner-Nordström solutions with one non-vanishing skew eigenvalue of the

central charge and various other non-extreme solutions. It simultaneously includes those with
1/8, 1/4 and 1/2 of unbroken supersymmetry, depending on how many of the supersymmetric

positivity bounds are saturated, i.e. whether M = z1 > z2, z3, z4, or M = z1 = z2 > z3, z4, or
M = z1 = z2 = z3 = z4.

This formula, together with the expression for the product of the temperature and entropy in

terms of supersymmetry charges (13), presents the classification of extreme as well as non-extreme
black holes in supersymmetric theories. This kind of classification was suggested before in the

limited context of pure N=4 supergravity, when only z1, z2 where available [9].

We have also rederived this entropy formula in terms of conserved charges of the theory and
moduli and, finally, in terms of branes and anti-branes. We gave an explanation for the appearance

of branes and anti-branes in the description of these black holes as a set of constrained multiplets
which enable us to realize the full symmetries of the theory.
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