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BRANELESS BLACK HOLES
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Abstract

It is known that the naive version of D-brane theory is inadequate to explain the black hole
entropy in the limit in which the Schwarzschild radius becomes larger than all compactification
radii. We present evidence that a more consistent description can be given in terms of strings with
rescaled tensions. We show that the rescaling can be interpreted as a redshift of the tension of a
fundamental string in the gravitational field of the black hole. An interesting connection is found
between the string level number and the Rindler energy. Using this connection, we reproduce the
entropies of Schwarzschild black holes in arbitrary dimensions in terms of the entropy of a single
string at the Hagedorn temperature.
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1 Introduction

Recently, a picture has been advocated[1][2] of black hole entropy as arising from D-brane exci-
tations. This naive D–brane picture of black hole entropy is known to be inconsistent when the
black hole becomes massive enough for its Schwarzschild radius to exceed any microscopic scale
such as the compactification radii. In [3] this was called the limit of a fat black hole. A typical
example analyzed by Callan and Maldacena[2] and subsequently by Maldacena and Susskind[3]
shows why this is so. In this 5–dimensional example, five branes and one branes are wrapped on
a five torus and the system is given Kaluza–Klein momentum N in one of the directions. The
D–brane picture says that the entropy is given in terms of a partition function

Z =
∏

n=1,∞

(

1 + qn

1 − qn

)4Q1Q5

=
∑

d(N)qN (1)

for a gas of Q1Q5 species of massless quanta. The integers d(N) represent the degeneracy of the
state with Kaluza-Klein momentum number N . For N → ∞ keeping Q1Q5 fixed this gives an
entropy

S = log d(N) → 2π
√

NQ1Q5 (2)

This agrees with the classical black hole entropy. However, Maldacena and Susskind pointed out
that the derivation is incorrect in the case of fat black holes because if Q1, Q5 and N tend to
infinity in fixed proportion, then one finds

log d(N) → N log N (3)

which does not agree witth the black hole entropy. Furthermore the same formula gives

log d(N) = log(Q1Q5) (4)

for fixed N and large Q1Q5. Thus the naive D–brane model fails to agree with U–duality which
requires symmetry among Q1, Q5 and N .

Maldacena and Susskind argued that a consistent theory could be formulated in which the
Q1Q5 species are replaced by a single species and the level number N is replaced by N ′ = NQ1Q5.
The entropy of the system is then carried by a single long string with a central charge six and a
string tension T ∼ 1

gα′Q5
. Evidently, the picture which emerges from D–brane theory is that the

black hole is a single string with a rescaled tension. A similar picture has been advocated in the
past by one of us [4] and more recently by Tseytlin[5].

2 A black hole in 5 dimensions

We will analyze a 5-dimensional black hole made by wrapping Q5 5-D-branes on T 5. This was
analyzed by Maldacena in [6]. He showed that the near-extremal entropy of this configuration
is given by the entropy of closed strings which live on the 5–brane and have zero winding and
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momentum. The central charge of these strings is given by c = 6Q5 and their tension is T = 1
gα′

..
However, this system suffers from the same problem described in the introduction.The correct
entropy is only obtained in the limit N = NL = NR >> c where c is the central charge. However,
for the near extremal case N is small compared to c. In [6], it was conjectured that the correct
configuration is one in which the string is fractionalized into strings with

c′ = c/Q5 = 6 α′

eff = gα′Q5 N ′ = Q5N (5)

and the entropy formula is then correct. The rescaling of the string tension gives

M = 2

√

N

gα′Q5

= 2

√

√

√

√

N

α′

eff

(6)

where M is the deviation from extremality. The Hawking temperature becomes

T =
1√

gα′Q5
=

1
√

α′

eff

(7)

Note that the Hawking temperature appears to be the Hagedorn temperature associated with the
effective string scale. We will show that the rescaling of the string tension can be understood
as the blueshift of the energy of the string oscillations just as the Hawking temperature can be
understood as the redshifted Hagedorn temperature [4].

The metric in the transverse 5-dimensions is given in [7]. We will use the notation of [8] with
α = σ = 0. In this notation the equation for the metric is

ds2
5 = −f−2/3

(

1 − r2
0

r2

)

dt2 + f 1/3





(

1 − r2
0

r2

)

−1

dr2 + r2dΩ2
3



 (8)

where

f =

(

1 +
r2
0sinh2γ

r2

)

(9)

The charge of the black hole is

Q5 =
r2
0

2g
sinh(2γ) ' r2

0

g
cosh2(γ) (10)

where the second relation is true in the near-extremal limit where r0 → 0, γ → ∞.

We are interested in the near horizon limit where the (r,t) part of the metric will be seen to
be two- dimensional Rindler spacetime. In this limit

r → r0, f → 1 + sinh2γ = cosh2γ ≡ λ3 (11)

To bring the metric to the Rindler form, we rescale

r′ = r
√

λ r′0 = r0

√
λ (12)
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Then
λr′0 = r0coshγ =

√

gQ5 (13)

Now expanding r′ = r′0 + y, the near horizon metric takes the form

ds2
5 = −λ−2 2y

r′0
dt2 +

r′0
2y

dy2 + r′2dΩ2
3 (14)

The proper distance ρ from the horizon is then

ρ =
∫

dρ =
∫

√

r′0
2y

dy =
√

2r′0
√

y (15)

In terms of the proper distance, the coefficient of dt2 becomes

g00 = − ρ2

λ2r′20
(16)

Rescaling

τ =
t

λr′0
(17)

the (r,t) part of the metric becomes of the Rindler form

ds2
5 = −ρ2dτ 2 + dρ2 (18)

The conjugate to τ is called the Rindler energy and will scale inversely to τ . Hence we can
write

ER = λr′0
√

α′M = M
√

gQ5α′ (19)

Now we see a very interesting correspondence. Using eqn.(6) the Rindler energy can be simply
written

ER = 2
√

N (20)

The Rindler energy is (apart from a factor of 2) just the square root of the oscillator number !

We can now use the well-known entropy for a string with oscillator number N

S = 2π

√

c

6
2
√

N = 2π

√

c

6
ER = 2π

√

c

6
M
√

gQ5α′ (21)

For c = 6, we find the temperature

T =
1

2π
√

gQ5α′
(22)

which is identical to the temperature found in [6] .

Note that the redshift factor connecting τ and t is exactly the ratio of
√

α′

eff to α′. Thus the

picture is that of a fundamental string whose parameters have been rescaled due to redshifting.
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3 Schwarzschild Black Holes

We now show that the same reasoning holds for the Schwarzschild black hole in any dimension
D, 4 ≤ D ≤ 10. The Schwarzschild solution in D space–time dimensions is given by (we use the
notations of [9])

ds2 = −r − µ̂

r
dt2 +

r

r − µ̂
dr2 + r2dΩ2

2 (23)

where

ρ = rD−3 µ̂ =
16πGNM

(D − 2)AD−2
(24)

Here AD−2 = 2π(D−1)/2

Γ(D−1
2 )

is the area of the unit sphere in D − 2 dimensions. The black hole entropy

is given by

S =
M (D−2)/(D−3)

4GN

A
−1/(D−3)
D−2

(

16πGN

D − 2

)(D−2)/(D−3)

(25)

Close to the horizon, the proper distance to the horizon is given by

R =
2√

D − 3

√
yµ̂

1
2(D−3) (26)

where y is defined as r = µ̂1/(D−3) + y near the horizon. The coefficient of the dt2 term in the
metric becomes

r − µ̂

r
=

(D − 3)2

4
R2

(

16πGNM

(D − 2)AD−2

)

−2/(D−3)

(27)

Rescaling t to get the Rindler time τ

τ =
(D − 3)

2

(

16πGNM

(D − 2)AD−2

)

−1/(D−3)

t (28)

The relation between ER and M is more subtle in this case [4]. The Rindler energy may be
identified by requiring that it be conjugate to τ , i.e. [ER, τ ] = 1. This can be written as

1 =
(D − 3)

2

(

16πGNM

(D − 2)AD−2

)

−1/(D−3)

[ER, t] (29)

We now use the fact that t is conjugate to M to write

1 =
(D − 3)

2

(

16πGNM

(D − 2)AD−2

)

−1/(D−3)
∂ER

∂M
(30)

The Rindler energy is then

ER = M (D−2)/(D−3) 2

D − 2

(

16πGNM

(D − 2)AD−2

)1/(D−3)

(31)
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Now the relation derived in the previous section between S and ER

S = 2πER

√

c

6
(32)

gives the correct black hole entropy for c = 6. Note that c must be 6 in all dimensions. We have
no deep understanding of why this is so, but at least in the cases of D = 4, 5, this is supported by
the analysis of Tseytlin[5]. In addition, the identification of the square root of the string oscillator
number N with the Rindler energy ER works in all dimensions.

4 String Length and Entropy

We would like to make one more comment on the relation of entropy and string theory, which
may be relevant to the question of black hole entropy. The point concerns a connection between
the entropy carried by a string and its total integrated length.

Consider a free string thermally excited to average level N . Its entropy is 2π
√

Nc
6

.

Let us consider the total transverse length of the string. It is given in light-cone frame by

L = 〈
∫ 2π

0
dσ
√

∂σXi∂σXi〉 = 2π〈
√

∂σXi∂σXi〉 (33)

Now it is easy to prove that for a linear system like a free string that

〈
√

∂σXi∂σXi〉 ∝ 〈∂σXi∂σXi〉1/2 (34)

Furthermore, by the virial theorem,

〈∂σXi∂σXi〉 = Nα′ (35)

where we have dropped quantum fluctuations.

Thus the mean length of string is
L ∼ N1/2

√
α′ (36)

On the other hand, the entropy of the string is N1/2. Thus we find that the entropy per unit
length of the string is a universal constant of order 1 bit per string length. If we think of the string
as being subdived into segments of size

√
α′, then the entropy is the number of segments. This

suggests that the horizon is occupied by string segments with a universal density of 1 segment
per Planck area.
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5 Discussion

As far as we can tell, the entropy of fat black holes seems to have little to do with D-branes
and more to do with string-like degrees of freedom. The entropy is dominated by configurations
containing one long string. D-branes do seem to be important in certain limits, for example when
the Kaluza-Klein momentum N is much larger than the other charges. This for example can be
achieved when one of the compactification radii is much larger than the others and the black hole
becomes a black string.

In the fat black hole limit, the same string like degrees of freedom seem to be relevant for near
extremal black holes as well as the opposite limit of Schwarzschild black holes. This suggests that
they may also be relevant for other black holes.
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