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Abstract

For not very short bunches, the coherent synchrotron radiation (CSR) is usually
suppressed by the shielding effect of the conducting walls of the vacuum chamber.
However an initial density fluctuation in the beam with a characteristic length
much shorter than the bunch length can radiate coherently. If the radiation-
reaction force drives growth of the initial fluctuation, one can expect an instability
which leads to micro-bunching of the beam and increased coherent radiation at
short wavelengths.

It has recently been realized that such an instability can play an important role
in electron/positron rings where it often manifests itself as a bursting of radiation
in the range of hundreds of gigahertz or terahertz. This instability can also be
a source of an undesirable emittance growth in bunch compressors used in the
next generation short-wavelength FELs.

In this paper, we review progress in theoretical studies and numerical simulations
of the microbunching instability and show connection of the theory to recent
observations in electron machines.
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INTRODUCTION

Over the last years there have been several reports
of quasiperiodic bursts of coherent synchrotron radiation
(CSR) in electron rings in the microwave and far-infrared
range. The observations were made on synchrotron radia-
tion light sources which include the Sinchrotron Ultraviolet
Radiation Facility SURF II [1], VUV ring at the National
Synchrotron Light Source at BNL [2,3], second generation
light source MAX-I [4], BESSY II [5], and the Advanced
Light Source at the Berkeley National Laboratory [6]. Gen-
eral features of those observations can be summarized as
follows. Above a threshold current, there is a strongly in-
creased radiation of the beam in the range of wavelengths
shorter than the bunch length, λ < σz . At large currents,
this radiation is observed as a sequence of random bursts.
In the bursting regime, intensity of the radiation scales ap-
proximately as square of the number of particles in the
bunch, indicating a coherent nature of the phenomenon.

It is generally accepted that the source of this radiation
is related to the microbunching of the beam arising from
development of a microwave instability. The impedance
that causes the instability may be due to geometric wake
fields from the vacuum chamber, especially in the rings
with long bunches [1, 2]. However, according to diffrac-
tion model [7], the longitudinal impedance falls off with
the frequency as ω−1/2 and cannot account for the instabil-
ity at the wavelengths of order of a fraction of a millimeter.
It has long been known that the synchrotron radiation it-
self generates a collective force [8] which, if the beam cur-
rent is large enough, can alter the dynamics of the beam.
The impedance associated with the synchrotron radiation
increases with the frequency as ω1/3. A possible instabil-
ity due to this force has been pointed out in Refs. [9, 10].

Typically in rings, the coherent synchrotron radiation
at wavelengths of order of σz is suppressed due to the
shielding effect of conducting walls of the vacuum cham-
ber [11]. However, the wavelengths shorter than σz may
not be shielded, and this allows to develop a simple theory
of the CSR instability which assumes a coasting beam ap-
proximation and uses a CSR wake as the only source of the
instability [12].

CSR – REVIEW OF THEORY

In application to the CSR instability, we are interested
in the synchrotron radiation at wavelengths of the order of
a size of microbunches, with a frequency ω typically well
below the critical frequency for the synchrotron radiation.

For an ultrarelativistic particle with the Lorentz factor γ �
1, in this range of frequencies, the spectrum of the radiation
dP/dω (per unit length of path) can be written as
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where ωH = eB/γmc, with B the magnetic field, e
the electron charge, m the electron mass, c the speed of
light, and Γ the gamma-function. The characteristic an-
gular spread θ of the radiation with reduced wavelength λ
(where λ = c/ω = 1/k) is of order of θ ∼ (λ/R)1/3,
where R is the bending radius, R = c/ωH . Another
important characteristic of the radiation is the formation
length lf : lf ∼ λ/θ2 ∼ (λR2)1/3—this is the length
after which the electromagnetic field of the particle mov-
ing in a circular orbit “disconnects” from the source and
freely propagates away. In a vacuum chamber with per-
fectly conducting walls, whether this “disconnection” ac-
tually occurs depends on another parameter, often called
the “transverse coherence size”, l⊥. An estimate for l⊥ is:
l⊥ ∼ lfθ ∼ λ/θ ∼ (λ2R)1/3. One of physical mean-
ings of l⊥ is that it is equal to the minimal spot size to
which the radiation can be focused. Another meaning of
this parameter is that it defines a scale for radiation coher-
ence in the transverse direction. Electrons in a transverse
cross section of a bunch of size σ⊥ would radiate coher-
ently only if σ⊥ � l⊥. We emphasize here that both pa-
rameters, l⊥ and lf , are functions of frequency, with the
scalings l⊥ ∝ ω−3/2 and lf ∝ ω−1/2.

Closely related to the transverse coherence size is the
shielding of the radiation by conducting walls: if the walls
are closer than l⊥ to the beam, the field lines during cir-
cular motion close onto the conducting walls, rather than
disconnect from the charge. This means that the radiation
at the frequencies where l⊥ � a, where a is the pipe radius,
is suppressed, or shielded.

For a bunch withN electrons, the radiation of each elec-
tron interferes with others. Assuming full transverse co-
herence (a one dimensional model of the beam), the total
radiation of the bunch is [13]:
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where f̂(ω) =
∫ ∞
−∞ dzf(z)eiωz/c is the Fourier transform

of the longitudinal distribution function of the beam f(z)
(normalized by

∫ ∞
−∞ f(z)dz = 1). The first term on the

right hand side of Eq. (2) is due to incoherent, and the



second one – to coherent radiation. For a smooth distribu-
tion function (e.g., Gaussian, with rms bunch length σ z),
the Fourier image f̂(ω) vanishes for λ � σz , and the radia-
tion is incoherent. However, beam density modulation with
λ � σz would contribute to f̂(c/λ) and result in coherent
radiation, if the amplitude of the perturbation is such that
|f̂(c/λ)| � N−1/2.

RADIATION REACTION FORCE—CSR
WAKE FIELD

The collective force acting on the beam due to its co-
herent synchrotron radiation is described in terms of the
so called CSR longitudinal wake [8, 14, 15]. For an ultra-
relativistic particle, in one-dimensional approximation, this
wake (per unit length of path) is given by the following for-
mula:

w(z) = − 2
34/3R2/3z4/3

. (3)

The wake is valid for distances z such that R � z �
R/γ3—a general behavior of the wake function including
also distances z ∼ R/γ3 is shown in Fig. 1. The wake is

z

w

~R/γ3

−0.04γ  /R24

Figure 1: CSR wake as a function of distance. A sim-
ple formula (3) is applicable for not very short distances,
to the right of the minimum of the wake. The wake
reaches minimum at z ∼ R/γ3, with the minimum value
of −0.04γ4/R2.

localized in front of the particle in contrast to “traditional”
wakes in accelerator physics which trail the source charge
[7]. This is explained by the fact that the charge follows
a circular orbit and the radiation propagates along chords
getting ahead of the source. The wake given by Eq. (3)
has a strong singularity at z → 0. In calculations, this
singularity is eliminated by integration by parts and using
the fact that the area under the curve w(z) is equal to zero.

A simple wake Eq. (3) assumes a small transverse beam
size [15], σ⊥ � l⊥ ∼ (λ2R)1/3, and neglects the shield-
ing effect of the conducting walls. It is valid only for long
enough magnets, lmagnet � lf , when transient effects at
the entrance to and exit from the magnet can be neglected.
A detailed study of transient effects in a short magnet can
be found in Refs. [16, 17].

Using the wake field Eq. (3) one can calculate the CSR

longitudinal impedance Z:
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The real part of this impedance is related to the spectrum
of the energy loss of a charge due to radiation: dP/dω =
(e2/π)ReZ , see Eq. (1). Plots of a CSR wake for a Gaus-
sian bunch can be found in Refs. [14, 15].

CSR INSTABILITY

Due to the CSR wake, an initial small density perturba-
tion δn induces energy modulation in the beam δE. A finite
momentum compaction factor of the ring converts δE into
a density modulation. At the same time, the energy spread
of the beam tends to smear out the initial density perturba-
tion. Under certain conditions, which depend on the beam
current, energy spread, and the wavelength of the modula-
tion, the process can lead to an exponential growth of the
perturbation.

A quantitative description of the instability can be ob-
tained if we assume that the wavelength of the perturbation
is much shorter than the bunch length, λ � σz , and use a
coasting beam approximation. In this case, the dispersion
relation for the frequency ω is given by the Keil-Schnell
formula [18]:

inr0c
2Z(k)
γ

∫ ∞

−∞

dδ (df/dδ)
ω + ckηδ

= 1 , (5)

where n is the number of particles per unit length, η is the
momentum compaction factor of the ring, r0 = e2/mc2,
Z(k) is the CSR impedance given by Eq. (4), f(δ) is the
energy distribution function normalized so that

∫
f(δ)dδ =

1. To take into account straight sections in the ring, where
R = ∞ and there is no CSR wake, Z is replaced with a
weighted impedance: Z → ZR/〈R〉, where 〈R〉 = C/2π.
The plot of Reω and Imω calculated from Eq. (5) for a
Gaussian energy distribution with an rms relative energy
spread δ0, and η > 0 is shown in Fig. 2. It is convenient to
introduce the dimensionless parameter Λ:

Λ =
1

|η|γδ20
I

IA

R

〈R〉 , (6)

where IA = mc3/e = 17.5 kA is the Alfven current. The
maximum growth rate is reached at kR = 0.68Λ3/2 and is
equal to (Imω)max = 0.43Λ3/2cηδ0/R.

Three colored areas in this plot refer to stability regions
in the parameter space. In the green area 1, the beam is
stable because Imω < 0 due to Landau damping. This re-
gion corresponds to high frequencies, kR > 2.0Λ3/2. In
the yellow region 2, where k � R1/2/a3/2 (a is the trans-
verse size of the vacuum chamber), the instability is sup-
pressed by shielding of the radiation. Finally, at even lower
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Figure 2: Plot of real (blue) and imaginary (red) parts of
frequency ω as functions of k for positive η. Normaliza-
tion of the frequency ω and the wavenumber k on the axes
involves the parameter Λ defined by Eq. (6).

frequencies, in the blue area 3, the wavelength of the in-
stability exceeds the bunch length and the coasting beam
theory breaks down. The wavy lines between stability re-
gions indicate fuzziness of the transition boundaries in our
model.

In table 1, accelerator and beam parameters are pre-
sented for four existing rings, where the theory predicts
CSR instability. The parameter Ib is the bunch current

Ring ALS VUV LER KEKB
E (GeV) 1.5 0.81 3.4
η 1.41 · 10−3 2.35 · 10−2 1 · 10−4

δ0 7.1 · 10−4 5.0 · 10−4 7 · 10−4

〈R〉 (m) 31.3 8.11 480
R (m) 4 1.91 16.3
a (cm) 2 2.1 2.5
Ib (mA) 30 400 1
σz (cm) 0.7 4.7 1
λsh (cm) 0.14 0.2 0.1
λth (cm) 4.7 · 10−3 0.02 0.015

Table 1: Numerical Estimates for LER PEP-II, ALS, VUV
and LER KEK-B rings

in the ring. Calculated in two last rows of the table are
the reduced wavelength λsh = a3/2R−1/2 for the shielding
cutoff, and the instability threshold λth = 0.5RΛ−3/2. The
beam is unstable for perturbations with the wavelengths be-
tween 2πλth and 2πλsh.

There are several effects that are neglected in the simple
theory described above. First, a zero transverse emittance
of the beam was assumed. Second, the synchrotron damp-
ing γd due to incoherent radiation was neglected which
makes the growth rate of the instability somewhat smaller,
Imω → Imω − γd [19]. Finally, the retardation effects
were neglected which is valid if the formation time for
the radiation is smaller than the instability growth time,
tf ∼ lf/c � 1/Imω. In most cases characteristic for
modern rings, those effects are relatively minor.

NONLINEAR REGIME

After initial exponential growth, described by a lin-
ear theory, the instability comes into a nonlinear regime.
Study of the nonlinear regime requires numerical simula-
tion. Such simulations have been carried out in Ref. [20]
where the authors numerically solved the Vlasov-Fokker-
Planck equation, including CSR shielding with parallel
plates, damping and quantum fluctuations due incoherent
radiation.

The results of the numerical simulation can be described
as follows. Initially, there are microstructures in the bunch
of very small amplitude, giving small Fourier components
with short wavelengths. Above a current threshold these
Fourier components build up exponentially in agreement
with linear theory described above. There is a correspond-
ing burst of radiation, but it is limited in duration by a quick
smoothing of the phase space distribution. Continued ex-
ponential growth is prevented by the intrinsic nonlinearity
of self-consistent many-particle dynamics, which also con-
tributes to phase space smoothing through quick generation
of a relatively large spectrum of Fourier modes. Within
one or two synchrotron periods the microstructures have al-
most disappeared, the overall bunch length has increased,
and the burst of coherent radiation is finished. Next, radia-
tion damping and diffusion from the usual incoherent radi-
ation gradually reduce the bunch length and energy spread,
restoring the conditions for instability and another burst,
after a time somewhat smaller than the damping time. The
computed bunch length shows fast oscillations typical of a
quadrupole mode, while the envelope of those oscillations
shows a sawtooth or relaxation pattern similar to the exper-
imentally observed patterns.

COMPARISON WITH EXPERIMENT

A detailed comparison of the theory with observations
has been carried out in the experiment at the Advanced
Light Source (ALS), a 1.9 GeV electron storage ring [6].
The authors presented experimental evidence indicating
that the instability thresholds predicted by the microbunch-
ing model correspond to the observed thresholds for the
CSR bursts. For different electron beam energies and
bunch lengths, the instability threshold was measured at 94
GHz by microwave detector, and by Si bolometer (up to
λ = 100 µm).

It was observed that above a threshold single bunch cur-
rent, bursts of signal appear. As the current increases, the
burst signals increase in both amplitude and frequency. The
polarization of the radiation was measured to be entirely in
the plane of the electron beam orbit, consistent with the
expected polarization level of greater than 99.5%. At the
highest single bunch current, the bursts appear almost con-
tinuously. The plot of measured threshold current as a func-
tion of beam energy is shown in Fig. 3. A good agreement
with the theory was found for two different wavelengths of
the microbunching.
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Figure 3: Plot of threshold current as a function of beam
energy at two wavelengths: λ = 2 mm (blue dots), and
λ = 3.2 mm (red triangles) [from Ref. [6]]. Solid lines are
theoretical predictions for the thresholds obtained from Eq.
(5).

RINGS WITH WIGGLERS

In the damping ring of the Next Linear Collider [21],
there will be long magnetic wigglers which introduce an
additional contribution to the radiation impedance. The
analysis of the CSR instability in such a ring requires
knowledge of the impedance of the synchrotron radiation
in the wiggler. Based on the earlier study of the coherent
radiation from a wiggler [22], in Ref. [23], a steady-state
wake averaged over the wiggler period has be derived for
the case K2/2 � 1 (where K is the wiggler parameter)
and γ � 1. The most interesting from the point of view of
instability is a low-frequency part of the impedance, given
by the following formula (per unit length of path):

Zwiggler(ω) ≈ Z0ω

4c

[
1 − 2i

π
log

ω

ω∗

]
, (7)

where ω∗ = 4γ2ckw/K
2 and Z0 = 377 Ohm. Eq. (7) is

valid for ω � ω∗.
Results of the analysis of CSR instability in the NLC

ring, taking into account the wiggler CSR impedance can
be found in Ref. [24].

DISCRETE MODES NEAR SHIELDING
THRESHOLD

There are several reasons why the simple theory of CSR
microbunching instability developed in Ref. [12] is not ap-
plicable near that shielding threshold, λ ∼ a3/2/R1/2. The
most important one is that CSR does not have continuous
spectrum here, and the modes that can interact with the
beam, are discrete. The discreteness of the spectrum has
been demonstrated in early papers [25, 26] for toroids of
rectangular cross section. A more recent analysis of the
shielded CSR impedance [27] extends the previous treat-
ment of the problem and deals with arbitrary shapes of the
toroid cross section.

Each synchronous mode in the toroid is characterized by
frequencyωn, a loss factor κn (per unit length), and a group

velocity vg,n. The wake associated with the n-th mode is

wn(z) = 2κn cos
(ωn

c
z
)
.

This wake, for lowest modes, propagates behind the parti-
cle. Calculation of ωn, κn, and vg,n, in the general case of
arbitrary cross section requires numerical solution of two
coupled partial differential equations [27]. For a toroid
of round cross section of radius a, the lowest mode has
been found to have the frequency ω1 = 2.12cR1/2a−3/2,
the loss factor κ1 = 2.11a−2 and the group velocity
1 − vg,1/c = 1.1a/R.

Near the shielding threshold, the CSR instability should
be treated as an interaction of the beam with single modes,
[28]. When the wavelength of the mode is smaller than the
bunch length, one can still use the coasting beam approxi-
mation, but one cannot neglect retardation effects. Assum-
ing an ideal toroidal chamber with a constant cross section
(no straight sections in the ring), it turns out that the theory
of single-mode instability [28] parallels that of SASE FEL
(see, e.g., [29]). It gives the maximum growth rate of the
instability for nth mode equal

√
3ρnωn/2 where

ρn =
[
I

IA

c2ηκ

ω2
nγ

(
1 − vg,n

c

)]1/3

(8)

is an analog of the Pierce parameter in FELs.
Nonlinear regime of the instability in this approxima-

tions has been studied in Refs. [28, 30]

BUNCH COMPRESSOR

Microbunching due to CSR induced instability has been
also identified in computer simulations as a potential dan-
ger in bunch compressors [31], where the energy spread in
the beam is extremely small.

The basic mechanism of the instability is the same as
in rings, with an additional complication due to the energy
chirp in the beam [32–34]. As a result of the instability, an
initial density perturbation in the beam with amplitude n1

and a wavelength λ, after passage through the compressor,
will be amplified to amplitude n2. The ratio G = n2/n1 is
called the gain factor; it is a function of λ. Note, that the
wavelength of the perturbation after compression is smaller
than the initial wavelength by a factor of compression ratio.
Unstable wavelengths observed in simulations can be very
short—of order of few microns. It was found that both the
transverse emittance of the beam and its energy spread have
a strong stabilizing effect at short wavelengths.

Calculation of the gain factor for combined effect of both
LCLS bunch compressors was carried out in Ref. [35], and
is shown in Fig. 4. The solid line corresponds to the rms
energy spread δrms = 3 · 10−6 and the dash line shows the
case δrms = 3 · 10−5. The lines are calculated from the
theory, and squares and triangles are numerical simulations
which show a good agreement between the two approaches.
Note that with a small energy spread, the maximum ampli-
fication approaches 10, at wavelengths about 80 microns



(after compression, this wavelength reduces to about 2 mi-
crons). Increase of the energy spread by ten times strongly
suppresses the gain at short wavelength.
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Figure 4: Gain factor for two LCLS bunch compressors as
a function of wavelength λ of perturbations before com-
pression (from Ref. [35]).

CONCLUSION

Coherent synchrotron radiation in electron and positron
machines introduces a universal source of impedance
which may become dominant source of the wake at high
frequency where geometric and resistive wall impedances
become small. Unless the wall shielding effect suppresses
the CSR, its impedance remains even in a smooth vacuum
chamber with perfectly conducting walls, and can drive a
microwave instability of the beam.

Over the last several years, there has been a remarkable
progress, both theoretically and experimentally, in our un-
derstanding of this microbunching instability and related
coherent synchrotron radiation in rings. The existing the-
ory predicts thresholds for the instability, and computer
simulations show nonlinear evolution of the unstable state.
These theoretical results are in good agreement with exper-
imental observations.

Another practically important area of application of the
CSR theory is bunch compressors, where amplification of
an initial density perturbation can lead to the emittance
growth of the compressed beam. Detailed studies and sim-
ulations of microbunching resulted in improved design of
compressors, with a deleterious effect of CSR suppressed
to a tolerable level.
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