
SLAC-PUB-9869

First Measurement of the B -> pi lepton neutrino And B
-> rho(omega) lepton neutrino Branching Fractions

Work supported by Department of Energy contract DE–AC03–76SF00515.

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Submitted to Physical Review Letters



CLNS 96-1419
CLEO 96-9

First Measurement of the B ! �`� and B ! �(!)`� Branching

Fractions

CLEO Collaboration

(July 1, 1996)

Abstract

CLEO has studied B decays to the �nal states �`�, �`�, and !`�, where
` = e or �. We fully reconstruct these modes using a measurement of
the missing energy and momentum in each event to infer the neutrino
momentum. With the B0 and B+ modes combined according to isospin
predictions for the relative partial widths, we obtain B(B0 ! ��`+�) =
(1:8 � 0:4 � 0:3 � 0:2) � 10�4 and B(B0 ! ��`+�) = (2:5 � 0:4+0:5

�0:7 �
0:5)�10�4, where the errors are statistical, systematic and the estimated
model-dependence. We also estimate jVubj = (3:3� 0:2+0:3

�0:4� 0:7)� 10�3.
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CLEO [1] and ARGUS [2] have demonstrated a non-zero value for jVubj by observing
leptons from B-decays at the �(4S) with momenta greater than 2.4 GeV/c. This momentum
range is accessible to b! u`� decays, but is rarely reached in the dominant b! c`� process.
The values for jVub=Vcbj of 5 to 10% obtained from these measurements have large theoretical
uncertainties because the details of hadronization signi�cantly a�ect the lepton spectrum
near the endpoint.

Study of exclusive b ! u`� channels provides an alternate route to jVubj. Here, the
theoretical challenge is to calculate the form factors. For B ! �`� and B ! �`�, this is
an active �eld, encompassing relativistic and nonrelativistic quark models, lattice studies,
QCD sum rules and dispersion relation studies. Experimentally, there is the CLEO upper
limit [3] in the combined modes ��`+�, �0`+�, and !`+�. This Letter presents a study of
the decays B0 ! ��`+�, B+ ! �0`+�, B0 ! ��`+�, B+ ! �0`+�, B+ ! !`+�, and charge
conjugate modes, where ` = e or �. The study is based on an �(4S) data sample of 2.66
fb�1 (2:84 � 106 B �B pairs) accumulated by the CLEO experiment at the Cornell Electron
Storage Ring (CESR).

The CLEO detector [4] contains three concentric wire chambers that detect charged
particles over 95% of the solid angle. A 1.5 T superconducting solenoid provides the magnetic
�eld. The total momentum resolution is �p=p = 0:6% for a 2 GeV/c particle. A CsI(Tl)
electromagnetic calorimeter situated inside the solenoid detects electrons and photons over
98% of 4�. A reconstructed �0 mass resolution of 6 MeV is typical.

The undetected neutrino complicates the analysis of semileptonic decays. Using the
hermeticity of the CLEO detector, we reconstruct the neutrino by inferring its four{
momentum from the missing energy (Emiss � 2Ebeam �

P
Ei) and the missing momen-

tum (~Pmiss � �
P
~pi) in each event. In the process e+e� ! �(4S) ! B �B, the total

energy of the beams is imparted to the B �B system. At CESR, the system is produced
at rest, so the neutrino combined with the signal lepton and meson should satisfy the
energy constraint �E � (E� + E` + EX) � Ebeam = 0 and the momentum constraint

Mcand � [E2
beam � j~p� + ~p` + ~pX j

2]
1

2 =MB, where X is the �nal state meson.

To suppress events in which ~Pmiss misrepresents ~p�, we reject those with multiple leptons
or a non-zero total charge because they indicate other missing particles. We further require
that M2

miss � E2
miss � j~Pmissj

2 be consistent with zero. Surviving signal events show a res-
olution in j~pmissj of about 110 MeV/c. Because the resolution on Emiss is about 2.5 times
larger, we take (E� ; ~p�) = (j~pmissj; ~pmiss).

Information from speci�c ionization and from the calorimeter and tracking measurements
is combined to identify electrons with p > 600 MeV=c over 90% of the solid angle. Particles
registering hits in muon counters at least 5 interaction lengths deep over the polar angle range
j cos �j < 0:85 are considered muons. Counters at 3 interaction lengths within j cos �j < 0:71
are used for the multiple-lepton veto. Candidate leptons must have p` > 1:5 GeV=c for the
� modes and p` > 2:0 GeV=c for the � and ! (vector) modes. The � modes have a softer p`
spectrum since transverse W helicities are forbidden in those decays. The identi�cation e�-
ciency above 1:5 GeV=c is typically over 90%; the probability that a hadron is misidenti�ed
as a signal electron (muon), a \fake lepton", is approximately 0.1% (1%).

A �0 candidate must have a 

 invariant mass within 2 standard deviations of the
�0 mass. We study the ! via its �+���0 decay, suppressing combinatoric background by
rejecting combinations away from the center of the ! Dalitz plot. Discrimination of the
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broad � resonances from nonresonant ��`� decay is discussed below.
There are backgrounds from e+e� ! q�q; �+�� continuum events, fake leptons, b ! c`�

decays, and other b ! u`� decays. Eliminating jet-like events (event axes based on signal
particles and on all other particles are roughly parallel) suppresses continuum backgrounds
10-fold and retains 70% of the signal. We subtract the residual continuum background
using data accumulated at an energy 60 MeV below the �(4S) energy. We determine the
background from fake leptons by applying measured fake rates to nonleptonic data. The
lepton momentum requirement eliminates background from b ! c ! s`� and reduces the
b ! c`� contamination. Monte Carlo (MC) studies indicate that most b ! c`� events in
the �nal sample either contain a KL or have c! s`� with the lepton not identi�ed.

We �t the � (�) data in two (three) dimensions to extract the rate. For all modes the
data are divided into 11 bins over the (Mcand;�E) region 5:1075 � Mcand < 5:2875 GeV
and j�Ej < 0:75 GeV. A signal bin is de�ned by 5:265 � Mcand < 5:2875 GeV, �0:15 �
�E < 0:25 GeV. The neutrino dominates the resolution inMcand (�7 MeV) and �E (�110
MeV). To help distinguish resonant from nonresonant �nal states in the �`� (!`�) modes,
we further divide the yields into �ve (four) equal bins over the �� (3�) mass range within
�475 MeV (�60 MeV to +100 MeV) of the nominal � (!) mass.

MC simulation provides the shapes in Mcand, �E and �� or 3� mass for the �ve signal
modes, the b ! c background in each mode, the crossfeed among the modes, and the
feeddown from higher mass B ! Xu`� decays. The simulation includes a full description of
the b! c and charm decay modes and a GEANT-based [5] detector model. Feeddown from
other Xu`� decays was evaluated with the ISGW II model [6] for all resonances through
the �(1450). We �xed the rate for these decays from the observed rate near the lepton-
momentum endpoint [1]. To estimate model dependence, the e�ciencies and the signal and
crossfeed shapes are completely redetermined for several models.

We �t the continuum- and fake-subtracted distributions in the �ve modes simultaneously.
The isospin and quark symmetry relations �(B0 ! ��`+�) = 2�(B+ ! �0`+�) and �(B0 !
��`+�) = 2�(B+ ! �0`+�) � 2�(B+ ! !`+�) constrain the B+ rates relative to the B0

rates. Hence we �t for two independent e�ciency-corrected yields, N�� and N�� . For
self-consistency, the crossfeed rates are constrained by the observed yields. The b ! c
background normalization in the �t varies independently for each mode. The normalizations
obtained are consistent with that derived from the luminosity and the �(4S) production
cross section. A typical �2 is 145 for 169 degrees of freedom.

We have evaluated a variety of models: ISGW II (a nonrelativistic quark model) [6]; rel-
ativistic quark model calculations [7{9]; and a hybrid model that uses a dispersion-relation-
based calculation of the �`� form factor [10], and combines lattice calculations of the �`�
form factors [11] with predicted �`� form factor relations [12,13]. Model dependence results
because the lepton-momentum requirements cause the reconstruction e�ciencies to vary
with q2. Further dependence of e�ciencies on q2 have been minimized. There is also model
dependence in the �tted signal yields (before e�ciency correction) because the reconstruc-
tion and crossfeed probabilities have di�erent q2 dependences.

In Fig. 1 we show theMcand distribution for data in the �E signal band for the combined
� modes and the combined vector modes. An excess over background is apparent in both.
The lepton momentum spectra for events in the (Mcand;�E) signal bin are also plotted in
Fig. 1. Signi�cant rates beyond the b ! c`� endpoint are clear. Table I lists the data
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TABLE I. Summary of data yields in the signal bin and the corresponding ISGW II [6] e�-

ciencies and �t results. The errors on the �tted signal yields within the two � modes (three vector

modes) are completely correlated.

�� �0 �� �0 !

�(4S) yield 46 19 47 73 7

Continuum+fake bkg. 9:8� 2:1 1:5� 0:5 9:5� 2:1 5:8 � 1:2 0:3� 0:8

E�ciency (ISGW II) 0.023 0.015 0.015 0.024 0.006

�t signal yield 26:6 � 6:1 8:6� 2:0 19:5 � 3:3 15:1 � 2:5 3:5� 0:6

b! c bkg. 7:0� 1:2 2:9� 0:8 15:2 � 1:8 21:5 � 2:2 4:6� 1:1

b! u bkg. 0:5� 0:1 0:2� 0:1 2:7� 0:2 2:9 � 0:2 0:5� 0:1

crossfeed bkg. 4:1� 0:8 1:5� 0:3 4:9� 0:9 13:4 � 2:5 0:8� 0:2

yields and the continuum and fake lepton backgrounds in the signal bin, as well as the
corresponding �t yields from the ISGW II �t. The 2� (3�) mass interval �270 MeV (�20
MeV), where the � (!) candidates are expected, is used for yields and �gures. The ��
and 3� mass distributions for the combined �`� modes and for the !`� mode are shown in
Fig. 2. A clear excess is observed near the � mass. The !`� mode is consistent both with
pure background and with the signal level expected given the �`� rate.

To check for nonresonant ��`� contributions, we have compared the �t just described
to �ts restricting the �� (3�) mass distribution in the �`� (!`�) modes to a single bin of
width 90 (20) MeV, with and without subtracting the �E vs. Mcand distribution in �� (3�)
mass sidebands from the mass peak distribution. These �ts give results consistent with those
obtained above, suggesting that any nonresonant contribution is small. We have also studied
B ! �0�0`�, which can have only nonresonant signal contributions, and have found that
our predicted crossfeed from the � modes is consistent with saturating the observed rate.
We limit the bias in the �`� (�`�) branching fraction from nonresonant contamination to
20% (5%) by studying �ts that include the B ! �0�0`� mode and a nonresonant component
generated from an inclusive spectator b! u`� model and a �� mass spectrum that is either
a � line-shape or the dipion-mass shape from a hadronization model.

Table II summarizes the contributions to the systematic errors. Uncertainty in the
assumed decay of the second B in the event and inaccuracies in detector simulation constitute
the dominant systematic error. These e�ects were investigated by varying the K0

L fraction,
charm semileptonic decay rate, charged particle and photon-�nding e�ciencies, false charged
particle and false photon rejection e�ciencies, charged particle momentum resolution, and
photon energy resolution. Changes due to variations in the mix of the B ! D(�)X`� rates
used in the B �B MC are small, as are changes from variation of the rate of feeddown from
higher mass B ! Xu`�.

The branching fractions for B0 ! ��`+� and B0 ! ��`+� are given in Table III
for each model. The model predictions of the �=� ratio are generally consistent with our
data. However, the probability that the KS model is consistent with our observed ratio
is less than 0:5%, so we have chosen to exclude this model from any averaging. From the
remaining models considered we obtain B(B0 ! �+`��) = (1:8�0:4�0:3�0:2)�10�4 and
B(B0 ! �+`��) = (2:5� 0:4+0:5

�0:7� 0:5)� 10�4, where the �rst error is statistical, the second
is systematic, and the third is an estimate of the model uncertainty based on the spread of
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ton-momentum spectra (insets) for the combined � modes (top) and the combined vector modes

(bottom). The points are the data after continuum and fake background subtractions; the dark

shaded, cross-hatched and unshaded histograms are b ! cX, b ! u`� feeddown, and signal

respectively. For the � (vector) modes, the light-shaded and hatched histograms are � ! �
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TABLE II. Contributions to the systematic error (%) in each branching fraction (B) and the

ratio of rates. Simulation of the detector and the second B contribute to � simulation.

Source B� B� ratio

� simulation 14.5 14.8 12.7

B ! D=D�X`� 2.1 3.2 3.9

fakes+continuum 5.4 6.7 8.6

b! u`� feeddown 2.2 7.5 9.8

lepton ID 2.0 2.0 2.0

luminosity 2.0 2.0 {

f+��+=f00�0 3.2 1.9 3.3

nonresonant ��`� -5.0 -20.0 -16.0

Total +16.3 +18.4 +19.0

-17.0 -27.2 -24.8

models and individual model errors. The average �=� rate ratio is 1:4+0:6
�0:4�0:3�0:4. For each

model, the branching fractions, the isospin relations and the predicted p` spectral shapes for
the �ve modes can be combined to obtain a total rate into the 2:4 < p` < 2:6 GeV=c (where
�, � and ! should be the dominant Xu`� modes) and the 2:3 < p` < 2:6 GeV=c (used for
the inclusive jVubj measurements) intervals. We �nd our rate in the smaller endpoint region
to be consistent with saturating the rate from the most recent CLEO endpoint study [1],
and we obtain a 90% C.L. upper limit of 0:44� 10�4 for the contribution of all other modes.
For the broader range, we obtain the limit 1:03� 10�4.

We extract values for jVubj from these branching fractions using the predicted partial
widths. We take �B0 = 1:56 � 0:05 ps and �B0=�B+ = 1:02 � 0:04 [14]. Table III lists the
results. To obtain jVubjavg, the � and � modes were combined by �xing their ratio to the
prediction for each model. Correlations in the modes from our �tting procedure are thereby
automatically accounted for; we also account for correlated systematics. Averaging over the
values of jVubj obtained from these models, we have jVubj = (3:3 � 0:2+0:3

�0:4 � 0:7) � 10�3,
where the errors are statistical, systematic (including the B0 lifetime) and estimated model
dependence. This agrees with the value of jVubj obtained from the inclusive endpoint rate
[1].

These are the �rst exclusive b ! u branching fractions measurements. The agreement
between the jVubj obtained here and from the inclusive analysis lends considerable con�dence
to our knowledge of jVubj.

We thank G. Burdman, J. Flynn, N. Isgur, D. Scora and B. Stech for advice on and as-
sistance with form factor models. We gratefully acknowledge the e�ort of the CESR sta� in
providing us with excellent luminosity and running conditions. This work was supported by
the National Science Foundation, the U.S. Department of Energy, the Heisenberg Founda-
tion, the Alexander von Humboldt Stiftung, the Natural Sciences and Engineering Research
Council of Canada, and the A.P. Sloan Foundation.
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TABLE III. Final results for each model considered. We de�ne �X � 
X jVubj
2

� 1012 � �(B0 ! X�`+�) and BX � B(B0 ! X�`+�). ��2 is the �2 change from the pre-

ferred �t to a �t with 
�=
� �xed to the prediction (systematics included). The statistical errors

on the ratio are de�ned by ��2 = 1; as the asymmetric errors and the �2 changes indicate,

these errors are highly nongaussian. Third errors, where given, arise from the model's estimated

form-factor uncertainties.

Model ISGW II [6] WSB [7] KS [8] Melikhov [9] Hybrid [10{13]


�,
� (s�1) 14.2, 9.6 26.1, 7.4 33.0, 7.3 11:8 � 3:4, 7:6� 1:7 13:8 � 4:0, 13:5 � 9:1

B�=10
�4 2:0� 0:5 � 0:3 1:8� 0:5� 0:3 1:9� 0:5� 0:3 1:8� 0:4� 0:3 � 0:2 1:7 � 0:4� 0:3� 0:2

B�=10
�4 2:2� 0:4+0:4

�0:6 2:8� 0:5+0:5
�0:8 1:9� 0:3+0:4

�0:5 2:8� 0:5+0:5
�0:8 � 0:4 2:1� 0:4+0:4

�0:6 � 0:4

��=�� 1:1+0:5+0:2
�0:3�0:3 1:6+0:7+0:3

�0:5�0:4 1:0+0:5+0:2
�0:3�0:3 1:6+0:7+0:3

�0:5�0:4 � 0:11 1:2+0:6+0:2+0:2
�0:4�0:3�0:1

��2 0:5 3:1 8:1 0:2 0:4

jVubj� 3:7� 0:4 � 0:3 4:0� 0:5� 0:3 4:1� 0:5� 0:3 3:9� 0:5� 0:3 � 0:5 2:9� 0:3� 0:2+1:3
�0:7

jVubj� 3:2� 0:3+0:3
�0:4 2:6� 0:2+0:2

�0:4 2:0� 0:2+0:2
�0:3 4:0� 0:4+0:4

�0:5 � 0:6 3:1� 0:3+0:3+0:3
�0:4�0:4

jVubjavg 3:4� 0:2+0:3
�0:4 2:9� 0:2+0:3

�0:3 2:2� 0:1+0:2
�0:3 4:0� 0:2+0:35

�0:5 � 0:5 3:1� 0:2+0:3
�0:4 � 0:5
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