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Abstract

In order to analyze data on joint charged-particle/photon distribu-
tions from an experimental search (T-864, MiniMax) for disoriented
chiral condensate (DCC) at the Fermilab Tevatron collider, we have
identified robust observables, ratios of normalized bivariate factorial
moments, with many desirable properties. These include insensitivity
to many efficiency corrections and the details of the modeling of the
primary pion production, and sensitivity to the production of DCC,
as opposed to the generic, binomial-distribution partition of pions into
charged and neutral species. The relevant formalism is developed and
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tested in Monte-Carlo simulations of the MiniMax experimental con-
ditions.
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1 INTRODUCTION

There has recently been renewed interest in semiclassical mechanisms of pion
production in high-energy collisions of hadrons and of heavy ions [1-11]. One
hypothesis in particular is that pieces of strong-interaction vacuum with an
unconventional orientation of the chiral order parameter may be produced in
high energy collisions [12]. This disoriented chiral condensate (DCC) is then
supposed to decay into a coherent semiclassical pion field having the same
chiral orientation.

The primary signature of this mechanism is the presence of large, event-
by-event fluctuations in the fraction, f , of produced pions that are neu-
tral. Conventional mechanisms of particle production, including those used
in standard Monte Carlo simulations, predict that the partition of pions into
charged and neutral species is governed by a binomial distribution which, in
the limit of large multiplicity, leads to a sharp value of f ≈ 1/3. We refer to
this as generic pion production. On the other hand, for the decay of a pure
DCC state the distribution of neutral fraction is very different, following an
inverse square-root law in the limit of large multiplicity [1-7, 12]. Some other
production scenarios involving the common feature of coherent final states
lead to identical f distributions [9, 10, 13-15].

Sophisticated phenomenological techniques have been developed in order
to study the properties of multiparticle final states, and much has been done
on multiplicity distributions, correlations, and fluctuations [16-20]. Most of
the practical studies, however, have considered the properties of a single
species at a time. In the case of DCC, formal tools for the study of the
joint distribution of neutral and charged pions are required, and here there
is much less data and corresponding analysis experience [21-25].

The authors of this paper comprise the MiniMax collaboration (Fermilab
T-864), who for the last three years have carried out an exploratory search
for signals of DCC at the C0 area of the Tevatron collider [26]. The heart of
our detector is a telescope of 24 multiwire proportional chambers (MWPC),
with a 1.0 radiation-length lead converter inserted after the eighth plane, so
that charged tracks and converted photons can be counted event-by-event.
The acceptance in the lego space of pseudorapidity, η, and azimuthal angle,
φ, is roughly a circle of radius 0.65 centered at η = 4.1. In 1995-1996, 8
million triggered events at

√
s = 1.8 TeV were recorded. The purpose of this

paper is not to report the results of this experiment, but rather to describe
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the techniques we are using as the basis of our data analysis strategy. We
believe these techniques have much wider applicability and may be of value
in other searches for DCC signals.

Even from this very brief description of the experiment, it should be clear
that we face many challenges in trying to infer either the presence or absence,
within limits, of DCC signals from the data. These include the following:

(a) The MiniMax acceptance is small, so that it is improbable that both
γ’s from a π0 enter the detector acceptance.

(b) The conversion efficiency per γ is about 50%.

(c) Not all γ’s come from π0’s.

(d) Not all charged tracks come from π±’s.

(e) Because of the small acceptance, the multiplicities are rather low, so
that statistical fluctuations are very important.

(f) Detection efficiencies for charged tracks and γ’s are momentum-dependent
and are not the same.

(g) Efficiency functions may be dependent upon the observed multiplicity
or other parameters.

(h) The efficiency for triggering when no charged track or converted γ is
produced within our acceptance is relatively low and different from
that for events in which at least one charged particle or converted γ is
detected.

Nevertheless, we find that there do exist observables which are robust in
the sense that, even in the presence of large (uncorrelated) efficiency correc-
tions and convolutions from produced π0’s to observed γ’s, the observables
take very different values for pure DCC and for generic particle production.
Each such observable is a ratio, collectively referred to as R, of certain bi-
variate normalized factorial moments, that has many desirable properties,
including the following:

1. The R’s do not depend upon the form of the parent pion multiplicity
distribution.

3



2. The R’s are independent of the detection efficiencies for finding charged
tracks, provided these efficiencies are not correlated with each other or
with other variables such as total multiplicity or background level.

3. Some of the R’s are also independent of the γ efficiencies in the same
sense as above. In the remaining cases, the R’s depend only upon one
parameter, ξ, which reflects the relative probability of both photons
from a π0 being detected in the same event.

4. In all cases R is independent of the magnitude of the null trigger effi-
ciency; see comment (h) above.

5. The ratios R possess definite and very different values for pure generic
and pure DCC pion production.

The idealizations implicit in the realization of properties 1-5 include the
assumptions that particles other than pions can be ignored, that there is no
misidentification of charged particles with photons, and that the production
process can be modeled as a two-step process, with a parent-pion multiplicity
distribution posited, followed by a particular charged/neutral partitioning
of that population by, e.g., a binomial or DCC distribution function. In
addition, there is the vital assumption that detection efficiencies for finding
a π± or γ do not depend upon the nature of the rest of the event. The validity
of these idealizations is not contradicted by the simulations presented in this
paper. This idealized model thus appears to be a good basis for a first-order
analysis of the properties of the ratios R. We anticipate that this will remain
true for observations more general than those of the MiniMax experiment.

The layout of this paper is as follows: In Section 2 we review the conven-
tional formalism [16-20] of single-variable generating functions and factorial
moments used in describing global multiplicity distributions. We then de-
velop the extensions required to describe the bivariate case of distributions
of π±’s and π0’s. The modifications needed to accommodate the decay of
π0’s into γ’s, as well as the inclusion of less-than-perfect detection efficien-
cies for charged tracks and γ’s, are considered in Section 3. In Section 4
we introduce the robust observables R and demonstrate their sensitivity to
charged-particle/photon correlations and their insensitivity to detection in-
efficiencies and the overall aspects of the primary production process for a
wide class of production models. The DCC distribution is shown to fall
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into that class, but with distinctly different values of the R’s that clearly
distinguish it from the generic distribution under realistic experimental con-
ditions. Generalizations of the formalism which allow for the admixture of
both generic and DCC charged/neutral production are considered in Section
5. In Section 6 we estimate, by Monte Carlo simulation as well as by use
of the UA5 charged-particle/photon data at 200 GeV and 900 GeV [25], the
effects on the R’s from the realistic complications discussed in the preceding
paragraph. Concluding remarks are made in Section 7. A number of new re-
sults concerning the interpretation and representation of the standard DCC
probability distribution that are needed to establish our results concerning
DCC production are presented in the Appendix.

2 GENERATING FUNCTIONS FOR CHARGED-

PION/NEUTRAL-PION DISTRIBUTIONS

The entire content of a set of probabilities {P (N)} for the production of
N particles in a fixed region of phase space can be encapsulated into the
generating function

G(z) =
∞
∑

N=0

zNP (N) (1)

whose derivatives evaluated at z = 1 yield the factorial moments

fi ≡
(

diG(z)

dzi

)

z=1

= 〈N(N − 1) · · · (N − i + 1)〉. (2)

It is often useful to express P (N) as a Poisson transform [27] where one
introduces a spectral representation in terms of Poisson distributions with a
weighting function ρ(µ):

P (N) =
∫ ∞

0
dµ ρ(µ)

µN

N !
e−µ, (3)

where ∫ ∞

0
dµ ρ(µ) = 1. (4)
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The Poisson transform isolates the random statistical fluctuations from the
physics contained in ρ(µ). As an example, the negative binomial parametriza-
tion

ρ(µ) =
λk

Γ(k)
µk−1 e−λµ, (5)

where λ = k/〈N〉, gives a fairly good two-parameter description of charged
multiplicity distributions [16, 17]. From (1) and (3) we also obtain a spectral
representation for the generating function:

G(z) =
∫ ∞

0
dµ ρ(µ) eµ(z−1), (6)

where now the factor eµ(z−1) reflects the purely random character of the
Poisson distribution.

The generating function formalism has been widely used to study charged-
hadron multiplicity distributions [16-20, 27]. We next generalize this formal-
ism to bivariate distributions of charged and neutral pions. Among our mo-
tivations for doing this is the simple manner in which detection inefficiencies
and particle decays can be handled with generating functions [27]. These fea-
tures are particularly important in dealing with the MiniMax experimental
situation. Here the parent π0’s are not reconstructed from the observed γ’s
and the efficiencies for detecting both the charged particles and the photons
are less than perfect. These extensions are taken up in detail in succeeding
sections. Some earlier work in this connection is contained in Refs. [21-25]

Let p(nch, n0) denote the probability distribution for the occurrence of nch

and n0 charged and neutral pions, respectively, in a multiparticle event within
a given phase-space region. As in the single-variable case, the content of
this bivariate distribution can be conveniently represented by the generating
function for factorial moments defined by

G(zch, z0) =
∞
∑

nch,n0=0

p(nch, n0)z
nch

ch zn0

0 . (7)

The partial derivatives of G(zch, z0) evaluated at zch = z0 = 1 generate the
factorial moments referring to charged (ch) and neutral (0) particles:

fi,j(ch, 0) ≡
(

∂i,jG(zch, z0)

∂zch
i∂z0

j

)

zch=z0=1

. (8)
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For example, we have,

f1,0(ch, 0) = 〈nch〉,
f0,1(ch, 0) = 〈n0〉,
f1,1(ch, 0) = 〈nchn0〉,
f2,0(ch, 0) = 〈nch(nch − 1)〉. (9)

Next, let P (N) be the probability for producing a total of N pions with
any distribution of charge among them. Then p(nch, n0) can be written as
the product of two disjoint probability distributions:

p(nch, n0) = P (N)p̂(nch, n0; N), (10)

where N = nch + n0, and
∞
∑

N=0

P (N) = 1, (11)

∞
∑

nch=0,n0=0

δN,nch+n0
p̂(nch, n0; N) = 1. (12)

What we call the generic model for the charged-neutral distribution p̂(nch, n0; N)
involves no correlations, namely, a binomial (Bin) distribution of nch and n0:

p̂Bin(nch, n0; N) =

(

N
n0

)

f̂n0(1 − f̂)nch. (13)

Here f̂ is the mean fraction of π0’s, which is expected to be about 1/3 as a
consequence of isospin symmetry. If we substitute (13) into (10) and explic-
itly denote the dependence on f̂ , the generating function (7) becomes, in the
binomial case,

GBin(zch, z0; f̂) =
∑

N

P (N)[f̂ z0 + (1 − f̂)zch]
N , (14)

which only depends on the linear combination

ζ ≡ f̂ z0 + (1 − f̂)zch. (15)

Conversely, if a generating function G(zch, z0) is a function only of ζ , the
charged and neutral pions are binomially distributed.
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If P (N) is a Poisson distribution, ln GBin(zch, z0; f̂) is linear in ζ . The
simulations of generic production described in Section 6 yield generating
functions that, to good approximation, depend only on a fixed linear com-
bination of zch and z0; the incorporation of the modeling of the MiniMax
detector into these simulations is found to alter this linear behavior slightly.

Much of the simplicity of the generic case is also realized for what can be
called the binomial transform

p̂(nch, n0; N) =

(

N
n0

)

∫ 1

0
dfp(f)fn0(1 − f)nch, (16)

of the normalized distribution p(f),
∫ 1

0
dfp(f) = 1. (17)

This leads to a wide class of possible pion factorial-moment generating func-
tions, namely

G(zch, z0) =
∫ 1

0
dfp(f)GBin(zch, z0; f), (18)

where GBin(zch, z0; f) is given by (14) with f̂ replaced by an arbitrary f ,
0 ≤ f ≤ 1. Combining (3) and (14) we obtain

G(zch, z0) =
∫ ∞

0
dµ ρ(µ)

∫ 1

0
df p(f) eµ[ζ(f)−1], (19)

where again ζ(f) is given by (15) with f̂ replaced by an arbitrary f .
The forms of p(f) and ρ(µ) depend on the production model and the

detector. The uncorrelated, generic case (14) corresponds to p(f) = δ(f− f̂ ),
where f̂ is some fixed value of f .

It is shown in the Appendix that for a simple DCC model [1-7] and with
a sampling prescription appropriate to the experimental situation, p(f) =
1/(2

√
f). Although the same bivariate distribution is realized in other hadronic

production models leading to coherent states [9, 10, 13-15], we refer to this
case as the DCC model. We note that in the DCC model 〈n0〉 = 2〈nch〉, just
as in the generic case for f̂ = 1/3.

It is quite possible that the parent pion distribution P (N) or, equivalently,
ρ(µ), will be different for the DCC and generic production mechanisms. This
distinction is important for our considerations of admixtures of the two mech-
anisms. We investigate some possible scenarios for such admixtures in Section
5.

8



3 GENERATING FUNCTIONS FOR CHARGED-

PION/PHOTON DISTRIBUTIONS

For a detector that is designed to observe charged particles and converted
γ’s within its acceptance, events are classified only according to the numbers
of charged particles and photons, nch and nγ , respectively. With sufficiently
large statistics we can determine probabilities, p(nch, nγ), for observing these
combinations over some portion or all of the available phase space.

In order to obtain the charged-pion/photon generating function, incor-
porating both π± and γ detection efficiencies from G(zch, z0), we extend
Pumplin’s cluster theorem [27] to the bivariate case. Consider a generating
function G(zch, z0) that refers to charged and neutral “clusters.” Suppose,
for the sake of simplicity, the charged clusters decay in a number of ways into
charged particles and likewise for the decay of neutral clusters into neutral
particles. For each of these decay scenarios there is a probability distribution
and a corresponding generating function, gch(zch) or g0(z0), respectively. The
bivariate generating function of the factorial moments of the final charged-
neutral particle production is then G(gch(zch), g0(z0)). If the charged clusters
do not decay, then gch(zch) = zch. On the other hand, π0 → γγ with perfect
photon detection efficiency correponds to g0(zγ) = z2

γ .
More realistically, there is a probability εch for observing a given primary

charged pion in the detector and a probability 1 − εch for not observing it.
These possibilities can be regarded as the two “decay” modes of the primary
charged pion which is otherwise regarded as stable. Similarly, there are
probabilities εm, m = 0, 1, 2, with

ε0 + ε1 + ε2 = 1, (20)

for observing m photons from a π0 decay and each possibility can be re-
garded a decay mode of the π0 cluster. If these probabilities are identified
with what we suppose are the independent, i.e., uncorrelated, efficiencies for
the respective detection options, the generating function for the distribution
of observed particles, including efficiencies, is obtained from G(zch, z0) by
replacing zch by the generating function

gch(zch) = (1 − εch) + εchzch, (21)

9



and z0 by the generating function

g0(zγ) = ε0 + ε1zγ + ε2z
2
γ . (22)

For the class of production models characterized by (18), the preceding
considerations lead to the following factorial-moment generating function for
the distribution of observed charged pions and photons:

Gobs(zch, zγ) =
∫ 1

0
dfp(f)GBin(gch(zch), g0(zγ); f). (23)

The charged-pion/photon factorial moments are

fi,j(ch, γ) ≡
(

∂i,jG(zch, zγ)

∂zch
i∂zγ

j

)

zch=zγ=1

, (24)

which introduces the bivariate indexing (i, j) with respect to charged particles
and photons employed henceforth. For example, the two lowest orders of
factorial moments are:

f1,0(ch, γ) = 〈nch〉 = 〈1 − f〉εch〈N〉, (25)

f0,1(ch, γ) = 〈nγ〉 = 〈f〉(ε1 + 2ε2)〈N〉, (26)

f2,0(ch, γ) = 〈nch(nch − 1)〉 = 〈(1 − f)2〉ε2
ch〈N(N − 1)〉, (27)

f1,1(ch, γ) = 〈nchnγ〉 = 〈f(1 − f)〉εch(ε1 + 2ε2)〈N(N − 1)〉, (28)

f0,2(ch, γ) = 〈nγ(nγ − 1)〉 = 〈f 2〉(ε1 + 2ε2)
2〈N(N − 1)〉 + 2ε2〈f〉〈N〉. (29)

In Eqs. (25)-(29) the overall statistical averages for the charged, photon, and
charged-photon factorial moments are expressed, in an obvious notation, in
terms of the independent moments taken with respect to the P (N) and p(f)
distributions.

Finally, we turn to the effect of the MiniMax trigger on these considera-
tions. The MiniMax trigger requires, among other things, a coincidence in the
signals from scintillator counters located behind both the converter and the
entire tracking telescope. In consequence, events in which no charged particle
or converted γ goes through the acceptance of the detector are triggered with
different (and lower) efficiency, ε, than events in which either a charged par-
ticle or γ conversion products go through the aperture. An effective model
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for the effect of the MiniMax trigger on the probability, pobs(nch, nγ), for
observing an event with nch charged particles and nγ converted γ’s passing
through the acceptance is given by the proportionalities

ptrig(0, 0) = εαpobs(0, 0), nch = nγ = 0, (30)

and
ptrig(nch, nγ) = αpobs(nch, nγ), nch + nγ > 0. (31)

Here ptrig(nch, nγ) is the measured probability of seeing an event, including
the effects of both the trigger and the particle detection efficiencies, while
pobs(nch, nγ) presumes perfect triggering. If

α = [1 + (1 − ε)pobs(0, 0)]−1, (32)

ptrig will be properly normalized if pobs is.
The bivariate factorial moments transform homogeneously under the trans-

formation (30)-(32) incorporating differential trigger efficiencies,

fi,j(ch, γ) → αfi,j(ch, γ). (33)

4 ROBUST OBSERVABLES

The second-order factorial moments (25)-(29) represent the lowest-order cor-
relative effects among charged pions and photons. We see from (29) that
the gamma-gamma correlations are distinguished by the term 2ε2〈f〉〈N〉 for
observing the two photons from a single neutral pion, so that this average
will not be a component of a robust measure involving only first and second
order moments. This suggests the construction of a measure from the mo-
ments (25)-(28) in the form of a ratio in order to cancel out as many effects
as possible, apart from the p(f) averages, that reflect the particular details
of the production mechanism.

Consider, then, the ratio

r1,1 =
〈nchnγ〉〈nch〉

〈nch(nch − 1)〉〈nγ〉
. (34)

For generating functions of the form (23), we find from (25)-(28) that

r1,1 =
〈f(1 − f)〉〈(1 − f)〉

〈(1 − f)2〉〈f〉 , (35)
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an expression in which all reference to the background distribution P (N) and
the efficiencies ε1, ε2, and εch have cancelled out. Further, we see that

r1,1 → r1,1 (36)

under the transformation (30)-(32) so that r1,1 is a “robust observable” in
the sense referred to in Sec. 1.

It follows from (35) that
r1,1 ≤ 1, (37)

where the equality is realized for generic pion production, p(f) = δ(f − f̂),

r1,1(generic) = 1, (38)

independently of f̂ . The realization of the limit (38) in the UA5 data at
200 GeV and 900 GeV [25], and in Monte Carlo simulations at 1.8 TeV,
both of which include nonpionic sources of charged particles and photons, is
considered in Sec. 6.

For a DCC distribution, p(f) = 1/(2
√

f), one finds

r1,1(DCC) =
1

2
. (39)

This clearly distinguishes the pure DCC and generic distributions.
The values (38) and (39) represent the limiting extremes of a mixture

of generic and DCC distributions. Generally, broad (DCC) and narrow
(generic) statistical distributions can be distinguished in a mixture of the
two by means of higher-order moments that are sensitive to the tail of the
charged-particle/photon distribution. Robust combinations of these higher-
order moments that are generalizations of r1,1 will be of greatest practical
value in an analysis of data in which a discernable fraction of DCC form is
expected to appear.

Let us first note that the normalized factorial moments

Fi ≡
〈N(N − 1) . . . (N − i + 1)〉

〈N〉i (40)

are unity if the parent distribution P (N) is Poisson. Therefore, deviations
from purely random fluctuations are measured by the departure of the Fi’s
from unity. A bivariate generalization of the Fi’s is given by

Fi,j =
〈nch(nch − 1) . . . (nch − i + 1) nγ(nγ − 1) . . . (nγ − j + 1)〉

〈nch〉i 〈nγ〉j
. (41)
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In particular, one finds that

Fi,0 =
Fi 〈(1 − f)i〉
〈(1 − f)〉i

(42)

and

Fi,1 =
Fi+1 〈f(1 − f)i〉
〈f〉 〈(1 − f)〉i

, (43)

where Fi refers to the ith normalized factorial moment (40) of the P (N)
distribution for the total multiplicity. We note that

Fi,j → α1−i−jFi,j (44)

under the transformation (30)-(32).
Evidently, r1,1 = F1,1/F2,0. From (42) and (43) we find a generalization

of r1,1 to a family, R, of robust observables:

ri,1 =
Fi,1

Fi+1,0
=

〈(1 − f)〉 〈f(1 − f)i〉
〈f〉 〈(1 − f)i+1〉 . (45)

Moreover, one finds that for all i ≥ 1

ri,1(generic) = 1,

ri,1(DCC) =
1

i + 1
, (46)

in the two cases. Thus, ri,1 becomes more sensitive to the difference between
DCC and generic production mechanisms with increasing order of the mo-
ments. This reflects the broadness characteristic of the DCC distribution in
the neutral fraction f compared to the generic case.

The ratios

ri,j =
Fi,j

Fi+j,0

(47)

are not robust because the moments Fi,j for arbitrary i and j are not inde-
pendent of the photon detection efficiencies. However, the terms involving
these efficiencies can be expessed in terms of only one combination of these
parameters, namely

ξ =
2ε2

(ε1 + 2ε2) 〈nγ〉
, (48)
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along with the mean number of photons, as

Fi,j =
[j/2]
∑

m=0

cj,mξmFi+j−m
〈(1 − f)if j−m〉
〈(1 − f)〉i 〈f〉j−m , (49)

The coefficients cj,m are obtained from the identity, true for any differentiable
function, D(z2),

djD(z2)

(dz)j
=

[j/2]
∑

m=0

cj,m2m(2z)j−2mdj−mD(z2)

(dz2)j−m
(50)

The first few cj,m are [28]:

cj,0 = 1,

cj,1 = j(j − 1)/2,

cj,2 = 3 j!/4!(j − 4)!. (51)

One can use the ratios ri,j’s in the analysis of experimental distributions,
with the understanding that the parameter ξ is to be determined from the
data. Generally, we have the bounds and limiting values

ri,j(generic) ≥ 1, (52)

(ri,j(generic))ξ=0 = 1, (53)

and

(ri,j(DCC))ξ=0 =
i!(2j − 1)!!

i + j
. (54)

5 SENSITIVITY TO DCC ADMIXTURES

We next turn to the question of what can be said about robust observables
when there is an admixture of DCC and generic multipion production. There
is considerable theoretical uncertainty about how such an admixture would
arise in hadronic collisions and so there are many possibilities for extending
the development given in the preceding sections. Our objective in this sec-
tion is only to provide a formalism in which the sensitivity of experimental
results to the presence of DCC or some other anomalous mechanism can
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be investigated. Thus, it will suffice to address this question only in the
context of a few simple limiting models of pion production containing both
generic and DCC components. Specifically, we consider modifications of the
generating-function formalism we have developed in the preceding sections
in three different scenarios for mixing DCC and generic multiparticle pro-
duction. Then we examine the impact of these modifications on the values
of the robust observables.

5.1 Exclusive Production

First, let us consider the possibility of what we refer to as exclusive produc-
tion. That is, in a given event, particle production is either the result of
the formation of a DCC with probability λ, or it is generic with binomially
distributed charged and neutral particles with probability 1−λ. The picture
of exclusive production could be regarded as a first-order phenomenology of
very high-energy cosmic-ray interactions, which seem to divide themselves
into what appear to be generic and anomalous classes [29].

The generating function for the exclusive production of charged pions
and the photons resulting from π0 decay is simply the weighted sum of the
generic and DCC generating functions:

Gexcl(zch, zγ , λ) = (1 − λ)Ggeneric(zch, zγ) + λGDCC(zch, zγ). (55)

Here Ggeneric(zch, zγ) and GDCC(zch, zγ) are obtained from (23) for the cases

p(f) = δ(f − f̂) and p(f) = 1/(2
√

f), respectively, and where the distribu-
tions P (N) of the total number of pions are generally different in the two
cases.

The expressions for the moments ri,1 obtained using Gexcl(zch, zγ, λ) in-
terpolate between the generic and DCC limits as λ varies between 0 and 1.
For example, since

f excl
i,j = (1 − λ)f gen

i,j + λfDCC
i,j

= f gen
i,j (1 + λ(

fDCC
i,j

f gen
i,j

− 1)), (56)

it follows, using the results of Section 3, that one can write

rexcl
1,1 (λ) =

[1 + λ( 2
15f̂(1−f̂)

〈N(N−1)〉DCC

〈N(N−1)〉Gen − 1)][1 + λ( 2
3(1−f̂)

〈N)〉DCC

〈N〉Gen − 1)]

[1 + λ( 8
15(1−f̂)2

〈N(N−1)〉DCC

〈N(N−1)〉Gen − 1)][1 + λ( 1
3f̂

〈N)〉DCC

〈N〉Gen − 1)]
(57)
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Note that this expression explicitly depends on the relative size of the DCC
and the generic factorial moments. Technically, this ratio is no longer “ro-
bust” in the sense of the preceding section. However, it still does not depend
upon efficiency corrections. In addition, the extra dependence will be an
advantage if DCC dominates the high-multiplicity tail of the distribution.

5.2 Independent Production

A second possible production scenario is where the occurrence of DCC in an
event is independent of the pions that are produced generically. Independent
production implies that the probability PDCC(N) for producing N DCC pions
is independent of the probability Pgeneric(N) for producing N binomially
distributed pions, so that the generating function factors into a product,

Gind(zch, zγ) = Ggeneric(zch, zγ)GDCC(zch, zγ). (58)

Thus, we find

f ind
i,j =

i
∑

α=0

j
∑

β=0

(

i
α

)(

j
β

)

fGen
i−α,j−βf

DCC
α,β . (59)

Hence, using the results of the previous sections, it follows that, for example,

rind
1,1 =

[1 + 〈N〉Gen〈N〉DCC

〈N(N−1)〉Gen ( 2
3(1−f̂)

+ 1
3f̂

) + 2〈N(N−1)〉DCC

15f̂(1−f̂)〈N(N−1)〉Gen
][1 + 2〈N〉DCC

3(1−f̂)〈N〉Gen
]

[1 + 〈N〉Gen〈N〉DCC

〈N(N−1)〉Gen ( 4
3(1−f̂)

) + 8〈N(N−1)〉DCC

15(1−f̂ )2〈N(N−1)〉Gen
][1 + 1〈N〉DCC

3f̂〈N〉Gen
]

.

(60)
Again the sensitivity to the independent production of DCC is dependent on
the ratios of DCC and generic factorial moments, but not to the efficiency
corrections.

We note that in the independent production model

ln Gind(zch, zγ) = ln Ggeneric(zch, zγ) + ln GDCC(zch, zγ), (61)

which suggests an analysis in terms of a bivariate generalization of single-
variable cumulant moments [16, 18-20]. We define bivariate cumulants for
i + j > 0 by

ki,j =

(

∂i+j

∂zi
ch∂zj

γ

ln G

)

zch=zγ=1

. (62)
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¿From (58) we see that in this production scenario, the cumulants are addi-
tive:

kind
i,j = kgeneric

i,j + kDCC
i,j . (63)

For single-variable probability distributions, cumulants reflect non-random
correlations in that they vanish for a Poisson distribution. In the bivariate
case their properties as a measure of correlations are not so direct.

As with the bivariate normalized factorial moments (41), we introduce
normalized bivariate cumulant moments:

Ki,j = 〈nch〉−i 〈nγ〉−j

(

∂i+j

∂zi
ch∂zj

γ

ln G

)

zch,zγ=1

. (64)

In the independent model we obtain for Kind
i,j the weighted sum

Kind
i,j = λi

chλ
j
γK

DCC
i,j + (1 − λch)

i(1 − λγ)
jKgeneric

i,j , (65)

where

λch,γ =
〈nch,γ〉DCC

〈nch,γ〉
(66)

are the fractions of the mean charged or photon multiplicities attributed to
the DCC.

The formulae for the normalized cumulant moments for DCC and generic
subsamples are obtained in a straightforward manner. As before, most of
the efficiency corrections cancel out. However, the cumulant moments do not
scale homogeneously under the differential trigger inefficiency characteristic
of MiniMax. While this is disadvantageous for the early MiniMax analyses,
there is reason to expect that they will be eventually of substantial utility in
MiniMax as well as in other experiments.

5.3 Associated Production

A third possiblity for the contamination of a DCC signal by generic multipar-
ticle production is what can be called associated production. For example,
in the Baked Alaska model [8] the number of DCC pions is estimated to scale
as

NDCC ∼ (Ngeneric)
3/2. (67)
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A simpler case, which is also a credible scenario, is where the amount of
DCC production is, on the average, proportional to the amount of generic
production. It then follows using the cluster theorem [27], that

Gassoc(zch, zγ; λ) =
∫ 1

0
dfb pb(fb)

∫ 1

0
dfd pd(fd)

∞
∑

N=0

P (N)[(1 − λ)gb(zch, zγ) + λgd(zch, zγ)]
N , (68)

where,
gA(zch, zγ) = fAg0(zγ) + (1 − fA)gch(zch), (69)

pb(fb) = δ(fb − f̂), (70)

pd(fd) = 1/(2
√

fd), (71)

and the index A takes the values b and d in the binomial and DCC cases,
respectively. As before, one can carry out the calculation of the robust ob-
servables which results in formulae that interpolate as a function of the frac-
tion, λ, of DCC admixture between the generic and DCC limits. Note that
in this case there would be only a single parent P (N), common to both the
generic and DCC production. Using the results of the previous section, one
can calculate, for example,

rassoc
1,1 (λ) =

[(1 − λ)2f̂(1 − f̂) + 1
3
λ(1 − λ)(1 + f̂) + 2

15
λ2][(1 − λ)(1 − f̂) + 2

3
λ]

[(1 − λ)2(1 − f̂)2 + 4
3
λ(1 − λ)(1 − f̂) + 8

15
λ2][(1 − λ)f̂ + 1

3
λ]

,

(72)
which, in contrast to the other two cases, (57) and (60), is a fully robust
observable.

5.4 Other Particles

A similar framework can be used to discuss the sensitivity of the predictions
to the production of particles other than pions. This is of potential concern,
since K and η0 production may be a substantial fraction of pion production
[17, 25, 30]. In particular, the η0/π0 ratio can be quite large leading to an
excess of gammas over the case of pions alone, where 〈nγ〉 = 〈nch〉.

Relatively little is known about K and η0 distributions at the highest
energies, especially in forward directions, so, while an independent produc-
tion model might be more accurate, we will limit our considerations at the

18



moment to the context of an “associated” production model. In essence, we
are thus assuming that a system of parent partons is created in the collision
process, and that this system then evolves into a system of N hadrons with
probability P (N), with the hadrons independently partitioned into various
species.

Let the index i run over the various types of hadrons that are produced.
The i′th type of hadron is produced with relative probability λi (with

∑

i λi =
1). These hadrons then decay into charged particles and γ’s, and each species
of hadron is characterized by a generating function for detecting the products
of that species,

gi(zch, zγ) =
∑

nch

∑

nγ

ε(i)
nch,nγ

znch

ch znγ
γ , (73)

where gi(1, 1) = 1. Then the observed generating function, neglecting DCC
production, can be written as

Gobs(zch, zγ) =
∑

N

P (N)[
∑

i

λigi(zch, zγ)]
N . (74)

We can now make a few observations about the impact of contamination
of the predictions that arise from K and η0 production. The following esti-
mates of the effects of various particle types on the magnitude of r1,1 draw
upon the simulations specific to MiniMax reported in Section 6.

First, we note that the K±’s, which are seen simply as charged particles in
MiniMax, appear just as another source of charged particles from the collision
point and so modify the neutral fraction, but are otherwise benign. Similarly,
the KL’s have a decay length much longer on average than the length of the
MiniMax detector. In consequence they are only detected, but not identified,
when they interact strongly in the converter used to identify photons. On
the relatively rare occasions when KL’s do interact in the converter, they
are misidentified as γ’s. This will also influence the net neutral fraction
that is observed, but is also otherwise benign. In conclusion, the associated
production of K±’s and KL’s will not change the values of the ri,j’s predicted
in Section 4 for “generic” production.

The case of KS production is rather interesting since the KS decay modes,
KS → π+π−(69%), KS → π0π0(31%), are essentially those of an isosinglet
DCC with one pair of pions. That is, in regard to the statistics of the
particles produced, KS decays are essentially identical to those of the smallest

19



conceivable domain of DCC’s. As such, KS production is in principle of
interest from the point of sensitivity to very small domains of DCC.

Let us consider associated production of KS’s with fraction λKS
. The

generating function for studying the modification of generic production is
thus

GKS
(zc, zγ ; λKS

) =
∑

N

P (N)[(1 − λKS
)ggen(zc, zγ) + λKS

gKS
(zc, zγ)]

N . (75)

Using previous methods, one finds that

(rKS
1,1 (λ))−1 = 1 +

2〈N〉λKS
εKS
2,0

〈N(N − 1)〉((1 − λKS
)(1 − f̂)εch + λKS

(εKS
1,0 + 2εKS

2,0 ))2

(76)
which is manifestly not robust.

KS’s are not DCC domains; they are, rather, particles of well-defined
mass and a lifetime such that most of them have decayed before reaching the
MiniMax detector, and their decay products have strong correlations and
are not vertexed to the collison point. As a consequence, in MiniMax the
acceptance for 2 charged pions from a single KS is about 4%. Consequently,
the impact of KS production on the MiniMax systematics is expected to be
quite small.

One can similarly study the impact of η0 production on the idealized
predictions of Section 4. The η0 has a wider variety of decay modes and
all of the charged particles and γ’s from the decays are collision vertexed.
Thus gη0(zc, zγ) is more complicated, but the calculations follow closely those
outlined for KS decays. In addition to having decay modes with more than
a single charged particle, there are decay modes with intrinsic charged-γ
correlations, as well as the charged-charged correlations which entered into
the KS analysis. The conclusion is, nevertheless, much the same.

5.5 Detector Effects

Finally, we note that the formalism we have developed can be extended to
consider contamination due to detector-related effects. For example, in de-
tectors which identify gamma rays by electromagnetic calorimetry, charged
hadrons can also be identified as photons when they interact strongly in the
calorimeter. For example, in WA98 [31], a heavy-ion experiment at CERN

20



which has instituted a DCC search, this is expected to occur approximately
20% of the time. Such misidentifications can be handled by using an appro-
priate form of the generating function gi(zch, zγ). For example,

gπ±(zch, zγ) = επ±

0,0 + επ±

1,0zch + επ±

1,1zchzγ (77)

would be suitable if some fraction επ±

11 of the charged pions were tagged as
both charged particles and photons because of the calorimeter’s response.

6 ROBUST OBSERVABLES IN PRACTICE

We now turn to the utilization of the robust observables for analyzing collider
data, both actual or simulated. As we saw in the last section, the assumptions
made earlier are idealizations that are violated by some types of production
mechanisms and by less than ideal detector performance. In this section we
examine the properties of the robust moments in the context of the UA5 data
and Monte-Carlo simulations of the MiniMax detector in order to assess the
importance of these violations in practice.

6.1 r1,1 from UA5

For collider energies of 200 GeV and 900 GeV, UA5 measured the inclu-
sive charged-particle and photon dN/dη distributions, as well as the cor-
responding charged-charged and the charged-photon correlation functions,
Cch,ch(ηch = 0, ηch) and Cγ,ch(ηγ = 0, ηch), respectively [25]. Here, ηch and ηγ

denote the charged-particle and photon pseudorapidities, respectively. The
measurements were carried out over about four units of |ηch|. The mean
values 〈nch〉 and 〈nγ〉 can be calculated for different pseudorapidity bins
using the experimental dN/dη distributions. Under the assumption that
Cch,ch(η1, η2) and Cγ,ch(η1, η2) depend only on the absolute value of |η1 − η2|,
the second-order moments that enter into r1,1 can be also be calculated for
corresponding pseudorapidity bins. Despite large uncertainties in the UA5
photon data and the validity of our assumptions about the correlation func-
tions, we find r1,1 = 1.0 ± 0.10 for the different energies and various bin
choices.
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6.2 Simulations

While we believe the robust observables will find general application in exper-
imental searches for DCC, we are motivated here primarily by the MiniMax
experimental situation. In this context, in order to make a rough check of
the validity of the assumptions we have made in the opening sections, we
next describe a series of complete simulations of the MiniMax experiment.

Minimum bias events are generated in PYTHIA version 5.702 and JET-
SET 7.401 [32]. The output of PYTHIA is then used as input to the simula-
tion of the detector response using GEANT, version 3.21 [33]. The GEANT
output is then put through a full tracking and analysis chain. The resulting
frequency distributions for observing nch charged tracks and nγ converted
photons are then used to calculate the various robust observables. Similar
studies, in which the output of PYTHIA is replaced or augmented by the
output of a DCC generator, are also carried out. We find the results of these
simulations to be in agreement with expectations from our calculations in
the previous sections.

6.2.1 Standard Monte Carlo

PYTHIA is used to simulate the minimum bias collisions at
√

s = 1.8 TeV.
Default values are taken for all parameters except that particles with a mean
decay length greater than 1 cm were not allowed to decay.

There are no published data on multiparticle production at 1.8 TeV in
the pseudorapidity interval covered by MiniMax, so there is no independent
check on the accuracy of the simulations. For recent measurements at 630
GeV [34], the agreement between PYTHIA and the dN/dη data, in a range
of pseudorapidity including that of MiniMax, is less than ideal. Nonetheless,
the PYTHIA output represents a useful benchmark.

The particles generated in a simulated collision are then taken as input
into a GEANT simulation of the detector and its environment. The exper-
imental data give evidence of a large background of particles aising from
interactions in material immediately surrounding the detector. Therefore,
many nearby objects are included in the simulation. GEANT propagates the
particles through the detector and its surroundings and produces a simulation
of the data that are produced by the actual detector. Despite care in includ-
ing all relevant aspects of the detector and its environment, the GEANT
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data show a smaller number of reporting wires in the MWPC’s than do the
actual data by a factor of two.

GEANT data are written to a file that is used as input to the same code
that is used for the analysis of the actual MiniMax data. The analysis pro-
ceeds in two stages. First, a tracking code is used to find track segments in
front of (heads) and behind (tails) the converter plane. The output of this
calculation is used by a second code (vertexer) that determines the number
of charged particles and γ’s observed in the event. In so doing, it counts
a charged track to be a head that can be joined to at least one tail. A γ
conversion is taken to be one or more tails emanating from the same point
in the converter without an accompanying head. Candidate charged and γ
tracks are required to point to within some given distance from the collision
point in order to remove secondary particles from material adjacent to the
detector and fake tracks arising from chance combinations of random report-
ing wires. The parameters used in the vertexer are determined by optimizing
the reconstruction of the events generated by PYTHIA and GEANT.

This track-reconstruction procedure is still under development. It does
not satisfy all of the assumptions made in Section 1 regarding tracking effi-
ciency. In particular, the reconstruction efficiency may depend on the mul-
tiplicity and proximity of tracks.

6.2.2 DCC generator

DCC production is modelled according to the 1/(2
√

f) distribution. For the
present simulation, the DCC domain size in η − φ space is taken to be on
the order of the detector acceptance. The c.m. momentum of the DCC is
directed at the center of the acceptance with a reasonably large pT . We
assume that the number of pions in the DCC is independent of the central
pseudorapidity of the DCC. The ratio of the mean energy density of DCC
pions to that of generically produced pions is then approximately constant;
we take the ratio to be unity.

DCC’s are generated using what could be called a “snowball” model in
reference to the low pion momenta in the DCC c.m. The number, NDCC , of
DCC pions is chosen using a Poission distribution with mean µDCC .

The neutral fraction is generated using the transformation method, where,
if x is a uniform deviate, f = x2 is distributed according to 1/(2

√
f). A

uniform deviate xi is then generated for each of the NDCC pions; if xi < f ,

23



the pion is defined to be neutral, otherwise it is defined to be charged. This
procedure implements the 1/(2

√
f) distribution exactly; if one takes the

viewpoint that the isosinglet distribution is more fundamental, then this
procedure can be viewed as an approximation to it which is valid in the limit
that the total number of pions is large, and one is sampling a subset of the
DCC. The actual distribution is, of course, an experimental question.

Each of the pions is assigned a 3-momentum in the DCC c.m. system by
drawing from a zero-mean Gaussian distribution with a variance 〈~p·~p〉 = 3σ2

p .
The DCC is then boosted such that the momentum of the DCC c.m. is

in the direction of the center of the MiniMax detector at η = 4.1, and so
that the DCC pions have 〈pT 〉 ∼ σp. If the pions are not too relativistic in
the DCC c.m. frame, the boosted DCC domain is approximately circular in
η − φ space, with radius RDCC ∼ σp/pT .

The results we report next are based on Monte-Carlo simulations in which
σp = 0.1 GeV and pT = 0.14 GeV; hence RDCC ∼ 0.7, the typical radius of
a hadronic jet. The Poisson mean for the number of DCC pions has the
value µDCC = 5.5, which corresponds to an energy density in lego space
comparable to that of generic production. The Monte-Carlo simulation of
DCC production is used to generate pure DCC events. These events are then
run through the same GEANT simulation as the PYTHIA events, except that
the trigger is not used since no particles go in the p̄ direction.

6.3 Results

Once the number of charged tracks and γ’s passing into the acceptance is
determined, the moments and rij are calculated. Statistical errors are esti-
mated assuming Poisson fluctuations and the standard propagation of errors
formalism [35].

The results obtained for approximately 5×104 PYTHIA events and 2×104

pure DCC events are shown in Table 1. For purposes of comparison, the
predicted values for idealized binomial and DCC distributions are included.
For those ratios involving higher-order moments of the number of observed,
converted γ’s, the predictions are nonrobust, as discussed in Section 4, and
depend on ξ, which is determined from the relationship between f0,2, f2,0,
and <nγ >, assuming a binomial distribution. The same values are used in
correcting the DCC predictions for the higher order moments. In particular,
it is assumed that 2ε2/(ε1 + 2ε2) ≈ 0.08 ± 0.01 obtained from PYTHIA for
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generic production has the same value for DCC production. This is certainly
violated in practice, for the simulated DCC pions have significantly lower
〈pT 〉 ∼ σp than those generated by PYTHIA, and hence the probablility of
both γ’s from a π0 decay being in the acceptance, which is reflected in ε2, will
be different. In addition, the Fi’s are also taken to be the same in the DCC
case as in the PYTHIA case, which is also clearly a poor assumption. We
have chosen to display the data in the manner shown, however, in order to
illustrate the problems which will arise in DCC searches using these moments.

There is general agreement between the “predictions” based on the analy-
sis in Section 4 of this paper, and the results of these full simulations. One of
the striking features of these results is how well the PYTHIA/GEANT sim-
ulation, which includes resonance production, simulations of detector effects,
among other features, matches the predictions of a simple binomial model.

In order to illustrate the effect of an admixture of DCC with generic
events, where the amount of DCC produced is independent of the amount
of generic production, DCC domains from the DCC-generator/GEANT are
added to various fractions of random PYTHIA/GEANT events. This rep-
resents a mixture of the independent and exclusive models considered in
Section 5. The effect on the ri,1 is shown in Table 2.

These simulations support the expectation that the robust observables
introduced in this paper will be a useful analysis tool, even though all of the
technical requirements of robustness may not be met. Thus, these observables
provide a well-defined framework for describing correlations in such way that
many systematic uncertainties cancel out.

7 CONCLUDING REMARKS

Most of the experimental analyses and theoretical studies of multihadron
production have concentrated only on charged-hadron production, for which
the bulk of the data have been taken; for exceptions to this, see [21-25]. The
questions we have addressed concerning the neutral-hadron component of
multiparticle production have received little attention, but are vital for our
MiniMax experiment.

The robust observables R which are here proposed appear, on the basis
of the analytic calculations and Monte Carlo simulations we have presented,
to be of considerable value in all future analyses of charged-particle/photon
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distributions in high-energy hadron and heavy-ion collisions, and especially
with respect to the search for disoriented chiral condensate.

While these observables are manifestly robust, there are still clear limita-
tions to their use which must be eventually be addressed. We have said little
about momentum-dependent efficiencies; this will, at the formal level, require
generating functions to be generalized to generating functionals [22-24]. At
this level, even the choice of the parent generating functional may have con-
siderable ambiguity due to a lack of consensus on the underlying physics;
e.g., can the Poisson-transform structure of Eq. (6) be simply generalized?

At a more practical level, the issue of correlated efficiencies, especially
with respect to total multiplicity and background level, is vital. Here the
features of the individual experiment and its environment are essential, and a
strong interplay between simulations and the analysis of real data is required.

Finally, in experiments with large acceptance, even for pure DCC pro-
duction the chiral order parameter may be different in different portions of
the η−φ, or lego, phase space. In this case the formalism we have presented
must undergo further generalization.

Nevertheless, we believe that the analysis strategy we have described can
serve as a very useful starting point for the experimental search for disori-
ented chiral condensates.
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APPENDIX: DCC DISTRIBUTIONS

The distribution

P [n; N ] =

(

2NN !

2nn!

)2
(2n)!

(2N + 1)!
, (A1)
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where N and n ≤ N are nonnegative integers, was discovered by Horn and
Silver [15] in the context of coherent-state production models. For this reason
we will refer to it as the coherent distribution. It was later found that the
coherent distribution was an appropriate final state for a simple model of a
zero isospin DCC [6]. In both physical contexts, the distribution is relevant to
the case of an even total number, 2N , of pions and, necesarily, because of zero
isospin, to an even number, 2n, of π0’s. In the mathematical considerations
that follow, n and N are regarded as arbitrary nonnegative integers.

In [6] it was shown that

P [n; N ] → 1

2
√

f

1

N
, (A2)

as N, n → ∞, with n/N ≡ f constant, in agreement with the classical
expectations for a DCC [1-5, 7, 11]. Generally, a bivariate distribution can
be expressed as a continuous binomial distribution weighted over the infinite-
sampling limit:

P [n; N ] =

(

N
n

)

∫ 1

0

df

2
√

f
fn(1 − f)(N−n). (A3)

The representation (A3) can be established by rewriting (A1) in terms of the
beta function,

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
(A4)

as

P [n; N ] =
1

2

(

N
n

)

B(n +
1

2
, 1 + N − n), (A5)

which is found using the identity

Γ
(

n +
1

2

)

=
(2n)!

22nn!
Γ
(

1

2

)

. (A6)

The standard integral representation of the beta function [36] yields (A3).
The identity (A5) establishes the connection between the coherent-state pro-
duction model of Martinis, et al., [9], for I = 0 and the analysis of [6] and
[15]. The continuous binomial distribution (A3) allows one to calculate all
averages in the same explicit manner as for the binomial distribution for a
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particular f and then integrate the result over f with the indicated weighting
leading to exact results for the various moments. The direct use of (A1) to
calculate averages is awkward.

A problem arises with the original interpretation of distribution (A1) in
connection with a realistic dectector, or, equivalently, a sampling consisting
of a finite number of pions. The limited sampling of such a detector means
that typically one sees only a portion of the particular group of the correlated
pions that are thought to be the earmark of a DCC. Within that sampling we
need to find the distribution induced by the DCC and with it we can carry
out a generating-function analysis. We show that the coherent distribution
is self-similar in that the neutral/charged distribution of a finite number of
pions chosen from a sampling space distributed using the limit of (A1) for
N → ∞, is given in fact by (A1), but now with N and n regarded as the
total number and the number of π0’s, respectively, whether or not they are
even or odd.

In support of these remarks, let us consider the problem of the neu-
tral/charged distribution of an arbitrary subset, even or odd, of a DCC cor-
responding to 2N pions that are distributed according to P [n; N ]. Suppose
then that because of limited sampling we observe nt ≤ 2N pions. The joint
probability distribution function for finding n0 neutral pions and nch = nt−n0

charged pion’s is then a product with P [n, N ] of the hypergeometric distri-
bution [35] of the two relevant binomial samplings:

Q[n0; nt; N ] =

N− 1

2
nc

∑

n≥ 1

2
n0

(

2n
n0

)(

2(N − n)
nch

)[(

2N
nt

)]−1

P [n; N ], (A7)

where realizing equality in either of the limits is possible only when these
limits are even. The nature of the summation limits in (A7) complicates a
direct proof of the correct normalization, viz.,

nt
∑

n0=0

Q[n0; nt; N ] = 1, (A8)

however, (A8) has been verified numerically.
Because of the limited sample one cannot regard N in (A7) as known.

Therefore the case where all that is known is that N � 1 is of special interest.
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In this case we find using (A2), the Stirling approximation, and passing to
the continuum limit of f , that

Q[n0; nt; N ] → P [n0; nt], (A9)

where

P [n0; nt] =

(

nt

n0

)

∫ 1

0

df

2
√

f
fn0(1 − f)(nt−n0), (A10)

which has precisely the same form as (A3). Here, however, the respective
functional parameters are the number of neutral and total pions sampled from
the DCC, rather than half those numbers as they are for all of the pions
of a full DCC. Thus the induced representation (A10) is a quasi-coherent
distribution that goes over to the classical DCC distribution (A2) in in the
infinite-nt limit, which in practice may not be too large, due to the accuracy
of the Stirling approximation for fairly small numbers.

The similar forms of Eqs. (A3) and (A10) shows that, in regard to an infi-
nite sampling space, the coherent distribution generates a self-similar induced
distribution. In addition, the procedure used to arrive at (A10) indicates how
one uses the continuum limit of the coherent distribution to define a sampling
of a finite number of pions from an infinite sampling space. This remark then
also explains the use of the form (A3) when it is applied to the full DCC:
It represents a sampling algorithm carried out by means of neutral pairs of
pions to induce a DCC of a finite, even number of pions out of the infinite
sample.

The distribution (A10) refers to a collection of pions that need not have
net zero charge, the signal characteristic of a full DCC, but yet makes no
reference to the total charge. For the sampling algorithm used to obtain
(A10), the absolute magnitude of total charge will obviously be binomially
distributed about zero if nch is even, and unity if it is not; this extended form
of (A10) should be used when the sign of the pions can be distinguished.
When they cannot, the means and variances have interpretations that are
different from a DCC.

Finally, let us weight P [n0; nt] with respect to a parent distribution P [nt].
Then the relevant generating function is

GDCC(zch, z0) =
∞
∑

nt,nch,n0=0

δnt,nch+n0
P [n0; nt]P [nt]z

nch

ch zn0

0 . (A11)
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Representation (A10) when combined with (A7) yields

GDCC(zch, z0) =
∫ 1

0

df

2
√

f
GBin(zch, z0; f), (A12)

which we interpret as the generating function of the factorial moments of
the numbers of charged and neutral pions sampled from a very large DCC
sample space.

The distribution p(f) = 1/(2
√

f) has been associated with the decay of a
DCC in the classical limit. Thus, the generating function (A12) can be con-
sidered applicable to the situation in which the phase-space domain of the
particles resulting from the DCC is very much larger than the acceptance
of the detector. Then one can picture DCC production as corresponding to
an event distribution for which the neutral fraction f is a random variable
distributed according to 1/(2

√
f), a depiction reflected in (A12).
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Table 1. Robust observables ri,j for generic events simulated by PYTHIA
and pure DCC events simulated with the ’snowball’ model. Comparisions
with the ri,j ’s obtained with binomially distributed pions and the 1/(2

√
f)

classical limit of DCC’s.

PYTHIA DCC binomial 1/(2
√

f)
i j ri,j ± σri,j

ri,j ± σri,j
ri,j ri,j

1 1 1.00 ± 0.02 0.57 ± 0.01 1.00 0.50
2 1 1.00 ± 0.05 0.43 ± 0.03 1.00 0.33
3 1 1.04 ± 0.13 0.38 ± 0.05 1.00 0.25
0 2 1.36 ± 0.04 1.55 ± 0.06 1.36 1.80
1 2 1.36 ± 0.10 0.66 ± 0.06 1.30 0.62
2 2 1.47 ± 0.26 0.44 ± 0.09 1.25 0.31
0 3 2.13 ± 0.25 2.98 ± 0.39 1.89 3.54
1 3 2.03 ± 0.43 1.19 ± 0.31 1.74 0.90
0 4 3.06 ± 0.94 6.82 ± 2.18 2.70 7.34
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Table 2. The effect on the ri,1 of an admixture of DCC and generic
(PYTHIA) events. DCC domains from the DCC-generator/GEANT are
added to various fractions of random PYTHIA/GEANT events. The first
column represents the fraction of events in which a DCC is overlaying a
generic event.

DCC fraction r1,1 ± σr1,1
r2,1 ± σr2,1

r3,1 ± σr3,1
events

0.00 1.01 ± 0.02 1.02 ± 0.05 1.09 ± 0.14 51741
0.02 1.00 ± 0.02 1.00 ± 0.05 1.01 ± 0.15 51741
0.05 0.97 ± 0.02 0.93 ± 0.05 0.95 ± 0.10 51741
0.10 0.95 ± 0.02 0.89 ± 0.04 0.89 ± 0.08 51741
0.20 0.93 ± 0.02 0.83 ± 0.04 0.77 ± 0.07 51741
0.50 0.84 ± 0.01 0.71 ± 0.03 0.68 ± 0.06 40000
1.00 0.74 ± 0.01 0.60 ± 0.03 0.55 ± 0.06 20000
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