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Hunting for glueballs in electron-positron annihilation
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We calculate the cross section for the exclusive production of JPC = 0++ glueballs G0 in asso-
ciation with the J/ψ in e+e− annihilation using the pQCD factorization formalism. The required
long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances
in radiative Υ decay. The cross section for e+e− → J/ψ + G0 at

√
s = 10.6 GeV is similar to ex-

clusive charmonium-pair production e+e− → J/ψ + h for h = ηc and χc0, and is larger by a factor
2 than that for h = ηc(2S). As the subprocesses γ∗ → (cc̄)(cc̄) and γ∗ → (cc̄)(gg) are of the same
nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal
observed by Belle in e+e− → J/ψX may actually be due to the production of charmonium-glueball
J/ψGJ pairs.

Bound states of gluons provide an explicit signature
of the non-Abelian interactions of quantum chromody-
namics. In fact, in a model universe without quarks,
the hadronic spectrum of QCD would consist solely of
color-singlet glueball states. In the physical world, the
purely gluonic components mix with qq̄ pairs, leading to
an enriched spectrum of isospin-zero states as well as qq̄g
hybrids. The existence of this exotic spectrum is as es-
sential a prediction of QCD as the Higgs particle is for
the electroweak theory.

Lattice gauge theory predicts the spectrum and quan-
tum numbers of gluonic states. According to a recent
lattice calculation by Morningstar and Peardon [1], the
ground-state masses for the JPC = 0++ and 2++ glue-
balls GJ are 1.73 GeV and 2.40 GeV, respectively [1].
Thus far, the empirical evidence for glueballs is not deci-
sive, probably because of complications from mixing with
the quark degrees of freedom.

An important mechanism for producing glueballs is
the radiative decay of heavy quarkonium, particularly
J/ψ → γGJ and Υ → γGJ [2]. In these reactions, the
quarkonium decays to an intermediate γgg state which
then can couple to any charge conjugation parity C = +
isospin I = 0 gluonic or hybrid state. For example, the
BES Collaboration [3] has observed the radiative decays
of the J/ψ and the ψ(2S) to γf2(1270) and γf0(1710),
both candidates for glueballs. There are also measure-
ments at CLEO of the decay Υ → γf2(1270) [4–6]. In
this paper we focus on another optimal mechanism for the
production of G0 and G2 at e+e− colliders, the reaction
e+e− → γ∗ → HGJ , H = J/ψ or Υ, in which a C = +
glueball can be produced in association with a quarko-
nium state from the subprocess γ∗ → (QQ)(gg) [7].
One of the six Feynman diagrams for the subprocess is
shown in Fig. 1; the remaining diagrams are permuta-
tions of the photon and the two gluons. A related re-
action γ∗ → π0GJ has been considered by Wakely and
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FIG. 1: Feynman diagram for γ∗ → H + GJ .

Carlson [8] as a source of pseudoscalar glueballs. We
shall show that these reactions satisfy pQCD factoriza-
tion. Unlike radiative quarkonium decay, this channel
imposes no a priori limit on the mass of the glueball
state.

The main background to charmonium-glueball pro-
duction e+e− → J/ψGJ is exclusive quarkonium pairs
such as γ∗ → J/ψηc, arising from the subprocess γ∗ →
(cc̄)(cc̄). The exclusive production of charmonium pairs
has in fact been observed recently with a substantial rate
at Belle [9]. The rates for exclusive charmonium-pair pro-
duction reported by Belle are significantly larger than
predictions based on perturbative QCD [10, 11]. The
Belle experiment identifies one member of the pair, the
J/ψ, via its leptonic decay; the other quarkonium state
is inferred by identifying the missing mass of the spec-
tator system with the charmonium states ηc, χc0, and
ηc(2S) which occur within the detector mass resolution.
As noted by Bodwin, Braaten, and Lee [12, 13], some
of the Belle signal for quarkonium pairs may be due to
two-photon annihilation e+e− → γ∗γ∗ → J/ψJ/ψ. Here
we note that because the subprocesses γ∗ → (cc̄)(cc̄) and
γ∗ → (cc̄)(gg) are of the same nominal order in pertur-
bative QCD, it is possible that some portion of the signal
observed by Belle in e+e− → J/ψX may actually be due
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to the production of charmonium-glueball J/ψGJ pairs.
In general, exclusive amplitudes can be computed

in QCD by convoluting the light-front wavefunctions
ψn/H(xi,k⊥i) of each hadron with the correspond-
ing n-particle irreducible quark-gluon matrix elements,
summed over n [14]. For hadronic amplitudes involv-
ing a hard momentum transfer Q, it is usually possi-
ble to expand the quark-gluon scattering amplitude as a
function of k2

⊥/Q2. The leading-twist contribution can
then be computed from a hard-scattering amplitude TH

where the external quarks and gluons associated with
each hadron are collinear. Furthermore, only the mini-
mum number of quark and gluon quanta contribute at
leading order in 1/Q2. In our case, the relevant hard-
scattering amplitude is TH(γ∗ → cc̄gg) computed with
collinear c and c̄ and collinear gg. As TH at leading twist
is independent of the constituent’s relative transverse mo-
mentum k⊥i, the convolution with the light-front wave-
functions and the integration over the relative transverse
momentum then projects out the Lz = 0 component
of the light-front wavefunctions with minimal n – the
hadron distribution amplitudes φH(x,Q).

In this paper we shall calculate the cross section for
e+e− → HGJ=0,2 using pQCD factorization. The ampli-
tude at leading twist can be expressed as a factorized
product of the perturbative hard-scattering amplitude
TH(γ∗ → QQ̄gg) convoluted with the nonperturbative
distribution amplitudes for the heavy quarkonium and
glueball states. We shall find that γ∗ → J/ψG0 produc-
tion dominates over that of J/ψG2, and show how the
angular distribution of the final state can be used to de-
termine the angular momentum J and projection Jz of
the glueball. We shall show that only Jz = ±2 tensor
states are produced by the pQCD mechanism at leading
twist. A bound on the normalization of the distribution
amplitude for the glueball state can be extracted from a
resonance search by CUSB in Υ → γX [15]. We shall
show that the rate for e+e− → J/ψG0 production could
be comparable to the corresponding NRQCD prediction
for e+e− → J/ψηc without exceeding the CUSB bound
from radiative Υ decay.

The distribution amplitude φH(x,Q) required for the
formation of the H in a hard process is directly related
to the NRQCD matrix element for the leptonic decay
rate of H. Its x dependence is peaked at x ∼ 1/2. The
key quantity which determines the normalization of the
γ∗ → HGJ processes is then the distribution amplitude
φJ(x,Q) of the GJ . The pQCD factorization picture pro-
vides a direct relation among the various glueball pro-
duction processes, as they all involve the same process-
independent φJ(x,Q). The φJ (x,Q) can be determined
phenomenologically by fitting to the measured produc-
tion rate of a glueball candidate. In leading-twist ap-
proximation the spin structure of the two-gluon system
in hard-scattering amplitude becomes that of a massless
spin-J = 0, 2 state. Therefore the field-theoretic defini-

tion of the φJ(x,Q) in light-cone gauge reduces to [16]

φJ(x,Q) =
F J

αβ√
2(N2

c − 1)

∫
d2k⊥dz−d2z⊥

(2π)3k+x(1− x)

×e−i(xk+z−−k⊥·z⊥)

×〈GJ |T G+α
a (0+, z−, z⊥)G+β

a (0)|0〉, (1)

where x and k⊥ are the light-cone momentum fraction
and transverse momentum of a gluon inside the GJ with
momentum k = (k+ = n · k, k− = n̄ · k,0⊥) and mass
MGJ

. The S−wave component is projected out by in-
tegrating over k⊥. The light-like vectors n and n̄ sat-
isfy n2 = n̄2 = 0 and n · n̄ = 2. The tensor F J

αβ

projects the massless spin-J components; they are de-
fined by F 0

αβ = [−gαβ + 1
2 (nαn̄β +nβn̄α)]/

√
2 and F 2

αβ is
the massless spin-2 polarization tensor εαβ . The glueball
distribution amplitude can also be defined from the two-
gluon light-front wavefunctions ψGJ (x,k⊥, λi) with gluon
spin projection λi = Sz

i = ±1, integrated over transverse
momentum in light-cone gauge A+ = 0.

The relative rates for the production of heavy scalar
glueballs with higher radial number N are determined
by the normalization of the corresponding glueball dis-
tribution amplitudes. The distribution amplitude for a
two-particle state has dimensions of mass. In effect, the
integral of the distribution amplitude over x is the rela-
tivistic generalization of the Schrödinger wavefunction at
the origin. Thus the distribution amplitudes for the 0++

glueballs tend to scale inversely with their mean radius
〈rN 〉. According to bag models [17], 〈rN 〉 ∼ 0.6 fm, inde-
pendent of N , suggesting equal rates for the heavier glue-
balls. On the other hand, the virial theorem extended to
the light-front formalism suggests that mean transverse
momentum and 1/〈rN 〉 increase monotonically with glue-
ball mass. If this is the case, then the production rate
in the γ∗ → HGJ process will tend to increase for heav-
ier glueball states, assuming that the annihilation energy√

s poses no phase-space restriction. Lattice gauge the-
ory and light-front Hamiltonian methods should eventu-
ally determine the glueball distribution amplitudes, thus
providing consistency checks on the production mecha-
nisms considered here.

As noted above, the amplitude for γ∗ → H(p)GJ(k)
can be computed as the convolution of TH(γ∗ → QQ̄gg)
with φJ(x,Q) weighted by the NRQCD matrix element.
In leading twist k− is neglected and, thus the glue-
ball momentum is approximated by k = k+n̄/2 in the
TH(γ∗ → QQ̄gg). The resulting effective vertex Aµ

J

is [16]

Aµ
0 = −8ig2

seeQm2
Q

√
N2

c − 1
Nck · np · n̄

(
εµ
H − n̄µk · nεH · n̄

2p · n̄
)

×
√
〈O1〉H
m3

Q

I0, (2)
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Aµ
2 = −4ig2

seeQm2
Q

√
2(N2

c − 1)
3Nck · np · n̄ εµν

2 (λ2) εH
ν

×
√
〈Q1

1〉H
m7

Q

I2, (3)

where µ and εH are the vector index for the γ∗ and
polarization vector for the H, respectively. The mass
and fractional charge of the heavy quark Q are ex-
pressed as mQ and eQ. Here 〈O1〉H and 〈Q1

1〉H are
the vacuum-saturated analogs of NRQCD matrix ele-
ments 〈O1(3S1)〉H and 〈Q1

1(
3S1)〉H for annihilation de-

cays defined in Refs. [18] and [19], respectively. To lead-
ing order in the heavy-quark velocity vQ in the quarko-
nium rest frame, the 〈O1(3S1)〉H is related to the radial
wavefunction at the origin R(0) and the decay constant
fH , which is defined by 〈0|Jµ

e.m.|H〉 = 2MHeQfHεµ
H , as

〈OH
1 〉 = Nc

2π |R(0)|2 = 2MHf2
H . The nonperturbative

factors for GJ are written as I0 =
∫ 1

0
dxφ0(x, Q) and

I2 =
∫ 1

0
dxφ2(x,Q)/[x(1 − x)]. In leading-twist approx-

imation the valence gluons are collinear and therefore
the only allowed polarization states for G2 are λ2 = ±2.
For G2 production the longitudinal polarization is pro-
hibited by Bose symmetry. This is true for any pro-
duction process for G2, for which pQCD factorization is
valid. The amplitude (3) for G2 is proportional to the
factor 〈Q1

1〉H/m7
Q which is suppressed to 〈O1〉H/m3

Q by
the fourth power of vQ. Therefore, in the remainder of
this paper we only consider G0; the analysis for G2 can
be found in our forthcoming publication [16]. Using the
vertex (2), we obtain the width Γ0 for radiative Υ decay
into G0 as

Γ0 =
16π2α2

sαe2
b(N

2
c − 1)Φγ

0

3N2
c mb

〈O1〉Υ
m3

b

|I0|2, (4)

where Φγ
0 = 1 − M2

G0
/M2

Υ. In Ref. [20], the decay rate
for the process Υ → γf0 has been calculated treating
f0 as a glueball candidate. Our light-cone wavefunction
φ0(x,Q) is equivalent to −Fs(x)/[2x(1− x)

√
N2

c − 1] in
that reference. Our result for Γ0 is 2/3 of the value given
in Eq. (5) of Ref. [20] if we neglect the MG0 dependence
in the Φγ

0 . The dimensions in Eq. (4) of the reference
suggest that there is a typographical error.

Our result for the differential cross section for e+e− →
J/ψG0 normalized to σµ+µ− = 4πα2/(3s) is

dRJ/ψG0

d cos θ∗
=

3π2α2
se

2
c(N

2
c − 1)r2Φee

0

N2
c

(
1− r2

4

)2

〈O1〉J/ψ

m3
c

×|I0|2
s

[
sin2 θ∗ +

r2

4
(1 + cos2 θ∗)

]
, (5)

where θ∗ is the scattering angle in the center-of-mass
frame, r = 4mc/

√
s, and the phase-space factor Φee

0 is
defined by

Φee
0 =

1
s

√[
s− (MJ/ψ + MG0)2

] [
s− (MJ/ψ −MG0)2

]
.(6)

The angular factors in the expression (5) can be under-
stood physically. If the hadron pair is produced at θ∗ = 0;
i.e., aligned with the lepton beams, then only final states
with Jz = ±1 can contribute, because the e+ and e−

annihilate with opposite chirality. Thus in the case of
scalar glueballs, the J/ψ with helicity ±1 is produced
with a 1 + cos2 θ∗ distribution. If the J/ψ is longitu-
dinally polarized, the cross section must vanish in the
forward direction, and thus it has a sin2 θ∗ distribution.

The rate integrated over angle is

RJ/ψG0 =
32π2α2

se
2
cr

2(1 + r2

2 )Φee
0

9
(
1− r2

4

)2

〈O1〉J/ψ

m3
c

|I0|2
s

. (7)

The size of the cross section can be estimated using the
asymptotic form of the ratio R = RJ/ψG0/RJ/ψηc

R ' 9
4

(
αG0

s

αηc
s

)2 1 + r2

2

r2(1− r2)(1− r2

4 )2
mc|I0|2
〈O1〉ηc

, (8)

where we neglected QED contributions to RJ/ψηc
given in

Ref. [10]. In the ratio R the phase-space factor Φee
0 can-

cels the
√

1− r2 for e+e− → J/ψηc. The strong coupling
constants for the two processes are written distinctively
because they have different effective scales. However, the
main uncertainties from the choice of running coupling
scale and scheme largely cancel in the ratio R. Here
mc|I0|2
〈O1〉ηc

represents the ratio of the square of the wave-
function at the origin of the glueball compared to that of
the ηc.

We next investigate whether some portion of the
anomalously large signal for J/ψ + ηc, χc0, and ηc(2S)
observed by the Belle Collaboration could actually be
coming from the process e+e− → J/ψG0. We calculate
the cross section assuming glueball mass MG0 the same
as those for ηc, χc0, and ηc(2S). In order to predict the
production cross section σJ/ψG0 , we need to know the
nonperturbative factors 〈O1〉J/ψ and I0. The 〈O1〉J/ψ

is determined through the leptonic decay rate of J/ψ.
As the glueball distribution amplitude is process inde-
pendent, we can extract an upper bound to I0 from the
CUSB data for the resonance search from Υ → γX. We
follow the method used in Ref. [21]. The branching frac-
tion Br[γG0] for the process Υ → γG0 is obtained by

Br[γG0] =
Γ0

Γ[e+e−]NRQCD
× Br[e+e−]exp., (9)

where Br[e+e−]exp. = 2.38% and Γ[e+e−]NRQCD =
2πe2

bα
2〈O1〉Υ/(3m2

b). In the ratio (9) 〈O1〉Υ dependence
cancels. The branching fraction must be less than al-
lowed by the CUSB excluded region. In order to extract
the bound, we note that the mass resolution of the CUSB
data is 20MeV. If the decay width Γ[G0] of the G0 is
larger than the resolution, one must rescale the bound-
ary of the excluded region by the factor Γ[G0]/20MeV.
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TABLE I: Upper limits to the nonperturbative constant |I0|2,
cross section σJ/ψG0 , and the ratio σJ/ψG0/σJ/ψh, assuming
MG0 = Mh, where h = ηc, χc0, and ηc(2S). The limits are
determined by the Υ → γX search of the CUSB Collabora-
tion [15].

MG0 = Mh h = ηc χc0 ηc(2S)

|I0|2max (10−3 GeV2) 5.2 5.8 6.2

σmax
J/ψG0

1.4 fb 1.5 fb 1.6 fb

σmax
J/ψG0

/σJ/ψh 0.63 0.72 1.9

The decay width of the glueball Γ[G0] cannot be com-
puted using perturbation theory because factorization is
not valid for this nonperturbative quantity. However,
if Belle’s J/ψηc signal also contains J/ψG0, Γ[G0] must
be less than 110 MeV, which is the full width at half
maximum of the ηc peak in the Belle fit to the J/ψ mo-
mentum distribution. The first row in Table I gives the
upper limits to |I0|2 for mb = 4.73 GeV and MG0 = 2.98,
3.42, and 3.65 GeV corresponding to MG0 = Mηc , Mχc0 ,
and Mηc(2S), respectively. Values for |I0|2 above the
bound are excluded at the 90% confidence level. We
choose αs(µ2) = 0.26 using the MS scheme and the
scale µ2 = e−5/3〈|k|2〉 [22] where 〈|k|2〉 is the mean 3-
momentum squared for a single gluon.

Now we are ready to find upper limits to the cross
sections for e+e− → J/ψG0 at

√
s = 10.6GeV. Sub-

stituting |I0|2max to Eq. (7), we get the cross sections
σJ/ψG0 = RJ/ψG0 σµ+µ− in the second row in Table I. In
order to make our prediction consistent with the previous
analyses on exclusive charmonium-pair production, we
use the same input parameters given in Refs. [10, 12, 13]:
〈O1〉J/ψ = 0.335 GeV3, mc = 1.40GeV, and MJ/ψ =
3.10GeV. The strong coupling constant is chosen to be
αs = 0.260, 0.264, and 0.265 for J/ψ + ηc, χc0, and
ηc(2S), applying the same method used for the radia-
tive Υ decay. The ratio to the cross sections for exclusive
charmonium-pair productions are given in the third row
in Table I.

The cross sections for J/ψ + ηc, χc0, and ηc(2S) re-
cently measured by the Belle Collaboration are not well
understood within NRQCD. Based on the assumption
that the measured signals at Belle include the J/ψ + G0

signal within the mass region corresponding to ηc, χc0,
and ηc(2S) we get the cross section for J/ψG0. We thus
find that the upper limit to the cross section σJ/ψG0 is
comparable to the NRQCD prediction of the cross sec-
tions for e+e− → J/ψ + h for h = ηc and χc0, and larger
by factor 2 than that for h = ηc(2S), suggesting the
possibility that a significant fraction of the anomalously
large cross section measured by Belle may be due to glue-
balls in association with J/ψ production. In fact, there
is a possibility of a resonance signal in the Belle data for
e+e− → J/ψX at the missing mass MX ∼ 1.7 GeV.
A resonance search in the radiative Υ(nS) decay by the

CLEO Collaboration and an independent study by the
BaBar Collaboration on charmonium-pair production in
e+e− annihilation will provide stringent tests of this sce-
nario.
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