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1. Introduction

One of the most efficient techniques to perform computations in the framework of

quantum field theory and string theory is the background field method (BFM). By

introducing suitable classical background fields in the theory, it is possible to derive

local Ward–Takahashi identities, which implement the background gauge transfor-

mations. The latter should be linear in quantum fields, in contrast to the BRST

symmetry, which yields non-linear transformations of the quantum fields and, corre-

spondingly, the Slavnov–Taylor (ST) identities for the quantum effective action.

As a consequence, the Ward–Takahashi (WT) identities for the background gauge

invariance relate Green’s functions at the same order of perturbation theory and they

do not require the renormalization of those composite operators, associated to the

BRST transformations, which are non-linear in the quantized fields.

At the level of the effective action, the background WT identities hold together

with the ST ones, provided a suitable choice of a background gauge-invariant gauge-

fixing has been performed. It turns out that the Green functions of physical BRST

invariant operators can be computed by starting from the renormalized background
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gauge-invariant effective action, fulfilling the ST identities, after dropping the depen-

dence on the quantum fields. The (physical) connected functions are then obtained

by taking the Legendre transform with respect to the background fields, once a suit-

able gauge-fixing for the classical background fields is introduced [4, 5, 6]. It is this

property, together with the advantages provided by the linearity of the WT identity

in the process of renormalization [12, 13], that renders the BFM so appealing.

The fact that the correlation functions of gauge invariant observables can be

equivalently computed within the BFM technique and with the conventional pertur-

bative expansion (together with the conventional gauge fixing) can be expressed from

the cohomological point of view by requiring that the dependence of Green functions

upon the background fields be BRST trivial [4, 5, 6, 7]. This can be achieved by en-

larging the BRST transformations to the background fields, in such a way that they

form a set of BRST doublets together with their corresponding classical background

ghosts. As a consequence, the BRST cohomology is unaffected by the presence of

those new classical fields.

Such a procedure has been applied in [10, 13, 16, 18, 3] to the case of models with

closed algebras. In [10] the (non-linear) splitting of the scalar fields is achieved by

using normal coordinates on the Riemann manifold, which leads to linear background

gauge transformations of the quantum fields. On the other hand in [29] open gauge

algebras within the Batalin–Vilkovisky (BV) formalism were studied, but the linear

splitting of the fields is assumed from the beginning, so that it does not apply directly

for example to those models where non-linear splittings are necessary in order to de-

rive linear WT identities. This is the case for instance of N=2 SYM, quantized in

the Wess–Zumino gauge, or Donaldson–Witten theory, when one wishes to construct

the background field transformations associated with the full BRST differential (in-

cluding gauge transformations, supersymmetry transformations and translations).

In the Wess–Zumino gauge the supersymmetry transformations are non-linear.

The most convenient way to handle the complete set of symmetries [28, 33] (gauge

invariance, supersymmetry, R-symmetry, translations and Lorentz transformations)

is to construct a generalized BRST operator fermionizing the parameters of the rigid

symmetries. This leads to a set of ST identities, which is difficult to handle and to

renormalize. For this reason, one would like to construct explicitly the background

symmetry for the rigid and gauge symmetries of the model.

This requires a suitable change of variables, by which the original fields of the

model are split into a background and a quantum part, with the requirement that

the new quantum fields transform linearly under the background symmetry. If the

existence of such a background symmetry can be established by solving the splitting

problem, as we will discuss later, the classical action obeys the associated background

WT identities.

In the case of supersymmetric theories the conventional BFM can be applied to

implement background gauge invariance [34]. However, the question of whether it is
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possible to extend the BFM to the full set of rigid and gauge symmetries – including

SUSY transformations, R-symmetry, translations and Lorentz transformations – has

to be studied.

At first, we clarify that non-linear splitting means that the relations (splitting

functions) between the quantum fields and their backgrounds are characterized by

complicated expressions involving higher order operators. Thus, the non-linear split-

tings are subject to modifications induced by radiative corrections and, consequently,

they require new counterterms in perturbation theory. However, these functional

relations can be constrained by symmetry requirements such as background gauge

invariance and BRST symmetry and, finally, the linearity of the background transfor-

mations for quantum fields. If these conditions can be solved (existence of a solution

of the splitting problem) classically, the corresponding WTI or STI would bring the

same feature at the quantum level, namely the number of independent counterterms

would be unchanged.

We first study the background splitting problem on a general ground in the

BV formalism and we show how the antifields could help in the construction of the

splitting functions. A by-product of this method is the implementation of the BFM

by means of canonical transformations that guarantee that the physics of the model

is not changed. In addition, also the rigid symmetries can be studied in the BV

context by promoting the constant parameters of the rigid transformations to be

constant ghosts.

In this paper, we briefly analyse the BFM in the Wess–Zumino model and present

the BFM for the supersymmetry transformations within that model. Note that the

Wess–Zumino model is an important element in the construction of the MSSM,

as it represents both matter and Higgs sectors of the model. Moreover, after the

elimination of the auxiliary fields, two supersymmetry transformations close on the

equations of motion of the fermions. A naive application of the BFM requires an

independent background action for the fermions. However, the latter is excluded by

the invariance under the BRST transformation of the background fields Nevertheless,

we show how this situation can be handled within the BV formalism by introducing

a further field-antifield pair, which is required in order to take care of the closure in

the background algebra.

We the consider N=2 SYM in the Wess–Zumino (WZ) gauge (in the Euclidean

4-dimensional spacetime). In this model the supersymmetry transformation of the

gaugino is non-linear in the quantum fields, a feature also shared by N=1 SYM in

the WZ gauge. The latter theory plays a distinguished rôle since it enters into the

construction of the Minimal Supersymmetric Standard Model (MSSM) in the WZ

gauge [28, 33], where most computations within MSSM have been carried out.

Having in mind N=1 SYM, we will solve in this paper the splitting problem for

N=2 SYM, as a first step towards the study of N=1 SYM. In the WZ gauge, N=2

SYM presents some interesting features: the twisted formulation is equivalent to the
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Donaldson–Witten model. However, in the twisted theory the BRST differential has

empty cohomology on the total space of polynomials in the fields and antifields. This

means that it is possible to find a redefinition of fields such that the BRST differential

can be cast in the form of sU = V and sV = 0 of contractible pairs. This simple form

allows us to construct the linear splitting in the new variables and, mapping back to

the original variables, the wanted non-linear splitting. The background gauge fixing

is also studied and both the field redefinition and the gauge fixing procedure are

achieved by means of canonical transformations.

A legitimate question is how to define the observables in the topological theory,

in such a way that they can also be mapped back to the observables of the super-

symmetric theory N=2. Following [30], the observables are defined by computing the

BRST cohomology in the space of polynomials with positive powers of the constant

ghost ω (a twisted constant supersymmetric ghost). However, as pointed out in [36]

the complete cohomology cannot be found in this way, and one has to impose further

constraints. The main point is that the correct set of observables is identified in the

topological version of the theory by means of the equivariant cohomology, as pointed

out in [31]. Thus, one has to select the space of basic forms on whose space the BRST

cohomology is computed. A practical method is to define the basic forms out of the

complete space of local polynomials as the kernel of a new nilpotent anticommuting

operator w which anti-commutes with the BRST symmetry. The new operator has

been constructed in [31] and it turns out, by inspection, that it generates the back-

ground gauge transformations. Therefore, we conclude that observables are selected

by computing the BRST cohomology on the space of background-invariant operators,

which are independent of the background gauge ghost.

The paper is organized as follows. In Section 2, we discuss the geometry of

the splitting and extend the BRST symmetry to the background fields; in addition,

we provide a general method, based on a cohomological analysis, to construct the

BFM for a given model. This formulation, which relies on the BV formalism, can

be applied to implement the BFM for generic models with field-dependent and open

gauge algebras. In Section 3, we apply the construction to the Donaldson–Witten

model and to N=2 SYM in the Wess–Zumino gauge. We construct the BFM for

the full BRST differential, thus handling in the background formalism the full set of

symmetries of the model (including gauge symmetries, SUSY transformations and

translations). In Section 3.2, the observables for N=2 super-Yang–Mills are defined

and the appendix contains some auxiliary material.
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2. Geometry of BFM

2.1 Symmetries and non-linear splittings

We denote by ξi the quantum fields and by φ̂i their background partners. The original

fields of the theory Φi are related to ξi and φ̂i by functions Φi = Φi(φ̂i, ξi). In the

following we sometimes use the collective notation Φ = {Φi}, φ̂ = {φi}, and ξ = {ξi}.

At the classical level, the BRST transformations are described by the rules

sΦi = Rα
i [Φ(φ̂, ξ)]Cα , s Cα =

1

2
F βγ
α [Φ(φ̂, ξ)]CβCγ , (2.1)

where Cα denote the ghost fields; Rα
i [Φ(φ̂, ξ)] are often assumed to be linear functions

of the fields Φ. This requirement is fulfilled by many gauge theories for which the

BFM has been implemented, as for instance Yang–Mills theory and the Standard

Model. For the moment we limit ourselves to the case in which F βγ
α are constant.

F βγ
α are antisymmetric in the βγ indices, they are related to Rα

j [Φ] by the algebra

Rα
j [Φ]

δRβ
i [Φ]

δΦj

− Rβ
j [Φ]

δRα
i [Φ]

δΦj

= F αβ
γ Rγ

i [Φ] , (2.2)

and satisfy the Jacobi identities F
β[γ
α F

δσ]
β = 0. In the next subsection we will also

consider more general situations where Rα
i [Φ(φ̂, ξ)] and F βγ

α [Φ(φ̂, ξ)] are polynomial

expressions of the fields, and the algebra (2.1) is closed only on-shell.

For the background fields, we assign the following transformation rules

s φ̂i = Ωi +Rα
i [φ̂]ĉα , s ĉα = θα +

1

2
F βγ
α ĉβ ĉγ ,

sΩi = Ωj

δRα
i [φ̂]

δφ̂j
ĉα −Rα

i [φ̂]θα , s θα = F βγ
α ĉβθγ , (2.3)

where ĉα are the backgrounds for the ghost fields associated to the background gauge

symmetry. The new fields Ωi and θα are introduced in order to control the dependence

of the theory upon the background fields φ̂i and the background ghosts ĉα. The BRST

transformations in eq.(2.3) are nilpotent if the functions Rα
j [φ̂] are linear. It has been

proven (see for example [1, 2, 8]) that the BRST cohomologies H(s) and H(s|d) are

independent of the fields φ̂i, ĉα,Ωi and θα and, therefore, the physical observables are

not affected by the inclusion of such additional variables.

Notice that the structure of the BRST transformations for the background fields

and the ghosts resemble the BRST symmetry for topological models. This obser-

vation has been used in [9] to analyse the BRST cohomology for topological sigma

models and will play a rôle in the forthcoming analysis.

The next step is to split the fields Φi into a quantum and a classical part

Φi = φ̂i + Πi(φ̂, ξ) , (2.4)
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where Πi(φ̂, ξ) = O(ξ), in such a way that the background gauge transformations

of the quantum fields ξi are linear in the quantum fields [10]. This leads to simple

linear Ward–Takahashi identities for the Green functions. We start with the most

general ansatz

s ξi = P α
i (φ̂, ξ)Cα + Sαi (φ̂, ξ)ĉα +Qj

i (φ̂, ξ)Ωj , (2.5)

where P α
i (φ̂, ξ), Qj

i (φ̂, ξ) and Sαi (φ̂, ξ) are differential operators depending on back-

ground and quantum fields. The linearity condition for the background transforma-

tion of ξi yields Sαi (φ̂, ξ) to be linear in ξi. A linear splitting means that also Πi(φ̂, ξ)

in eq.(2.4) is at most linear in ξi, but as we anticipate, this is not always possible.

By inserting the ansatz (2.5) in the transformation rules (2.1), we derive the

following equations

Rα
k [Φ(φ̂, ξ)] = P α

i (φ̂, ξ)
δΠk

δξi
,

0 =

(

δki +
δΠi

δφ̂k

)

+
δΠi

δξl
Qk
l (φ̂, ξ) ,

0 =

(

δki +
δΠi

δφ̂k

)

Rα
k (φ̂) +

δΠi

δξk
Sαk (φ̂, ξ) , (2.6)

which can be viewed either as consistency conditions for the functions P α
i (φ̂, ξ), Qj

i(φ̂, ξ)

and Sαi (φ̂, ξ), given the splitting functions Πi(φ̂, ξ), or as a constructon tool to obtain

the splitting, by assuming the transformation rules (2.5).

For example, by eliminating the combination (1 + δΠ/δφ̂) from the second and

the third equation, and by assuming that δΦi/δξl is an invertible matrix, one has

Sαl (φ̂, ξ) = Qk
l (φ̂, ξ)R

α
k (φ̂) , (2.7)

which implies that also the function Qk
l (φ̂, ξ) is linear in the quantum fields ξi.

In some cases Sαi (φ̂, ξ) turns out to be non-linear in the fields ξi. Moreover, it

can happen that the BRST transformation of the ghost fields is non-linear in the

fields ξi. In this case it is necessary to decompose also the original ghost fields Cα in

(2.1) into Cα = ĉα+Gαβ (φ̂, ξ)ξβC where ĉα is the background ghost introduced in (2.3).

In order to respect the ghost number, the function Gαβ (φ̂, ξ) depends on zero-ghost

number fields. Equation (2.5) now reads

s ξi = P α
i (φ̂, ξ)Gαβ(φ̂, ξ)ξ

β
C + Sαi (φ̂, ξ)ĉα +Qj

i (φ̂, ξ)Ωj , (2.8)

where Sαi (φ̂, ξ) = P α
i (φ̂, ξ) + Sαi (φ̂, ξ). The splitting of the ghost fields is chosen in

such a way that Sαi (φ̂, ξ) is a linear function of the quantum fields, namely of ξ.

For Yang–Mills theory [12], we can identify the symbols in eqs. (2.6) and (2.8)

with the conventional notation: φ̂i ≡ Âαµ, ξi ≡ Qα
µ , Rα

k (Φ) ≡ ∇a
µ andQk

l (φ̂, ξ) ≡ δab δ
µ
ν .

It is easy to see that Πa
µ(Â, Q) = Qa

µ solves eq. (2.6) and eq. (2.7). Notice that there
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is a more general solution to eqs. (2.6) with Πa
µ(Â, Q) = Θab

µν(Â)Qν
b , where Θab

µν(Â) is

a combination of background gauge invariant operators. From equation (2.3) we see

that

sÂaµ = Ωa
µ + ∂µĉ

a + fabcÂbµĉ
c . (2.9)

Then from eq. (2.1) we obtain

sQa
µ = ∂µ(C

a − ĉa) + fabcÂbµ(C
c − ĉc) + fabcQb

µC
c − Ωa

µ . (2.10)

By splitting the original ghost Ca into Ca = ĉa + ξaC we can rewrite (2.10) in the

following way

sQa
µ = ∂µξ

a
C + fabcÂbµξ

c
C + fabcQb

µξ
c
C + fabcQb

µĉ
c − Ωa

µ . (2.11)

The background transformation of Qa
µ has to be identified with the fourth term

in the above equation, which is of order 1 in the ghost background ĉa. This leads

to the identification Sαi (φ̂, ξ) ≡ fabcQb
µ. Moreover, the third term is bilinear in

the quantum fields and P α
i (φ̂, ξ)Gαβ(φ̂, ξ) ≡ ∇̂ab

µ − fabcQc
µ. A suitable choice of the

splitting of ghost fields simplifies the structure of quantum gauge transformations.

For non-linear sigma models (cf. [10]), the gauge transformations (2.1) for the

coordinates Φi of the manifold are replaced by diffeomorphisms Rα
i (Φ)Cα → vi(Φ),

where vi are the components of a vector field1 and eqs. (2.6) are rewritten in the

form

vi(Φ) =

(

δki +
δΠi

δφ̂k

)

vk(φ̂) + ξl∂
lvk(φ̂)

δΠi

δξk

0 =

(

δki +
δΠi

δφ̂k

)

+
δΠi

δξl
Qk
l (φ̂, ξ) , (2.12)

and Si(φ̂, ξ) = ξk∂
kvi(φ̂).2 Following [10], we can use an interpolating field Φi(t),

which satisfies the geodesic equations for a given connection Γijk and construct a

solution to (2.12)

Φi(φ̂, ξ) = φ̂i + Πi(φ̂, ξ) , Πi(φ̂, ξ) = ξi + χi(φ̂, ξ) ,

χi(φ̂, ξ) = −
∞

∑

n=2

1

n!
Γj1...jni (φ̂)ξj1 . . . ξjn , (2.13)

1The transformations δΦi = vi(Φ) are rigid transformations from the worldsheet point of view.

They can be translated into BRST transformations by decomposing v(Φ) into power series and

fermionizing the coefficients: v(Φ) =
∑

n vnΦn →
∑

n cnΦn where cn are an infinite set of constant

anticommuting ghosts. Then, we have sΦi =
∑

n cnΦn and s cn =
∑

m (m− n)cm−ncn. The latter

are the usual BRST transformations for the ghost fields for the Virasoro algebra.
2We remind the reader that if ξ is a vector field, it is natural to define δξ = Lvξ, where Lv is

the Lie derivative. This means that δ(ξi∂
i) = (ξk∂

kvi − vk∂
kξi)∂

i. Assuming that ξi are constant

and independent of φ̂i, we have δξi = ξk∂
kvi.
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where Γj1...jni (φ̂) are related to the covariant derivatives of the connection Γijk com-

puted at the point φ̂i. In this example we can easily justify the invertibility of the

matrix δΦi

δξj
; in fact, we have

δΦi

δξj
= δji +O(ξ) (2.14)

and, by equations. (2.13), δΦi/δξj is invertible as a formal power series. Equa-

tion (2.13) provides an explicit and particular solution for the splitting. This is not

the only possible solution compatible with a linear transformation of the quantum

field Si(φ̂, ξ) = ξk∂
kvi(φ̂). However we point out that (2.13) turns out to be the most

general solution (up to rotations in the ξ-space) for the background transformation

of the quantum field.

Following these suggestions of the non-linear sigma model, we can deduce that

the most general solution for Sαi (φ̂, ξ) is given by

Sαi (φ̂, ξ) =
δRα

i (φ̂)

δφ̂j
ξj . (2.15)

To prove this assertion, we insert equation (2.4) into the third of equations (2.6) and

we expand up to the first order in ξj. We get

Rα
k [φ̂] +

δRα
k [φ̂]

δφ̂j

δΠj

δξp

∣

∣

∣

∣

ξ=0

ξp + · · · = Rα
k [φ̂] +

δ2Πk

δφ̂iδξp

∣

∣

∣

∣

∣

ξ=0

ξpR
α
i [φ̂]

+
δΠk

δξj

∣

∣

∣

∣

ξ=0

Sαj
∣

∣

ξ=0
+
δΠk

δξj

∣

∣

∣

∣

ξ=0

δSαj
δξp

∣

∣

∣

∣

ξ=0

ξp +
δ2Πk

δξiδξp

∣

∣

∣

∣

ξ=0

ξp S
α
i |ξ=0 + . . .

(2.16)

By looking at the terms of order zero in ξ we get

Rα
k [φ̂] = Rα

k [φ̂] +
δΠk

δξj

∣

∣

∣

∣

ξ=0

Sαj
∣

∣

ξ=0
. (2.17)

This gives Sαj
∣

∣

ξ=0
= 0 since δΠk

δξj

∣

∣

∣

ξ=0
is invertible. Then we look at the terms of order

one in ξ in equation (2.16), by taking into account Sαj
∣

∣

ξ=0
= 0 and the fact that

δ2Πk

δφ̂iδξp

∣

∣

∣

ξ=0
= 0 because of the invertibility of δΠk

δξj
as a formal power series. We obtain

δRα
k [φ̂]

δφ̂j

δΠj

δξp

∣

∣

∣

∣

ξ=0

=
δΠk

δξj

∣

∣

∣

∣

ξ=0

δSαj
δξp

∣

∣

∣

∣

ξ=0

, (2.18)

and finally

δSαi
δξp

∣

∣

∣

∣

ξ=0

=
δξi
δΠk

∣

∣

∣

∣

ξ=0

δRα
k [φ̂]

δφ̂j

δΠj

δξp

∣

∣

∣

∣

ξ=0

. (2.19)

This means that up to a rotation in the ξ-space we recover equation (2.15).
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2.2 BV formulation of the splitting problem

The main question is how to solve equations (2.6) or equations (2.12) to find the

splitting for the fields Φi and for the ghost fields Cα.

For this purpose, we rewrite equations (2.6) in a different form, suitable for the

direct application of the BV formalism and for a cohomological reformulation of the

splitting problem. We work out the necessary formalism for the general case of an

open algebra. It is convenient to introduce the antifields for each field of the model

and to modify the classical gauge invariant action S0 into S = S0 + S∗, where S∗ is

given by

S∗ =

∫

(

Φ∗,isΦi + C∗,αsCα + φ̂∗,is φ̂i + ĉ∗,αs ĉα + Ω∗,isΩi + θ∗,αs θα

)

. (2.20)

S obeys the master equation

(S, S) = 0 . (2.21)

The bracket in equation (2.21) is defined by

(X, Y ) ≡

∫
(

δrX

δϕI
δlY

δϕ∗

I

−
δrX

δϕ∗

I

δlY

δϕI

)

, (2.22)

where ϕI = {Φi, Cα, φ̂i, ĉα,Ωi, θα}, ϕ
∗

I = {Φ∗,i, C∗,α, φ̂∗,i, ĉ∗,α,Ω∗,i, θ∗,α}. In principle,

one should not need antifields for classical fields such as the background fields φ̂i
and for their shifts Ωi, but it turns out that they are needed in order to handle open

algebras. Indeed, with antifields, one can easily accommodate general gauge algebras

of the form

Rα
j

δRβ
i

δΦj

− Rβ
j

δRα
i

δΦj

= F αβ
γ [Φ]Rγ

i +Mαβ
ij [Φ]

δS0

δΦj

, (2.23)

where F αβ
γ [Φ] and Mαβ

ij [Φ] involve dynamical variables Φi. The algebra described by

the generators Rα
j [Φ] is an open algebra and the last term in (2.23) takes into account

those symmetries which are closed on the classical equations of motion δS0/δΦj = 0.

The latter term is not there in the case of a closed algebra of course. By consistency

with the invariance of action S0, one finds that Mαβ
ij [Φ] = −Mαβ

ji [Φ] and Mαβ
ij [Φ] =

−Mβα
ij [Φ].

By using the antifields, the BRST transformations are modified into

sΦi = Rα
i [Φ]Cα +Mβα

ij [Φ]CαCβΦ
∗,j , sΦ∗,i =

δS

δΦi

. (2.24)

The fulfilment of the master equation in equation (2.21) requires that the action be

changed by adding new terms that are quadratic in the antifields

S → S +
1

2

∫

Mβα
ij [Φ]CαCβΦ

∗,iΦ∗,j . (2.25)

– 9 –



The nilpotency of the BRST transformation on the antifield Φ∗,j then follows from

the invariance of the action S0 and of the antifield terms S∗.

In more general cases, for example in case of reducible gauge theories, one usually

needs new terms with higher powers of antifields and new ghost fields to parametrize

the new symmetries.

We notice that, corresponding to the symmetry (2.24), we can introduce a back-

ground gauge symmetry, where we replace Φ and Φ∗ with the background partners

everywhere and the ghost Cα with the background ghost ĉα. In addition, we still

have to add the shift fields generated by Ωi and θα. At first one might think that

the natural definition of the background symmetry for the background fields is:

s φ̂i = Rα
i [φ̂] ĉα +Mβα

ij [φ̂] ĉαĉβφ̂
∗,j + Ωi , s ĉα =

1

2
F βγ
α [φ̂]ĉβ ĉγ + θα . (2.26)

However, this would lead to a difficulty: in order to reproduce, for the background

fields, the same gauge algebra as in equation (2.24), we should add to the classical

action S new terms in order to generate the “closure terms,, proportional to the

equations of motion. This is excluded by the presence of the shifts generated by the

fields Ωi and θα. In order to circumvent this problem we introduce new antifields,

denoted by χ̂∗,j , which replace the antifields φ̂∗,j in equations (2.26)

s φ̂i = Rα
i [φ̂] ĉα +Mβα

ij [φ̂] ĉαĉβχ̂
∗,j + Ωi . s ĉα = F αβ

γ [φ̂]Rγ
i [φ̂] + θα . (2.27)

Their transformation rules reproduce the correct algebra by imposing

s χ̂∗,i =

(

δS0[Φ]

δΦi

)

Φ→φ̂

+ Ω∗,i
χ + . . . , (2.28)

where (δS0/δΦi)Φ→φ̂ is the classical gauge covariant equations of motion where the

original fields Φi have been replaced by the background fields φ̂i, Ω∗,i
χ are the shift

fields for χ̂∗,i and the ellipsis denotes further terms with at least one power of anti-

fields, eventually needed to guarantee the closure of the algebra.

The requirement of nilpotency of s on φ̂i imposes a constraint on sΩi, while

nilpotency on χ̂∗,i yields a constraint for sΩ∗,i
χ .

Finally, we can introduce the BRST transformations for the quantum fields ξi and

their antifields ξ∗i . The only assumption we have to impose here is that the quantum

fields should transform linearly under the background gauge transformations

s ξk = ξl
δRα

k

δΦl

∣

∣

∣

∣

Φ→φ̂

ĉα +
1

2
ĉαĉβN

αβ
kj [φ̂] ξ∗,j + . . .

s ξ∗,k = ξl
δS0

δΦlδΦk

∣

∣

∣

∣

Φ→φ̂

+ . . . (2.29)

where the ellipses denote the BRST transformations generated by the quantum

ghosts and by the shifts Ωi. In order to compute these remaining terms of rules
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(2.28) and (2.29), one has to solve the master equation (2.21) with the bracket given

in terms of

ϕI = {ξi, ξαC, φ̂
i, ĉα,Ωi, θα, χ̂i,Ωχi}, ϕ∗

I = {ξ∗,i, ξ∗,αC , φ̂∗,i, ĉ∗,α,Ω∗,i, θ∗,α, χ̂∗,i,Ω∗,i
χ }

(ξαC and ξ∗,αC are the quantum ghost fields and their “quantum” antifields, respec-

tively), with boundary conditions (2.27), (2.28) and (2.29). It is easy to check that

in the case of the Yang–Mills theory and the non-linear sigma model, this leads to

the usual splitting between quantum and classical fields. In more general cases, one

has to show that there is at least a solution.

Notice that since all the fields and antifields in the background sector are classical

fields, there is no distinction between a field and an antifield from the point of view of

the quantization of the model. Ω∗,i removes the reducibility between the “quantum,,

antifield ξ∗,i and the classical antifield φ̂∗,i.

As an illustration of the previous considerations, we analyse a simple model,

namely the N=1 Wess–Zumino model. There, the role of the antifields χ̂∗,i and their

shifts Ω∗,i
χ will become clear. In this case the antifields χ̂∗,i can be interpreted as the

background counterpart of the auxiliary field F . The same thechnique has been used

in [28].

The model is written in terms of the fields Φi = {A,ψα}, where A is a complex

scalar field and ψα is a Weyl spinor.3 We also introduce the ghost fields ηα for the

supersymmetry and vµ for the translations. Since there is no gauge symmetry, we

consider only rigid supersymmetry transformations. By eliminating the auxiliary

fields, the algebra of supersymmetry closes only on-shell. The problem can be refor-

mulated in the context of the BV framework. The classical action S = S0 + S1 + S2

reads

S0 =

∫

d4x
(

|∂µA|
2 − iψασµ

αβ̇
∂µψ̄

β̇
)

,

S1 =

∫

d4x (A∗(sA) + ψ∗α(sψα) + v∗µ(svµ) + c.c.) ,

S2 =

∫

d4x
(

2ηαψ∗

α η̄β̇ψ̄
∗β̇

)

, (2.30)

where the BRST transformations are given by

sA = 2ηαψα − ivµ∂µA , s ψα = −iσµ
αβ̇
η̄β̇∂µA− ivµ∂µψα − 2ηα η̄β̇ψ̄

∗β̇ ,

s vµ = −2ηασµ
αβ̇
η̄β̇ , s ηα = 0 . (2.31)

3The motivation to consider a BFM formulation for the Wess–Zumino models is related to the

implementation of the BFM for the MSSM. There two Wess–Zumino models for the Higgs superfields

H1 and H2 are coupled to the gauge invariant action in order to break the SU(2)L × UY (1) down

to the subgroup UQ(1). In order to write a generalization of the ‘t Hooft-background gauge fixing

for the MSSM, one needs to add the background fields for the scalar components of H1 and H2. In

addition, in order to mantain the supersymmetry manifest, one has to add also the background for

their superpartners.
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The BRST transformation of the fermion ψα contains the antifield ψ̄∗β̇ in order to

take into account the closure on the equations of motion. This is reflected at the

level of the classical action in the term S2, quadratic in the antifields. We can derive

the BRST transformations for the background field as

s Â = 2η̂αψ̂α − iv̂µ∂µÂ + ΩA ,

s ψ̂α = −iσµ
αβ̇

ˆ̄ηβ̇∂µÂ− iv̂µ∂µψ̂α − 2η̂α F̂ + Ωψ α ,

s v̂µ = −2η̂ασµ
αβ̇

ˆ̄ηβ̇ + θµv ,

s η̂α = θα . (2.32)

The fields ΩA and Ωα
ψ are the shift for the background fields Â and ψ̂α and the

fields θα and θµv are the background fields for the ghost fields η̂α and v̂µ. In the above

equation we have reintroduced the auxiliary field F̂ . The BRST transformation rules

are given by

s F̂ = −iˆ̄ηβ̇ σ̄µ
β̇α
∂µψ̂

α − iv̂µ∂µF̂ + ΩF , (2.33)

where ΩF is the corresponding shift field. A simple exercise shows that, in order to

mantain the nilpotency on ψ̂α, one needs to impose the following transformation:

sΩψ α = 2η̂αΩF + iv̂µ∂µΩψ α + iσµ
αβ̇

ˆ̄ηβ̇∂µΩ̄A

+2θαF̂ + iθµv ∂µψ̂α + iσµ
αβ̇
θ̄β̇∂µÂ , (2.34)

which represents the supersymmetry algebra at the level of the fields Ωα
ψ,ΩF ,ΩA.

They form a chiral multiplet.4

We can avoid the introduction of the auxiliary fields by using an additional

antifield, as outlined before. In order to distinguish the antifield ψ̂∗,α (coupled to

the BRST variation of ψα) from the new antifield, which is needed to reproduce the

correct algebra at the level of the background fields, we will denote the latter by χ̂∗,α.

The BRST transformation for the spinor ψα is correspondingly given by

s ψ̂α = −iσµ
αβ̇

ˆ̄ηβ̇∂µÂ− iv̂µ∂µψ̂α − 2η̂α ˆ̄ηβ̇χ̂∗

β̇
+ Ωψ α . (2.35)

By requiring the nilpotency of the BRST transformation, we find

s χ̂∗

α̇ = −iσ̄µα̇β∂µψ̂
β − iv̂µ∂µχ̂

∗

α̇ + Ω∗

χ,α̇ . (2.36)

Ω∗

χ,α̇ is the shift for χ̂∗

α̇ and it guarantees that the cohomology is independent of the

variables Ω∗

χ,α̇ and χ̂∗

α̇. The BRST transformations for Ωψα and Ω∗

χ,α̇ can again be

derived by imposing the nilpotency of s on ψ̂α and χ̂∗

α̇.
4Equations (2.33) and (2.34) can be obtained in a straightforward way by using a superspace

technique: s X̂ ≡ ηαDαX̂+vµ∂µX̂+Ω where X and Ω are chiral superfields and Dα is the covariant

derivative. By imposing the nilpotency, s2 = 0, one gets sΩ = ηαDαΩ + vµ∂µΩ. This means that

the fields Ω transform under the supersymmetry transformations as a chiral supermultiplet.
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These BRST transformations (2.35) and (2.36) can be implemented within the

BV formalism by coupling s ψ̂α and s χ̂∗

α̇ to the corresponding conjugate variables

(“antifields,,) ψ̂∗

α and χ̂α̇. We notice that in the case of χ̂∗

α̇ the “antifield,, is actually

an external source with its own shift field Ωχ,α.

This example shows that we have to introduce the antifields χ̂∗ (or eventually

the auxiliary fields) for each background field φ̂ on which the BRST differential

squares to zero only modulo the equations of motion. This is needed in order to

reproduce the correct algebra. In addition, each new antifield χ̂∗ has to be paired

with a corresponding shift Ω∗

χ in order to enforce the triviality with respect to the

BRST cohomology and to close the symmetry on the antifields χ̂∗.

We also remark that by using antifields instead of auxiliary fields, we loose the

multiplet structure. It seems that even in the cases where the auxiliary fields cannot

be found in order to establish the closure of the algebra at the level of fields, the BV

technique by means of antifields is able to supply the correct content of variables to

close the algebra. However, the structure of superfields is no longer available.

We can finally go back to the initial question how to define the correct splitting

between the quantum and the classical fields. The master equation (2.21) has to be

solved in the appropriate space of variables (including the needed auxiliary antifields)

ϕI = {ξi, ξαC, φ̂
i, ĉα,Ωi, θα, χ̂i,Ωχi}, ϕ∗

I = {ξ∗,i, ξ∗,αC , φ̂∗,i, ĉ∗,α,Ω∗,i, θ∗,α, χ̂∗,i,Ω∗,i
χ }

with boundary conditions (2.27)-(2.29) and under the requirement that

S|ϕ∗

I
=0,ξi=ξα

C
=Ωi=θα=χ̂i=Ω

χi=0 = S0[φ̂, ĉ] . (2.37)

S0 is the original gauge invariant classical action. We will discuss in the next section

the problems related with the background gauge-fixing.

In the case of closed algebras no auxiliary antifields are needed and condition

(2.37) is fulfilled since the implementation of the BFM yields the replacement of the

original fields Φi, C
α with

Φi = φ̂i + Πφ,i , Cα = ĉα + ΠC,α , (2.38)

where Πφ,i,ΠC,α are functions of φ̂i, Ĉ
α, ξi, ξ

α
C vanishing for ξi = ξαC = 0.

For open gauge algebras the implementation of the BFM requires the extension

of the space of variables in which the splitting problem can be defined (due to the

introduction of the auxiliary fields). Equation (2.37) then provides the relation of

the full classical action S with the original classical action S0.

The methods needed to solve this problem vary with the model at hand. It

may happen that a suitable choice of the generators of the original BRST differential

s is enough to obtain a solution. This is the case for instance of the Topological

Yang–Mills (TYM) theory, where the Jordan form of the BRST differential [35] can
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be reached by a suitable field redefinition. Notice that this is only possible if one

introduces the relevant set of auxiliary fields (corresponding to the twisted auxiliary

fields of N = 2 SYM in the WZ gauge). The use of the auxiliary fields reduces the

open algebra problem to a closed algebra problem. In the space of variables which

includes the auxiliary fields it can be proven that the field redefinition solving the

splitting problem is actually a canonical transformation. We will deal with TYM in

sect. 3.1.

2.3 A shortcut

Sometimes, there is an easy shortcut for finding the correct splitting functions. We

notice that at first order Πφ,i = ξi provides a solution to equations (2.6). This

suggests that if we are able to find coordinate transformations (which will eventually

be expressed by means of canonical transformations) such that the r.h.s. of (2.1)

becomes linear in the quantum fields ξi, the solution Πφ,i = ξi gives an all-order

solution to the problem (2.6) and this allows us to identify the splitting.

Let Φ′ = Φ′(Φ) be a suitable change of coordinates such that

sΦ′

i = (R′)αi [Φ
′]Cα , s Cα =

1

2
F βγ
α [Φ(φ̂, ξ)]CβCγ (2.39)

and (R′)αi [Φ
′] is at most a linear function of Φ′. Then, Πφ,i = ξi is the trivial solution

to the splitting problem, namely Φ′ = φ̂′ + ξi. Converting back to the original

variables (again by means of a canonical transformation), which yield the inverted

relation Φ = Φ(Φ′), we have

Φi = Φi

(

φ̂′ + ξi

)

= Φi

(

φ̂′(φ̂) + ξi

)

= φ̂i + Πi(φ̂, ξ) , (2.40)

where we substituted φ̂′

i = φ̂′

i(φ̂). Notice that to invert the change of coordinates we

use the theorem for implicit functions in power series.

In order to extend this analysis to more general theories, it is convenient to

formulate the change of variables in the language of canonical transformations. The

new set of fields and antifields are denoted by ϕ
′I and ϕ

′
∗

I ; they are related to the

original variables by means of the transformation rules

ϕ
′I = (Ψ, ϕI)′ =

δΨ[ϕ, ϕ
′
∗]

δϕ
′
∗

I

, ϕ∗

I = (Ψ, ϕ∗

I) =
δΨ[ϕ, ϕ

′
∗]

δϕI
, (2.41)

where Ψ is the generating functional of the canonical transformations. The bracket

(·, ·)′ is the bracket defined in (2.22) with the coordinates ϕI and ϕ∗

I replaced by the

new variables. The transformations of the new fields are computed using again the

bracket

s ϕ′

I = (S[ϕ′, ϕ
′
∗], ϕ′

I)
′ , s ϕ

′
∗

I = (S[ϕ′, ϕ
′
∗], ϕ

′
∗

I )′ , (2.42)
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and they extend the rules given in equation (2.39). If the canonical transformations

can be chosen in such a way that the new BRST transformation rules (2.42) are of

the type given in equation (2.39) (with (R′)αi [ϕ
′] at most a linear function of ϕ′) or

completely linear in the quantum fields (as it happens for the twisted version of N=2

SYM we will analyse in Sect. 3.1), we can split the fields and the antifields by

ϕ′

I = ϕ̂′

I + ξI , ϕ
′
∗

I = ϕ̂
′
∗

I + ξ∗I , (2.43)

where ϕ̂′

I and ϕ̂
′
∗

I are the background fields. The latter transform according to (2.42)

where ϕI and ϕ∗

I are replaced by the corresponding background fields. Notice that the

canonical transformations do not need to be linear and in general they are analytical

functions of the fields and antifields.

Even if the background fields ϕ∗

I for the antifields are in principle not necessary,

we found them useful as bookkeeping of the transformation rules for the background

fields and they prove to be convenient in order to formulate the canonical transfor-

mation in equation (2.41).

By an other (inverse) canonical transformation, we can re-express the new vari-

ables ϕ′

I and ϕ
′
∗

I in terms of the older ones: this leads to the relation between the

original fields ϕI and ϕ∗

I and the quantum fields ξI and ξ∗I .

2.4 A simple example

As a warming-up example, we consider the simple topological Yang-Mills theory.

This example is interesting because it displays some of the features of the N=2

model that will be discussed later, but at the same time is very simple. In the

present example we will show how to construct the BFM by using the Jordan form

of the BRST differential, which can be reached in the present model by a simple field

redefinition, and how to use the BFM to characterize the BRST cohomology and the

physical observables of the theory.

The observables of the theory are not defined in terms of the BRST cohomology

only, but a supplementary condition is needed. In fact, H(s) and H(s|d) are empty

for any ghost number. This can be easily verified by using a suitable canonical

transformation of variables which brings all the transformation rules into the form of

trivial pairs (sU = V and sV = 0). This is discussed in the next paragraphs. On the

other side one can define a new nilpotent BRST-like operator w associated with the

gauge invariance and with the independence of the classical ungauged action from

the ghost field c, such that the observables are identified by the cohomologies

Hbasic(s) =
{

H(s|B)|wB = 0
}

, Hbasic(s|d) =
{

H(s|B)|wB = dX
}

. (2.44)

Here B is the space of basic forms which are gauge-invariant and do not depend on

the ghost c. In the following we will construct the BRST-like operator w and discuss

the relation with the BFM.
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The topological Yang-Mills theory is described by the BRST transformations:

sA = ψ −∇c , s ψ = [ψ, c] −∇φ , s c = φ−
1

2
[c, c] s , φ = [φ, c] , (2.45)

for the fields ϕI = {A, c, ψ, φ} and

sA∗ = −[A∗, c] − [ψ∗, φ] ,

s ψ∗ = A∗ + [ψ∗, c] ,

s c∗ = ∇A∗ + [ψ∗, ψ] + [φ∗, φ] + [c∗, c] ,

s φ∗ = c∗ + ∇ψ∗ + [φ∗, c] , (2.46)

for the antifields ϕ∗

I = {A∗, c∗, ψ∗, φ∗}. Fields and antifields are forms with values in

the Lie algebra of the underlying gauge group. The antifields ϕ∗

I are defined as the

Hodge dual of the conventional definition, for example A∗ = A∗µεµνρσdx
νdxρdxσ is a

3-form in 4 dimensions. The background fields ϕ̂I and ϕ̂∗

I transform correspondingly,

according to the considerations of the previous section. The fields ϕ̂∗

I are introduced

in order the quantum fields ξI to be coupled to their “quantum” antifields ξ∗I , after

the splitting.

It is easy to see that with the change of coordinates ψ′ = ψ − ∇c , φ′ = φ −
1
2
[c, c] , A

′
∗ = A∗ + [ψ∗, c] and c

′
∗ = c∗ + ∇ψ∗ + [φ∗, c], generated by the functional

Ψ[ϕI , ϕ
′
∗

I ] =

∫

tr

[

A
′
∗A+ c

′
∗c+ ψ

′
∗ (ψ −∇c) + φ

′
∗

(

φ−
1

2
[c, c]

)]

, (2.47)

the BRST transformations (2.45) and (2.46) become linear in the new variables. This

leads to the consequence that the cohomologies H(s) and H(s|d) are empty. Then

we can split the new fields in a linear way by setting

A = Â+ ξA , ψ′ = ψ̂′ + ξ′ψ , c = ĉ+ ξc , φ′ = φ̂′ + ξ′φ ,

A
′
∗ = Â

′
∗ + ξ′A∗ , ψ∗ = ψ̂∗ + ξψ∗ , c

′
∗ = ĉ

′
∗ + ξ′c∗ , φ∗ = φ̂∗ + ξφ∗ . (2.48)

The BRST transformations of the new variables are the obvious ones derived from

equations (2.45) and (2.46), i.e. for instance in the case of the doublet (A,ψ′):

sÂ = ψ̂′ , s ξA = ξ′ψ , sψ̂
′ = 0 and sξ′ψ = 0. The old quantum fields are obtained by

exploiting equation (2.45). For instance, in the case of ψ′ we obtain

ψ = (ψ̂′ + dĉ+ [Â, ĉ]) + ξ′ψ + dξc + [Â, ξc] + [ξA, ĉ] + [ξA, ξc] . (2.49)

The terms in the round brackets are of order zero in the quantum fields, the remaining

terms contain one or two powers of the quantum fields. Notice that the splitting in

equation (2.49) is non-trivial and non-linear in the quantum fields.5

5In several examples, one can use a superfield notation A = c + A + F ∗ + ψ∗ + φ∗ and B =
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To define the observables of the theory, we consider again the transformation

rules given in (2.45) and those for the background fields

s Â = Ω − ∇̂ĉ , sΩ = [Ω, ĉ] − ∇̂θ , s ĉ = θ −
1

2
[ĉ, ĉ] s θ = [θ, ĉ] . (2.50)

Again, it is convenient to redefine the fields Ω′ = Ω − ∇̂ĉ and θ′ = θ − 1
2
[ĉ, ĉ] in

order to simplify the relation between our notation and the one adopted in [31]. The

definition of the basic forms is obtained by computing the kernel of the operator

wA = −∇ĉ , w ψ = [ψ, ĉ] ,

w c = θ′ + [c, ĉ] w φ = [φ, ĉ] ,

w ĉ = −
1

2
[ĉ, ĉ] w θ′ = [θ′, ĉ] . (2.51)

As it can be readily seen the operator w is nilpotent and anticommutes with the

BRST symmetry (2.45)-(2.50). This transformation rule can be extended in order

to take into account the background field Â. We have in addition

w Â = −∇̂ĉ , wΩ′ = [Ω′, ĉ] . (2.52)

The transformation rules for the gauge field A and its partner Â are the usual back-

ground gauge transformations. The rule for the background ghost ĉ is the usual

transformation for the gauge ghost. Notice that in addition the transformation for

the ghost Ω′ is the usual background trasformation. Finally, we have to point out

that all the transformations given in (2.51) are linear in quantum fields and therefore

they lead to linear WTI.

Comparing (2.51) with the operator w given in [31], one can see that all trans-

formations do coincide except those for the background Â which are indeed new.

The purpose of the operator w is to restrict the space of local operators to the sector

of basic forms and it is fundamental to define the observables at the quantum level.

It happens that the construction of this operator in the BFM context is completely

natural since the fields ĉ and θ, necessary to implement the gauge transformations,

are indeed present. We can therefore conclude that the restriction to the space of

those background gauge-invariant polynomials which are independent of the ghost

c (notice that this requirement is implemented by means of the linear shift into θ)

gives the correct observables. The BFM is not only a useful tool to compute gauge-

invariant operators correlation functions, but it is also fundamental to select the

physical content of the theory.

φ+ψ+F +A∗ + c∗. F is the field strength and F ∗ is the antifield associated with the condition of

self-duality. The BRST transformations (2.45) and (2.46) can be written in a compact manner as

(s+ d)A + A2 = B , (s+ d)B + [A,B] = 0 .

Thus, by introducing the new variables B′ = B − A2 and A′ = A, the BRST transformations are

simplified and the splitting becomes trivial.
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Finally, we can summarize the results of the present section in the following

remarks. We find out that, according to a cohomological analysis or by use of suitable

field redefinitions, we can derive the splitting functions Πφ,Πφ∗ , . . . ,ΠC∗ , such that

the background gauge transformations of the quantum fields ξIφ and ξCα are linear in

the quantum fields. By defining the operator Nĉ =
∫

ĉαδĉα, which counts the powers

of the background ghost fields ĉα, we can decompose the BRST operator s in terms of

eigenvalues of Nĉ: s = s0 + s1 +
∑

n>1 sn where s0 represents the BRST operator for

the classical BRST symmetry, s1 entails the background gauge invariance, sn with

n > 1 describe the closure terms.

2.5 Background Gauge Fixing

The splitting problem defines a change of variables such that the new quantum fields

transform linearly under the background transformations. If the splitting problem

cannot be solved, the background transformations cannot be defined, independently

of the perturbative quantization of the theory. In those cases where the good vari-

ables, suited for the implementation of the BFM, have been found, an additional

problem arises: is it possible to find a suitable gauge-fixing condition compatible

with the invariance of the ungauged classical action under the WT background iden-

tities? This issue can be analysed in a very general setting within the BV formalism

and has already been thoroughly considered in the literature6. Here we only discuss

some aspects relevant to the simplest case of irreducible models.

In order to construct the quantum effective action in perturbation theory, we need

to compute the propagators for all quantum fields ξφi
of the theory. The ungauged

classical action S, fulfilling the master equation

(S, S) = 0 , (2.53)

gives rise to a matrix of 2-point functions which is in general non-invertible. In order

to remove this degeneracy, S must be modified by adding non-minimal sectors. Then

one performs a canonical transformation, generated by the gauge-fixing fermion Ψg.f.,

in such a way that the transformed classical action yields well-defined propagators

for all quantum fields.

The ungauged classical action S depends on the background fields φ̂i and on the

new quantum fields ξφi
. It fulfills the background WT identities, under which ξφi

transform linearly. The addition of the non-minimal sectors, needed to fix the gauge,

and the canonical transformation generated by the gauge-fixing fermion Ψg.f. should

not break this WT invariance.

The minimal sectors we will analyse involve one generation of antighost fields

c̄α and Lagrange multipliers Bα, together with the corresponding antifields. The

6For a review see e.g. Ref. [19].
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index α runs over those fields φα whose 2-point function matrix {Γφαφβ
= δ2S

δφαδφβ
},

computed from the ungauged classical action S, is not invertible.

As a first step, we add to the ungauged classical action S the non-minimal terms

Sn.m. =

∫

c̄∗αBα . (2.54)

Then we implement the gauge-fixing by means of a canonical transformation gener-

ated by the gauge-fixing fermion functional

Ψg.f.[φ̂, ξ] =

∫

c̄αFα(φ̂i, ξφi
, ĉα, ξC ;Bα) . (2.55)

Let us denote by Γ(0) the action obtained from S + Sn.m. after the gauge-fixing

canonical transformation has been performed. The Fα in equation (2.55) are chosen

in such a way that, after the canonical transformation, the complete matrix of the

2-point functions, computed from Γ(0), is invertible.

The extension of the background transformations to the generators (c̄α, Bα) of

the non-minimal sector must yield background transformations for (c̄α, Bα) which are

linear in the quantum fields. Moreover, we also require that the transformed gauge-

fixed classical action Γ(0) obeys the background WT invariance. This requirement is

fulfilled if we impose that the functional Ψg.f. is background-gauge invariant:

δbkgΨg.f. = 0 . (2.56)

where δbkg denotes here the component of s of degree one in the background ghost

fields (the generator of the background transformations), properly extended to the

non-minimal sector. From equation (2.56) one gets

δbkg c̄
αFα − c̄αδbkgF

α = 0 . (2.57)

By taking into account the above equation and the requirement of the linearity of

δbkg c̄
α we obtain

δbkg c̄
α = Mαβ(φ̂, ĉ)c̄β , (2.58)

where Mαβ(φ̂, ĉ) is independent of the quantum fields ξφi
, c̄α, Ba. Eq.(2.58) provides

the natural definition for the background transformation of Bα:

δbkgB
α = Mαβ(φ̂, ĉ)Bβ . (2.59)

By substituting eq.(2.58) into eq.(2.57) we get that the functions Fα(φ̂i, ξφi
, ĉα, ξc ;B

α)

should transform as follows under δ:

δbkgF
α = MβαFβ . (2.60)
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The fact that the fields ξφi
and ξC transform under linear background gauge

transformations simplifies the construction of the functions Fα: it turns out that in

many cases, as for instance in ordinary gauge theories, they can be obtained from

their background-independent component by covariantizing the differential operators

with respect to the background fields.

The case of TYM, which we will analyse in Sect. 3.1, is rather peculiar. There we

first perform the gauge-fixing of the classical action in terms of the original unsplitted

variables. The solution to the splitting problem yields for TYM a set of variables

that transform linearly under the full BRST differential, which can hence be identified

with the generator of the background symmetry. As a consequence, the gauge-fixing

term does not need to be modified to respect the background invariance.

Once a background covariant gauge-fixing has been introduced, the quantum ef-

fective action can be constructed in perturbation theory. The symmetry requirements

of background invariance and ST invariance at the quantum level can be discussed

along the lines of [2, 3, 5, 6].

As a final point, we would like to emphasize that the BFM construction of

physical connected amplitudes requires the introduction of an additional gauge-fixing

term for the classical background gauge fields [5]. The latter does not affect the

computation of the quantum effective action and only enters in the BFM computation

of connected amplitudes of BRST-invariant local operators. A complete discussion

of the interplay between this background gauge-fixing term, the background WT

identities and the ST identities is provided in [5, 6].

3. N=2 Super Yang–Mills

3.1 Topological Yang–Mills theory

In this section we show how the background field method can be implemented for

N = 2 super-Yang–Mills in the Wess–Zumino gauge. We will work within the flat

Euclidean space-time. In order to construct the correct splitting of the fields into

a background and a quantum part, with the latter transforming linearly under the

background symmetry, we consider the off-shell formulation of the supersymmetry

algebra of twisted N = 2 super-Yang-Mills in the Wess-Zumino (WZ) gauge.

In the off-shell formulation the fields of N = 2 super-Yang-Mills in the WZ gauge

consist of a gauge field Aµ, two spinors ψiα, i = 1, 2 and the conjugate ψ̄iα̇, two scalars

φ, φ̄ (φ̄ being the complex conjugate of φ) and an SU(2) triplet of auxiliary fields

bij = bji, i, j = 1, 2.

After the twisting and the identification of the interal index i with the spinor

index α, the spinor ψ̄iα̇ can be related to an anticommuting vector ψµ given by

ψµ = (σ̄µ)
α̇αψ̄αα̇ . (3.1)
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The fields ψαβ are decomposed into their symmetric component ψ(αβ) and their an-

tisymmetric component ψ[αβ]:

ψαβ = ψ(αβ) + ψ[αβ] . (3.2)

ψ(αβ) is related to an antisymmetric self-dual anticommuting field χµν via the defi-

nition

χµν = χ̃µν = (σµν)
αβψ(αβ) (3.3)

where χ̃µν = 1
2
εµνρσχ

ρσ.

The antisymmetric component ψ[αβ] is associated to the anticommuting scalar η

given by

η = εαβψ[αβ] . (3.4)

Finally the auxiliary fields bαβ are related to the antisymmetric commuting self-dual

field bµν defined by

bµν = (σµν)
αβbαβ . (3.5)

Therefore the off-shell multiplet of N = 2 super-Yang-Mills in the Wess-Zumino

gauge (Aµ, ψ
i
α, ψ̄

i
α̇, φ, φ̄, b

ij) is transformed into the twisted multiplet

(Aµ, ψµ, χµν , η, φ, φ̄, bµν),

providing the field content of topological Yang-Mills theory (TYM) in the off-shell

formulation.

The classical action of TYM is given by

STYM =
1

g2
Tr

∫

d4x

(

+
1

2
F−

µνF
µν− −

1

2
bµνb

µν − χµν(Dµψν −Dνψµ)
−

+ ηDµψ
µ −

1

2
φ̄DµD

µφ+
1

2
φ̄{ψµ, ψµ}

−
1

2
φ {χµν , χµν} −

1

8
[φ, η]η −

1

32
[φ, φ̄][φ, φ̄]

)

. (3.6)

The action in equation (3.6) coincides with the one given in [30] when the equation

of motion for the auxiliary field bµν is imposed. Dµ is the covariant derivative given

by Dµ(·) = ∂µ · +[Aµ, ·]. We denote by a − the self-dual component of a tensor, so

that

F−

µν = Fµν +
1

2
εµνρσF

ρσ . (3.7)

F−

µν fulfills

F̃−

µν =
1

2
εµνρσF

ρσ− = F−

µν . (3.8)
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As is well-known [30], the classical TYM action can be regarded as the twisted

version of N = 2 super-Yang–Mills theory in the Wess–Zumino gauge. As a conse-

quence, in addition to gauge invariance, the classical TYM action exhibits further

symmetries generated by the twisted N = 2 supersymmetry generators [30]. The set

of these generators contains a scalar generator δ, a vector generator δµ and a self-dual

tensor generator δµν , where δ is to be identified with Witten’s fermionic symmetry

[23].

For our purposes we find it convenient to gather the BRST symmetry s, issued

from gauge invariance of STYM in equation (3.6), the scalar symmetry δ and the vec-

tor symmetry δµ, together with translation invariance, into a single BRST differential

Q [30], given by

Q = s+ ωδ + εµδµ + vµ∂µ − εµ
∂

∂vµ
. (3.9)

Here, ω is a commuting constant external source associated with Witten’s fermionic

symmetry. We remark that, unlike in [30], ω does not carry any ghost number. This

is reflected in our assignment of the ghost number for the fields of the model: ψµ is

assumed to carry ghost number 1, φ ghost number 2, χµν and η ghost number −1,

while φ̄ carries ghost number −2; Aµ and bµν carry zero ghost number. The constant

external source associated with the vector symmetry is denoted by εµ, the constant

external source associated with translations by vµ. With our assignments, εµ carries

ghost number 2, while vµ carries ghost number 1.

As noted in [30], we can discard the tensor generator δµν , since it does not carry

additional information with respect to the subalgebra generated by s, δ, δµ and ∂µ.

The explicit form of the operator Q is given in Appendix A. Since we are using the

off-shell formalism with the auxiliary fields bµν , Q
2 = 0. In the on-shell formalism

adopted e.g. in [30], where the auxiliary fields bµν are eliminated via their equation

of motion, the operator Q is nilpotent only modulo the equations of motions of ψµ
and χµν ; the corresponding STI can be written by adding suitable terms quadratic

in the antifields coupled to ψµ and χµν .

We can now gauge-fix the classical TYM action by choosing [30]:

Sgf = Q

∫

d4xTr (c̄∂A)

= Tr

∫

d4x

(

b∂A + c̄∂µDµc− ωc̄∂µψµ −
εν

2
c̄∂µχνµ −

εµ

8
c̄∂µη

)

. (3.10)

In the above equation c̄ is the antighost field and b is the Nakanishi–Lautrup multi-

plier field. The gauge-fixed classical action

Σ = STYM + Sgf (3.11)

is Q-invariant.
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In order to write the ST identities we couple the Q-variations of the fields to the

corresponding antifields as follows:

Sext = Tr

∫

d4x (c∗Qc+ φ∗Qφ+ Aµ∗QAµ + ψµ∗Qψµ + c̄∗Qc̄

+b∗Qb+ φ̄∗Qφ̄ + η∗Qη +
1

2
χµν∗Qχµν +

1

2
bµν∗Qbµν

)

+ vµ∗Qvµ . (3.12)

The full classical action is then given by

Γ(0) = STYM + Sgf + Sext (3.13)

and fulfills the following ST identities:

S(Γ(0)) = Tr

∫

d4x

(

δΓ(0)

δAµ
δΓ(0)

δAµ∗
+
δΓ(0)

δψµ∗
δΓ(0)

δψµ
+
δΓ(0)

δc∗
δΓ(0)

δc
+
δΓ(0)

δφ∗

δΓ(0)

δφ
+
δΓ(0)

δφ̄∗

δΓ(0)

δφ̄

+
δΓ(0)

δη∗
δΓ(0)

δη
+

1

2

δΓ(0)

δχµν∗
δΓ(0)

δχµν
+

1

2

δΓ(0)

δbµν∗
δΓ(0)

δbµν
+
δΓ(0)

δc̄∗
δΓ(0)

δc̄

+
δΓ(0)

δb∗
δΓ(0)

δb

)

+
δΓ(0)

δv∗µ

δΓ(0)

δvµ

=
1

2
(Γ(0),Γ(0)) = 0 , (3.14)

where the bracket is defined as

(X, Y ) =

∫

d4x
∑

I

σI

(

δX

δΦI

δY

δΦ∗

I

− (−1)(εX+1) δX

δΦ∗

I

δY

δΦI

)

. (3.15)

In the above equation, ΦI = {Aµ, ψµ, χµν , bµν , η, φ̄, c, φ, c̄, b, vµ} and σI = 0 for all

fields but χµν , bµν , for which σχµν
= σbµν

= 1
2
. This factor is needed to take into

account antisymmetry in the Lorentz indices of χµν , bµν . the term ε(X) stands for

the statistics of X (ε(X) = 0 if X is a boson, ε(X) = 1 is X is a fermion).

We also introduce the linearized ST operator Q̃, given by

Q̃ = (Γ(0), ·) . (3.16)

Now we redefine the fields as follows:

ωψ′

µ − ∂µc ≡ Q̃Aµ = ωψµ − ∂µc+ . . . ,

ωb′στ ≡ Q̃χστ = ωbστ + . . . ,

2ωη′ = Q̃φ̄ = 2ωη + . . . ,

−ω2φ′ = Q̃c = −ω2φ+ . . . ,

b′ = Q̃c̄ = b+ vµ∂µc̄ , (3.17)
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while we leave all other fields unchanged. Notice that this transformation is invert-

ible. Apart from the fields (Aµ, ψ
′

µ) only Q̃-doublets are now present. Notice that the

transformation generated by Q̃ in equation (3.17) is now linear in the new quantum

fields.

Explicitly we get:

ψ′

µ = ψµ −
1

ω
[Aµ, c] +

εν

2ω
χνµ +

εµ
8ω
η +

vν

ω
∂νAµ ,

b′στ = bστ +
1

ω
{c, χστ} + F−

στ +
εµ

8ω
(εµστν + gµσgντ − gµτgνσ)D

νφ̄

+
vν

ω
∂νχστ ,

η′ = η +
1

2ω
[c, φ̄] +

1

2ω
vν∂ν φ̄ ,

φ′ = φ−
1

ω2
c2 +

εµ

ω2
Aµ −

ε2

16ω2
φ̄+

vν

ω2
∂νc ,

b′ = b+ vµ∂µc̄ . (3.18)

The role played by εµ and vµ is rather suggestive: they can be thought as background

fields entering into the field redefinition. From the cohomological point of view this

is confirmed by the fact that (vµ, εµ) form a set of doublets under Q̃. We remark

that the field redefinition in equation (3.17) gives terms that are not analytic in ω.

We will discuss in Sect. 3.2 how the BFM allows naturally to recover the observables

of the model by taking into account the relevant equivariant cohomology of TYM.

At this point we can perform a linear splitting in the primed variables

ψ′

µ = ψ̂µ + ξψµ
, b′στ = b̂στ + ξbστ

, η′ = η̂ + ξη , φ′ = φ̂+ ξφ , b′ = b̂+ ξb ,

(3.19)

and then go back to reconstruct the full non-linear splitting, making use of equa-

tion (3.18). Notice that also the fields that are unchanged under the field redefinition

in equation (3.17) are understood to be splitted into a background and a quantum

part:

Aµ = Âµ + ξA,µ , χστ = χ̂στ + ξχ,στ , φ̄ = ˆ̄φ+ ξφ̄ ,

c = ĉ+ ξc , c̄ = ˆ̄c+ ξc̄ . (3.20)

The corresponding BRST transformations of the new variables are given by

Q̃Âµ = ωψ̂µ − ∂µĉ , Q̃ψ̂µ = −ω∂µφ̂ ,

Q̃ξA,µ = ωξψµ
− ∂µξc , Q̃ξψµ

= −ω∂µξφ , (3.21)

Q̃χ̂στ = b̂στ , Q̃b̂στ = 0 , Q̃ξχ,στ = ξb,στ , Q̃ξb,στ = 0 , (3.22)
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and analogously for the other sets of Q̃-doublets.

As an example, in the case of ψµ we get

ψµ = ψ̂µ + ξψµ
+

1

ω
[Âµ, ĉ] +

1

ω
[Âµ, ξc] +

1

ω
[ξA,µ, ĉ] +

1

ω
[ξA,µ, ξc]

−
εν

2ω
(χ̂νµ + ξχ,µν) −

vν

ω
∂ν(Âµ + ξA,µ)

−
εµ
8ω

(

η̄ + ξη −
1

2ω
[ĉ, ˆ̄φ] −

1

2ω
[ĉ, ξφ̄]

−
1

2ω
[ξc,

ˆ̄φ] −
1

2ω
[ξc, ξφ̄] −

1

2ω
vν∂ν(

ˆ̄φ+ ξφ̄)

)

. (3.23)

Note that this splitting contains terms that are non-linear in the quantum fields.

We recover the original Q̃ transformation of ψµ by acting with the Q̃ transfor-

mations in equation (3.21) on the R.H.S. of equation (3.23).

We remark that, since the change of variables in equation (3.17) only involves

fields, it is automatically a canonical transformation in the space spanned by the

fields and the antifields of the model. This is analogous to the previous example of

TYM. Therefore we do not modify the cohomology of the model while implementing

the background splitting. In Sect. 3.2 we show how to recover the relevant equivariant

cohomology from the BFM.

A comment on the gauge-fixing function for TYM is in order. In the case of TYM

we have been able to prove that the original BRST symmetry can be linearized by

a suitable change of variables. This change of variables can be implemented via a

canonical transformation, thus leaving the cohomology invariant. As a consequence,

the classical ST identities in equation (3.14) hold. Moreover, they are already linear

in the quantum fields, when expressed in terms of the new variables. We remark

that these identities are fulfilled by the classical action whose gauge-fixing condition

is the one given in equation (3.10). No special choice of the gauge-fixing function

is needed in the present case, since the full BRST symmetry becomes linear. This

should be compared with the different situation in ordinary Yang-Mills theory (see

Sect. 2.1). In these case the full BRST transformation cannot be cast in a linear form

(see equation (2.11)), but one can establish an additional background WT identity,

provided that a suitable background-dependent choice of the gauge-fixing function

is made, as discussed in Sect. 2.5.

With the conventions of [30] on supersymmetry in Euclidean space-time we can

go back to the original model N=2 SYM by using the map

ψ(αβ) =
1

4
(σµν)αβχµν , ψ[αβ] =

1

2
εαβη ,

ψ̄αα̇ = −
1

2
(σµ)αα̇ψµ , bαβ =

1

4
(σµν)αβbµν , (3.24)
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while the fields Aµ, φ, φ̄ are mapped into themselves. Due to the linearity of this map,

the correct background splitting of the original N=2 multiplet in the WZ gauge can

be directly recovered from the splitting of the twisted multiplet of TYM.

3.2 Equivariant cohomology for TYM and the BFM

We showed that in order to introduce the BFM for N=2 SYM, it is convenient to

perform the twisting of the fields and to rewrite the theory as a topological model.

By the canonical change of variables in equation (3.17) the BRST operator Q can be

cast in the form Q =
∫

d4xVδ/δU , hence the cohomology of Q in the space of local

formal power series vanishes. In addition, we know that N=2 SYM has a physical

set of observables whose correlation functions do not vanish. Hence the observables

of the theory should be defined not as the BRST cohomology on the entire space,

but the latter should be restricted to a suitable subspace. Following [31], the correct

set of observables is given by the BRST cohomology computed in the space of gauge

invariant polynomials which are independent of the gauge ghost (in the literature

this space is denoted as the space of basic forms). Within the BFM the observables

are defined as the BRST cohomology computed in the space of background gauge

invariant polynomials which are independent of the gauge ghost c . This suggests

that there exists a new nilpotent BRST operator w, associated with the background

gauge symmetry (as in the example in Sect. 2.4), which permits to select the space

of basic forms.

As has been discussed in the previous section, we have to give up the analyticity

in the ghost ω in order to implement consistently the splitting and the background

invariance (with respect to the full BRST transformation generated by Q) of the

theory. However, the analiticity in ω turned to be a crucial ingredient in the analysis

performed in [30]. There, it has been shown how the request of analyticity allows

to select the correct equivariant cohomology. Moreover, it can be proven that by

introducing a suitable grading of the fields in the theory the equivariant cohomology

can always be selected by the space of polynomials in ω. We cannot impose the

analyticity requirement in order to identify the correct subspace, but we can construct

a new differential w whose kernel identifies the basic forms. The differential w is

associated to the background gauge symmetry of the theory, therefore we neglect

for the moment the contributions due to the supersymmetry and translations by

setting εµ = vµ = 0. We will also drop the non-minimal doublets (c̄, b) since they are

cohomologically trivial.

The powers of ω entering the Q-transformations induce a grading under which

we can decompose Q as a sum of three terms:

Q = Q̃−1 + ωQ̃0 + ω2Q̃1 . (3.25)
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Explicitly, we have

Q̃0Aµ = ψµ , Q̃0ψµ = −Dµφ ,

Q̃0χστ = F−

στ + bστ ,

Q̃0bµν = −(Dµψν −Dνψµ)
− + [χµν , φ] , (3.26)

Q̃0η =
1

2
[φ, φ̄] , Q̃0φ = 0 ,

Q̃0φ̄ = 2η , Q̃0c = 0 .

It is convenient to introduce b̃στ = F−

στ + bστ and φ̄ → φ̄

2
to simplify these trans-

formation rules. Now it is clear that Q̃0 is the de Rham operator and (Q̃0)
2 = Lφ

where Lφ is the Lie derivative generated by the field φ. The cohomology that we are

looking for is the de Rham cohomology on the space of polynomials which are gauge

invariant and independent of the ghost c. This means that the operator w we are

looking for is given by

wAµ = −Dµĉ , wψµ = {ĉ, ψµ} ,

wχστ = {ĉ, χστ} , wb̃µν = [ĉ, b̃µν ] ,

wη = {ĉ, η} , wφ = [ĉ, φ] ,

wφ̄ = [ĉ, φ̄] , wc = {ĉ, c} − φ̂ ,

wĉ = ĉ2 , wφ̂ = [ĉ, φ̂] , (3.27)

The fields ĉ and φ̂ correspond to the background ghost field and to the background

of φ respectively. Their BRST transformation are the usual contractible pair trans-

formation

Q̃1ĉ = −φ̂ , Q̃1φ̂ = 0 . (3.28)

As explained in the previous section, we also have all the background fields present.

They transform under the BRST symmetry in the standard way, and under w as a

gauge transformation generated by ĉ:

wÂµ = −D̂µĉ , wψ̂µ = {ĉ, ψ̂µ} ,

wχ̂στ = {ĉ, χ̂στ} , w
˜̂
bµν = [ĉ,

˜̂
bµν ] ,

wη̂ = {ĉ, η̂} , w ˆ̄φ = [ĉ, ˆ̄φ] (3.29)

The operator w generates the gauge transformations of the model. Being linear in

the quantum fields, it is possible to write linear WTI. We notice that by imposing

the BRST invariance, and being all the background fields cohomologically trivial, it

turns out that the observables will depend only upon the original fields. Finally, the

background gauge invariance, as expressed by equations. (3.27) and (3.29), selects the

gauge invariant observables. The linear shift of the background gauge transformation

of c implies that a gauge invariant operator annihilated by w is independent of c.
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According to [31], the basic forms are identified with those local integrated functionals

belonging to the kernel of w.

The analysis of the cohomology follows the discussion of [36]. We only point out

that the generators of the equivariant cohomology classes are given by the polyno-

mials

P (φ) =
∑

n

cnTr(φ̂+ ξφ)
2n (3.30)

where cn are numeric coefficients and the field φ is split into the quantum and back-

ground part. The combination φ̂ + ξφ is fixed by the BRST symmetry and by the

background gauge symmetry.

In addition, we have that these polynomials are not BRST exact, indeed if they

were they would have the form

P (φ) =
∑

n

cnQ
(

Tr(ĉ+ ξc)(φ̂+ ξφ)
2n−1 + . . .

)

, (3.31)

but Tr(ĉ+ ξc)(φ̂+ ξφ)
2n−1 + . . . do not belong to the kernel of w since ĉ transforms

into φ̂.

Following the discussion in [36], there are further cohomological classes that are

not eliminated by the previous argument, based on the background gauge invariance,

for instance the operator:

∆µν =
(

F−

µν + bµν
)

φ . (3.32)

This operator is not related to any observables of the N=2 SYM theory and

therefore it should be absent from the cohomology. In [36] it is excluded by imposing

the supersymmetry with εµ. In our framework, by taking into account the complete

background symmetry for the complete differential Q instead of its gauge part, we

found that the invariance under Q (which now contains the supersymmetry in its

twisted version) excludes ∆µν .
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4. Conclusions and Outlook

We have discussed the implementation of the background field method from the ge-

ometrical point of view. Within the BV formalism we have shown how the method

should be generalized so as to deal with open algebras and field-dependent struc-

ture constants. This requires the identification of the proper space of variables on

which the BFM splitting problem can be defined. In addition, we have underlined

the similarity between the background field method and the BRST symmetry for

topological gauge theories. Using this idea, we have been able to formulate the BFM

for N=2 SYM by introducing a field redefinition that brings the model in its topo-

logical twisted version. Therefore, the required field splitting can be implemented

by a canonical transformation. We have analysed the compatibility of this field re-

definition with the gauge-fixing procedure. Finally we have shown that the BRST

symmetry plus the background symmetry (which is now extended to all the symme-

tries of the model) lead to the correct equivariant cohomology, needed to define the

proper set of observables in N=2 SYM. These results should be regarded as a step

towards the construction of a super BFM for the MSSM.
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A. BRST transformations for TYM

The operator Q in equation (3.9) acts as follows on the fields of TYM:

QAµ = −Dµc+ ωψµ +
εν

2
χνµ +

εµ
8
η + vν∂νAµ ,

Qψµ = {c, ψµ} − ωDµφ+ εν
(

Fνµ −
1

2
F−

νµ −
1

4
bνµ

)

−
εµ
16

[φ, φ̄]

+ vν∂νψµ ,

Qχστ = {c, χστ} + ωF−

στ + ωbστ +
εµ

8
(εµστν + gµσgντ − gµτgνσ)D

νφ̄

+ vν∂νχστ ,

Qbµν = [c, bµν ] + ω(−(Dµψν −Dνψµ)
− + [χµν , φ])

−
(

εµ(D
τχντ −Dτχτν + ενγλτD

γχλτ ) + εµDνη − εµ[ψν , φ̄]
)

−

+ vρ∂ρbµν ,

Qη = {c, η} +
ω

2
[φ, φ̄] +

εµ

2
Dµφ̄+ vν∂νη ,

Qφ = [c, φ] − εµψµ + vν∂νφ ,

Qφ̄ = [c, φ̄] + 2ωη + vν∂ν φ̄ ,

Qc = c2 − ω2φ− εµAµ +
ε2

16
φ̄+ vν∂νc ,

Qvµ = −ωεµ ,

Qεµ = 0 ,

Qω = 0 ,

Qc̄ = b+ vµ∂µc̄ ,

Qb = ωεµ∂µc̄+ vµ∂µb . (A.1)
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