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Abstract

Using data recorded by the CLEO-II detector at CESR, we report evidence of

a pair of excited charmed baryons, one decaying into �+
c �

+ and the other into

�+
c �

�. The doubly charged state has a measured mass di�erenceM(�+
c �

+)�

M(�+
c ) of 234:5� 1:1� 0:8 MeV and a width of 17:9+3:8

�3:2 � 4:0 MeV, and the

neutral state has a measured mass di�erence M(�+
c �

�) �M(�+
c ) of 232:6 �

1:0� 0:8 MeV and a width of 13:0+3:7
�3:0 � 4:0 MeV. We identify these states as

��++
c and ��0c , the spin 3

2

+
excitations of the �c baryons.
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Recently, we reported [1,2] the observation of two narrow states decaying into �c�, which

we identi�ed as the JP = 3
2

+
spin excitations of the charmed-strange �0

c and �+
c baryons.

Until now, however, evidence for JP = 3
2

+
spin excitations of their non-strange analogues,

the ��
c baryons, has been restricted to a cluster of 6 �+

c �
+ events [3] with an estimated

mass di�erence, �M � M(��
c) �M(�+

c ) of 245� 5� 5 MeV. Here we report evidence for
two particles decaying into �+

c �
+ and �+

c �
�, respectively. The two states have similar cross

sections, masses and widths. We identify these states as the ��++
c and ��0

c baryons [4].
The data presented here were taken by the CLEO II detector [5] operating at the Cor-

nell Electron Storage Ring. The sample used in this analysis corresponds to an integrated
luminosity of 4.8 fb�1 from data taken on the �(4S) resonance and in the continuum at
energies just above and below the �(4S). We detected charged tracks with a cylindrical drift
chamber system inside a solenoidal magnet. Photons were detected using an electromagnetic
calorimeter consisting of 7800 cesium iodide crystals.

We reconstructed �+
c baryons using 13 di�erent decay modes [6]. Measurements of the

branching fractions into all these modes and the general procedures for �nding them have
previously been presented by the CLEO collaboration [7,8]. For this search and data set,
the exact cuts have been optimized for high e�ciency and low background. Briey, particle
identi�cation of p;K�, and � candidates was performed using speci�c ionization measure-
ments in the drift chamber, and when present, time-of-ight measurements. Hyperons were
found by detecting their decay points separated from the main event vertex. To obtain
the �+

c yields, we �tted the invariant mass distributions for each �+
c mode to a sum of a

Gaussian signal and a low-order polynomial background. Combinations within 1.6 standard
deviations of the mass of the �+

c in each decay mode are taken as �+
c candidates; the signal

yields and backgrounds within this mass window are given in Table I for each �+
c mode.

The �+
c candidates were then combined with each remaining charged track in the event

and the mass di�erence M(�+
c �

�) �M(�+
c ) was calculated. To reduce the combinatorial

background, we require xp > 0:5, where xp = p=pmax, pmax =
q
E2
beam �M2, and p andM are

the reconstructed momentum and mass of the ��
c ! �+

c �
� candidate. To demonstrate the

high statistics and good signal to background ratios of the initial �+
c samples, for Table I we

made a cut on the analagously de�ned quantity xp(�
+
c ), of xp(�

+
c ) > 0:45; this corresponds

approximately to xp > 0:5 for real ��
c signal. We note that charmed baryons produced from

decays of B mesons are kinematically limited to xp < 0:4, so the xp cut restricts our analysis
to charmed baryons produced by e+e� annihilation into cc jets, which are known to have a
hard momentum spectrum.

We de�ne �dec to be the angle between the � momentum measured in the rest frame
of the �+

c �, and the direction of the �+
c � in the laboratory frame. The combinations are

required to pass a cut of cos(�dec) > �0:4, which suppresses the large background from low
momentum � mesons. The mass di�erence spectra, shown in Figure 1, each show clear peaks
near 167 MeV due to �c decays, broad enhancements below 204 MeV due to feed-down from
��+c (2630) ! �+

c �
+�� decays [9], and broad excesses near 233 MeV which are our signals.

The overlaid histogram in each case shows the mass di�erence spectrum using normalized
sidebands of the �+

c ; no enhancements are observed in these histograms, and good �ts are
obtained to them when �t with smooth second-order polynomials.

The �ts shown for the signal spectra in Figure 1 each have �ve components: i) the

4



Mode Signal Background

pK��+ 8364 16291

pK0 974 413

��+ 1139 808

��+�0 917 969

��+���+ 771 773

�0�+ 704 880

�+�+�� 772 691

�+K+K� 61 17

��K+�+ 225 55

�0K+ 128 49

pK��+�0 341 478

pK0�0 228 199

pK0�+�� 266 220

TABLE I. The number of �+
c 's found with xp(�

+
c ) > 0:45

�ts to the normalized sidebands are used as representations of the contribution to �+
c �

candidates from fake �+
c candidates, ii) second order polynomials, with shape derived from

Monte Carlo simulation, are used with oating normalizations for the contributions of real
�+
c baryons with random pions, iii) Gaussians of oating mean and width were used for

the �c contributions at �(M) = 167 MeV, iv) broader excesses in the region below 204
MeV due to ��+c (2630) production are accounted for using the �+

c �
� spectra from fully

reconstructed ��+c (2630) ! �+
c �

+�� data events, with the normalization corrected for the
relative e�ciency of observing one versus two � mesons obtained from Monte-Carlo, v)
we use ��

c signal functions of P-wave Breit-Wigners convoluted with a Gaussian resolution
function of standard deviation 2:3 MeV. This resolution was determined using a Monte
Carlo simulation based upon GEANT [10].

The �ts yield signi�cant signals for both ��
c ! �+

c �
+ and �+

c �
�. In the case of �+

c �
+

we obtain a signal of 677+101
�93 events, a width of � = 17:9+3:8

�3:2 MeV, and a mass di�erence of
�M = 234:5� 1:1 MeV. For the the �+

c �
� combinations, we obtain a signal area of 504+93

�83

events, a width of � = 13:0+3:7
�3:0 MeV, and a mass di�erence of �M = 232:6� 1:0 MeV. The

quoted errors are all statistical.
The extracted parameters are sensitive to the �tting procedure used. We have tried many

variations of the background functions, including allowing the �rst two components of each �t
to be incorporated into second-order polynomials with oating shape and normalization. We
have also tried varying the shape of the ��+c feed-down component, varying the normalization
of this component by as much as 50%, and varying the mass di�erence range over which the
�ts are made. The systematic uncertainties in the measurements due to the �tting procedures
are taken as the maximum range of parameters obtained using di�erent reasonable �ts of
these types. This is the dominant systematic uncertainty for both the yields and widths; we
note that these two parameters are highly correlated. For each charged state we estimate
the systematic uncertainty on the yield to be �120 events, and the systematic uncertainty
on the width to be �4:0 MeV. The masses of the signals are relatively stable for all �tting
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techniques used. In each case we estimate the systematic uncertainty to be �0:8 MeV due to
a combination of �tting uncertainty (0.7 MeV) and uncertainty in the mass di�erence scale
(0.4 MeV). This last uncertainty cancels in the measurement of the isospin mass splitting,
which we �nd to be M(��++

c )�M(��0
c ) = 1:9� 1:4� 1:0 MeV.

Since the discovery of charm, many models [11] have been used to predict the spectroscopy
of charmed baryons. The range of the predicted mass di�erence, �M = M(��

c) �M(�+
c )

is around 200-300 MeV. Two recent models have the bene�t of having data for the ��c and

c masses available as constraints. Rosner [12] uses spin-avor wave-functions and predicts
�M = 229 MeV; Savage [13] uses chiral perturbation theory and predicts �M = 233 MeV.
The mass di�erences we measure are in very good agreement with these models. Combining
our result with previous results [14] we �nd the mass splitting between the spin-state weighted
mass of the �(�)

c system and the �+
c to be (4M(��

c)+2M(�c))=6�M(�+
c ) � 211 MeV. This

value is similar to the analogous value for the non-charmed hyperons of about 206 MeV,
and also the value of about 210 MeV obtained using preliminary DELPHI results for the
masses of the bottom baryons [15]. These three values are predicted to be the same in naive
baryonic mass models [16]. We also note that the width of the ��

c has been estimated [12]
from extrapolation of the �� hyperon width to be around 20 MeV, with the possibility of
QCD corrections lowering this number; this is also in good agreement with our measurements.
We therefore identify these peaks as the ��++

c and ��0
c baryons [17].

In order to study the decay angle and momentum distribution of the ��
c candidates, we

relax the decay angle cut and re�t our signals in bins of cos(�dec) and xp, �xing the mass
and width of each of the particles to the values obtained above. We restrict the �M plots to
205 < �M < 380 MeV so that there are no complications from �c production and ��c feed-
down. We �nd no signi�cant di�erences between the characteristics of the two isospin states,
so we add the yields from the two in each bin to increase the precision of the measurements.

Figure 2 shows the data divided into �ve bins of cos(�dec). Using the treatment of Falk and
Peskin [18], this distribution can be �t to a form 1

�
d�

d cos�dec
= 1

4
(1+3cos2�dec�

9
2
w1(cos

2�dec�
1
3
)), where w1 is the fraction of the light diquark in a helicity �1 con�guration. We �nd w1

= 0:71�0:13, where statistical errors dominate. This is consistent with a value of w1 = 2=3,
which corresponds to a at cos(�dec) distribution and unaligned ��

c production. This value
of w1 is very di�erent from the value of � 0 found by the DELPHI collaboration in their
preliminary analysis of ��

b production from Z0 decays [15].
In order to study the fragmentation function we divide the data into bins of xp, determine

the yields in each bin and correct the yields using e�ciencies obtained from Monte Carlo
simulations. Figure 3 shows the dN

dxp
distribution, and the overlaid �t using the Peterson

[19] form of dN=dxp / x�1p (1� 1=xp � �=(1 � xp))
�2. The �t gives a value of � = 0:30+0:10

�0:07.
This is similar to the CLEO measurements [1,2,7,20] for �+

c , �
+
c , �

�0
c and ��+c baryons, but

corresponds to a softer momentum spectrum than that of the charmed baryons with non-zero
orbital angular momentum [9]. In order to calculate the percentage of �+

c baryons that are
the decay products of ��

c decays, we need to extrapolate the yields of �+
c and ��

c baryons
down to xp = 0. We calculate that (12:8+1:5

�1:3 � 3:2)% of �+
c baryons are produced from the

sum of ��++
c and ��0

c decays. The systematic error includes the uncertainties in �tting the
signals and the uncertainty in the extrapolation down to xp = 0.

In conclusion, we present evidence for two resonances which we identify as the ��++
c
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and ��0
c baryons. For the doubly charged state, M(��++

c ) � M(�+
c ) is measured to be

234:5�1:1�0:8 MeV and � = 17:9+3:8
�3:2�4:0 MeV, and for the neutral stateM(��0

c )�M(�+
c )

is measured to be 232:6 � 1:0 � 0:8 MeV and � = 13:0+3:7
�3:0 � 4:0 MeV. The isospin mass

splitting M(��++
c )�M(��0

c ) is measured to be 1:9� 1:4� 1:0 MeV.
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