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Abstract

Temporal profile of a simple bunch distribution may be obtained by measuring
the horizontal density profile of an energy-chirped electron beam at a dispersive
region using the rf zero-phasing technique. For an energy-modulated beam, the
horizontal profile obtained by this technique is also modulated with an enhanced
amplitude. We study the microbunching experiment at the NSLS source devel-
opment laboratory and show that the horizontal modulation observed by the
rf zero-phasing technique can be explained by the space-charge induced energy
modulation in the accelerator.
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1 Introduction

Time-resolved measurements of very short electron bunches are essential for free-electron
lasers (FEL), linear colliders and other advanced accelerators. Diagnostic techniques that
have femtosecond resolutions are of particular interests (see, e.g., Ref. [1]). Among them,
the rf-zero phasing technique [2] is relatively straightforward to implement since accelerat-
ing cavities and regions of nonzero dispersion are usually available at linear accelerators.
Knowledge of the horizontal density profile at the dispersive region determines the energy
profile of the bunch, which in turn can be related to the current profile for a linearly-chirped
beam. Recent applications of such a technique at the NSLS source development laboratory
(SDL) yield unexpected information about the longitudinal bunch distribution [3]: the mea-
sured horizontal density profiles show large high-frequency modulations after the beam is
compressed by a bunch compressor chicane. Analysis based on the recently developed co-
herent synchrotron radiation (CSR) instability in the bunch compressor [4, 5] does not yield
microbunching that supports the observed structures [6]. Note that similar structures in
energy spectra of chirped electron beams due to off-crest rf acceleration have been reported
in Ref. [7, 8, 9].

Motivated by these experimental observations, we perform a thorough analysis of the
rf zero-phasing technique for a general beam distribution. We show that the horizontal
density modulation obtained by this method is significantly enhanced due to the beam
energy modulation. For the SDL experiment, the energy modulation can be induced by
the longitudinal space charge (LSC) force in the linac and can dominate the horizontal
spectrum. Thus, the rf zero-phasing technique may be used to measure the beam energy
modulation, which plays a major role in the microbunching instability driven by various
impedance elements in accelerators for future x-ray FELs [10, 11, 12].

2 Analysis of rf zero-phasing technique

The rf zero-phasing technique uses one or several rf cavities operated at the zero accelerating
phase to impart a large energy-time correlation to the beam. The energy-chirped beam is
then dispersed horizontally by a spectrometer dipole and intercepted by a measurement
screen. The horizontal profile of the beam at the screen is used to determine its energy
profile, which can be related to its temporal profile for a beam with a smooth, linear energy-
time phase space distribution (see Fig. 1).

In general, we consider a distribution function f(x, x′, z, δ; s) in a dispersive region at a
distance s from the beginning of the spectrometer dipole. Here x and x′ ≡ dx/ds are the
horizontal phase space coordinates, z is the longitudinal (temporal) coordinate centered in
the bunch (z > 0 for the head of the bunch), and δ = ∆E/E0 is the relative energy deviation
for a beam with the average energy E0 = γmc2. The horizontal beam density profile at s is

F (x; s) =

∫
dx′dzdδf(X; s) , (1)

where we use the shorthanded notation X = (x, x′, z, δ) and take the normalization
∫

dXf(X; s) =

2



Figure 1: (Color) Current profile (in blue) and energy profile (in green) for a beam with a
smooth, linear energy-time (δ − z) phase space distribution (in red).

N to be the total number of electrons. Making a Fourier transformation in x, we have

a(km; s) =
1

N

∫
dxe−ikmxF (x; s) =

1

N

∫
dXe−ikmxf(X; s)

=
1

N

∫
dXde

−ikmx(Xd)fd(Xd) , (2)

where km is the measured modulation wavenumber, fd(Xd) is the beam distribution at the
entrance of the dipole (referred to by the subscript d), and we have applied the Liouville
theorem in transforming the phase space from s to the beginning of the dipole [13].

Let us assume that the beam at the entrance of the dipole has both a small longitudinal
density variation ∆n(zd) as well as a small energy variation ∆δ(zd), i.e.,

fd(Xd) =
n0 + ∆n

2πεx

√
2πσδ

exp

[
−x2

d + (βdx
′
d + αdxd)

2

2(σx)2
d

− (δd − hzd − ∆δ)2

2σ2
δ

]
. (3)

where n0 is the average line density, εx is the horizontal emittance, σδ is the rms incoherent
energy spread, αd and βd are the twiss parameters, (σx)d =

√
εxβd is the rms horizontal

beam size, and

h =
eVrfkrf cos φ

E0

(4)

is the energy chirp generated by an accelerating voltage Vrf with the rf wavelength λrf =
2π/krf at a phase φ (φ = 0 or π for zero-crossing). Note that the horizontal position x at s
is

x(Xd) =C(s)xd + S(s)x′
d + η(s)δd , (5)

3



where C(s), S(s), η(s) are the cosine-, sine-like and dispersion functions, respectively. In-
serting Eq. (5) into Eq. (2) and keeping only first order terms in ∆n and ∆δ, we obtain

a(km; s) = [bd(kmηh) − ikmηpd(kmηh)]

× exp

[
−k2

mη2σ2
δ

2
− k2

m(σx)
2
d

2

((
C − αdS

βd

)2

+
S2

β2
d

)]

=

[
bd(k) − i

k

h
pd(k)

]
exp

[
−k2σ2

δ

2h2
− k2σ2

x(s)

2η2h2

]
, (6)

where k = km(s)η(s)h is the initial modulation wavenumber, bd(k) is the longitudinal bunch-
ing spectrum at the beginning of the dipole

bd(k) =
1

N

∫
dXdf(Xd)e

−ikzd =
1

N

∫
dzd∆n(zd)e

−ikzd , (7)

pd(k) is the energy spectrum at the beginning of the dipole

pd(k) =
1

N

∫
dXdf(Xd)δde

−ikzd =
1

N

∫
dzd∆δ(zd)e

−ikzd , (8)

and σx(s) is the rms horizontal beam size at s. Note that Eq. (6) is valid when |bd(k)| � 1 and
|pd(k)| � h/k. In the absence of any initial energy modulation (i.e., when the longitudinal
phase space correlation is linear), and if

λ =
2π

k
� max

(
σδ

|h| ,
σx(s)

η|h|
)

, (9)

then

a[km(s); s] ≈ bd(k) , F (x; s) ≈ ∆n

(
x

η(s)h

)
(10)

reproduces the longitudinal density variation (i.e., the current profile) at the entrance of the
dipole. The right hand side of Eq. (9) determines the temporal resolution of the rf zero-
phasing technique due to finite beam size and energy spread. For a high-brightness electron
beam generated from a photocathode rf gun, the incoherent energy spread σδ is typically
very small, and the horizontal beam size σx can be focused down to 100 µm or less at the
measurement screen. If we take |h| ≈ 20 m−1 and η ≈ 1 m, Eq. (9) indicates a temporal
resolution of about 5 µm or 17 fs.

However, if the longitudinal phase space distribution has a higher-order correlation, e.g.,
if the beam energy is modulated at a modulation wavelength λ, the energy modulation can
be converted into horizontal density modulation through the dispersion and hence distort the
simple relation given by Eq. (10). From Eq. (6), we see that the amplitude of the horizontal
modulation is magnified by a factor

k

|h| =
E0

eVrf | cos φ|
λrf

λ
� 1 (11)
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Figure 2: (Color) Current profile (in blue) and energy profile (in green) for a chirped beam
with a modulated longitudinal phase space distribution (in red).

for λrf � λ above the resolution limit, even if eVrf ≈ E0 (i.e., 100% correlated energy spread).
As illustrated in Fig. 2, the very rapid but small energy modulation on top of a linear chirp
redistributes the electrons in the energy space, causing a very large density modulation in
the energy spectrum.

Therefore, the horizontal (or energy) profile obtained by the rf zero-phasing technique is
sensitive to even very small high-frequency energy modulation of the beam. For a current-
modulated bunch, the energy modulation can be induced by wakefields in the accelerator. An
important source of energy modulation for a high-brightness electron beam is the longitudinal
space charge force in the linac. We study its effect on rf zero-phasing measurements in the
next two sections.

3 Energy modulation due to space charge

There is no longitudinal space charge (LSC) force if the bunch current profile is uniform.
However, if there is a density clustering, the longitudinal space charge force tends to push
electrons away from each other, accelerating the front electrons and decelerating the back
electrons to give rise to the energy modulation. For a sinusoidal current modulation at the
modulation wavelength λ characterized by the bunching parameter b(k), the longitudinal
electric field in the absence of vacuum chamber is [14, 15]

Ez(k, r) = −4ien0b(k)

kr2
b

[
1 − krb

γ
K1

(
krb

γ

)
I0

(
kr

γ

)]
(12)

for r =
√

x2 + y2 ≤ rb, where rb is the beam radius for a circular cross section, K1 and I0

are the modified Bessel functions, and the velocity of the electrons is taken to be the speed
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Figure 3: LSC impedance ZLSC (solid line) and reduced space charge oscillation wavelength
c/Ω (dashed line) as a function of the modulation wavelength for γ = 130, rb = 580 µm and
I0 = 300 A.

of light c. For simplicity, we average the electric field over the transverse cross section to
obtain

Ēz(k) =
2

r2
b

∫ rb

0

drrEz(k, r)

= − 4ien0b(k; s)

kr2
b

[
1 − krb

γ
K1

(
krb

γ

)]
R(k) , (13)

where the reduction factor R is typically slightly less than 1. The average LSC impedance
per unit length is

ZLSC(k) =
4i

kr2
b

[
1 − krb

γ
K1

(
krb

γ

)]
R(k)

≈



4i
kr2

b
, krb

γ
� 1 ,

ik
γ2

(
1 + 2 ln γ

rbk

)
R(k) , krb

γ
� 1 .

(14)

The free space approximation is satisfied when the beam pipe radius is much larger than
the reduced modulation wavelength in the beam’s rest frame γλ/(2π). For the SDL mi-
crobunching experiment, γ ≈ 130, and the free space approximation is valid up to λ ∼ 100
µm. Figure 3 shows this impedance using the SDL parameters.

In the zero-phasing accelerating cavities, the slip factor is simply 1/γ2 for a small energy
deviation. A standard instability analysis [16] shows that the beam is stable for the LSC
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impedance with an oscillation frequency

Ω = c

[
I0

γ3IA

k|ZLSC(k)|
]1/2

, (15)

where I0 = n0ec is the peak electron current, and IA = 17045 A is the Alfven current. In the
limit that the transverse beam size is much larger than the reduced modulation wavelength
in the beam’s rest frame (i.e., krb/γ � 1), Ω becomes the plasma frequency [15]. Fig. 3
shows the reduced space charge oscillation wavelength c/Ω as a function of the modulation
wavelength for I0 = 300 A after compression.

In this paper, we focus on the longitudinal beam dynamics in the SDL rf zero-phasing
section. Since the upstream energy modulation can be effectively converted into current
modulation through the chicane [12], we assume the beam has only the current modulation
b0(k) and no energy modulation prior to the rf zero-phasing section (right after the bunch
compressor). Thus, the bunching spectrum at the entrance of the spectrometer dipole after
a drift distance ∆L is

bd(k) = b0(k) cos(Ω∆L/c) . (16)

The current modulation is converted into the energy modulation due to space charge oscil-
lations, which is given by

pd(k) = − I0

γIA

ZLSC(k)b0(k)sin(Ωs/c)
c

Ω

= − i

[
γI0

IA

|ZLSC(k)|
k

]1/2

sin

(
Ω∆L

c

)
b0(k) . (17)

Landau damping is ignored in the straight section because of the negligible path length
difference for the very small energy spread and the emittance considered here. Note that
the length of the SDL zero-phasing section, ∆L, is about 15 m. From Fig. 3, we see that
Ω∆L/c ∼ 1 for a wide range of the modulation wavelength, so that the energy modulation
is close to its maximum. Although we assume the average beam energy is constant in the
zero-crossing accelerating section, the above analysis can be extended to other rf accelerating
phases if the acceleration gradient is small compared to the beam energy divided by c/Ω.

4 Gain in horizontal modulation

As discussed in Sec. 2, the LSC induced energy modulation can be converted to an enhanced
horizontal modulation in the spectrometer dipole. As a result, the horizontal modulation
measured by the rf zero-phasing technique is much larger than the current modulation and
may be quantified by a “gain” factor as

Gm ≡
∣∣∣∣∣am(km)

b0(k)

∣∣∣∣∣ , (18)
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where the subscript m refers to the measurement screen. Inserting Eqs. (16) and (17) into
Eq. (6), we obtain

Gm =

∣∣∣∣∣ cos(Ω∆L/c) − k

h

[
γI0

IA

|ZLSC(k)|
k

]1/2

sin(Ω∆L/c)

∣∣∣∣∣
× exp

[
−k2σ2

δ

2h2
− k2(σx)

2
m

2h2η2
m

]
, (19)

where the rms horizontal beam size at the screen is

(σx)m = (σx)d

[(
Cm − αdSm

βd

)2

+
S2

m

β2
d

]
. (20)

If the spectrometer dipole is a sector dipole with a bending radius ρ and a magnetic
length Lb, the various lattice functions inside the dipole (for s ≤ Lb) are

C(s) = cos
s

ρ
, S(s) = ρ sin

s

ρ
, η(s) = ρ

(
1 − cos

s

ρ

)
.

For a measurement screen located at a distance Ls behind the dipole, the final lattice func-
tions at the screen are

Cm = cos
Lb

ρ
− Ls

ρ
sin

Lb

ρ
, Sm = ρ sin

Lb

ρ
+ Ls cos

Lb

ρ
,

ηm = ρ

(
1 − cos

Lb

ρ

)
+ Ls sin

Lb

ρ
. (21)

Equation (19) gives the apparent “gain” of the horizontal density modulation to the
longitudinal density modulation as a function of the modulation wavelength λ. We apply
this formula to study the SDL microbunching experiment with the typical parameters listed
in Table 1. As shown in Fig. 4, the gain is much larger than 1 for a wide range of modulation
wavelengths above the resolution limit (except for wavelengths corresponding to c/Ω =
2∆L/n for n = 1, 2, 3, ...), indicating that the horizontal spectrum is dominated by effects
of the energy modulation. When Gm � 1 and |pd(k)| � hλ/(2π), we have from Eq. (6)

pd(k) ≈ i
h

k
am(km) (22)

above the resolution limit. For the energy modulation comparable to the energy chirp over
the modulation wavelength, other methods can be used to obtain pd [17]. Therefore, the rf
zero-phasing technique can be used to extract the beam energy modulation instead of the
current modulation.
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Table 1: Typical parameters for the SDL microbunching experiments.
Parameter Symbol Value
beam energy E 65 MeV
compressed peak current I0 300 A
normalized emittance γεx 2.5 µm
average beam radius rb 580 µm
beta at dipole βd 8.5 m
alpha at dipole αd 1.8
incoherent energy spread σδ 1 × 10−4

chirp h ±50 m−1

zero-phasing linac length ∆L 15 m
dipole bending radius ρ 0.79 m
dipole magnetic length Ls 1m
total dipole R56 R56 -24.5 cm
distance from dipole to screen Ls 0.31 m
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Figure 4: (Color) Gain of the horizontal density modulation relative to the current modula-
tion as a function of the modulation wavelength at the entrance of the dipole for the negative
chirp (solid line) and the positive chirp (dashed line).
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5 Conclusion

In this paper, we study the rf zero-phasing technique for a general beam distribution and show
that the measured horizontal profile is very sensitive to the beam energy modulation. For
high-brightness electron beams, the energy modulation can be induced by the longitudinal
space charge force in the accelerator and can significantly distort the horizontal profile.
This analysis is applied to the SDL microbunching experiment and provides a qualitative
explanation for the observed structures [18]. Beam dynamics studies in the SDL accelerator
are planned to address sources of the initial modulation and effects of acceleration and
compression.
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