
SLAC-PUB-9786

Wired World-Wide Web Interactive Remote Event Display

Work supported by Department of Energy contract DE–AC03–76SF00515.

Presented at Computing in High-Energy Physics (CHEP 97), 4/7/1997—4/11/1997,
Berline, Germany

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309



WIRED

World-Wide Web Interactive Remote Event Display

M.C. Coperchio a, M. D�onszelmann b, N. de Groot c,

P. Gunnarsson d, M. Litmaath b, D. McNally b, N. Smirnov e

a Dipartimento di F��sica, Universit�a di Bologna and INFN,
Via Irnerio 46, I-40126 Bologna, Italy

b CERN, CH-1211 Geneva 23, Switzerland
c SLAC, P.O.Box 4349, Stanford CA 94309, California, USA

d Fysikum, Stockholm University, Box 6730, S-113 85 Stockholm, Sweden
e Inst. of High Energy Physics, Serpukov P.O.Box 35, 142284 Protvino, Russia

The WIRED project: http://www.cern.ch/WIRED

WIRED (World-Wide Web Interactive Remote Event Display) is a
framework, written in the JavaTM language, for building High En-
ergy Physics event displays. An event display based on the WIRED
framework enables users of a HEP collaboration to visualise and
analyse events remotely using ordinary WWW browsers, on any
type of machine. In addition, event displays using WIRED may
provide the general public with access to the research of high en-
ergy physics.
The recent introduction of the object-oriented JavaTM language en-
ables the transfer of machine independent code across the Inter-
net, to be safely executed by a Java enhanced WWW browser. We
have employed this technology to create a remote event display
in WWW. The combined Java-WWW technology hence assures a
world wide availability of such an event display, an always up-to-
date program and a platform independent implementation, which
is easy to use and to install.

Key words: HEP Event Displays; WWW; Java; CORBA.

1 Introduction

Today's High Energy Physics experiments are typically carried out by big
collaborations of many institutes and universities spread over several countries.

Preprint submitted to Elsevier Preprint 20 February 1997



Each of these institutes is equipped with a variety of computers to run analysis
jobs, interactive tools and event displays. All institutes are connected to the
Internet, giving physicists access to the events of their experiment. To enable
physicists to look at these events from any machine anywhere in the world,
WIRED[1,2] was created as an event visualisation framework using JavaTM[3]
inside a World-Wide Web browser[4], as shown in �gure 1. This work was
initially performed in view of the DELPHI[5] detector at CERN, and later
generalised for other HEP experiments.

WIRED can be accessed world wide. By clicking on a link any authorised user
may download a full event display and interactively browse events. Because
WIRED is written in Java, it is portable across all platforms that provide Java
compatible WWW browsers. There is no need for any installation (apart from
the WWW browser), since parts of the WIRED program will be transferred
automatically when needed. Whenever a user downloads the event display, he
gets the most up-to-date version of the code. WIRED is also optimised for

Fig. 1. WIRED, inside Netscape NavigatorTM, showing the DELPHI detector and an
event in a normal and \�sh-eye" projection. On the top and right are the controls
to load other events and detector geometries.

2



network use: most of the code is downloaded before the user starts viewing
events. Data are then loaded as the need arises. Refer to table 1 for an indi-
cation of the size of the code, the data and the time it takes to load. Local
resources, such as CPU, memory and graphics accelerators, are then used for
interactive operations like zooming.

Table 1
Code and data sizes, their approximate loading times and server types.

Size
Download time

(over slow network)
Server Type

Code (classes) � 200 kb < 2 minutes HTTP

Event < 50 kb < 25 seconds HTTP

> 50 kb
< 5 s/part

(loaded in parts)
CORBA

Detector Geometry
10{50 kb

per subdetector
5{25 seconds HTTP

Currently WIRED provides the following functions. It is possible to view mul-
tiple di�erent projections of the same or di�erent events. This allows for vi-
sual comparisons as well as studies at di�erent levels of detail. Parts of the
event and detector geometry may be selected and will be loaded on demand.
They can be rotated and zoomed. Context-sensitive help is available inside the
browser. The user interface is con�gurable to allow for full-
edged technical
as well as easy to use educational con�gurations.

2 Architecture

The WIRED architecture is designed to minimise network tra�c, to use local
resources where possible, to be con�gurable for di�erent user needs and to ac-
commodate di�erent detectors. WIRED provides an adaptable object-oriented
framework and allows for a designer to use default implementations or to con-
struct his own. For example, the DELPHI detector may have its own data
structure and therefore its own data conversion and visualisation modules.
WIRED consists of both a server and a client. The server runs continuously
on a computer that has access to the data, while the client is in fact an Applet
(\small" application), running inside the browser, as shown in �gure 2.

The server provides the Applet with event and detector geometry data. These
data may be distributed over a number of servers in di�erent formats. Fur-
thermore, multiple data access mechanisms are used. Sequential access to the
geometry data may be provided by an ordinary HTTP server. For events,
which may vary signi�cantly in size (refer to table 1), CORBA[6] is used to

3



transfer only those pieces of data in which the user is interested, thereby keep-
ing the network load to a minimum. The use of CORBA allows for the server
to be written in a di�erent language than Java. Legacy data access packages
can thus be interfaced with WIRED.

The Applet uses local resources to allow the user to interact with the event.
It consists of a store to cache the data, a set of viewing pipes to �lter and
convert the data, and the graphical user interface (GUI) to display them.

The store caches the data in a format depending on the experiment. The
store may use di�erent loaders to load data in multiple formats, or it may use
CORBA to pick up speci�c objects and cache them in the Applet. Data may
be stored directly as tracks and hits, or may be converted immediately into
drawable parts. The end situation is always the same: the client side has a
(reduced) copy of the server data available in local memory. This copy is used
by the viewing pipes to convert the data and make them visible in the GUI.

The viewing pipe is divided into two parts. First the event and geometry data
are converted into 3D polyhedrons. Di�erent conversions are used for hits,
tracks and energy depositions in calorimeters, and experiment extensions are
possible. Selections of hits, tracks and energy depositions take place in this
part of the viewing pipe.

WWW Browser

Applet (Client)
Graphical

User
Interface

Server
Geometry

Data

Event
Data

Objects

CORBA
Server

HTTP
Server

ProjectionSelection and
Transformation

Projection

Selection and
Transformation Projection

Store
Access

CORBA
Client

Sequential
Loader

Sequential
Loader

Local Data
Store

Local Object
Store

Selection and
Transformation

Views

Information

Selection

Network

Fig. 2. The architecture of WIRED: the server, the applet and the 
ow of informa-
tion.

4



The 3D polyhedrons are then projected onto a 2D plane to make them draw-
able on the user's screen. Di�erent projections[7] from 3D to 2D are foreseen,
such as parallel, perspective and �sh-eye projections. Rotations, zooming and
translations take place in the projection part of the viewing pipe, and are
implemented using conventional matrix calculations[8]. Apart from the 2D
projection, an event can also be visualised as a list of tracks and hits. The
same viewing pipe is used here, except that the selection and projection are
more straightforward.

The user interface of WIRED consists of a set of components: the view, the
detector selector, the event selector, etc. Each of these components is con�g-
urable by a set of parameters, such as the initial projection, event number, etc.
The components are positioned by WIRED like lego blocks onto the screen,
and into the GUI hierarchy, as shown in �gure 3. This layout is described by a
small con�guration �le, which is read when WIRED is loaded. New con�gura-
tions can be loaded at any time. The technology used here is further described
in DUI[9].

Global Command

Local
Command/Status A

Local
Command/Status B

View BView A

Row

Column

Row

Row

Row

Global Command Global Status

Global Status

View A View B

Local
Cmd

Status

A

Local
Cmd

Status

B

GUI Hierarchy

GUI Layout

Command Information

Status Information

Split Command
Merged Status

Component/Container

Fig. 3. An example con�guration of WIRED: the GUI and its components, its
hierarchy and the information channels between the components.

The information channels needed for event selection, geometry selection, ro-
tations and zooming are set up by connecting the GUI components with each
other and with the store. WIRED uses a publish-subscribe mechanism for the
connections and Java's introspection to �nd out where each of the components
has to be connected. The connections are made based on a policy given by the
GUI layout, thereby logically grouping components with their views. Compo-
nents can have a command and status character. Global command components
send their commands to all views, while local command components only act

5



on the nearest view. Status information 
ows from its view into the nearest
as well as the global status components.

In this architecture CORBA provides for random access to di�erent data for-
mats, arriving from di�erent servers. The use of Java provides for a secure
downloadable Applet, which may dynamically instantiate a variety of loaders.
The multi-threading features of Java[10] are extensively used to push data
from the network, via the store, through the viewing pipe into the GUI and
onto the screen. This progressive viewing gives people the idea of faster access
to their data. Java's introspection together with a con�guration �le parser
generated by the JavaCUP[11] and JavaLex[12] packages allow for a fully con-
�gurable graphical user interface.

3 Status and future developments

In its initial con�guration WIRED was used for the DELPHI experiment (au-
gust 1996). It has evolved since into a more generic framework, which is avail-
able to a number of experiments. In particular the L3[13] and Chorus[14]
experiments (both at CERN) and the BaBar[15] experiment (at SLAC) are
currently participating in the WIRED project and their setup is well underway.
Use of the future versions of the Java Development Kit[16] is foreseen, as well
as an enlargement of the functionality of WIRED and a tighter cooperation
with the data and reconstruction packages of the experiments.

4 Conclusion

WIRED is a portable, easily con�gurable and extendible framework to write
event displays for HEP experiments. The choice of Java as a language has
solved most of the porting and distribution problems of older systems. The
object-oriented nature of Java makes extending the framework for di�erent
experiments a fairly easy task. With the inclusion of the CORBA technology
to access and interact with the data WIRED will gain in analysis power.

References

[1] M.C. Coperchio, M. D�onszelmann, P. Gunnarsson, F.L. Navarria, T. Rovelli,
WIRED, A WWW Interactive Remote Event Display proposal , BOLOGNA-
DFUB/96-9 (1996).

6



[2] M. D�onszelmann, M.C. Coperchio, P. Gunnarsson, WIRED - World-Wide
Web Interactive Remote Event Display: A Status Report, Proceedings of the
HEPVIS'96 workshop (Geneva, Switzerland, 1996).

[3] J. Gosling, B. Joy, and G. Steele, The JavaTM Language Speci�cation (Addison-
Wesley, 1996).

[4] T.J. Berners-Lee, R. Cailliau, J.F. Gro�, and B. Pollermann, World-Wide Web:
The Information Universe, Electronic Networking: Research, Applications and
Policy 2(1) (1992) 52{58.

[5] P. Aarnio et al. (Delphi Collaboration), The Delphi Detector at LEP, Nucl.
Instr. and Methods in Physics Research A303 (1991) 233-276.

[6] The Object Management Group and X/Open, Common Object Request Broker:
Architecture and Speci�cation (John Wiley & Sons, Inc., 1994).

[7] H. Drevermann, D. Kuhn, B.S. Nilsson, Event Display: Can we see what we
want to see? , CERN-ECP/95-25 (1995).

[8] J.D. Fowley et al., Computer Graphics: principles and practice, 2nd Edition
(Addison-Wesley, 1996).

[9] M. D�onszelmann, C. Gaspar, and J.A. Valls, A Con�gurable Motif Interface for
the DELPHI Experiment at LEP, Proceedings of the International Motif User
Conference '92 (Washington D.C., USA, 1992) 156{162.

[10] D. Lea, Concurrent Programming in JavaTM: Design Principles and Patterns
(Addison-Wesley, 1997).

[11] S. Hudson, Java based Constructor for Useful Parsers (CUP),
http://www.cc.gatech.edu/gvu/people/Faculty/hudson/java cup/home.html
(Georgia Institute of Technology, Atlanta, USA, 1996).

[12] E.J. Berk, Java-Lex: A lexical analyzer generator for Java,
http://www.cs.princeton.edu/�appel/modern/java/JavaLex/
(Princeton University, Princeton, USA, 1996).

[13] L3 Collaboration, B. Adeva et al., Nucl. Instr. and Methods in Physics Research
A289 35 (1990).

[14] M. de Jong et al. (Chorus Collaboration), A new search for ��� �� oscillation,
CERN-PPE/93-131 (1993).

[15] The Babar Collaboration, BaBar Technical Design Report , SLAC-R-95-457
(1995).

[16] The Java Development Kit, http://www.javasoft.com/products/JDK/ (Sun
Microsystems, 1997).

7


