
SLAC-PUB-9784

An BaBar Tracking System

Work supported by Department of Energy contract DE–AC03–76SF00515.

Contributed to the Computing in High-Energy Physics (CHEP 97),
4/7/1997—4/11/1997, Berlin, Germany

S. F. Schaffner

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

The BaBar Tracking System

S.F. Scha�ner

for the BaBar Computing Group

SLAC, P.O. Box 4349, Stanford, CA 94309 USA

sscha�@slac.stanford.edu

An object-oriented system for charged particle track reconstruction

developed for use with the BaBar detector is described.

Key words: Object-oriented; tracking; BaBar.

1 Tracking

Historically, charged-particle tracking code is complex, is hard to maintain,
and is the focus of constant e�orts at improvement. It therefore provides
an excellent opportunity to gain some of the potential bene�ts of object-
orientation in the context of high energy physics reconstruction software. This
paper describes the design of an object-oriented tracking system for the BaBar
detector. Our goal in creating the design is to produce a system that is highly
modular, with clear interfaces within tracking and with other components of
reconstruction and analysis. In particular, it should permit changes to any
part of the system { pattern recognition techniques, �tting algorithms, ma-
terial model, calibration parameterization, and detector hardware { without
requiring redesign of the rest of the system. It should be
exible enough to
accommodate special-purpose applications (e.g. a detector alignment package,
or reconstruction of �eld-o� cosmic rays), and provide considerable function-
ality for consumers of tracks (e.g. consumers should be able to re�t a track,
or calculate the intersection point of a track with a detector element, without
having to write their own code). And, of course, it should be fast. The design
sketched below is still evolving, but the key features have all been implemented
in C++ and appear workable; remaining details will be decided upon as the
code moves from prototype to production status.

The central concept in tracking is of course the track. In the BaBar design,
a track object (class RecoTrk) describes a path through space and time; it is
typically (but not always) associated with a set of detector hits. A RecoTrk

Preprint submitted to Elsevier Preprint 16 May 1997

accordingly consists of a path-description object (derived from the abstract
class TrkRep) and a (possibly empty) list of hits, along with some global in-
formation about the track (e.g. its charge, and
ags describing its current
status). Hits can be added and removed in the course of reconstruction, and
one TrkRep can be replaced by another; for example, initial pattern recogni-
tion might be done with a simple helix TrkRep, while �nal �tting will be done
with a more complex representation appropriate to a Kalman �lter. In order
to handle multiple �ts of the same track using di�erent mass hypotheses, the
RecoTrk can in fact maintain multiple TrkReps simultaneously, one for each
hypothesis; alternatively, it can store only the preferred hypothesis for that
track, and generate others on demand.

In order to preserve
exibility, no particular parameterization is assumed for
the representation of the track's path. Rather, the description is given in terms
of an abstract Trajectory class; this de�nes functions that return, as a func-
tion of path length along the trajectory, the particle's position, direction, and
vector curvature. It also speci�es functions giving the maximum permitted
extrapolation (for a given tolerance) for the linear and parabolic approxima-
tions. Classes exist for calculating the intersection of one of these Trajectory
objects with an arbitrary surface, and for calculating the point of closest ap-
proach of two Trajectories. Thus, while a simple helix TrkRep will contain
a derived helix Trajectory, all geometric operations are done using the base
class interface. (It will be possible, however, to substitute code for particular
pairings { e.g. the intersection of a helix with a cylinder { without changing
any existing code, should that be needed for e�ciency reasons.) All commu-
nication between tracking and the detector model is done through Trajectory
objects.

The TrkRep exists to interpret the Trajectory it contains. Speci�cally, it knows
what mass hypothesis should be assumed, and can calculate the arrival time
of the particle as a function of path length. In addition, it can invoke the
appropriate �tter for �tting the Trajectory to an input set of hits.

Given this arrangement, the RecoTrk user interface responds to most requests
by getting information from its TrkRep(s), or from the Trajectory stored in
the TrkRep. Geometric information, including position, distance of closest ap-
proach, and intersection with detector surfaces and volumes, are calculated
as a function of path length using the Trajectory momentum is similarly cal-
culated from the curvature of the Trajectory. Information on the particle's
time of arrival, and on the quality of the �t, are obtained from the TrkRep.
Finally, the TrkRep can supply a standard set of �ve helix parameters, also
as a function of path length, for communication with packages that use more
traditional approaches to tracking.

Users of RecoTrks do not have direct access to TrkReps, and cannot directly

2

create RecoTrks. Instead, tracks with a particular representation are created
by a factory object (deriving from abstract class FitMaker) of a type appro-
priate to that representation. FitMaker objects are also used to change the
representation of a track; the new TrkRep uses the output of the previous one
to provide seed parameters. RecoTrks o�er a �t() function, so that all �tting
is done through the track interface itself.

The usual starting point for creating tracks is a set of Hit objects, which
contain feature-extracted data from the tracking detectors. These are the pri-
mary objects that are encountered in pattern recognition. Since most pattern
recognition is carried out using algorithms tailored to a particular subdetec-
tor, little in the way of a common interface has been required. One exception
is a function for calculating the distance between a track's trajectory and a
hit.

Hits also contain a record of which tracks they are currently being used in, in
the form of a list of HitOnTrack (HOT) objects. The HOTs record the details
of the Hit's use on a particular track, and are the objects that the RecoTrk
retains in its hit list. They cache information (e.g. residual, path length along
track), and store any other information needed to carry out the �t (e.g. the
left-right ambiguity choice for drift chamber hits). They also contain
ags that
permit disabling their inclusion in a �t. They are responsible for calculating
their residual, and its derivatives, with respect to the track. Currently, this
is implemented by representing the hit itself as a second trajectory, and cal-
culating the distance of closest approach between the two trajectories. The
derivatives are calculated automatically, by carrying out the residual calcu-
lation using \di�erential numbers": objects that contain both the value of a
quantity and its derivatives with respect to some set of parameters, in this
case the parameters of the track Trajectory. In this way, HOTs can perform
their calculations without ever knowing what kind of Trajectory is being used
to describe the track.

This approach gives great
exibility. Geometric operations are largely divorced
from purely tracking operations. Subdetector- speci�c details are all hidden
behind common interfaces. Many di�erent representations can be treated in
a uniform way; the user of the track need never know what representation is
currently present. Because HOTs carry out much of the actual �tting calcu-
lation, �tters tend to be simple. Because operations are done through generic
interfaces, a single �tter can be used to �t many kinds of simple represen-
tation (e.g. a kinked helix, a spiral, a straight line, a helix with t0 as a free
parameter). Non-standard input to �tting { e.g. the location of the interaction
point, hits in a particle id device { can be incorporated as HOTs on the same
footing as input from the standard tracking devices; entire track segments, in
fact, could be handled the same way.

3

