
SLAC–PUB–9761

Hardware Testing and System Qualification: Procedures to
Evaluate Commodity Hardware and Production Cluster∗

John Goebel
Stanford Linear Accelerator Center,

Stanford University,Stanford, CA 94309

Submitted to Linux Journal

∗Work supported by Department of Energy contract DE–AC03–76SF00515.



Introduction

Without stable hardware any program will fail. The frustration
and expense of supporting bad hardware can drain an organiza-
tion, delay progress, and frustrate everyone involved. At Stan-
ford Linear Accelerator Center (SLAC), we have created a testing
method that helps our group, SLAC Computer Services (SCS),
weed out potentially bad hardware and purchase the best hard-
ware at the best possible cost. Commodity hardware changes of-
ten, so new evaluations happen periodically each time we purchase
systems and minor re-evaluations happen for revised systems for
our clusters, about twice a year. This general framework helps
SCS perform correct, efficient evaluations.

This article outlines SCS’s computer testing methods and our sys-
tem acceptance criteria. We expanded the basic ideas to other
evaluations such as storage, and we think the methods outlined in
this article has helped us choose hardware that is much more sta-
ble and supportable than our previous purchases. We have found
that commodity hardware ranges in quality, so systematic method
and tools for hardware evaluation were necessary. This article is
based on one instance of a hardware purchase, but the guidelines
apply to the general problem of purchasing commodity computer
systems for production computational work.

Defining System Requirements

It is difficult to maintain system homogeneity in a growing cluster
environment. The hardware available to build systems changes
often. This has the negative effect of adding complexity in man-
agement, software support for new hardware, and system stability.
Introducing new hardware can introduce new hardware bugs. To
constrain change and efficiently manage our systems, SCS devel-
oped a number of tools and requirements to enable an easy fit
into our management and computing framework. We reduced the
features to a minimum that would fit our management infrastruc-
ture and produce valid results with our code. This is our list of
requirements:

1. One rack unit (1U) case with mounting rails for 19 inch rack

2



2. At least two Intel PIII CPUs at 1GHZ or greater

3. At least 1GB of ECC memory for every two CPUs

4. 100MB Ethernet interface with PXE support on the network card and
in the BIOS

5. Serial console support with BIOS level access support

6. One 9GB or larger system disk, 7200 RPM or greater

7. All systems must be FCC and UL compliant

Developing a requirements list was one of the first steps of our
hardware evaluation project. Just listing ’must haves’ as opposed
to ’nice to haves’ grounded the group. It slowed feature creep,
useless additions to hardware, and vendor specific methods for
doing a task. This simple requirement culled the field of possible
vendors, and reduced a tendency to add complexity were none
was needed. Through this simple list, we picked eleven vendors to
participate in our test/bid process. A few vendors proposed more
than one model, so a total of thirteen models were evaluated.

Starting Our System Testing

The eleven vendors we choose ranged from the largest system
builders to the small, screwdriver shops. The criteria for being
in the evaluation was to meet the list of basic requirements and
send three systems for testing. We needed the systems for ninety
days. In many cases, we did not need the systems that long, but
it’s good to have the time to thoroughly investigate the hardware.

Two of the three systems were racked, the third was placed on a
table for visual inspection and testing. The systems on the tables
had their lids removed, and were digitally photographed. Later
the tabled systems would be used for the power and cooling tests
and visual inspection. The other two systems were integrated into
a rack in the same manner as all our clustered systems, but they
did not join the pool of production systems. Some systems had
unique physical sizing and racking restrictions that prevented our
being able to use them.

3



Each model of system had a score sheet. The score sheets were
posted to our working group’s web-page. Each problem was noted
on the website, and we tried to contact the vendor to resolve any
issues. In this way we tested the system, the vendors willingness to
work with us, and their ability to fix problems. We had a variety of
experiences. Some vendors just shipped us another model, some
worked through the problem with us, others responded that it was
not a problem, and one or two ignored us. This quickly narrowed
the systems that we considered manageable.

Throughout the period of testing, if a system was not doing a
specific task it was running hardware testing scripts or run-in
scripts. Each system did ’run-in’ for at least thirty days. No
vendor does ’run-in’ for more than seventy-two hours, and this
allowed us to see failures over the long term. Other labs reported
that they too saw problems over long testing cycles.

We wanted to evaluate a number of aspects of all the systems.
First, the quality of the physical engineering. Second, how well
it operated and if it was stable. Third, measure a system’s per-
formance. Last, evaluate the contract, support, and vendor’s re-
sponsiveness.

Physical Inspection

The systems placed on the table were evaluated by several criteria:

1. Quality of construction

2. Physical design

3. Accessibility

4. Quality of the power supply

5. Cooling design

Quality of Construction

The systems greatly varied in quality of construction. We found
bent-over, jammed ribbon-cables, blocked airflow, flexible cases,

4



and cheap, multi-screw access that were unbelievably bad for a
professional product. There were poor design decisions, like a
power switch offset in the back of a system that was nearly inac-
cessible once the system was racked. On the positive side of the
experience, there were a few well engineered systems.

Physical Design:

This evaluation would include quality of airflow and cooling, rack-
ability, size/weight, and system layout. Features such as drive
bays out the front would also be noted. Airflow is a big problem
with the hot x86 CPUs especially in restricted space like a 1U
rack system. Some systems had blocked airflow or had little to
no circulation. Heat can cause instability in systems and reduce
operational lifetimes, so good airflow is critical.

Physical Construction:

Rigidity of the case, no sharp edges, how the system fit together,
and cabling, are part of this category. These might seem small,
uninteresting factors until you get cut by a system case, or have
a huge percentage of ’dead on arrivals’ because the systems were
mishandled by the shipper and the cases were too weak to take
the abuse. We have to use these systems for a number of years,
and to have a simple yet glaring problem is a pain and potently
expensive to maintain.

Accessibility:

Toolless access should be a standard on all clustered systems.
When you have thousands of systems, you are always servicing
some. To keep the cost of that service low, parts should be quickly
and easily replaceable. Unscrewing and screwing six to eight tiny
machine screws slows down access to the hardware. Also, parts
that fit so one part does not have to come out to get to another
part and easy access to drives are pluses. Some features that we
did not ask for, like keyboard and monitor connections on the
front of the case are o.k., but not really necessary.

5



Power

We tested the quality of the power supply using a Dranetz-BMI
Power Quality Analyzer (see sidebar). Power correction is often
noted in the literature for a system, but we have seen radically
different measurements relative to the published number. For
example, one power supply that was published to have a power
factor correction of .96 actually had a .49 correction. This can have
terrible consequences when multiplied by 512 systems. We tested
the system at idle and under heavy load. The range of quality
was dramatic and an important factor in choosing a manageable
system.

The physical inspection, features, cooling and power-supply qual-
ity test weeded out a number of systems early. Getting these
out of the way first reduced the number of systems that we had
to do extensive testing on, thereby reducing the amount of time
for testing in general. System engineering, design, and quality of
parts ranged broadly. Moving to the next testing stage would also
cull the herd and result in systems that we have been pleased to
support.

Testing via Software

Run-In

Run-in (often called burn-in) is the process that manufacturers
use to stress systems before they put them in the field. It is used
to find faulty hardware. There are a number of open source run-
in programs. One common program is the Cerberus Test Control
System <http://sourceforge.net/projects/va-ctcs/>. It is a series
of tests and configurable wrapper scripts designed originally for
VA Linux Systems’s manufacturing. Cerberus is ideal for run-in
tests, but we also developed specific test based on our knowledge
of system faults. We were successful in crashing systems with
our scripts more often than using a more general tool such as
Cerberus. Testing using programs developed from system work
experience can be a more effective than using Cerberus alone, so
consider creating a repository of testing tool.

6



Read the instructions carefully and realize that run-in programs
can damage a system; you assume the risk by running Cerberus.
Also, there are a number of knobs to turn, so consider what you
are doing before you just launch the program. But if you are going
to build a cluster, you will need to test system stability, and run-in
scripts are designed to test just that quality.

At the time that we were testing systems, two members of our
group wrote own run-in script based on some of the problems
that we have seen in our production systems. Unlike benchmarks,
which try to measure system performance and often have sophisti-
cated methods, the run-in script is a simpler process. The system
is put under load and either passes or fails. A failure crashes the
system or reports an error, ’passes’ often do not report informa-
tion. We also ran production code, which uncovered problems.
Production code should always be run whenever possible. In our
evaluations, we had a few failures. One of the systems that passed
the initial design inspection tests with flying colors failed under
heavy load.

Whenever a system was not being actively evaluated, it was in
run-in, so we far exceeded the seventy-two hour run-in time that
is the maximum manufacturers can afford to test the systems.

Performance

There are a plethora of benchmark programs. The best bench-
mark is to run the code that will be used in production just like it
is good to run production code during run-in. This is not always
possible, so a standard set of benchmarks is a decent alterna-
tive. Also, standard benchmarks establish a relative performance
value between systems, which is good information. We do not
expect a dramatic performance difference in commodity chipsets
and CPUs, but there are performance differences when different
chipsets/motherboard combinations are involved, which was the
case in this testing trail.

We also wrote a wrapper to a number of standard benchmark-
ing tools, and packaged it into a tool called HEPIX-Comp (High

7



Energy Physics - Compute). It is a convenience tool, not a bench-
mark program itself. It allows a simple ’make server’ or ’make
network’ to measure different aspects of a system. For example,
HEPIX-Comp is a wrapper for the following tools (among others):

• Bonnie++

• IOZone

• Netpipe

• Linpack

• NFS Connectathon package

• Streams

Understanding the character of the code that will run on the
system is paramount to evaluation through standard benchmark-
ing. For example, if you are network constrained, a fast frontside
bus is less important than network bandwidth or latency. These
are good benchmarks that measure different aspects of a sys-
tem. Streams, for example, measures the I/O memory subsys-
tem throughput, which is an important measure for systems with
hierarchical memory architectures. Bonnie++ measures different
types of read/write combinations for I/O performance. There a
many others in HEPIX-Comp.

Many vendors report performance which tends to give the best
possible picture. For example, sequential writes as an I/O perfor-
mance measure is pretty rosy compared to random, small writes,
which is closer to reality for us. Having a standardized test suite
run under the Linux installation that is used in production es-
tablishes a baseline measurement. If the system is tuned for one
benchmark, it might perform the benchmark well at the expen-
sive of another system performance factor. For example, systems
tuned for large block sequential writes hurts small random writes.
A baseline benchmark suite will at least show an ’apple to apple’
comparison, although not the potently best performance. So this
is by no means a perfect system, but it is one more data-point in
an evaluation that characterizes system performance.

8



All the data was collected and placed on internal webpages created
for the evaluation and shared among the group. We met once
a week and reported on the progress of the testing. After our
engineering tests were complete, we choose a system.

Non-Engineer Work

Non-engineering factors (contractual agreements, warranties, and
terms) are critical to the success of bring in new systems for pro-
duction work. The warranty terms and length affects the long-
term cost of system support. We also try to assess the financial
health of the company. A warranty does little good if the vendor
is not around to honor it.

Another aspect of that couples the non-engineering work with
the engineers is the acceptance criteria, which is seldom talked
about until it is too late. These criteria determine the point in
the deployment that the vendor is done and the organization is
willing to accept the systems. This should be in writing in your
purchase order. If the vendor drops the system off at the curb,
and later during the rollout period some hardware related problem
surfaces, you need to be within your rights to tell the vendor to fix
the system problem or remove the systems. On the vendor side,
a clear separation of what is a hardware and what is a software
problem needs to be clear. Often a vendor will have to work with
the client to determine the nature of the problem, so the cost of
that will need to be built in to the price of the system.

The Result

The success of the method outlined in this article is apparent in
how much easier, and therefore cheaper, it is to run the systems we
chose after doing this extensive evaluation. We have systems that
we purchased without doing the qualification outlined here. There
has been a lot fewer problems after the better evaluation, and we
are able to get more work done in other areas, like tool writing
and infrastructure development. And we are less frustrated, as
are our researchers, having good hardware in production.

9




