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Study of Semileptonic Decays of B Mesons to Charmed Baryons

Abstract

Using data collected by the CLEO II detector at a center-of-mass energy on

or near the Υ(4S) resonance, we have determined the 90% confidence level

upper limit B(B → Λ+
c e−X)/B(B → (Λ+

c or Λ
−
c )X) < 0.05 for electrons

with momentum above 0.6 GeV/c. We have also obtained the limit B(B− →

Λ+
c pe−νe)/B(B → Λ+

c pX) < 0.04 at the 90% confidence level and measured

the ratio B(B → Λ+
c pX)/B(B → (Λ+

c or Λ
−
c )X) = 0.57 ± 0.05 ± 0.05.
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INTRODUCTION

In the naive spectator model, most B mesons decay through the spectator diagram with semilep-

tonic decays occurring by “external” W -emission: b → cW ; W → `ν`. In this picture, charmed

baryon production occurs when two quark-antiquark pairs from the vacuum bind with the charm

quark and the spectator antiquark to form a Λ+
c (cud) plus an antinucleon N . In this paper we

attempt to isolate the magnitude of this external W -emission spectator diagram in charmed baryon

decays by measuring B → Λ+
c e−X and B− → Λ+

c pe−νe. For normalization modes, we also measure

B → Λ+
c pX and B → (Λ+

c or Λ
−
c )X. Throughout this paper charged conjugate modes are implicit.

If B → baryons does indeed occur through external W -emission as outlined above, then

the decay B → Λ+
c NXe−ν` will occur [1]. We can estimate the magnitude of R = B(B →

Λ+
c Ne−ν`)/B(B → Λ+

c NX) by using the naive expectation for the semileptonic branching ratio

in these decays. The (cs) and (τντ ) contributions are absent due to the limited available phase

space so a maximum of 20% is expected for the ratio R. Alternately, one might anticipate that

B(B → Λ+
c Xe−νe)/B(B → Λ+

c X) is comparable to the measurements of B(B → DXe−νe)/B(B →

DX) ' 12% [2].

There are two other baryon production mechanisms in B decay, neither making a contribution

to semileptonic decay. In one, the W is emitted internally and decays to (cs), leading to ΞcΛc
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final states. This mechanism was studied in a previous CLEO paper, which looked at the charge

correlations between Λc’s and leptons from B decay and found RΛc
= N

Λ
−

c
`+

/N
Λ

+
c

`+
= B(B →

Λ
−
c X)B(B → X`+ν`)/B(B → Λ+

c X)B(B → X`+ν`) = 0.19 ± 0.13 ± 0.04 which is directly related

to B(b → ccs)/B(b → cud) [3]. For ΛcX final states, we cannot rule out the possibility in our

analysis that we are observing decays of the type B → ΞcΛc, as we cannot tag the parent B meson

in the B → Λ+
c X analysis. Therefore, the yields for this mode will be quoted as decays of the

type B → (Λ+
c or Λ

−
c )X. Another mechanism is the internal emission of a W followed by its decay

to (ud). Measurements of B mesons decaying hadronically to charmed baryons indicate that this

internal W emission diagram may contribute significantly [4]. A substantial contribution from this

diagram would reduce the semileptonic decay width.

The semileptonic branching ratio of B mesons is known to have a lower value than theoreti-

cal predictions [5]. These predictions assume a large external W -emission contribution in baryon

decays. The suggestion has been made that theory may underestimate the B-hadronic width by

neglecting B decay channels to baryon states [6]. If this is the case, hadronic decays to charmed

baryons could explain the low inclusive semileptonic branching ratio. The measurement of semilep-

tonic decays of B mesons to Λc will provide vital information on baryon production in B decays.

Data sample and Event selection

The data were taken with the CLEO II detector [7] at the Cornell Electron Storage Ring

(CESR), and consist of 3.2 fb−1 on the Υ(4S) resonance and 1.6 fb−1 at a center-of-mass energy 60

MeV below the resonance. The on-resonance sample contains 3.4 million BB events and 10 million

continuum events. We select hadronic events containing at least 4 charged tracks. To suppress

continuum background, we require the ratio of Fox-Wolfram moments [8] R2 = H2/H0 to satisfy

R2 ≤ 0.35. We reconstruct Λc’s in the pKπ decay mode. For the hadronic particle identification,

a probability cut for each target hadron is made which uses information obtained from dE/dx

and time-of-flight detectors. For particle consistency, the probability cuts are chosen to be greater

than: 0.0027 (within three standard deviations of the expected value) for pions, 0.0001 for kaons,

and 0.0003 for protons. Continuum data are used to directly subtract backgrounds from non-BB

events.

Tagged signal Monte Carlo simulated events were used to obtain the signal efficiencies while

BB Monte Carlo simulated events, with the signal channel removed, were used to estimate the

background from B decays to non-signal modes. The CLEO BB Monte-Carlo simulation generates

baryonic decays with a phenomenological model which is tuned to match the observed Λc momen-

tum spectrum. We use BB Monte Carlo events where we force the B → Λ+
c X, Λ+

c → pK−π+

decay chain to determine a detection efficiency of 0.36 ± 0.01.

The pK−π+ invariant mass distributions are measured separately for the resonance and con-

tinuum data. The resonance data are fitted to a double Gaussian signal atop a low-order poly-

nomial background. In these fits, the width of the Gaussian Λc signal function is constrained

to the value derived from the Monte Carlo simulation. After subtracting non-BBbar contribu-

tions using off-resonance data scaled for luminosity and cross-section, we obtain a total sample of

4879 ± 296 B → (Λ+
c or Λ

−
c )X events from data. After scaling by the efficiency, we find a yield

of 13552 ± 822 ± 802 events, where the second (systematic) error includes contributions from the

efficiency correction.

Study of B → Λ+
c e−X
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Due to the soft lepton momentum spectrum from this decay and the limited reconstruction

efficiency for low momentum muons, we use only electrons in our analysis. Electron identification

relies on E/p measurements derived from the calorimeter and drift chamber, as well as specific

ionization loss measurements from the drift chamber. The requirement of ln(Pe/P6e) > 3.0 is

imposed, where Pe(P6e) is the probability that a given charged track is an electron (not an electron).

We choose a minimum momentum cutoff of 0.6 GeV/c for these electrons to limit fake and secondary

electron background sources. The maximum possible electron momentum for this decay is 1.5

GeV/c. Electron candidates are restricted to the polar angular region | cos θ| ≤ 0.71. We pair all

pK−π+ candidates, selected as described above, with additional tracks in the events passing the

lepton identification requirement. We then fit the pK−π+ invariant mass distributions on and off

resonance for combinations passing these cuts.

Figure 1(a) shows the fit to the pK−π+ invariant mass distribution for events that satisfy

the above selection criteria. The resonance data (points) are fit to a double Gaussian signal over

a second order polynomial background. The signal shape is fixed to that from the data in the

B → Λ+
c X analysis. A similar fit has been performed on the pK−π+ invariant mass distribution

from the continuum data (shown by the scaled histogram in the figure). The yields are given in

Table I.

Besides continuum Λc’s, other sources of background are fake leptons and uncorrelated Λ+
c −e−

pairs. The number of fake leptons is obtained by running the same analysis, but using an electron

anti-identification criterion: ln(Pe/P6e) < 0. The pK−π+ invariant mass is refit and this yield

is scaled by the measured lepton misidentification probabilities. The uncorrelated background

includes combinations where the Λ+
c originates from B decay and the lepton originates from B

decay or from a B if from an event where mixing took place. This background is estimated using

B → Λ+
c X Monte Carlo events and examining decays where the Λ+

c and e− have opposite charges,

but do not originate from the signal mode. We check this procedure by comparing the data and

Monte Carlo results obtained using Λ+
c e+ (wrong sign) combinations. Wrong sign combinations

will include primary leptons from one B paired with Λ+
c ’s from the other B. We find consistency

between the data and Monte Carlo wrong sign yields. The background predictions are given in

Table I.

The lepton minimum momentum cut of 0.6 GeV/c results in a model dependence. Larger

multiplicity final states will have a lower efficiency due to the minimum momentum cut. We find

the efficiency using B− → Λ+
c pe−νe Monte Carlo events where the B+ decays generically. This

efficiency for B− → Λ+
c pe−νe, where the electron is prompt from the B decay, is found to be

17%. Monte Carlo events from the chain B
0
→ Λ+

c ∆
0
e−νe, ∆

0
→ pπ+ were also generated to

measure the efficiency. This mode adds one extra pion to the total decay chain although more

could be present in other decays such as B → Σc∆eν. Differences between efficiencies for B− and

B
0

are found to be negligible. After all other cuts, we find that 73% of the events from B− →

Λ+
c pe−νe pass our electron momentum cut while only 45% of the events from B

0
→ Λ+

c ∆
0
e−νe

pass. Because the total efficiency is dependent on the number of pions in the final state, we choose

to quote a partial branching fraction where the lepton momentum is greater than 0.6 GeV/c. In

this electron momentum range, the efficiency for B → Λ+
c pe−νe is 0.239± 0.005 which is consistent

with the efficiency for other modes with extra pions. In addition to assigning a systematic error

due to efficiency determination, we add in quadrature errors from the fake lepton and uncorrelated

background source estimates to obtain the total systematic error.
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Search for B− → Λ+
c pe−νe

The signature of B− → Λ+
c pe−νe is a baryon-lepton-antiproton combination which has a re-

coil mass consistent with that of a neutrino, approximating the B momentum as zero. Candi-

date Λ+
c ’s, electrons, and antiprotons for the analysis must satisfy requirements similar to those

discussed above. We then require that the approximation of the squared mass of the neutrino,

M̃2
ν ≡ (Ebeam −EΛc

−Ee)
2 − (pΛc

+ pe)
2 be greater than -2 (GeV/c2)2. In addition, we place an

angular cut of cos θΛc−e < −0.2, where θΛc−e is the angle between the Λ+
c and electron. In Figure

1(b) we show the Λ+
c invariant mass distribution for combinations passing all of these cuts. This

distribution is fit as before; results are given in Table I.

Backgrounds to this process stem from three sources: fake antiprotons or electrons, non-BB

events, and secondary electrons or antiprotons. Fake antiprotons and electrons are considered

separately. We use the same methods as described above to determine each contribution. The

continuum background is measured using the off-resonance data scaled for luminosity and cross

section. The remaining background events, in which electrons come from the decay chain b → c →

seν, can be estimated using Monte Carlo simulation. The wrong sign data and Monte Carlo results

are compared and again found to agree well.

We find efficiency using the B− → Λ+
c pe−νe Monte Carlo events where the B+ decays gener-

ically. The efficiency is found to be 0.094 ± 0.003. Systematic errors are assigned for each of the

background source estimates and the efficiency determination as described above.

Study of B → Λ+
c pX

We pair all Λ+
c and p candidates using the Λ+

c selection as described above. For the p, in

addition to the cut on the proton probability of greater than 0.0003, we employ additional veto

cuts on the particle identification of 2σ for π, K, and electron to reduce fake antiprotons. We

then fit the Λ+
c invariant mass. The observed Λ+

c signal area then measures the number of Λ+
c -p

correlations. Figure 2 shows the fit to the data.

We are looking for decays where the Λ+
c and p have opposite charge and both are primary from

the B decay. Backgrounds are categorized into two sources: secondary p (not primary from a B

decay), and fake p. The first background source is estimated by using B → Λ+
c X Monte Carlo

events as above. Once again we check this procedure by comparing wrong sign data yields to

our Monte Carlo wrong sign prediction. Proton misidentification probabilities are also measured

directly from the data by using a pion sample from K0
S → π+π− where K0

S ’s are selected by a

secondary vertex finder. After applying the veto cuts for kaons, pions, and electrons, the fake

probability derived from just using the pion rate is found to be consistent with the species averaged

rate. The background contribution of fake p’s is obtained by running the same analysis without

the particle identification cuts for the p correlated with Λ+
c . The yields obtained from fits to the

pK−π+ mass are then multiplied by the faking p probabilities and weighted by momentum. This

procedure will yield an upper limit on the number of fakes, as real proton tracks are double counted

in our procedure. We studied the overcounting rate and assign a systematic error based on the

difference between the number of protons counted with no identification criteria and the number

counted using the anti-identification criteria.

We have also measured the absolute proton identification efficiency as a function of momentum

for the cuts in this analysis using a sample of Λ → pπ− events. The differences in the identification

efficiencies between data and Monte Carlo are then used to calculate the systematic error in the
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B(B → Λ+
c pX)/B(B → Λ+

c X) measurement (Table I). The total systematic error for this mode is

then derived from errors in the efficiency as well as background determinations.

SUMMARY

Table I summarizes the final numbers of candidates for the three signal modes. After back-

ground subtraction, the number of wrong sign candidates observed in data are consistent with our

expectations based on Monte Carlo studies.

We measure the ratio:

B(B → Λ+
c pX)

B(B → (Λ+
c or Λ

−
c )X)

=
(7669 ± 623 ± 385)

(13552 ± 822 ± 802)
= 0.57 ± 0.05 ± 0.05, (1)

consistent with the naively expected value of 50%.

For the electron channels, the number of signal candidates is fully consistent with the expected

background level, so we derive a 90% confidence level upper limit for the ratio R, for pe ≥ 0.6

GeV/c:

R =
B(B → Λ+

c e−X)

B(B → (Λ+
c or Λ

−
c )X)

=
(259 ± 196 ± 143)

(13552 ± 822 ± 802)
< 0.05 at 90% c.l. (2)

If one assumes that all of the semileptonic decays proceed via the channel B− → Λ+
c pe−νe, the

upper limit on R would be 0.07 for the entire electron momentum range. Similarly, if all of the

semileptonic decays were B
0
→ Λ+

c ∆
0
e−νe, the limit on R would be 0.11. Our result is consistent

with the derived limit based on a previous measurement where the charmed baryon is not observed

and the lepton spectrum is extrapolated from a model of B(B → Xpe−νe) < 0.16% @ 90% c.l. [9].

This implies a limit on B(B → Λ+
c e−X)/B(B → (Λ+

c or Λ
−
c )X) < 5% @ 90% c.l.

For the Λcpeνe channel, we find:

B(B− → Λ+
c pe−νe)

B(B → Λ+
c pX)

< 0.04 at 90% c.l. (3)

for the entire electron momentum range.

Our limits on the semileptonic branching ratios do not support the hypothesis that the external

W -emission diagram saturates charmed baryon production in B decays. While the B(B → Λ+
c e−X)

measurement is limited by our knowledge of the possible decay states, the exclusive limit constrains

the expected dominant mode below the corresponding rate measured for B decays to charmed

mesons. The semileptonic decay rate from B to baryons doesn’t add a large contribution to the

total semileptonic B decay rate if these semileptonics decays are dominated by modes of the type

B → Λ+
c Ne−νe.
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TABLE I. Results of the Λ+
c e−X, Λ+

c pe−νe, and Λ+
c pX analyses. The “Data ON” row shows

results from fits to the on resonance data sample, while the “Scaled OFF” row shows the results

of the fits to the nearby continuum data scaled for luminosity and cross section.

TYPE Λ+
c e−X Λ+

c pe−νe Λ+
c pX

Data ON 176 ± 41 20 ± 10 2501 ± 121

Scaled OFF 9 ± 22 6 ± 7 440 ± 105

Fakes 10 ± 4 (e ) 2 ± 1(e and p ) 32+6
−15(p’s)

MC pred. uncorr. 95 ± 7 ± 33 11 ± 6 58 ± 6 ± 58

Bkgd. sub. 62 ± 47 ± 34 1 ± 12 ± 6 1971 ± 160+59
−60

Efficiencies 0.239 ± 0.005 ± 0.011 0.094 ± 0.003 ± 0.003 0.257 ± 0.003 ± 0.010

YIELD 259 ± 196 ± 143 11 ± 132 ± 82 7669 ± 623 ± 385
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FIG. 1. The fit (line) to the pK−π+ invariant mass spectrum from on resonance data events

(points with error bars) and the scaled off resonance data (histogram) for the (a) B → Λ+
c e−X and

(b) B− → Λ+
c pe−νe analyses.
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FIG. 2. The fit (line) to the pK−π+ invariant mass spectrum from on resonance data events

(points with error bars) and the scaled off resonance data (histogram) for the B → Λ+
c pX analysis.
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