
BaBar Note # 478
January 15, 1999

The BaBar Software Architecture and Infrastructure∗

G. Cosmoa

aSLAC, Stanford Linear Accelerator Center,
P.O.Box 4349, 94309 Stanford CA, US

The BaBar experiment has in place since 1995 a software release system (SRT Software Release Tools) based
on CVS (Concurrent Version System) which is in common for all the software developed for the experiment, online
or offline, simulation or reconstruction. A software release is a snapshot of all BaBar code (online, offline, utilities,
scripts, makefiles, etc.). This set of code is tested to work together, and is indexed by a release number (e.g., 6.8.2)
so a user can refer to a particular release and get reproducible results. A release will involve particular versions
of packages. A package generally consists of a set of code for a particular task, together with a GNUmakefile,
scripts and documentation. All BaBar software is maintained in AFS (Andrew File System) directories, so the
code is accessible worldwide within the Collaboration. The combination SRT, CVS, AFS, has demonstrated to
be a valid, powerful and efficient way of organizing the software infrastructure of a modern HEP experiment with
collaborating Institutes distributed worldwide, both in a development and production phase.

1. INTRODUCTION

The BaBar experiment at SLAC (Stanford
Linear Accelerator Center) is the ongoing effort
involving more than 70 collaborating Institutes
and Laboratories world wide. The resulting com-
puting environment is therefore rather complex
in terms of software management and distributed
computing resources. BaBar has adopted an
object-oriented approach for its software devel-
opment with C++ as the principal programming
language. Fortran and C are also supported.
Due to the large number of Collaborating Labora-
tories, multiple platform architectures and com-
pilers are supported, mainly based on UNIX:
SUN/SunOS, DEC/OSF, HP/HP-UX and in the
future, also Linux. To support the software devel-
opment, BaBar created a code management and
release system [1,2] which allows integration of a
distributed developer community.
The software infrastructure, the release mecha-
nism and the underlining software architecture
[3,4] are well integrated, offering an overall flexi-
ble and working system.

∗Work supported by Department of Energy contract DE-
AC03-76SF00515. Proceedings of the 6th International
Conference on Advanced Technology and Particle Physics,
Como (Italy), October 1998

2. SRT - Software Release Tools

Since November 1994, BaBar has in place a
system for code management and release control,
SRT [1], which, based on CVS (Concurrent Ver-
sioning System [5]), consists of a set of GNUmake
[6] scripts (tools) defining the BaBar release en-
vironment. Software releases can be made on dif-
ferent architectures and compilers in a homoge-
neous way, defining common rules used in the
GNUmakefiles for controlling and executing the
database setup, invoking in the right sequence all
commands needed to compile and build:

• DB schemas;

• software libraries and binaries;

• documentation and test applications.

SRT provides several utilities to make easier
managing the release process in a distributed en-
vironment; some of them include:

• importver, importrel: import a single pack-
age (specifying its version) or a whole re-
lease from a remote site;

• updrel, rmrel: update or remove a release
specifying the release number.

1

SLAC-PUB-9728Presented at 6th International Conference on Advanced Technology and Particle Physics
Villa Olmo, Italy, 5-9 Oct 1998

• auditrel, statusrel: check for inconsistencies
in a release or display its contents.

• listtag: display all tags of a CVS module.

2.1. Packages
The main BaBar CVS repository is located

at SLAC and made accessible to collaborators
worldwide via AFS [7]. BaBar software is orga-
nized into packages. SRT (SoftRelTools) is itself
a package within the BaBar system. A package
is a logical collection of classes/functions provid-
ing a set of services and performing a well defined
task, i.e. what is defined to be a Booch category.
A package usually contains:

• the source code;

• one GNUmakefile defining all rules specific
to the package and complementing those al-
ready offered by SRT;

• documentations and notes;

• scripts and macros specific to the package.

Each package is maintained in the CVS reposi-
tory as a separate module and is managed by one
package coordinator. The package coordinator is
responsible for the development of the package,
for testing the code, and for tagging and announc-
ing new self-consistent and tested versions of the
package as and when appropriate for a general re-
lease.
Access to CVS modules can be controlled via AFS
ACL’s if required and package coordinators are
notified automatically when changes in the code
are made or when new code is checked in the
repository for that package. Requests for creation
of a new package must take place some time be-
fore the scheduled release by specifying: the name
of the package, the initial tag, the name of the
package coordinator and confirming the existence
of a README file summarizing goals and func-
tionalities of the package.

3. BaBar Software Releases

A “Software Release” in BaBar is a snapshot
of a consistent set of package versions, including

online and offline software, utilities, scripts and
GNUmakefiles.
A Release is regularly built every two weeks and
is indexed by a release number of the form: 6.9.X,
where “X” is a number labeling a particular build
of a release. There can be more than one build per
release, usually happening in two days intervals,
depending on how successful the final build is.
Periodically, some releases are labeled by name
(by using symbolic links):

• Test Release: the final build of a release
which has been considered successful;

• Current or Production Release: a Test
Release which has been considered stable
and therefore can be used for production;

• Newest Release: the latest Test Release
available.

Usually, “test” and “newest” releases may have
bugs which make them unsuited for general use.
Releases pointed to by these links will change over
time and it is also possible for two or all three of
these links to point to the same release.
A release includes also libraries and binaries
for each BaBar supported architecture/compiler.
Currently, a release in BaBar consists of more
than 300 libraries and 80 executables.
Figure 1. shows the BaBar software directory

tree, which, based on AFS, has the actual CVS
repository pointed by the variable $CVSROOT,
while in $BFDIST are contained all the different
packages exported by their tags (tags are used
to represent the labels associated to their physi-
cal directories). $BFDIST also contains the list
of all available releases by their release number,
which in turn contains symbolic links to all pack-
age versions belonging to each particular release
and all associated libraries and executables for
each architecture; there’s a 1-1 mapping between
packages and libraries in SRT.
A relatively new and still evolving area is the on-
line release structure. The “online releases” di-
rectory has an organization similar to the (offline)
“releases” directory. Online releases are designed
to be dependent on a particular offline release.
Some packages are common to both online and
offline.

2

Figure 1. The BaBar Software Directory tree.

3.1. The working model
Package coordinators release their package(s)

by committing, testing, tagging and announcing
their code for a specified release.
A package’s tag must have a fixed format, i.e.
V01-25-08. Tag labels are also used to name the
directories in $BFDIST containing the exported
code for a particular version of a package. A tag
can survive to more than one release until a new
tag for that package is announced.
Package coordinators use an automated system
based on Web, Hypernews and BFMAIL to an-
nounce their package version for a particular re-
lease, by filling a checklist Web form (see Fig.2).
There is a test compilation system available that
compiles and tests on all platforms/compilers the
announced package. The build will start auto-
matically and the results will be posted by e-mail
to the package coordinator.
All announcements are posted via BFMAIL to a
distribution list and registered on Hypernews.
Nightly builds start automatically each night on
all supported platforms, collecting all announced
tags of the day. Problems occurring during the
build are automatically posted to the package co-
ordinators the day after.

Every two weeks, at the scheduled day and
time all announced tags are automatically col-
lected and the release build starts. If the release
is not considered successful, it will be repeated
at intervals of two days until the final release is
announced by the release coordinator. A sum-
mary of each build is posted automatically to
each package coordinator together with problems
which may have occurred in the packages he is
responsible for.

3.2. Automated testing
Package coordinators can provide specific tests

and make them available at release time as re-
gression tests. These tests (real applications) are
then built and run automatically at each release
build.
The output of the tests is automatically compared
to reference output supplied by the developer.
The results of the regression test are then posted
to the package coordinator for evaluation.

3.3. The BaBar Problem Tracking System
Errors from all release stages affecting a pack-

age are automatically documented and posted to
the package coordinator. Each error or problem
not fixed within a fixed period of time is automat-

3

Figure 2. The BaBar CheckList Web form.

ically appended to the BaBar Problem Tracking
System which “gently” and regularly reminds ev-
ery 7 days the package coordinator of the prob-
lem.
Outside release builds, bug reporting and track-
ing are controlled by this system. Users are free
to submit problems (“open” problems) or “close”
fixed problems.
The system, implemented over Remedy ARWeb
and based on ORACLE, offers also the possibil-
ity to browse and print statistics of all tracked
problems in the BaBar Software (Fig.3)

4. The user environment

The installation of SRT in the BaBar user en-
vironment is very simple and requires just a few

Figure 3. A snapshot of the BaBar Remedy
Tracking System.

environment variable entries to be set in $PATH
and $MANPATH. Centralized HEPiX scripts can
take care of this.

4.1. The User Test release
A user test release consists of a “limited” col-

lection of packages which are tied to a specific
BaBar release. Users can modify packages or add
their own new packages, and link them with the
standard code and libraries which are part of a
general BaBar release.
Common commands users ordinarily use are:

• newrel: to create the skeleton of a user test
release tied to a specific release version;

• addpkg: to add an existing package in the
test release (can also be a different version
than the one available in the general re-
lease). addpkg deduces the tag needed for
the package so that the developer needn’t
figure it out.

The skeleton of a test release usually includes:

• a GNUmakefile;

4

• lib, bin and tmp directories containing the
products of the compilation;

• shlib, shtmp directories in case shared li-
braries are built;

• doc and test directories, where documenta-
tion and tests provided by the package co-
ordinator for a given package are generated.

Only packages added to the test release are
made part of the compilation. The final executa-
bles are built linking against those libraries in the
test release and those (if needed) coming from the
general release.

4.2. Tools: Workdir
Workdir is a simple package which allows the

user to run applications built in SRT from any
area, not necessarily within the user’s test release.
It consists of a “special” GNUmakefile integrated
in the SRT environment, which gives the ability
to easily choose in a flexible way which release (or
test release) to refer to. It also creates links to the
major scripts needed by applications at run time.

4.3. Tools: PackageList
PackageList is a package in SRT whose goal

is to break the dependency of packages on their
link list [8]. It defines a standard link order for all
packages which are part of the BaBar software.
It contains information pertaining to every SRT
package, mainly:

1. the library name;

2. a file link $PACKAGE.mk in each package
listing all direct dependencies of that pack-
age on other packages.

Here is an example of the section associated to
each package and placed in PackageList in a well
defined order:

PACKAGELIST += L1Sim
ifneq ($(LINK_L1Sim),)
override LOADLIBES += -lL1Sim
-include L1Sim/link_L1Sim.mk

endif

4.4. Tools for Quality Checking
Users can make use of specialized tools for qual-

ity checking and metrics monitoring. Usage of
these tools (Insure++, Code Wizard, Logiscope,
...) is easily integrated in SRT.
Special release builds are performed regularly on
“stable” or “production” releases, by filtering the
code with these tools. Results of the filtering is
published on the Web and the most relevant prob-
lems affecting a package are posted to each pack-
age coordinator.

5. The BaBar Application Framework

A Framework is a collection of classes that pro-
vide a set of services, generally providing a well
defined interface for some particular task or set of
tasks. The services provided by the BaBar Ap-
plication Framework [9,10] (the Framework pack-
age) include input and output of event, calibra-
tion and control data, and management of the
event processing loop. Changes in any of the
i/o only affects the Framework and not the de-
tails of the BaBar reconstruction and simulation
software. An obvious example of this separation
is that the reconstruction software can be made
independent of the external environment within
which it is running, e.g. online or offline.
The basic unit of the Framework is the mod-
ule. Modules contain code that takes various
data from each event, runs specific algorithms,
and puts the results back into the event for later
use. The code comprising a module may do sim-
ulation, reconstruction or analysis tasks, and can
either be common code from the BaBar release
system or the user’s private development in a test
release.
Modules are generally independent of each other
and have their own configuration and data-taking
run specific information. Each module must pro-
vide an interface to the Framework which includes
a unique name and functions to be called at the
beginning/end of the job and event processing.
An executable program is built from one or more
modules by compiling and linking them together.
The individual modules may then be enabled or
disabled at runtime and their order of execution
specified through Tcl scripts.

5

Modules can be collected into sequences. A se-
quence of modules is a list of one or more modules
that will be executed in the order by which they
appear in the script.
Modules and Sequences can be combined into
Paths. A Path is a complete execution sequence,
commencing at the input module and terminat-
ing at the output module. The presence of filter
modules within a path might terminate the exe-
cution of a path prematurely.
Coordinators of a Framework package may pro-
vide specialized tests to be built and run auto-
matically at release time as regression-tests in a
global context!

6. Hypernews and FAQ

In a distributed environment of a modern HEP
experiment, the World Wide Web plays a fun-
damental rule as instrument for communication.
Discussion Forums based on Hypernews and orga-
nized by topic are commonly adopted in BaBar.
SRT and BFMAIL are integrated in this as well.
Users are free to subscribe or unsubscribe to a
particular topic and the addition of new topics
can be easily managed.
A mechanism of FAQ (Frequently Asked Ques-
tions) is also in place, in order to summarize and
focus on the most common problems developers
and users may have.

7. Conclusions

BaBar has demonstrated that the
SRT+CVS+Hypernews is a “working” combina-
tion for Software Management in the distributed
environment of a modern HEP experiment.
SRT (Software Release Tools), originally devel-
oped in BaBar is now adopted and customized by
more and more experiments world wide: FNAL,
ATLAS, CMS, CDF, D0, BTeV. It requires an
effort and a certain degree of responsibility by
the user (the Package Coordinator) to achieve
its best use. SRT offers a flexible and efficient
user environment and can be easily extended with
new tools. It fits well in the BaBar software in-
frastructure, together with an automated release
mechanism, Hypernews and Web based tools and

with the software architecture of the BaBar Ap-
plication Framework.

REFERENCES

1. B. Jacobsen, The BaBar Software Release
Structure, 1995.

2. J. Bartelt, User’s Guide to the Software Re-
lease Tools, 1998.

3. B. Jacobsen and D. Johnson, Configuration
Management, CSC98 - CERN School of Com-
puting, Madeira, Portugal, 1998.

4. N. Geddes, The BaBar User Guide, 1998.
5. P. Cederqvist et al., Version Management

with CVS, Signum Support AB, 1993.
6. R.M. Stallman and R. McGrath, GNU Make,

Free Software Foundation, Boston, 1996.
7. The AFS User’s Guide, Transarc Corpora-

tion.
8. B. Jacobsen, PackageList: The BaBar sys-

tem for decoupling packages during linking,
BaBar Note 443, 1998.

9. D.R. Quarrie, A BaBar Application Frame-
work, 1995.

10. E. Frank et al., Architecture of the BaBar Re-
construction System, BaBar Note 357, 1997.

6

