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Abstract

A proposal for the LCLS has been made to generate a shorter light pulse by placing a spoiler foil in

the middle of a compressor chicane: The foil has a small slot, which selects out the small fraction of

particles passing through it (“target particles”) to lase [1],[2]. In this report, using the method of

field matching, we obtain longitudinal and transverse impedances and wakefields for several models

of the proposed LCLS spoiler foil. Our models have no slot. We consider the model of a pencil

beam, and of a cylindrically symmetric, bi-Gaussian beam that is wider than it is long. Thirdly, we

generate a Green function that allows us to consider asymmetric beams also. For target particles

of the tilted, tri-Gaussian beam that is found at the LCLS spoiler location we obtain approximate

analytical formulas and numerical results for wakefield kicks in the three directions. We find that

the kicks, after correction using a simple dipole and and quadrupole, are all within tolerances.

∗Work supported by the Department of Energy, contract DE-AC03-76SF00515
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I. INTRODUCTION

The Linac Coherent Light Source (LCLS) [3] will produce SASE radiation in the angstrom

wavelength range. One configuration of this project envisions having only a few femtosecond

portion of the 200 femtosecond long electron bunch lasing. The idea for preparing the beam

to lase in this way is to have it pass through a thin foil “spoiler” with a small slot in the

middle of the second chicane compressor (see Fig. 1) [1],[2]. Most of the beam electrons

pass through the foil, and their emittance is increased due to scattering in the foil. A small

fraction of the beam passes through the slot, and the emittance of these electrons should

remain unperturbed.

A rough sketch of the beam and foil is given in Fig. 1. A thin, round conducting foil, with

a narrow slot of half-width ∆x, is positioned within a cylindrically-symmetric, metallic beam

pipe of radius a. An ultra-relativistic beam passes centered through the beam pipe. The

beam charge distributions are Gaussian in the three directions, with rms beam sizes σx, σz,

and σy. The beam passes with an x-z correlation, described by angle α with respect to the

x axis; the rms “slice length”—the length in z for a given x—is σzs. Suggested parameters

that will be used in estimations below are given in Table I. Note that a � σx � σz,σy � σzs;

that α ≈
√

σ2
z − σ2

zs/σx ≈ σz/σx; and that the slice rms length is small, σzs ≈
√

σ2
z − α2σ2

x.

a

σz

x

zσzs

α

σx

FIG. 1: A sketch in the x-z plane of the beam and the foil with its slot. The beam pipe is

round but the slot is flat, with half-width ∆x. The beam is tilted in x-z by angle α (� 1),

with the longitudinal slice rms length, σzs. Note that a � σx � σz,σy � σzs.

We are interested in the wakefield acting on the particles passing through the slot, i.e.

that part of the beam with |x| ≤ ∆x and whose size in y, slice size in z, and x-z correlation
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TABLE I: Parameters at the LCLS spoiler.

Beam Energy E 4.5 GeV

Bunch Charge eN 1 nC

Horizontal Bunch Divergence σx′ 2 µrad

Vertical Bunch Divergence σy′ 2 µrad

Intrinsic Energy Spread (σδ)in 6 10−5

Horizontal Beam Size σx 2.6 mm

Vertical Beam Size σy 0.1 mm

Bunch Length σz 0.1 mm

Slice Bunch Length σzs 2 µm

Beam Tilt Angle α 40 mrad

Radius of Beam Pipe a 20 mm

Spoiler Slot Half-Width ∆x 0.125 mm

angle are characterized by σy, σzs, α, respectively (we will call these “the target beam

particles”). Since the width of the slot is much smaller than σx, only a small fraction of

beam particles passes through the slot. We believe that, to good approximation, we can

neglect the effect of the slot, and, in this report, we calculate the longitudinal and transverse

wakes for a foil without slot. Note that an important feature of this problem is that the

beam pipe radius a is much larger than any beam dimension, a fact that will allow us to

obtain results of rather simple analytical form. Note also that the model problem that we are

about to solve—the wakefields of a foil without slot—gives, in fact, the wakefields associated

with the transition radiation of a beam passing through a foil.

The organization of the paper is as follows: We begin in Section II by calculating the

longitudinal impedance and wakefield of a pencil beam (one with zero transverse size). In

Section III we consider a beam that is wider than long, but still cylindrically-symmetric,

which is a more appropriate model for the LCLS spoiler problem, and obtain first the

longitudinal and then the transverse wakes due to monopole modes. In Section IV we

improve our model and generate a Green function for the transverse wake, from which
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we obtain the wakes of a tilted, tri-Gaussian beam. Finally, we apply the results to the

LCLS spoiler parameters, to estimate the effect on the target particles of the LCLS beam.

Appendix A gives the solution of an auxiliary sum used in Section II, and Appendix B

presents more details of the calculation for the longitudinal wake in Section III.

II. PENCIL BEAM

A Impedance Calculation

Consider the geometry sketched in Fig. 2. It consists of a cylindrically symmetric beam

pipe of radius a, with a closed, metallic foil at longitudinal position z = 0. The pipe and

foil are assumed to be perfectly conducting. An exciting particle of charge eN moves on

axis at the speed of light, from z = −∞ to ∞; it passes through the foil at time t = 0. An

ultra-relativistic test particle follows behind at distance s and at offset r from the axis. We

denote the two regions within the pipe as Region I (z < 0) and Region II (z > 0).

a

CL

z=0I II

r

s

test

drive

FIG. 2: A sketch of the geometry of our cylindrically-symmetric model showing the two

regions, I and II, and the relative positions of the drive and test particles.

We follow a standard method to find the wakefield, which is to first obtain the impedance,

and then to perform a Fourier transform. The longitudinal wakefield—the total voltage loss
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of the test particle in its traversal from z = −∞ to ∞, divided by eN—is given by

Wz(r, s) = − 1

eN

∫ ∞

−∞

Ez(r, z; t) dz
∣

∣

∣

t=(s+z)/c

= − 1

eN

∫ ∞

−∞

dz

∫ ∞

−∞

dt

∫ ∞

−∞

dω

2π
Ez(r, z; t) eiω[t−(s+z)/c]

=
1

2π

∫ ∞

−∞

dω e−iωs/c

[

− 1

eN

∫ ∞

−∞

dz Ẽz(r, z; ω) e−iωz/c

]

, (1)

where Ez is the electric field in the longitudinal direction, and the tilde denotes the Fourier

transform of a quantity, which we define by

Ã(ω) =

∫ ∞

−∞

A(t)eiωt dt . (2)

The quantity in brackets in the last line of Eq. 1 is the longitudinal impedance:

Z(ω) = − 1

eN

∫ ∞

−∞

Ẽz(r, z; ω)e−iωz/c dz . (3)

Note that it is just the Fourier transform of the wake.

In the problem of Fig. 2, the driving particle excites TM modes in both Regions I and

II. The non-zero components of the (Fourier transform of the) excited fields can be written

as infinite sums:

Ẽz = ± 1

a2

∑

n

Cnj
2
0nJ0

(

j0nr

a

)

e±ikznz (4)

Ẽr = − i

a

∑

n

Cnkznj0nJ1

(

j0nr

a

)

e±ikznz (5)

H̃φ = ± iω

ca

∑

n

Cnj0nJ1

(

j0nr

a

)

e±ikznz , (6)

where the longitudinal propagation constant is given by

kzn =

√

(ω

c

)2

−
(

j0n

a

)2

; (7)

with Jn the Bessel function of the first kind of order n and j0n the nth zero of J0(x). Note

that there is a symmetry between the fields in the two regions excited by particle, and in

Eqs. 4-6 the upper symbols indicate fields in Region I, the lower symbols those in Region II.

The Coulomb source field of the ultra-relativistic driving particle is given by

(Er)s =
2eN

r
δ(z − ct) . (8)
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When the source particle impinges on the conducting wall, it excites radiation fields that

cancel the source field at z = 0, since the total Er must equal zero on the foil. We obtain

the radiation field expansion coefficients Cn by field matching at z = 0:

Ẽr(z = 0) = − i

a

∑

n′

Cn′kzn′j0n′J1

(

j0n′r

a

)

= −2eN

cr
. (9)

Multiplying both sides by J1(j0nr/a)rdr and then integrating from 0 to a we obtain

Cn = − 4ieN

ckznj2
0nJ2

1 (j0n)
. (10)

Now we can obtain the longitudinal impedance using Eq. 3. Let us, for the moment, limit

ourselves to the case r = 0 (a test particle on axis). We find that

Z(ω) = − 1

eNa2

∑

n

Cnj
2
0n

[∫ 0

−∞

eiz(kzn−ω/c) dz −
∫ ∞

0

eiz(−kzn−ω/c) dz

]

(11)

=
8

c

∑

n

1
√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
. (12)

The real part of the impedance R(ω) is given by the same formula, but with
∑

n replaced

by
∑′

n, which means to sum over all n for which kzn is real (propagating modes), i.e. for

all n with j0n ≤ ωa/c. Note that R(ω) can also be obtained from the energy balance

equation R(ω) = π/(eN)2(dU/dω), where dU/dω is the energy radiated, and given by (see,

e.g. Ref. [4])

dU

dω
=

ω

2π

′
∑

n

kznj2
0nJ2

1 (j0n)|Cn|2 . (13)

(Note that half the energy is radiated in Region I and half in Region II.) We find that the

real part of the impedance is again given by

R(ω) =
8

c

′
∑

n

1
√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
. (14)

B High frequency solution

In the case of large ωa/c we can perform the sum of Eq. 14. We first rewrite

′
∑

n

1
√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
=

′
∑

n





1
√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
− 1

j2
0nJ2

1 (j0n)





+
′
∑

n

[

1

j2
0nJ2

1 (j0n)
− 1

2n

]

+
′
∑

n

1

2n
. (15)
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Consider the 3 pieces of sum S = S1 +S2 +S3. The first sum S1 has its largest contributions

at large n. Therefore, using large n approximations j0n ≈ nπ and J1(j0n) ≈
√

2/n (−1)n/π,

and replacing the sum with an integral, we obtain

S1 ≈
1

2

∫ 1

0

dx

x

(

1√
1 − x2

− 1

)

=
1

2
ln 2 . (16)

The dominant contribution to S2 is for low n; the result is S2 = 1
2
ln(π/2) (see the Ap-

pendix A). Since
∑′

n means to sum up to n ≈ ωa/(πc), S3 = 1
2
[ln(ωa/(πc)) + γE], where

γE ≈ 0.577, the Euler constant. Finally, we obtain

R(ω) =
4

c

(

γE + ln
ωa

c

)

. (17)

Note that if c/(aω) is small compared to 1/γ, with γ the Lorentz energy factor, then the

quantity (ωa/c) in Eq. 17 should be replaced by γ. This is the result that obtains when

a → ∞, and it is this form of the equation (except for the γE term) that corresponds to the

transition radiation dU/dω found in the literature [5].

C Loss factor

The loss factor of a bunch—the total voltage lost by the bunch divided by its charge—is

given by

κtot =
1

π

∫ ∞

0

R(ω)|λ̃z(ω)|2 dω , (18)

with λz(s) the longitudinal bunch distribution. For a Gaussian bunch of rms length σz,

λz(s) = 1/(
√

2πσz)e
− 1

2
s2/σ2

z and λ̃z(ω) = e−
1
2
ω2σ2

z/c2 ; therefore,

κtot =
1√
πσz

(

γE + 2 ln
a

2σz

)

. (19)

We have used the relation

∫ ∞

0

e−x2

ln x dx = −
√

π

4
(γE + 2 ln 2) . (20)
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D Longitudinal Wakefield

The wakefield can be obtained from R(ω) using

W (s) =
2

π
H(s)

∫ ∞

0

R(ω) cos
ωs

c
dω , (21)

where H(s) = 1 for s > 0, 0 for s < 0. In our case the wakefield turns out to be rather

singular, and a more convenient response function is the step function response S(s), the

integral of the wake:

S(s) ≡
∫ s

0

W (s′) ds′

=
2c

π
H(s)

∫ ∞

0

R(ω)

ω
sin

ωs

c
dω . (22)

Using the relation
∫ ∞

0

ln x

x
sin xy dx = −π

2
(γE + ln y) Sign(y) , (23)

we finally obtain

S(s) = 4H(s) ln
a

s
. (24)

Note that our result is similar to the step function response for a beam passing between two

parallel plates, but where the cut-off a is replaced by twice the distance between the plates

[6].

E Bunch Wake

The bunch wake is the voltage induced by a bunch divided by its charge. For a bunch

with longitudinal distribution λz(s) [assuming λz(∞) = 0] the bunch wake is given by

W(s) = −
∫ ∞

0

W (s′)λz(s − s′) ds′ = −
∫ ∞

0

S(s′)λ′
z(s − s′) ds′ (25)

(here the convention is that W is positive for energy gain). For a Gaussian bunch

W(s) = − 2
√

2√
πσz

[

e−(s/σz)2/2 ln
a

σz

+ f

(

s

σz

)]

, (26)

with

f(x) =

∫ ∞

0

(x − x′) ln x′ e−(x−x′)2/2 dx′ . (27)
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The function f(x) is shown in Fig. 3. In Fig. 4 we present the bunch wake for three values

of a/σz. The rms of the bunch wake for a Gaussian is given by

Wrms =
1

σz

[

0.197 ln2 a

σz

+ 0.264 ln
a

σz

+ 1.302

]1/2

. (28)

Finally, note that numerical, time-domain simulations of this problem have been performed

by H. Schlarb, and good agreement with Eq. 26 was found [7].

FIG. 3: The function f(x) defined by Eq. 27.

a/σz= 1000

100

10

W

FIG. 4: For Gaussian bunches, the function σzW(s) for three values of a/σz.
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III. BEAM WITH WIDTH LARGER THAN LENGTH

A Longitudinal Impedance

Up to now we have assumed that both driving and test particles are on axis. For the

LCLS spoiler problem that we are interested in, however, the beam’s transverse size is larger

than the longitudinal size. The transverse size will give rise to a transverse impedance, and

the transverse size will also cut off both the longitudinal and transverse impedances at high

frequencies. Here we sketch the longitudinal calculations (leaving details for Appendix B)

and describe the transverse calculations in detail.

Consider now the model sketched in Fig. 5. Again the problem is cylindrically-symmetric,

and again there is no hole in the foil. The beam has radial size σr and longitudinal size

σz, with σz � σr � a. For impedance calculations we consider as driving charge a ring

of radius rd (which generates purely monopole fields), and calculate the effect on a test

particle following at offset r, with rd � a and r � σr. Note that in our geometry with

no beam hole, monopole fields generate both a transverse force and a transverse variation

in the longitudinal force. Note also that in this case the combination of high frequencies

(ωa/c ∼ a/σr � 1) and the condition r � σr will allow us to perform wakefield calculations

analytically.

The Coulomb source field of the driving ring is now given by

(Er)s =
2eN

r
δ(z − ct)H(r − rd) (29)

instead of Eq. 8, and upon field matching the expansion coefficients become

Cn = −4ieNJ0

(

j0nrd

a

)

ckznj2
0nJ2

1 (j0n)
(30)

instead of Eq. 10. The dependence of the longitudinal impedance on the test particle offset

r is simply J0(j0nr/a) (see Eq. 4), and the real part of the longitudinal impedance becomes:

R(rd, ω) =
8

c

′
∑

n

J0

(

j0nrd

a

)

J0

(

j0nr
a

)

√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
. (31)
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a

σx

σz

CL

FIG. 5: A sketch of the model for the transverse wake calculation. The beam pipe and beam

are both cylindrically symmetric.

In Appendix B we work out details of the longitudinal calculation. In order to obtain an

analytical result we calculate a wakefield weighted by a transverse, Gaussian distribution;

i.e. we define

W̄ (s) ≡ 1

σ2
r

∫ ∞

0

W (rd, s) e−
1
2
(rd/σr)2rd drd . (32)

(Let an over bar designate a function that has been averaged over the driving charge radius,

rd.) We finally obtain a (transversely averaged) step function response

S̄(s) ≈ 4H(s) ln
a

σr

[r � σr] . (33)

Comparing with Eq. 24, we note that the beam’s transverse size reduces the step func-

tion response by the factor ln(a/σr)/ ln(a/s). The bunch wake, assuming the longitudinal

distribution is also Gaussian, becomes

W̄(s) ≈ − 2
√

2√
πσz

e−(s/σz)2/2 ln
a

σr

[r, σz � σr] . (34)

Comparing with Eq. 26 we see that the transverse beam size eliminates the non-symmetric

part of the bunch wake, and reduces the symmetric part by the factor ∼ ln(a/σr)/ ln(a/σz).

Finally, averaging over the longitudinal distribution we find that

〈W̄〉 =
2√
πσz

ln
a

σr

[r, σz � σr] . (35)

Note that W̄(s) is independent of r to first order. That is because in the calculation we

approximated J0(xωr/c) ≈ 1, where x is a variable ∼ 1. To estimate the r dependence we

can take the next order expansion of the Bessel function: − 1
4
(xωr/c)2 ∼ −1

4
(r/σr)

2.
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B Transverse Impedance

The transverse impedance due to a ring of charge eN and radius rd is

Zr(rd, ω) = − i

eN

∫ ∞

−∞

[

Ẽr(rd, r, z; ω) − H̃φ(rd, r, z; ω)
]

e−iωz/c dz . (36)

Using Eqs. 5,6 we find that the real part of the transverse impedance becomes

Rr(rd, ω) = − 8

ωa

′
∑

n

J0

(

j0nrd

a

)

J1

(

j0nr
a

)

√

1 −
(

j0nc
ωa

)2
j0nJ2

1 (j0n)
. (37)

H. Schlarb has shown that, in our geometry, where a beam passes through a foil that

is oriented perpendicular to the beam trajectory, the Panofsky-Wenzel theorem [8] still

applies [7]. Note that the general form of our transverse impedance, Eq. 37, and that of the

longitudinal impedance, Eq. 31, do satisfy this theorem: Rr = (c/ω)∂R/∂r.

Now let us again assume high frequencies (ωa/c � 1), which will allow us to replace the

sum with an integral. Using large n approximations j0n ≈ nπ and J1(j0n) ≈
√

2/n (−1)n/π

we obtain

Rr(rd, ω) ≈ −4π

ωa

∫ ωa
πc

0

J0

(

nπrd

a

)

J1

(

nπr
a

)

dn
√

1 −
(

nπc
ωa

)2

= −4

c

∫ 1

0

J0

(

xωrd

c

)

J1

(

xωr
c

)

dx√
1 − x2

. (38)

C Transverse Wakefield

The transverse wakefield is given by

Wr(rd, s) =
2

π
H(s)

∫ ∞

0

Rr(rd, ω) sin
ωs

c
dω . (39)

Analogously to the longitudinal case we define an averaged transverse wake (averaged over

the radial charge distribution), which, for a Gaussian radial distribution, is given by

W̄r(s) =
1

σ2
r

∫ ∞

0

Wr(rd, s) e−
1
2
(rd/σr)2rd drd . (40)

Combining Eqs. 38-40, and interchanging the order of integration, we obtain

W̄r(s) = − 8

πcσ2
r

H(s)

∫ 1

0

dx√
1 − x2

∫ ∞

0

dωJ1

(xωr

c

)

sin
ωs

c

∫ ∞

0

rd drdJ0

(xωrd

c

)

e−
1
2
(rd/σr)2 .

(41)
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The integration over rd yields

1

σ2
r

∫ ∞

0

rd drdJ0

(xωrd

c

)

e−
1
2
(rd/σr)2 = e−

1
2
(xσrω/c)2 . (42)

In the integral over ω, since the test particle offset is small (r � σr), the Gaussian limits

the argument of J1 to small values; therefore, we can let J1

(

xωr
c

)

≈ 1
2
(xωr/c). We obtain

2

π

∫ ∞

0

ω dω sin
ωs

c
e−

1
2
(xσrω/c)2 =

√

2

π

(

sc2

x3σ3
r

)

e−
1
2
( s

xσr
)2 . (43)

The last integral is
∫ 1

0

dx

x2

e−
1
2
( s

xσr
)2

√
1 − x2

=

√

π

2
e−

1
2
(s/σr)2 . (44)

Combining the results, we obtain

W̄r(s) = −2r

σ2
r

H(s) e−
1
2
(s/σr)2 [r � σr] . (45)

Note that the overall minus sign in front of the expression for W̄r implies a focusing wake.

Finally, convolving with the longitudinal Gaussian distribution we obtain the transverse

bunch wake

W̄r(s) = − r

σ2
r

[

1 + erf

(

s√
2σz

)]

e−
1
2
(s/σr)2 [r, σz � σr] . (46)

For the LCLS spoiler problem, we can use this symmetric, wide beam model to estimate

the wakefield induced energy loss and transverse kick near the center of the beam. Using

Eq. 34, taking s = 0, σr = σx, and σz as given in Table I, we find that W̄ = −3 × 104/m,

which corresponds to a relative energy change of δ = −6.5 × 10−5. Using Eq. 46, taking

r = ∆x, we find that W̄r = −∆x/σ2
x = −18/m, which corresponds to a kick angle in x

of −0.05 µr; this is negligible compared to the angular spread in the bunch, σx′ = 2 µrad.

The rms energy and transverse kick variation over target particles (say, for particles with

|s| <∼ σzs and |x| ≤ ∆x) would be a small fraction of these results.

This is a simple model of the LCLS spoiler foil problem. We now consider a more complex

one, taking into account the x-z correlation of the beam.
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IV. GREEN FUNCTION

With the cylindrically symmetric model used so far the effect on target particles in the

beam is very small. The real LCLS spoiler problem, however, is not cylindrically symmetric.

Even if we keep the approximation that there is no slot in the foil (as we shall continue to

do), the symmetry is broken because: the beam has an x-z tilt and the transverse beam

sizes are not equal (σx 6= σy). We can find a Green function, however, that allows us to

obtain the wake effect even for beams without cylindrical symmetry.

For a drive particle on-axis and a test particle following at radius r we see from Eq. 37

that the real part of the radial impedance becomes

Rr(ω) = − 8

ωa

′
∑

n

J1

(

j0nr
a

)

√

1 −
(

j0nc
ωa

)2
j0nJ2

1 (j0n)
. (47)

Assuming high frequencies (ωa/c � 1) we can replace the sum by an integral

Rr(rd, ω) ≈ −4

c

∫ 1

0

J1

(

xωr
c

)

dx√
1 − x2

= − 8

rω
sin2

(rω

2c

)

. (48)

Performing the sine transform we obtain the radial wake

Wr(r, s) = −4

r
H(s)H(r − s) . (49)

Note that this result can also be obtained by direct integration of the transition radiation

fields that are calculated in Ref. [9] for a thin foil in free space. For a Gaussian distributed

line charge we convolve Eq. 49 with the charge distribution, and obtain

Wr(r, s) = −2

r

[

erf

(

s√
2 σz

)

− erf

(−r + s√
2 σz

)]

. (50)

A plot of Wr(r, s), for several values of r/σz is given in Fig. 6. Note that for small r/σz the

shape of the wake becomes resistive, and for large r/σz capacitive.

Note that Wr is independent of a. This means that we can consider the limit a → ∞

corresponding to a foil in free space. Then our assumption that the driving particle is on

axis can be dropped, and Eq. 49 is valid also for an off-axis driving particle—in this case r
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FIG. 6: For Gaussian bunches, the function −σzWr(r, s) for several values of r/σz.

becomes the relative offset between driving and test particles. This function can, therefore,

be used as a Green function for the transverse wake of a bunch of any shape, even one that

is not cylindrically symmetric. Note, however, that this approximation for Green function

neglects higher multipole components of the fields, and therefore is valid only for driving

and test particles with off-axis distance small compared to a.

A Wakes of a Tilted, Tri-Gaussian Bunch

Consider now a tri-Gaussian bunch, tilted in the x-z plane by small angle α, as is found

at the LCLS spoiler, and as sketched in Fig. 1 (but with no foil slot). Let α > 0 when the

bunch head is at x < 0. Using Eq. 50, the transverse force at test position (x,y,s) is

W̄x =
1

(2π)3/2σzsσxσy

∫∫∫

ds′ dx′ dy′ e
− 1

2

[

(s′−αx′)2

σ2
zs

+x′2

σ2
x

+ y′2

σ2
y

]

Wr (|r − r′|, s − s′)
(x − x′)

|r − r′|

= − 1

πσxσy

∫∫

dx′ dy′ (x − x′)

|r − r′|2 e
− 1

2

[

x′2

σ2
x

+ y′2

σ2
y

]

[

erf

(

s − αx′

√
2 σzs

)

−erf

(−|r − r′| + s − αx′

√
2 σzs

)]

, (51)

where |r − r′| ≡
√

(x − x′)2 + (y − y′)2. (From here on, W̄ will represent the wake of a

tilted, tri-Gaussian bunch.)

Let us assume that, as for the LCLS spoiler problem, σx � σy, σz � σzs, and that we are

interested in the wake at particle positions with small x (|x| � σx). We can estimate W̄x
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by analyzing Eq. 51: First note that the error function, erf, of a large positive number is 1,

and that erf of a large negative number is −1. Suppose first that α > 0. For positive source

terms (x′ > 0 in Eq. 51), the arguments of both erf terms will tend to be large negative

numbers, and the total wake effect will be ∼ 0; for negative source terms (x′ < 0), the first

erf term will tend to be ∼ 1 while the second erf term will still be ∼ −1. The asymmetry

is a consequence of the fact that the source particle must be in front of the test particle for

a non-zero wake effect. Note that source particles over a scale x′ ∼ σx contribute to the

transverse wake. And note that if α < 0 the sign of the force will change. For a test particle

near the origin in x (with |x| � σx), Eq. 51 becomes

W̄x ≈ 4

πσxσy

Sign(α)

∫ 0

−∞

dx′

∫ ∞

0

dy′ x′

x′2 + y′2
e
− 1

2

(

x′2

σ2
x

+ y′2

σ2
y

)

≈ −
√

8

π

1

σx

Sign(α) ln

(

2σx

σy

)

. (52)

In moving from the first to the second line above we have used the assumption σy � σx.

Note that the kick is in the same direction that the head of the beam points to (downward

in the sketch Fig. 1). Eq. 52 is valid for target beam particles when σx � σy, σz � σzs.

For the LCLS beam parameters of Table I, Eq. 52 yields W̄x = −2430/m. We also

perform numerical calculations—using the general equation, Eq. 51—to find the average

and rms force over target particles (i.e. beam particles with |x| < ∆x; about 4% of the

beam). We obtain an average wake 〈W̄x〉 = −1960/m, which corresponds to an average x

kick of −3.9 µrad (compare: σx′ = 2 µrad). An average kick, however, can be compensated

for; rather, it is the variation in kick, over the target particles, which is important. We find

numerically that the rms deviation wake (W̄x)rms = 165/m, corresponding to an rms kick

angle of 0.3 µrad, which is small.

To obtain the vertical wake W̄y, we need only replace the factor (x − x′)/|r − r′| in the

integrals of Eq. 51 by (y − y′)/|r− r′|. For the target particles, we see from symmetry that

〈W̄y〉 = 0; and numerically we obtain an rms of (W̄y)rms = 540/m, corresponding to an rms

kick angle of 1.1 µrad. Note that the deviation is not small compared to σy′ = 2 µrad. In

Fig. 7 we plot W̄y vs. y, for x = −∆x, 0, ∆x. Note the linear dependence on y near the

origin. This suggests that a vertically focusing quadrupole may be used to correct much of
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the wakefield effect. Performing a simple, linear optimization, we find that indeed this is

true. With a quad with a 95 m focal length, the deviation in vertical angular spread can be

reduced to 0.3 µrad, which is now small compared to the natural beam divergence.
W

x= -∆x

x= 0

x= ∆x

FIG. 7: For LCLS spoiler parameters: W̄y vs. y, for x = −∆x, 0, ∆x.

To find the longitudinal wakefield of the tilted beam we use the Panofsky-Wenzel Theo-

rem. In a beam pipe of radius a the longitudinal wake can be obtained from the horizontal

wake by the relation

W̄z(x, y, s) =

∫

√
a2−y2

x

∂W̄x(x1, y, s)

∂s
dx1 . (53)

The upper limit of integration is chosen so that W̄z on the beam pipe wall is zero. Using

Eq. 51, we obtain ∂W̄x/∂s:

∂W̄x

∂s
= −

√
2

π3/2σxσyσzs

∫∫

dx′ dy′ (x − x′)

|r − r′|2 e
− 1

2

(

x′2

σ2
x

+ y′2

σ2
y

)

×

×
[

e−
1
2
(s−αx′)2/σ2

zs − e−
1
2
(−|r−r

′|+s−αx′)2/σ2
zs

]

. (54)

Eqs. 53,54, give the general solution for W̄z. We see that there are 2 contributions. Let us

demonstrate that, for the LCLS spoiler problem, the second contribution is much smaller

than the first, and can be dropped. First, note that the integrand is well behaved and has

no singularities. For the first contribution, note that the last exponential is significant only

for source particles with x′ <∼ σzs/α = σzsσx/σz. For the second contribution, however,
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the last exponential is significant only for |r − r′| <∼ σzs, which involves a much smaller

fraction of beam source particles. The relative number of significant source particles here

compared to the first term is σzsσz/(σxσy) = 8 × 10−4; therefore, this contribution is very

small and this term can be dropped. For what remains, to get a scale of the important

distances involved note that only those source particles with |x − x′| <∼ σzs/α = 50 µm and

|y − y′| <∼ σy = 100 µm contribute significantly to the wake.

Inserting Eq. 54, without the second term, into Eq. 53, we obtain

W̄z = − 1√
2 π3/2σxσyσzs

∫∫

dx′ dy′ ln

[

(
√

a2 − y2 − x′)2 + (y − y′)2

|r − r′|2

]

×

× e
− 1

2

(

x′2

σ2
x

+ y′2

σ2
y

)

e−
1
2
(s−αx′)2/σ2

zs . (55)

In Eq. 55, for LCLS type parameters, the final Gaussian is much narrower than the other

x′ Gaussian, so it behaves like a delta function. It can be approximated as e−
1
2
(s−αx′)2/σ2

zs ≈
√

2πσzsδ(s− αx′). Note also that the numerator in the log term can be replaced by a2. We

then obtain (for |x| � σx)

W̄z ≈ − 1

πσzσy

∫ ∞

−∞

dy′ ln

[

a2

x2 + (y − y′)2

]

e
− 1

2
y′2

σ2
y

≈ −
√

8

π

1

σz

ln

(√
2 a

σy

)

. (56)

Eq. 56 is valid for target beam particles when a � σx � σy, σz � σzs.

For the LCLS beam parameters of Table I, Eq. 56 yields W̄z = −9.0×104/m. Numerically

solving Eq. 55 for the target particles, we obtain an average wake 〈W̄z〉 = −8.2 × 104/m,

equivalent to an average relative energy change 〈δ〉 = −1.6 × 10−4; and an rms wake

(W̄z)rms = 4300/m, equivalent to (δ)rms = 9 × 10−6. Note that the rms deviation is small

compared to the intrinsic relative energy spread (σδ)in = 6 × 10−5. A summary of our

analytical and numerical results for LCLS parameters is given in Table II.

Our derivations are based on the assumption of perfectly conducting beam pipe walls

and foil. We can now estimate the validity of this assumption for the LCLS parameters.

It was pointed out above that the main contribution to the integral of the transverse wake

comes from distances x ∼ σx, and to the integral of the longitudinal wake from distances
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TABLE II: For the LCLS spoiler foil: summary of wake effects in the three directions on

target beam particles. The average horizontal force points in the same direction as the head

of the beam.

Average Rms
Direction

Analytical Numerical Numerical
Units

Horizontal (x′) 4.8 3.9 0.3 µrad

Vertical (y′) 0 0 1.1 µrad

Longitudinal (δ) −18. −16. 0.9 10−5

x ∼ σsz/α. This means that characteristic frequencies ω that are responsible for the wakes

are c/σx = 1011 s−1 and cα/σzs = 6 × 1012 s−1, respectively. At these frequencies the

conductivity of metals such as copper is still large [10] and the perfect conductivity model

is a good approximation.

V. CONCLUSION

We have obtained longitudinal and transverse impedances and wakefields for several mod-

els of the proposed LCLS spoiler foil using field matching. The environment in all models is a

cylindrically symmetric, perfectly conducting beam pipe which, at one longitudinal position,

is filled by a thin, metallic foil. A high energy beam passes through the pipe and through the

foil. For the first model we consider a pencil beam; for the second, a cylindrically symmetric,

bi-Gaussian beam that is wider than it is long. Finally, we consider a more realistic model,

an asymmetric beam with x-z tilt.

For the LCLS we have studied the effect of the wakefields generated at the foil on target

beam particles, i.e. the small fraction of beam that is meant to pass through a slot in

the foil. We have used the Green function of our model to generate wakes of a tilted, tri-

Gaussian bunch as will be found at the LCLS spoiler. We have used these results to obtain

approximate formulas for the average wakefields experienced by target particles within the

bunch, and have also obtained numerically the average and rms wakefield effects in the

three directions. The average effects agree well with the analytical formulas, and the rms
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deviations appear to be within tolerances for the LCLS. The kick closest to tolerances may

be the rms vertical kick, though it appears that a simple, vertical focusing quad will be able

to reduce this to negligible levels also.

This has been a first attempt to understand the wakefields at the LCLS spoiler foil. An

important approximation in all our calculations is the absence of slot or hole for target

particles to pass through. We believe that the asymmetry in the beam combined with the

small size (compared to the beam size) of the slot mean that the presence of such a slot is

not a large perturbation to the problem, though more work is needed to study this question

in detail.
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VI. APPENDIX A

We want to find the sum

S2 =
′
∑

n

[

1

j2
0nJ2

1 (j0n)
− 1

2n

]

, (57)

with Jm the Bessel function of order m, and j0n the nth zero of J0(x). First note that
∑′

n

indicates that summation is over a large number of terms; we can move the upper limit to

n = ∞, which will not change the result. To perform this sum we use the relation[11]

∞
∑

1

J0(j0nx)

j2
0nJ2

1 (j0n)
= −1

2
ln x . (58)

This equation can be rewritten as

A
∑

1

(

J0(j0nx)

j2
0nJ2

1 (j0n)
− 1

2n

)

+
∞
∑

A

J0(j0nx)

j2
0nJ2

1 (j0n)
+

A
∑

1

1

2n
= −1

2
ln x , (59)
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where A is a large, fixed integer. Let us consider x small enough so that J0(j0nx) ≈ 1 in the

first summation on the left hand side of Eq. 59 (i.e. so that πxA � 1), and that this term

will equal S2, the sum that we desire.

For the second term we use large n approximations for j0n ≈ nπ and J1(j0n) ≈
√

2/n (−1)n/π, and replace the sum with an integral; i.e.

∞
∑

A

J0(j0nx)

j2
0nJ2

1 (j0n)
=

1

2

∫ ∞

πxA

J0(y)

y
dy

=
1

2
J0(y) ln y

∣

∣

∣

∣

∞

πxA

+
1

2

∫ ∞

0

J1(y) ln y dy

= −1

2
(ln πxA + γE − ln 2) . (60)

Note that in going from the first to the second line we have used integration by parts, and

that the lower limit of the integral in the second line has been set to 0. The third sum on

the left of Eq. 59
A
∑

1

1

2n
=

1

2
(γE + ln A) . (61)

Finally, combining all the pieces, we note that the ln x and ln A terms cancel, and we obtain

S2 =
′
∑

n

[

1

j2
0nJ2

1 (j0n)
− 1

2n

]

=
1

2
ln

π

2
. (62)

VII. APPENDIX B

We want to find the longitudinal wakefield effect for a bunch that is radially Gaussian,

with rms size σr, and also longitudinally Gaussian, with rms size σz, where σz � σr � a.

We are interested in high frequencies, since ωa/c ∼ a/σr � 1, and small test particle radial

position (r � σr).

The general form of the real part of the longitudinal impedance is

R(rd, ω) =
8

c

′
∑

n

J0

(

j0nrd

a

)

J0

(

j0nr
a

)

√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
. (63)

The longitudinal wakefield is given by

W (rd, s) =
2

π
H(s)

∫ ∞

0

Rr(rd, ω) cos
ωs

c
dω . (64)
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The averaged longitudinal wake (averaged over the radial charge distribution), for a Gaussian

radial distribution, is given by

W̄ (s) =
1

σ2
r

∫ ∞

0

W (rd, s) e−
1
2
(rd/σr)2rd drd . (65)

Combining Eqs. 63-65, and interchanging the order of integration, we obtain

W̄ (s) =
16H(s)

πcσ2
r

∫ ∞

0

dω cos
ωs

c

∫ ∞

0

rd drde
− 1

2
(rd/σr)2

′
∑

n

J0

(

j0nrd

a

)

J0

(

j0nr
a

)

√

1 −
(

j0nc
ωa

)2
j2
0nJ2

1 (j0n)
. (66)

The sum can be rewritten in three pieces S = S1 + S2 + S3 as (remember
∑′

n means to sum

all n up to nmax, where nmax is the largest integer n for which j0nc/(ωa) ≤ 1):

S =





′
∑

n





1
√

1 −
(

j0nc
ωa

)2
− 1



−
∞
∑

n=nmax

+
∞
∑

n=1





J0

(

j0nrd

a

)

J0

(

j0nr
a

)

j2
0nJ2

1 (j0n)
. (67)

Let us first consider S1 and its contribution to W̄ (s) of Eq. 66, that we denote as W̄1(s).

For large ωa/c, S1 is dominant at large n. Therefore, we can replace the sum S1 with an

integral. Using large n approximations j0n ≈ nπ and J1(j0n) ≈
√

2/n (−1)n/π we obtain

S1 =
1

2

∫ 1

0

dx

x

(

1√
1 − x2

− 1

)

J0

(xωrd

c

)

J0

(xωr

c

)

. (68)

If we now change the order of integration in Eq. 66, so that we perform the integration over

rd first, we obtain

1

σ2
r

∫ ∞

0

rd drdJ0

(xωrd

c

)

e−
1
2
(rd/σr)2 = e−

1
2
(xσrω/c)2 . (69)

Considering next the integration over ω we see that, since r � σr, the Gaussian allows us

to replace J0(xωr/c) by 1:

2

π

∫ ∞

0

dω cos
ωs

c
e−

1
2
(xσrω/c)2 =

√

2

π

(

c

xσr

)

e−
1
2(

s
xσr

)
2

. (70)

The final integration is

∫ 1

0

dx

x2

(

1√
1 − x2

− 1

)

e−
1
2(

s
xσr

)
2

=

√

π

2

(σr

s

)

[

−1 + e−
1
2
(s/σr)2 + erf

(

s√
2σr

)]

. (71)

We finally obtain for the first piece of the (transversely averaged) wake

W̄1(s) =
4

s
H(s)

[

−1 + e−
1
2
(s/σr)2 + erf

(

s√
2σr

)]

. (72)
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For the second part of the wake W̄2(s), which depends on the second sum S2, the integrals

over rd and ω are the same. The x integral, however, is

∫ 1

0

dx

x2
e−

1
2(

s
xσr

)
2

=

√

π

2

(σr

s

)

erf

(

s√
2σr

)

, (73)

leading to

W̄2(s) = −4

s
H(s) erf

(

s√
2σr

)

. (74)

The third part of the wake W̄3(s), depends on the third sum

S3 =
∞
∑

n=1

J0

(

j0nrd

a

)

J0

(

j0nr
a

)

j2
0nJ2

1 (j0n)
. (75)

For r � rd we let J0(j0nr/a) ≈ 1 in the sum, and use [11]

∞
∑

n=1

J0(j0nx)

j2
0nJ2

1 (j0n)
= −1

2
ln x . (76)

Since there is no ω dependence, the integral over ω becomes simply

2

π

∫ ∞

0

dω cos
ωs

c
= δ(s) . (77)

The integral over rd is

∫ ∞

0

rd drd ln
a

rd

e−
1
2
(r/rd)2 =

[

1

2
(γE − ln 2) + ln

a

σr

]

. (78)

Thus the third, final part of the wake becomes

W̄3(s) = 4δ(s)

[

1

2
(γE − ln 2) + ln

a

σr

]

≈ 4δ(s) ln
a

σr

. (79)

Finally, combining all three parts, we obtain the total (transversely averaged) longitudinal

wake

W̄ (s) =
4

s
H(s)

(

−1 + e−
1
2
(s/σr)2

)

+ 4δ(s) ln
a

σr

≈ 4δ(s) ln
a

σr

[r, s � σr] . (80)
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