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Abstract. If the beam is injected into the ring with an offseta, it undergoes betatron oscillation. After the
oscillation decoheres, the beam transverse emittance increases by∆ε. To avoid this emittance increase one
typically uses a feedback (or damper) that takes out the oscillation before it damps down. We show that using
echo one can recover a fraction of∆ε long after the beam oscillation decoheres.

INTRODUCTION

Beam echo has been introduced in accelerator physics
in Refs. [1, 2]. The echo effect in a circular accelerator
could be observed in a situation where the beam in
the ring is deflected (or injected) off-orbit at timet =
0, causing its centroid to undergo betatron oscillation.
After this oscillation has completely damped out due
to a betatron frequency spread in the beam, the beam
is excited again by a quadrupole kick att = τ. This
kick does not produce any visible displacement of the
beam at that time, but it turns out that close to time
t = τecho = 2τ the beam centroid undergoes transient
betatron oscillations with an amplitude that is a fraction
of the initial beam offset.

Originally the echo was predicted and calculated for
the transverse betatron oscillation of the beam. It was
pointed out later that the echo can also be observed in
the longitudinal direction [4].

Experimentally, for the first time, the echo was mea-
sured in Fermilab on Antiproton Accumulator for a
coasting beam [5]. Detailed studies of the longitudinal
echo were later performed at CERN [6]. Theory of the
longitudinal echo was further advanced in Refs. [6, 7].

The echo effect is based on the fact that the decoher-
ence is not a true damping — it can be somewhat re-
versed and the initial perturbation of the beam can be
partially restored. At the same time, it turns out that the
echo is very sensitive to the diffusion in the phase space.
In CERN experiments the diffusion coefficient of order
of 10−13 s−1 corresponding to the longitudinal emittance
doubling time∼ 100 days!

In this paper we explore another aspect of the time-
reversing property of the echo. If the beam is injected
with an offset (or the offset arises due to deflection of
the beam), the beam emittance increases after the oscil-
lation decoheres. This increase, however, is not fully ir-
reversible, and we will show that part of it can be recov-
ered. Although the fraction of the recovered emittance is
relatively small, it is remarkable, that the recovering can
be carried out long after the oscillation decoheres (as-
suming that there are no diffusion effects on the time in-

terval of interest).

ECHO THEORY

Let us assume, for concreteness, that the beam offseta
is due to beam deflection that happens at timet = 0.
The offset is much smaller than the transverse beam size,
a¿ σ0. For description of particle’s motion in the ring,
we will use dimensionless variablesx andp related to the
transverse deviation from the equilibrium orbitX by the
following relations:

x(s) =
X(s)√
ε0β (s)

, p(s) = β (s)
dx(s)

ds
, (1)

where ε0 is the beam emittance. The variablesx and
p are the conjugate variables of Hamiltonian motion;
we will also use the action-angle variablesJ and φ :
J = (x2 + p2)/2, φ =−ArcTan(p/x).

We will assume that, due to nonlinearity of the lattice,
the tune is a function of the amplitude of the betatron
oscillations, or action,J:

ν = ν0 +∆νJ , (2)

whereν0 is the linear tune, and∆ν represents the tune
spread in the beam.

The beam evolution is described in terms of the distri-
bution functionψ(x, p, t), or equivalently, in angle-phase
representation,ψ(J,φ , t). The dimensionless beam emit-
tance, measured in the units of the equilibrium emittance
ε0, is defined as

ε =
∫ ∞

0
dJ

∫ 2π

0
Jψ(J,φ , t)dφ . (3)

The equilibrium distribution functionψ0 of the beam de-
pends only on the action, and for a Gaussian distribution,
ψ0(J) = (2π)−1exp(−J). The equilibrium beam emit-
tance calculated for this distribution function with the
help of Eq. (3) is equal to unity. To simplify the nota-
tion we will measure time in units of inverse betatron
frequencyω−1

β .
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The echo calculation is carried out in four steps.
1. Beam deflection. It is performed as a dipole kick

that translates the beam distribution function along the
p axes,p→ p+α, whereα is the dimensionless offset,
α = a/

√
ε0β . The kick changes the distribution function

from ψ0 to ψ1,

ψ1(p,x) = ψ0(p−α,x) . (4)

In terms of the action-angle variables, the distribution
function after the kick, which we denoteψ2, is given by
the following relation

ψ2(J,φ) = ψ1(p(J,φ),x(J,φ)) . (5)

Using Eq. (3) it is easy to calculate that for smallα the
emittance increase of the beam after the dipole kick is

∆ε =
α2

2
. (6)

2. Free betatron oscillation during timeτ. The os-
cillation conserves the action and advances the angle,
φ → φ +τ(ν0+∆νJ), and results in the new distribution
functionψ3 at timeτ:

ψ3(J,φ ,τ) = ψ2(J,φ − τ(ν0 +∆νJ)) . (7)

Calculation of the average offset of the beam with this
distribution function reveals decoherence of the betatron
oscillation on the time scale equal to the inverse betatron
frequency spread in the beam,∆ν−1.

3. Quadrupole kick at timeτ. We assume thatτ∆ν À
1, which means that the quadrupole kick is applied after
the initial betatron oscillation decoheres. The kick gener-
ates a distribution functionψ5 which we calculate in two
steps: first transforming fromJ−φ to x− p variables,

ψ4(x, p,τ) = ψ3(J(p,x),φ(p,x),τ) , (8)

and then applying the transformationp→ p+qx:

ψ5(p,x,τ) = ψ4(p−qx,x,τ) , (9)

whereq is the dimensionless strength of the kick equal to
the ratio of the beta-function at the location of the quad
to the focal length of the quadrupole,q = β/F .

4. The final step is to allow a free betatron oscillation
for the time intervalτ + ∆t. It gives the distribution
function ψecho which is calculated via an intermediate
functionψ6

ψ6(J,φ ,τ) = ψ5(p(J,φ),x(J,φ),τ) , (10)

ψecho(J,φ ,τ,∆t) = ψ6(J,φ − (τ +∆t)(ν0 +∆νJ),τ) .
(11)

In the analytical approach we used the following ap-
proximations that greatly simplify the analysis:

• We assumed thatα ¿ p,x and expandedψ in Tay-
lor series keeping terms of order ofα andα2 only.
This assumption means that the initial beam offset
is much smaller than the transverse beam size.

• We assumed that the quadrupole kick is weak,q¿
1, and expandedψ keeping only linear terms in
q. Moreover, it turns out that the echo signal is
proportional to the productqτ, so we kept only
those terms in whichq is multiplied byτ.

• We used Fourier decomposition in angleφ and kept
only terms ∝ einφ with n = 0,±1, because only
those terms contribute to the beam offset (n = ±1)
and the emittance (n = 0).

With these simplifying assumptions, calculations can
be performed with the help of symbolic capabilities of
Mathematica [10]; the notebook with the code can be
obtained from the author’s web site [11]. As a result, the
part of the distribution function∆ψechothat is responsible
for the echo signal takes a very simple form:

∆ψecho(J,φ ,τ,∆t) = (12)

− a
√

J√
2π

e−J sin(ν0∆t +∆ν0J∆t−φ)J1 (Jqτ∆ν) ,

whereJ1 is the Bessel function.

RECOVERING EMITTANCE

The idea of recovering beam emittance is based on the
application, at some time∆t (measured from the echo
time τecho= 2τ) another dipole kick of amplitudeξ and
phaseφ , so thatp→ p+ξ sinφ andx→ x+ξ cosφ . The
parameters of the kickξ andφ as well as the application
time ∆t should be chosen so as to minimize the beam
emittance after the kick.

The contribution to the beam emittance due to this
last kick comes from two sources. First, perturbation of
the equilibrium part of the distribution function gives
the emittanceincreaseξ 2/2 analogously to the original
term Eq. (6). However, this increase is offset by the
perturbation of the echo term Eq. (12), which, for a small
kick can be calculated as

δψecho= ξ cosφ
∂∆ψecho

∂x
+ξ sinφ

∂∆ψecho

∂ p
. (13)

As a result, the change of the beam emittance∆ε1 is

∆ε1 =
ξ 2

2
+∆εecho, (14)



where∆εecho is the change of the emittance generated by
the distribution function Eq. (13),

∆εecho=
∫ ∞

0
dJ

∫ 2π

0
Jδψechodφ . (15)

Calculations show that the minimum value of∆ε1
is negative, which means that emittance decreases as a
result of the kick. It is achieved for∆t = 0, φ = π/2,
when

ξ = 0.51α , qτ =
0.43
∆ν

, (16)

and is equal to

∆ε1min =−0.26
α2

2
. (17)

The conditions∆t = 0, φ = π/2 mean that the emittance
restoring beam offset should be applied at the moment
of the maximum echo signalτecho. Of course, one can
achieve the same result by applying a dipole kick of
proper magnitude a quarter of the betatron period earlier.
The strength of the kick, as Eq. (16) shows, should be
such that it would produce aproximately 50% of the
initial beam offset. In addition, the optimal value of the
quadrupole strength given by Eq. (16) is required related
to the tune spread in the beam and the delayτ between
the first (dipole) kick and the second (quadrupole) one.

The emittance decrease Eq. (17) constitutes approx-
imately a quarter of the initial increase Eq. (6) due to
original beam offset. Hence the beam is still left with
three quarters of the initial∆ε.

In conclusion, in this paper we demonstrated another
aspect of the time-reversing with the beam echo. We
showed that using the echo effect to regenerate the beam
dipole signal long after the original oscillation decoheres
and applying a proper dipole kick at the time of the echo,
one can partially compensate for the initial beam emit-
tance increase. Unfortunately, the compensation is ap-
parently too small to be of practical interest. We hope,
however, that this demonstration indicates new unusual
properties of the echo phenomenon, which can find ap-
plications in the future.

ACKNOWLEDGEMENTS

The author is thankful to A. Chao for critical remarks

REFERENCES

1. G. Stupakov, SSCL Report 579 (1992).
2. G. Stupakov, S. Kauffmann, SSCL Report 587 (1992).
3. G. Stupakov, A.W. Chao. PAC 97.
4. N. Mahale et al., SSCL-N-817, 1993.
5. L.K. Spenzouris, J.-F. Ostigy, P.L. Colestock, PRL 76,

620 (1996).

6. O. Bruning, CERN SL/95-83 (AP), 1995.
7. E. Shaposhnikova, CERN SL/Note 95-125 (RF), 1995.
8. O. Bruning et al, CERN SL-MD Note 217, 1996.
9. O. Bruning et al, EPAC 96, 1996.
10. S. Wolfram, The Mathematica Book(Wolfram

Media/Cambridge University Press, 1999), 4th ed.
11. http://www.slac.stanford.edu/∼stupakov/codes.shtml


