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I. INTRODUCTION AND CONCLUSION

A knowledge of the short-range wakefields in the accelerating structures of the NLC,

particularly those in the main (x-band) linac, is of critical importance for the design of

the project. In a linac the short-range longitudinal wakes increase the single bunch energy

spread, and the short-range transverse (dipole) wakes, when there are structure misalign-

ments and/or orbit errors, will increase the single bunch projected emittance of the beam.

The numerically obtained short-range longitudinal and dipole wakes of the 206 cell

Damped, Detuned Structure (DDS) were presented in Ref. [1]. However, it seems that

a parameterization of the short-range wakes in terms of the geometric properties of an ac-

celerating structure, over some useful range of parameters, can be an aid in the design of the

NLC. Such a parameterization has been performed for the short-range longitudinal wakes

of accelerating structures [2] using a field matching program written by K. Yokoya [3], and

in this report we repeat the exercise for the dipole wakes. Note that a similar work has also

been performed by Yokoya [4], though our result is in a somewhat simpler form and also

includes a dependence on iris thickness.

In conclusion, in this report we do find a simple model that appears to agree with nu-

merical results to within a few percent for constant impedance, disk-loaded structures over

a parameter range useful for the NLC: 0.35 <∼ a/L <∼ 0.70 and 0.55 <∼ g/L <∼ 0.90, where
a is iris radius, L is structure period, and g is gap length; for wakefield argument (distance

parameter) s up to s/L ≈ 0.15. The model depends strongly on a/L but weakly on g/L. For
detuned structures, with cell dimensions that vary within the structure, the structure wake

is obtained by averaging the model wakes corresponding to the individual cell geometries.

II. SHORT-RANGE WAKEFIELD

The types of structures we consider are cylindrically symmetric. A driving charge q moves

at the speed of light c parallel to and at horizontal offset xq from the structure axis; a test

particle follows at offset x and at distance s behind the driving charge. The particles move

near the axis, and thus the longitudinal kick is dominated by monopole fields (azimuthally

independent) and the transverse kick by dipole fields. The longitudinal kick experienced by

the test particle per unit distance, divided by q, defines the longitudinal wake WL, and the
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transverse kick experienced by the test particle per unit distance, divided by qxq, defines

the transverse wake Wx (see, e.g. A. Chao [5]). The Fourier transform of the wakes give the

longitudinal and transverse impedances, ZL and Zx.

For a bunch with longitudinal (position) distribution λ, the transverse kick, at longitu-

dinal position s, is given by

Vx(s) = q
∫ s

−∞
Wx(s− s′)x(s′)λ(s′) ds′ , (1)

where here q is the charge of the bunch. For a bunch entirely offset by xq, the normalized

kick (kick divided by qxq) along the bunch (the bunch wake) is

Wx(s) =
∫ s

−∞
Wx(s− s′)λ(s′) ds′ ; (2)

the average kick over the entire bunch (the total bunch kick factor) is

Kx(s) =
∫ ∞

−∞
Wx(s)λ(s) ds . (3)

A. Analytical High Frequency Impedance

Let us consider a perfectly conducting, disk-loaded accelerating structure with the ge-

ometry given in Fig. 1. Structure parameters are iris radius a, gap g, period L, and cavity

radius b (in the short range wakes that we consider, the parameter b will not appear). The

high frequency longitudinal impedance of such a structure was found by R. Gluckstern, with

a modification by Yokoya and Bane, to be given by [6, 7]

ZL(k) =
iZ0

πka2

[
1 + (1 + i)

α(g/L)L

a

√
π

kg

]−1

[k large] , (4)

with k the wave number and Z0 = 120πΩ; where the parameter α can be approximated by

[7]

α(γ) ≈ 1− α1
√
γ − (1− 2α1)γ , (5)

with α1 = 0.4648. If we inverse Fourier transform Eq. 4 we obtain the very short-range

wakefield [2]:

WL(s) ≈ Z0c

πa2
φ(s) exp

(
πs

4s00

)
erfc

(√
πs

4s00

)
[s small] , (6)
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with φ(s) the step function [φ(s) = 1 for s > 0, 0 for s < 0], and

s00 =
g

8

(
a

α(g/L)L

)2

. (7)

A simpler way of writing the short-range wake, one that also has leading order dependence

on s consistent with Eq. 4 (i.e. up to the
√
s term), is

WL(s) ≈ Z0c

πa2
φ(s) exp

(
−
√

s

s00

)
[s small] . (8)

FIG. 1: The geometry of two cells of the structure under consideration.

The high frequency dipole impedance of the structure was found by Fedotov, et al, to

be related to the high frequency monopole impedance in the same simple way as for the

resistive wall wake of a cylindrical metallic pipe [8]. That is, at high frequency

Z
(1)
L =

2

a2
ZL , Zx =

2

ka2
ZL [k large] , (9)

which implies that at short distances

W
(1)
L =

2

a2
WL , Wx =

2

a2

∫ s

0
WL(s

′) ds′ [s small] , (10)

where superscript (1) denotes the longitudinal component of the dipole impedance or wake.

Therefore, combining Eq. 8,10, we find that the short range dipole wake becomes

Wx(s) =
4Z0cs00

πa4
φ(s)

[
1−

(
1 +

√
s

s00

)
exp

(
−
√

s

s00

)]
. (11)
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B. Numerically Obtaining the Short-Range Wakefield

To numerically obtain the short-range dipole wakefield we use a computer program de-

veloped by K. Yokoya [3], based on an impedance field matching formalism by H. Henke [9].

The program first finds the impedance of the periodic structure of Fig. 1 (but with b → ∞)
by field matching. The impedance, however, is found along a line shifted above the real k

axis by a small amount, Im(k), instead of along the real axis itself. This impedance is then

inverse Fourier transformed to give the wake Wx, a result that is theoretically independent

of Im(k). The wake can be written, for example, as

Wx =
2c

π

∫ ∞

0
Rx(k) sin ks dk , (12)

where Rx is the real part of the impedance; or, by using a Kramers-Kronig relation to write

Rx in terms of the imaginary part of the impedance Xx, the wake can be written as an

integral over Xx. K. Yokoya’s program calculates the wake in both ways, as a check on the

accuracy of the result. Note that since, at high frequency, the transverse impedance drops

one power of k faster than the longitudinal impedance (Rx ∼ k−5/2), the high frequency

behavior is relatively less important than in the longitudinal case.

To see how the shift in integration path is useful, note that normally, on the real k axis, Rx

is spiky (a sum of delta functions if we assume perfectly conducting walls), with the density

of spikes increasing with increasing frequency, while at the same time Xx similarly becomes

a quickly varying function. Along a path above the real axis, however, the impedance (both

parts) becomes smoother, and a smooth function is easier to (numerically) inverse Fourier

transform. A disadvantage of this method, however, is that the inverse Fourier transform

ends up with a wakefield in the form eIm(k)sF (s); at large s the function F (s) becomes very

small. For given Im(k) this limits the range in s for which the wakefield can practically be

computed.

The method that in the past has been used to find the wakefields for the SLAC linac

structure [10] and for that of the NLC main linac [1] involves field matching for the modes

(equivalent to finding the impedance on the real axis) for the structure of Fig. 1. The first

100 or so mode frequencies and kick factors are obtained numerically using the computer

program TRANSVRS[11]. The rest of the impedance is taken to be given by the so-called

Sessler-Vainsteyn (S-V) analytical extension [12]. To see why this extension is important,

consider that the density of modes dn/dk2 ≈ gb/(2π). For the NLC DDS x-band structure,
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g ≈ 7 mm, b ≈ 10 mm, and the typical bunch length σz = 0.1 mm. To find the impedance

up to k = 10/σz (100 mm
−1) we would need to find ∼ 105 modes, which is not feasible. The

advantage of this method over Yokoya’s method is that it gives the wake over longer distances

s, up to values where coupling between neighboring cells of a structure begins to become

important. The disadvantage is that one needs a fine step in frequency to avoid missing

modes in the calculation, and that the S-V model, although intuitively understandable,

does not have a firm theoretical basis.

The S-V model of impedance is a simple model that combines the power spectrum of a

high energy particle with the diffraction of light at the edges of a periodic array of thin,

circular mirrors. It is a model that has been used for many years and that seemed to

agree reasonably well with the binned and averaged, numerically obtained real part of the

impedance over an intermediate frequency range for SLAC and NLC structures. In the

dipole case the real part of the impedance is given by

Rx =
nup∑
n=1

πκxn

c
δ(k − kn) +

Z0j
2
11

πζ2ka2L

√
ν + 1

(ν + 2
√
ν + 2)2

φ(k − kN) k > 0 , (13)

with kn, κxn, mode frequencies and kick factors of the first nup modes; j11 = 3.83, ζ = 0.824,

ν = 4a2k/(L̄ζ2), and L̄ =
√
Lg. Note that at very high frequencies the correct asymptotic

behavior of the impedance, Eq. 4, implies a real part

Rx(k) =
2Z0α(g/L)L√
πa5g1/2k5/2

[k → ∞] , (14)

whereas, for the S-V model Rx(k) = (Z0j
2
11ζL̄

3/2)/(8πa5k5/2L). We see that the a and k

dependence of the S-V model is correct, but the g dependence is not. However, for typical

cavities g/L ≈ 1 and L̄ ≈ L, which implies that α ≈ 0.5. For such cavities the S-V model
asymptotic behavior equals approximately 0.85 times the correct asymptotic behavior.

In example cases (as we will see for the DDS structure discussed below), the resulting

wakes of the two calculation methods agree quite well. Finally, for completeness, we should

note that the short-range dipole wake, convolved with a smooth bunch shape—the bunch

wake Wx—can also be obtained accurately by direct time domain calculations, using a

computation method recently developed by Zagorodnov and Weiland[13].
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III. RESULTS

As an example, we consider first the impedance of a periodic structure with the dimensions

of the average cell in the 206-cell NLC DDS structure. For this cell a = 4.92 mm, g =

6.89 mm, and L = 8.75 mm. The numerically obtained impedance, when Im(k) = 0.5 mm−1,

is shown in Fig. 2. Shown are Rx (solid line), |Xx| (dashes), and the analytical asymptotic
equation, Eq. 4 (dots). [The function X crosses zero and becomes positive near Re(k) ≈
0.85 mm−1.] We note that the impedance is indeed smooth. With only ∼ 100 calculated

points we have characterized the impedance up to k = 200 mm−1! We note also that for

Re(k) >∼ 5 mm−1 the numerically obtained impedance is in reasonably good agreement with

the analytical asymptotic formula. [A deviation for Rx, however, can be seen developing

gradually at high frequencies; it is not understood. But, since it is far in the tail of the

impedance, the behavior here does not affect the short-range wake result given below.]

FIG. 2: The impedance for the DDS average cell geometry along a path shifted by Im(k) =

0.5 mm−1. Shown are the real part Rx of the impedance (solid) and the absolute value of the

imaginary part |Xx| (dashes). The dots display the behavior of the asymptotic solution, Eq. 4.

Performing the inverse Fourier transform of the impedance, Yokoya’s program then ob-

tains the short-range wake. The result is shown in Fig. 3 (the solid curve). Note that,

whether obtained from Rx or Xx, the wakefield over the range plotted is essentially the
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same. Also shown in the figure are the short range asymptotic solutions: Eq. 11 (dashes),

and the transverse wake corresponding to Eq. 6 (dots). We note that the numerically ob-

tained wake function is in reasonably good agreement with the analytical result near the

origin, and that the analytical wakes seem to approximate the numerical result well up to

∼ 0.2 mm. But to estimate how appropriate the asymptotic solutions are for a tracking

program we use them to calculate the bunch wake Wx and the total kick factor Kx for

Gaussian bunches of different lengths, and compare with the results of the numerical wake

(see Table I). We see that for the nominal NLC 0.1 mm long bunch, if 10-15% accuracy does

not suffice, then the asymptotic solutions are not good enough.

Analytical

High Frequency

Numerical

FIG. 3: The wakefield corresponding to Fig. 2 (solid). Also shown are the short range asymptotic

solutions: Eq. 11 (dashes), and the transverse wake corresponding to Eq. 6 (dots).

TABLE I: Error in using the asymptotic wakefields (Eq. 11) for calculating bunch wakes for a

Gaussian bunch with rms length σz: given are the maximum error in the bunch wake Wx (−4σz <

s < 4σz), and the error in the total kick factor Kx.

σz[mm] Max(Wx error) [%] Kx error [%]

0.05 11 7

0.10 16 9

0.15 20 12

To obtain a fitted wake function that is valid over an expanded parameter regime useful
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for NLC studies, we first numerically obtained wakefields on a parameter grid in the region

0.34 ≤ a/L ≤ 0.69 and 0.54 ≤ g/L ≤ 0.89. Fitting to the numerical results, we find a

reasonably good fit over 0 ≤ s/L ≤ 0.16 (up to s = 1.4 mm for the DDS structure) for a
function of the same form as the asymptotic, short-range solution:

Wx(s) =
4Z0cs0

πa4
φ(s)

[
1−

(
1 +

√
s

s0

)
exp

(
−
√

s

s0

)]
, (15)

with

s0 = 0.169
a1.79g0.38

L1.17
. (16)

Note that this function has the correct slope at s = 0+, and that the a dependence is similar

to the very short-range asymptotic wake, whereas the g dependence is not similar, and is

very weak. Fig. 4 shows the individual fitted values of s0 compared to the value given in

Eq. 16, and Fig. 5 shows the agreement of the model to representative numerically obtained

wakes. We see that the agreement is reasonably good.

(a)

(c)

(b) (d)

a/L=0.69

0.57

0.46

0.34

FIG. 4: Results of our parameter study giving the fitted parameter s0/L vs. g/L for four values

of a/L. The plotting symbols (the diamonds) give the fits to the numerically obtained wakes, and

the dashes display Eq. 15.

A. Examples

For three example structures we compare numerical wakes with the model. First is the

DDS structure. It is a 206-cell, x-band structure operating at 2π/3 phase advance. The
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(c)
(a)

(d)

(b)

FIG. 5: Results of our parameter study cont’d: The numerically obtained wakefields (solid) and

the result of the model Eq. 15 for 4 representative geometries studied in Fig. 4. Note that in this

plot the wake has been normalized by 2Z0c/(πa4).

period length is L = 8.75 mm. It is a detuned structure (the modes of the first dipole band

are Gaussian detuned), and the cell geometry gradually changes from beginning to end (the

distributions in a and g are roughly Gaussian). For representative cells (1, 51, 103, 154,

206), a = (5.9, 5.21, 4.92, 4.66, 4.14) mm, g = (7.49, 7.09, 6.89, 6.70, 6.29) mm. All cells

are within the parameter range of validity of our model. In Fig. 6 we display the numerical

results for the different cell geometries (solid lines) and the model result (the dashes), and we

see that the agreement is good. In this plot we also give the much earlier obtained results,

using field matching at real frequencies plus the S-V extension, that were given in Ref. [1]

(dots), and we see that the agreement is also good. For the short-range wake, the wake

of a structure is given to good approximation by the average of the wakes corresponding

to the geometry of the individual cells. In the plot we show, in addition, the average of

the numerical results and the average of the model results for the five representative cell

geometries (using trapezoidal rule). It turns out that the averaged wake here is about the

same as one obtains by taking s0 as given for the average cell (cell 103), increasing it by 7%,

and inserting it into the model formula.

The second example structure is the 54-cell h50vg3 structure, an x-band structure that

operates at 5π/6 phase advance. The period length is L = 10.93 mm. The structure is also

Gaussian detuned. For representative cells (1, 14, 27, 40, 54), a = (5.49, 4.94, 4.70, 4.46,
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Averaged Wake

FIG. 6: Wakefield of representative cell locations within the DDS structure. Shown are numerical

results obtained here (solid) and the results of the fitted model (dashes). Also shown are numerical

results obtained by field matching with k on the real axis plus the S-V extension, and given in note

NLC9 (the dots).

3.93) mm, g = (6.33, 6.75, 6.94, 7.12, 7.55) mm. Again all cells are within the parameter

range of validity of our model. In Fig. 7 we display the numerical results for the different cell

geometries (solid lines) and the model result (the dashes), and we see that the agreement is

again good. Here the averaged wake is approximately the same as is obtained by taking s0

as given for cell 27, increasing it by 12%, and inserting it into the model formula.

The final example, the SLAC main linac structure—which is not an NLC linac structure—

is another test of the model. The SLAC structure operates at s-band, at 2π/3 phase advance,

and the dipole modes are linearly detuned (the iris radius a varies linearly). The structure

period L = 34.99 mm and gap g = 29.15 mm. For cells (1, 23, 45, 65, 84), a = (13.11, 12.44,

11.63, 10.73, 9.62) mm. Of these representative cells, note that only cells 1 and 23 are within

the parameter range of validity of our model. Nevertheless, the agreement between model

and numerical result is still relatively good. Here the averaged wake is about the same as

is obtained by taking s0 as given for cell 45, increasing it by 10%, and inserting it into the

model formula.
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Averaged Wake

40
27

14

1

54

FIG. 7: Wakefield of representative cell locations within the h60vg3, 5π/6 structure. Shown are

numerical results obtained here (solid), and the results of the fitted model (dashes).

Averaged Wake84

65

45
23

1

FIG. 8: Wakefield of representative cell locations within the SLAC linac structure. Shown are

numerical results obtained here (solid), and the results of the fitted model (dashes).
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