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Abstract:

Techniques originally developed in High Energy Physics have been applied to selected problems in
genetics with promising results.

First, this talk will briefly review the importance of protein structure from a physics point of
view. Then Mean Field Techniques used in detector track fitting algorithms will be applied to the
comparison of protein structures. The practical importance of such comparisons will be discussed.

Second, the possibility of measuring the charge structure of ”single” isolated molecules using the
proposed SLAC Free Electron Laser will be outlined. This involves the development of an algorithm
that determines the orientation of each of the many targeted identical molecules, constructs the
3-D transform from the many 2-D patterns, and finally performs an inverse fourier transform when
only the magnitude of the transform is known, since the phase is not measurable.
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1 Introduction and Motivation

Before starting on the physics and mathematical treatment of the aspects of protein structure that

are of interest here, I first must give some motivation as to why it is important. Since the human

genome has been completely mapped, are there any more major unknowns? I understand that at

a recent proteomics meeting there was a sign that read something like ”Human genome mapped –

now the real work begins!”.

What I want to bring to your notice is that the structure of a protein is essential to its function and

understanding proteins involves real work. The amino acid sequence of the protein is determined

by the appropriate genetic sequence and this sequence determines how the protein folds. However

it is the final shape or structure of the protein that determines whether it operates properly.

Consider the following example. There is a gene regulatory protein called α2 which performs the

same task in the cells of both yeast and the insect drosophila, for example. These two are separated

by over a billion years of evolution. The α2 protein contains 58 amino acids in yeast and 55 in

the fly. A direct comparison of the two amino acid sequences shows that only 17 of the 58 amino

acids match. If the sequences are so different, how can they have the same function? When the

structure of these were determined, they were found to be essentially identical, see Figure 1. The

3 extra residues were isolated in a loop that connects two alpha helices. This is an example of the
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Figure 1: (a) The 3-D structures of the α2 protein from yeast and a drosophila. (b) A 2-D projection of the
superposed proteins.
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fact that the structure (shape) of a protein plays an crucial role in defining its function and in its

ability to function.

I will assume that you are familiar with the general operation in a living cell of DNA/mRNA/tRMA,

etc. Recall that the mRNA emerges from the cell nucleus, finds a ribosome to read its code and a

protein chain is produced.

Rates: The ribosome reads the code and adds the required amino acid residue (only 20 different

varieties are used in biological systems) in roughly 200 milliseconds. Thus a (short) protein with

300 residues requires ∼ 1 minute to be produced. A long (human) muscle protein with 10,000

residues requires ∼ 30 minutes!

Folding: The folding of a protein is not well understood and is one of the great unsolved prob-

lems. Note however that the problem is very complicated. Since the final shape of the protein is

important, nature has provided chaperons to assist the proteins in folding properly in the crowded

thermal environment of the cell.

Misfolding: The misfolding of a protein can lead to serious consequences. Some misfoldings are

innocuous. The cell may simply be starved since the protein cannot perform its proper function.

Other misfoldings are toxic. For example, Alzheimer’s disease, Cystic fibrosis, Huntington’s dis-

ease, Parkinson’s disease, certain heart diseases and mad cow disease are only a few of the tragic

maladies caused by misfolded proteins.

Since protein structure is evidently very important to its function, let us turn to the problem of

comparing the shape of two different proteins. The measure of similarity is not obvious, since the

proteins may contain a different number of amino acids, and no two molecular structures are likely

to be geometrically identical. Finding similarly shaped, and perhaps similar functioning, proteins
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are important to the discovery of new drugs.

2 Comparing Proteins

The work [1] in this section was carried out in collaboration with Mattias Ohlsson, Carsten Peter-

son, and Markus Ringnér of the Complex Systems Division, Department of Theoretical Physics,

Lund University, Lund, Sweden.

As has been argued above, it is important to be able to perform detailed protein structure align-

ment. Previous work in this area can be found in [2] and [3], where other references can be found.

Structure alignment enables the study of functional relationships between proteins and is very

important for homology and threading methods in structure prediction. Furthermore, grouping

protein structures into fold families and subsequent tree reconstruction may shed light on ancestry

and evolutionary issues. Nature reuses successful shapes for new purposes.

Structure alignment amounts to matching two 3D structures such that potential common substruc-

tures, e.g. α-helices, have priority. The latter is accomplished by allowing for gaps in either of

the chains. The key ingredients of our approach are: an error function formulation of the problem

simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates,

and a minimization of the error function by an iterative method. Each iteration contains two steps:

a fuzzy weight matrix is minimized with respect to the assignment variables, and an exact rotation

and translation of coordinates weighted with the corresponding assignment variables. The problem

is to find the minimum of the energy, or cost function,

Echain =
M∑
i=1

N∑
j=1

Wi,j di,j with di,j = (a +Rxi − yj)
2 . (1)

The elements of the fuzzy matching matrix W are defined such that 0 < Wi,j < 1 is the probability
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that atom i in the first chain should be matched to atom j in the second. We anticipate that

Wi,j ∼ 1 if the pair (i, j) can be made spatially close by a choice of the displacement a and the

rotation R and Wi,j ∼ 0 otherwise.

We will briefly rephrase the Needleman-Wunsch algorithm[2] in an implementation that will allow

for a straightforward introduction of our approach. Let X = (X1X2 . . . XM) and Y = (Y1Y2 . . . YN)

denote the two chains containing M and N residues in a dot-matrix representation, respectively.

Every possible alignment of the two chains (not including permutations of atoms in a chain) can

be represented as a directed path on the (M +1)×(N +1) alignment matrix (Figure 2a). Each dot

X1

X2

X3

Y2

XM−1

XM

YNYN−1Y3Y1

k = 1

k = 2
k = 3

(i, j−1)

(i−1, j−1) (i−1, j)

(i, j)

Figure 2: (a) The alignment matrix for an alignment between the two chains X = (X1X2...XM ) and Y =
(Y1Y2....YN ). (b) Unit vectors connecting to the three possible predecessors to a dot (i, j).

(i, j) has, excluding obvious boundary restrictions, three possible predecessors along the alignment

path, which are denoted by k = 1, 2, 3 (see Fig. 2b)[10]. As a mnemonic, identify the step directions

as k=1=horizontal, k=2=diagonal, and k=3=vertical.

The alignment cost Di,j for the optimal alignment of sub-chains (X1X2...Xi) and (Y1Y2...Yj) is
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given by

Di,j = min
k
{D̃i,j; k} =

∑

k

si,j; k D̃i,j; k , (2)

where D̃i,j;k is the alignment cost if the alignment path is forced to pass through the preceding

node given by k and

si,j; k =

{
1 if D̃i,j; k = mink′{D̃i,j; k′},
0 otherwise.

(3)

We next introduce fuzzy alignment paths that will finally lead to a fuzzy matching matrix.

We replace the binary variable si,j; k by the continuous variable vi,j; k, with the property that
∑

k vi,j; k = 1. This allows for the interpretation that vi,j; k is the probability that an optimal

alignment path that passes through (i, j) also passes through the preceding node specified by k.

The replacement

si,j; k → vi,j; k =
e
eDi,j; k/T

∑
k′ e

eDi,j; k′/T
. (4)

can be viewed as a soft implementation of the ’min’ function in Eq. (2) where the parameter T > 0

controls the fuzziness.

We restrict ourselves to position dependent linear gap penalties of the following type,

λ(n)
a + (l − 1)lext , (5)

where λ
(n)
a is the penalty for opening a gap in chain n at position a, lext is the extension penalty

and l is the gap length. The problem can now be expressed in terms of vi,j; k, and the D̃i,j;k can

be calculated using the following recursive relation,

D̃i,j; k=1 = Di,j−1 + λ
(2)
j−1(1− vi,j−1;1) + lextvi,j−1;1 ,

D̃i,j; k=2 = Di−1,j−1 + di,j , (6)

D̃i,j; k=3 = Di−1,j + λ
(1)
i−1(1− vi−1,j;3) + lextvi−1,j;3 .
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The optimal alignment cost at node (i, j) is

Di,j =
∑

k

vi,j; k D̃i,j; k . (7)

From the probabilities vi,j; k it is straightforward to calculate Pi,j. The probability Pi,j that node

(i, j) is part of the optimal path can be calculated with a recursion relation. With the obvious

initial value PMN = 1 one finds

Pi,j = = vi,j+1;1Pi,j−1

+ vi+1,j+1;2Pi−1,j−1 (8)

+ vi+1,j;3Pi+1,j .

By construction this leads to the necessary condition P1,1 = 1. Finally, the fuzzy matching matrix

can now be calculated as

Wi,j = Pi,jvi,j; 2 . (9)

We have tested and compared our alignments of protein pairs with results from other common

procedures on a wide variety of protein families with good results. The advantages of the method

include a probabilistic interpretation of the match, a local reliability index for the match of each

residue pair, fast convergence, and the ability to add additional user constraints of a general form.

3 Measuring Individual Molecules

The problem of reconstructing the charge distribution of an object from the measured magnitude

of its scattering fourier transform in the Fraunhofer diffraction regime is discussed here. This, in

turn, involves reconstructing the unknown phases based on general properties of the image such

as positivity and finite extent[4]. The terms object, image, and charge distribution will be used

interchangeably in this note.
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The determination of structure from a set of patterns measured from a 3-D object at known

orientations has been well discussed and has been treated by a number of authors. Papers on this

topic can be found in references [5] to [9], where earlier citations are given.

The possibility of determining the structure of a single molecule by measurements at many different

orientations has been proposed by Miao, Hodgson and Sayre[10] (for background see also [11] to

[14] ). In these papers, the phase iteration method was developed and applied to solve the unknown

phase problem. In these papers the oversampling ratio σ was discussed as was the uniqueness of

the solution. These important works sparked my personal interest in this subject[15].

The 3-D diffraction pattern from a coherent x-ray beam is given in the Fraunhofer scattering region

as

F [k] = M [k] exp(−iφ[k]) =
∑
r

exp[−ik · r ] v[r ] , (10)

where M [k] is the magnitude of the pattern, φ[k] its phase, and v[r ] is the charge distribution,

which will also be termed the image or the object. If both M [k] and φ[k] were measurable, then

v[r ] can be computed directly from the inverse transform. However the full 3-D transform cannot

be directly measured. It must be constructed from a series of 2-D patterns measured from the

target at many different (and in the present case, unknown) orientations. A final problem is that

the phase of the 2-D patterns cannot be measured and are unknown. They must be inferred from

the data and known physical properties of the image.

Since all the phases are unknown in fourier space, additional information must be added in order

to define the problem. The fact that the object is of finite extent and is zero outside some chosen

volume Vo which is contained in the full volume V ( V > Vo ) provides the additional constraints.

Thus we have a mixed problem with some of the information given in coordinate space, and the

remainder given in fourier space, in particular the magnitudes of the 2-D projections.
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Rotation Determination The relative orientation angles between the sources that give rise to

2-D patterns can be determined for a sufficient number of patterns. The fourier pattern from a

source rotated[16] by R is

FR[k⊥] =
∑
r

exp[−ik⊥ · r ] v[RT r]

=
∑
r

exp[−ik⊥ ·R · r ] v[r ] . (11)

Define two patterns labelled by a and b

Fa[k⊥] =
∑
r

exp[−ik⊥ ·Ra · r ] v[r ]

Fb[k⊥] =
∑
r

exp[−ik⊥ ·Rb · r ] v[r ] . (12)

Search for lines in the kx − ky plane along which the patterns are equal. Define a match line in

each pattern with a tilt angle A where c = cos A and s = sin A . Then k⊥ = k t⊥ , with tx = c ,

ty = s and tz = 0 with (−K < k < K) . Assume that the following relation holds

Fa(k ca, k sa) = Fb(k cb, k sb) , (13)

where ca = cos a , sa = sin a , cb = cos b , and sb = sin b . Note that along these lines, both the

magnitude and the phase of the patterns are separately equal. In the real data, only the magnitude

of the patterns will be available.

The equality of the a and b transform patterns along this line then implies that the phases agree

identically for all r and k . That is,

ta⊥ ·Ra = tb⊥ ·Rb (14)

ta⊥ = tb⊥ · (Rb RT
a ) = tb⊥ · Rba . (15)

Explicitly this is of the form

ca = cbR(x, x) + sbR(y, x) sa = cbR(x, y) + sbR(y, y) (16)

and 0 = cbR(x, z) + sbR(y, z) . (17)
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In terms of the Euler angles, R(x, z) = sin ψ sin θ and R(y, z) = cos ψ sin θ. The last condition

requires sin(ψ + b) = 0 , while the first two conditions become

ca = cos φ cos(ψ + b) (18)

sa = sin φ cos(ψ + b) . (19)

Therefore there are two discrete solutions

soln 1 : ψ = −b , φ = a (20)

soln 2 : ψ = π − b, φ = π + a . (21)

The second solution is the Necker reversal of the object and corresponds to θ → 2π − θ . Solution

1 will be chosen as the canonical one, that is Rba = R(−b, θ, a) . The Euler angle θ is not

determined by these conditions. The matching of two patterns along a line cannot determine the

angle θ between the planes. Theta measures the angle of intersection and must be determined by

comparing more than two patterns. I shall not go into detail here but given the 2-D match line

angles from 3 nondegenerate patterns (the three R matrices must be closed), all of the θ’s can be

expressed analytically. Therefore the rotation matrices between all pairs of patterns can be fully

determined just from the 2-D patterns themselves.

Phase Determination The data is given by the series of patterns 1 ≤ n ≤ N

Fn[k⊥] = Mn[k⊥] exp[−iφn[k⊥]] =
∑
r

exp[−ik⊥ ·Rn · r ] v[r ] , (22)

where the phases φn[k⊥] are not measured.

The Problem: From the measured magnitude Mn[k⊥] and the fact that the image has com-

pact support, find the set of phases φn[k⊥] that yield a positive semidefinite real image v[r] and

determine that image.
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Hamiltonian Formulation In order to simplify the equations, the following definitions are in-

troduced, recall Eq[22], as sums inside Vo

Cn[k⊥] =
∑
r

v[r ] cos[k⊥ ·Rn · r ] (23)

Sn[k⊥] =
∑
r

v[r ] sin[k⊥ ·Rn · r ] , (24)

and the measured magnitude of the pattern that is to be fit by an appropriate choice of v[r ] is

given by

Mn[k⊥]2 = Cn[k⊥]2 + Sn[k⊥]2 .

An energy functional that at its minimum determines v[r ] is

H(v[r ]) =
1

2

∑
n

∑

k⊥

{
√

Cn[k⊥]2 + Sn[k⊥]2 −Mn[k⊥]}2 −
∑
r

λ(r )v[r ] .

Recall that the constraints on an allowable image are that

v[r ] = 0 for r > Vo and v[r ] ≥ 0 for r < Vo , (25)

where Vo is a region that is large enough to definitely contain the object. Thus the integral over r

in Eq[23], Eq[24] and the Hamiltonian are only over the interior of Vo . The positivity constraint

has been enforced by adding the term

δH = −
∑
r

λ(r )v[r ] , (26)

where λ(r ) is a positive semidefinite inequality multiplier[17]. Consider the variation of the energy

with respect to the image value at the point r

δH

δv[r ]
=

∑
n

∑

k⊥

jn(k⊥, r )− λ(r ) , (27)

where the auxiliary quantity jn has been introduced as

jn(k⊥, r ) =

√
Cn[k⊥]2 + Sn[k⊥]2 −Mn[k⊥]√

Cn[k⊥]2 + Sn[k⊥]2
×

{Cn[k⊥] cos[k⊥ ·Rn · r ] + Sn[k⊥] sin[k⊥ ·Rn · r ]} . (28)
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If Cn[k⊥] = Sn[k⊥] = 0 at an isolated value of k⊥ , then a direct evaluation leads to jn(k⊥, r ) =

−Mn[k⊥] . It is convenient to normalize the overall image by replacing v[r ] → wv[r ] and finding

the minimum of H with respect to w .

Minimization Assume that there is a tentative (guess) image v0[r ] . Improvements to this image

are computed by using steepest descent iteration. If the derivative of the Hamiltonian is negative

(positive) then one increases (decreases) the image at the point r . If the tentative image is negative

then it is always increased to zero by the appropriate choice of the positive definite parameter λ(r ) .

Schema: Guess an image v0[r ] that satisfies the requisite conditions. Initialize the restraint

parameter λ(r ) to zero and choose an iteration step parameter η > 0 . Compute the 2-D quantities

Cn[k⊥] and Sn[k⊥] for (1 ≤ n ≤ N) using v0[r ] and the known Rn .

1. Evaluate the scale factor w and renormalize v[r ] , Cn[k⊥] and Sn[k⊥] .

2. Choose a lattice point ri = (ix, iy, iz) .

3. Compute H ′(ri ) , the derivative of H w.r.t. v0[r ] , using Eq[27].

4. If H ′(ri ) is not 0 , tentatively replace

v[ri ] → v[ri ] + δv[ri ] where δv[ri ] = −ηH ′(ri ) . (29)

If the new v0[r ] ≥ 0 with λ(ri ) = 0 , set λ(ri ) = 0 .

If not, choose λ(ri ) so that the new v[ri ] = 0 .

5. If v[ri ] has changed at ri , update Cn[k⊥] and Sn[k⊥] at all k⊥ via

Cn[k⊥] → Cn[k⊥] + δv[ri ] cos[k⊥ ·Rn · ri ] (30)

Sn[k⊥] → Sn[k⊥] + δv[ri ] sin[k⊥ ·Rn · ri ] . (31)
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6. Return to Step 2 and repeat for a new lattice point.

7. After all lattice points have been examined, return to step 1.

Alternative orderings of these iteration steps can be used. For example, the order of step 5 and 6

can be reversed. For stability, the trial change in the image, δv[ri ] , should be bounded.

Once the minimum of H has been found, the image is given by v[r ] , while the phase of the

transform is given in terms of Cn[k⊥] and Sn[k⊥] .

Orientation Check: The scheme described here requires that the orientation of each pattern be

known. In order to check these angles, which are subject to errors arising from pattern intensity

and noise, one may add to the above steps an examination of the error in each individual pat-

tern. If this quantity is large for a particular pattern n , after the iteration has had a chance to

partially converge, one can test if it is due to an poor determination of the pattern orientation by

redetermining the euler angles in Rn(ψ, θ, φ) to minimize this pattern’s error (as measured from

the pattern from the tentative image at that iteration stage), and then resume the full iteration

scheme.

Results: The above formulation was implemented in a program written in C++ and a few small

test cases were run. A typical case used a full lattice of size N = 15 , i.e., V = 3375 , and an

image size of No = 9 , i.e., Vo = 729 with σ = 4.6 . Only a few shapes were examined and no

noise was added to the pattern. These objects were sufficiently small and simple that there was

no indication of locking into a local minima.

The input data utilized ∼ 10 patterns in k⊥ calculated from the input object density distribution

at known orientations. The program ran at a rate of ∼ 10 iteration per minute. The initial image

was assumed to be either a constant or random. The constant initial start converged faster than
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the random start and the results below are for this case. After 15 iterations, the fractional RMS

error in the density was typically

√
< (vexact − v)2 >/ < v >∼ 0.03 to 0.10 , (32)

where < > indicates an average over the volume Vo . For 45 iterations, the error ratio dropped

by a factor of 2.

One of the advantages of this approach is that the fit to the data does not require any interpolation.

This is performed implicitly, see Eq[23] and Eq[24]. One related disadvantage is that the formula-

tion does not admit the simple use of fast fourier transforms to spend up the algorithm. However

it should be noted that a full 3-D iteration of the phase iteration method requires the transforms

of N3 lattice points in addition to the interpolation stage. The Hamiltonian method here requires

the transform of M × N2 lattice points. Normally, one expects that M is considerably smaller

than N . A test of the method on realistic data and a comparison with other methods is planned.
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