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Abstract:

The problem of reconstructing a positive semi-definite 3-D image from

the measurement of the magnitude of its 2-D fourier transform at a series

of orientations is explored. The phase of the fourier transform is not

measured. The algorithm developed here utilizes a Hamiltonian, or cost

function, that at its minimum provides the solution to the stated problem.

The energy function includes both data and physical constraints on the

charge distribution or image.
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1 Introduction and Motivation

The problem of recontructing an image from the measured magnitude of its fourier transform
in the Fraunhofer diffraction regime is discussed here. This, in turn, involves reconstructing the
unknown phases based on general properties of the image such as positivity and finite extent [1].
The terms image, object, and charge distribution will be used interchangeably in this note.

The determination of structure from a set of patterns measured from a 3-D object at known
orientations has been well discussed and has been treated by a number of authors, see references
[2, 3, 4, 5, 6], where other citations can be found.

The possibility of determining the structure of a single molecule by measurements using a coherent
x-ray source[7] has been proposed by Miao, Hodgson and Sayre [8] and Miao, Ishikawa, Anderson
and Hodgson [9]. In these papers the oversampling ratio σ was introduced, the importance of
measurements at many different orientations, and uniqueness of the resulting solution are discussed.
These papers were the inspiration for the present work.

In a previous note, a method for determining the orientations of each pattern was described that
used the familiar concept of ‘common’ or ‘matching’ lines in the measured Fourier magnitudes[10].
In this note, a new method is presented for constructing the image once the orientations are
determined. The present algorithm utilizes a Hamiltonian or energy function that yields the
desired solution when minimized. The Hamiltonian can be augmented by extra constraints that
impose additional physical requirements on the extracted image.

One example of such an additional constraint is to extract the most compact image that fits the

given data. As has been discussed [9], in particular footnote 20, if the long wave length or small ~k⊥
sector of the pattern is not available, the resulting loss of information on the long distance features
of the image allows the image to expand, or at least to be uncertain, near its outer boundary.
The imposition of this minimal size constraint allows one to explore the error introduced by such
missing data.

The 3-D diffraction pattern from a coherent x-ray beam is given in the Fraunhofer scattering region
as

F [k] = M [k] exp(−iφ[k]) =
∑

~r

exp[−ik · r̃] v[~r] , (1)

where M [k] is the magnitude of the pattern, φ[k] its phase, and v[~r] is the charge distribution,
which will also be termed the image or the object. If both M [k] and φ[k] were measurable, then v[~r]
can be computed directly from the inverse transform. However the full 3-D transform cannot be
directly measured. It must be constructed from a series of 2-D patterns measured from the target
at many different orientations. A final problem is that the phase of the 2-D patterns cannot be
measured and are unknown. They must be inferred from the data and known physical properties
of the image.
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For simplicity, several notational abbreviations will be introduced. Following the formulation used
in reference [9], the Fourier components of the object will be sampled at a finer spacing than
the Nyquest frequency. The three k components will each range from −I <= k <= I with the
total number of points given by N = 2 ∗ I + 1 with volume V = N3. A smaller volume Vo will be
introduced, which nevertheless is chosen to be large enough to completely contain the object. Each
coordinate of the object will be restricted to a smaller range, −Io <= i <= Io, where I > Io and
No = 2 ∗ Io + 1 with volume Vo = N3

o . The object is defined to be real for the problem considered
here, and to be zero identically outside the volume Vo. The oversampling ratio is defined as

σ = V/Vo . (2)

Note that as this ratio increases, the more information is being supplied about the object, namely
that the charge distribution is zero in the growing region (V −Vo). This added information on the
object can make up for a lack of experimental information on the phase of the Fourier transform.
In several studies of 3-D image reconstruction [9, 11], it was found that σ > 2 was necessary for
reconstruction, and σ ≈ 3 produced reasonable output images.

Thus the coordinate point becomes ~r = (i, j, k) and a volume integral is written as

∫
d3r v[~r] =

i=Io∑
i=−Io

j=Io∑
j=−Io

k=Io∑

k=−Io

v[i, j, k] ≡
∑

~r<Vo

v[~r] . (3)

2 Data Description

The data is presented for analysis in a tomographic form. 2-D Patterns are measured at a set of
different orientations of a 3-D object or image. These patterns are projected Fourier transforms of
the image. For completeness, a review of our definition of the discrete Fourier transform is given
in Appendix A. The Fourier pattern from a source in the ‘standard’ orientation will be written as

F [~k⊥] =
∑

~r

exp[−i~k⊥ · ~r] v[r]

=
∑
r⊥

exp[−i~k⊥ · r⊥]
∑

z

v[~r] , (4)

where the second form emphasizes that the 2-D pattern is a longitudinal projection of the object.
The Fourier pattern from a source rotated by the matrix R is

FR[~k⊥] =
∑

~r

exp[−i~k⊥ · ~r] v[~RT r]

FR[~k⊥] =
∑

~r

exp[−i~k⊥ · ~R · ~r] v[~r] . (5)
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Write ~k⊥ = (kx, ky, 0) so that

~k⊥ · ~R · ~r = kx [R(x, x) x + R(x, y) y + R(x, z) z]

+ky [R(y, x) x + R(y, y) y + R(y, z) z] . (6)

The data is given by the series of patterns 1 ≤ n ≤ N with

Fn[~k⊥] = Mn[~k⊥] exp[−iφn[~k⊥]] =
∑

~r

exp[−i ~k⊥ ·Rn · r] v[~r] , (7)

where the phases φn[~k⊥] are not measured. In another note, a technique for determining the

rotation matrices ~Rn was described. This method involves examination and analysis of the match-

ing lines, otherwise termed the common lines, of the measured Fourier magnitudes Mn[ ~k⊥]. It

is assumed that this has been done and that all rotation matrices ~Rn are known. Note that
Fn[0] = Fm[0] for all pairs n and m, since each is the volume integral of the object, and that a
measure of the average value of the image inside Vo is given directly by the data

〈v[~r]〉 =
1

NVo

∑
n

Fn(0) . (8)

The Problem: For a given magnitude Mn[ ~k⊥] and the fact that the image has compact support,

find the set of phases φn[~k⊥], or rather cos φn[~k⊥] and sin φn[~k⊥], that yield a positive semidefinite
real image v[~r] and determine that image.

This statement of the problem is in the language of the phase iteration method used by Fienup
[1], Miao et al. [8] and others. It is the purpose of this note to provide an alternative formulation
of the problem and to describe a simple, certainly not the most efficient nor the only, solution
method. Our algorithm utilizes an energy function H that must be minimized in the presence of
inequality constraints.

3 Hamiltonian Formulation

In order to simplify the equations, the following definitions are introduced, recall Eq. [7], as sums
on the lattice:

Cn[~k⊥] =
∑

~r

v[~r] cos[~k⊥ · ~Rn · ~r] (9)

Sn[~k⊥] =
∑

~r

v[~r] sin[~k⊥ · ~Rn · ~r] (10)
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and the measured magnitude of the pattern to be fit by an appropriate choice of v[~r] is given by

Mn[ ~k⊥]2 = Cn[~k⊥]2 + Sn[~k⊥]2 .

If there were no constraints on the image, one suitable energy functional that at its minimum
would determine v[r] would be

h(v[~r]) =
1

4

∑
n

∑

~k⊥

{Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[ ~k⊥]2}2 . (11)

However, this form seems to be quite sensitive during the minimization process although there
may be procedures that can eliminate this difficulty.

A superior form of the energy functional is

H(v[~r]) =
1

2

∑
n

∑

~k⊥

{
√

Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[ ~k⊥]}2 . (12)

The positivity constraint will be imposed later, but first H will again be minimized by determining
the optimum global normalization of any given image distribution v[~r]. Set v[~r] → w v[~r] so that

H(v[~r]) → 1

2

∑
n

∑

~k⊥

{w
√

Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[ ~k⊥]}2 . (13)

The minimum with respect to w yields

w
∑

n

∑

~k⊥

{Cn[~k⊥]2 + Sn[~k⊥]2} =
∑

n

∑

~k⊥

Mn[ ~k⊥]

√
Cn[~k⊥]2 + Sn[~k⊥]2 . (14)

In the following, v[~r] , Cn[~k⊥] and Sn[~k⊥] are to be renormalized by the factor w which is absorbed
into their definition.

The normalization factor w can be simplified, or rather approximated, by restricting the ~k⊥ sum

over a suitably chosen region in which Mn[ ~k⊥] is large. For example, if only the volume integral
of the trial image is required to agree with the average measured value, then only the single point
~k⊥ = 0 needs to be included in the sum. Then the approximate w becomes

w
∑

n

{Cn[0]2 + Sn[0]2} ≈
∑

n

Mn[0]
√

Cn[0]2 + Sn[0]2 . (15)

Recall that the constraints on an allowable image are that

v[~r] = 0 for ~r > ~Vo and v[~r] ≥ 0 for ~r < ~Vo , (16)
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where ~Vo is a region that is large enough to definitely contain the object. Thus the integral over
~r in Eqs. [21] and [22] is only over the interior of ~Vo. The positivity constraint will be enforced by
adding a term to the Hamiltonian of the form

δH = −
∑

~r

λ(~r)v[~r] , (17)

where λ(~r) is a positive inequality multiplier. λ(~r < ~Vo) is a non-negative inequality multiplier that
is zero if v[~r] is positive, and is chosen to make v[~r] ≥ 0 inside the allowed region [12]. Inequality
multipliers are discussed in, for example, reference[13]. Note that this term is identically zero at
the minimum, and therefore does not change the value of H at this point.

Energy: The energy function is a function of the pattern data, the orientation of each pattern
and the unknown image values as well as the constraint parameters. Consider the form

H(v[~r]) =
1

2

∑
n

∑

~k⊥

{
√

Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[ ~k⊥]}2 −
∑

~r

λ(~r)v[~r] , (18)

where the factor of w has been absorbed into v[~r], Cn[~k⊥] and Sn[~k⊥].

Consider the variation of the energy with respect to the image value at a point

δH

δv[~r]
=

∑
n

∑

~k⊥

jn(~k⊥, ~r)− λ(~r) , (19)

where the auxiliary quantity jn has been introduced as

jn(~k⊥, ~r) =

√
Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[ ~k⊥]

√
Cn[~k⊥]2 + Sn[~k⊥]2

×

{Cn[~k⊥] cos[ ~k⊥ ·Rn · r] + Sn[~k⊥] sin[ ~k⊥ ·Rn · r]} . (20)

If Cn[~k⊥] = Sn[~k⊥] = 0 at an isolated value of ~k⊥, then a direct evaluation leads to jn(~k⊥, ~r) =

−Mn[ ~k⊥].

4 Additional Constraints

An example of an additional constraint that can be imposed using the Hamiltonian approach but
which seems difficult to implement with the phase iteration method will be discussed briefly. This
particular constraint is used to explore the effect described in Section I of missing data, especially
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the forward direction, small ~k⊥ data. In order to determine the most compact but positive image
that satisfies the data, consider adding to the Hamiltonian the two constraints

δH = +
∑

~r

v[~r] {−λ(~r) + ν ~r2} , (21)

where λ(~r) is the familiar positive inequality multiplier and ν is a positive parameter that encour-
ages v[~r] to be as compact as possible. The factor ~r2 = i2x + i2y + i2z could also be replaced by the
less drastic term |~r| = |ix|+ |iy|+ |iz|.

The variation of the energy with respect to the image value at a point then takes the form

δH

δv[~r]
=

∑
n

∑

~k⊥

jn(~k⊥, ~r)− λ(~r) + ν ~r2 . (22)

One might start the iteration with ν = 0 and then as the image is iteratively determined, increase
ν to explore changes in the image induced by the additional constraint.

Another physical constraints that could be added are similar to a maximum entropy constraint,
namely to find the smoothest image that fits the given data. One way to accomplish this is to
add a term involving the sum over the object of the square of the gradient of the image. Another
approach is to add an entropy type term.

5 Minimization Scheme

Assume that there is a tentative (guess) image v0[~r]. Improvements to this image are computed

by expanding v[~r] (recall that ~r < ~V ):

H(v[~r]) = H(v0[~r] + δv[~r]) = H(v0[~r]) + δv[~r]
∂H(v[~r])

∂v[~r]
. (23)

In this steepest descent iteration, if the derivative of the Hamiltonian is negative (positive) then
one increases (decreases) the image at the point ~r. If the tentative image is negative then it is
always increased to zero by the appropriate choice of the positive definite parameter λ(~r).

Schema: Guess an image v0[~r] that satisfies the requisite conditions. Initialize the restraint pa-
rameter λ(~r) to zero and choose an iteration step parameter η > 0 . Compute the 2-D quantities

Cn[~k⊥] and Sn[~k⊥] for (1 ≤ n ≤ N) using v0[~r] and the known ~Rn. Then

1. Evaluate the scale factor w and renormalize v[~r], Cn[~k⊥] and Sn[~k⊥].

2. Choose a lattice point ~ri = (ix, iy, iz).
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3. Compute H ′(~ri) , the derivative of H w.r.t. v[~ri], using Eq. [19].

4. If H ′(~ri) is not 0, tentatively replace

v[~ri] → v[~ri] + δv[~ri] where δv[~ri] = −ηH ′(~ri) . (24)

If the new v[~ri] ≥ 0 with λ(~ri) = 0, set λ(~ri) = 0. If not, choose λ(~ri) so that the new
v[~ri] = 0.

5. If v[~ri] has changed at ~ri, update Cn[~k⊥] and Sn[~k⊥] at all ~k⊥ via

Cn[~k⊥] → Cn[~k⊥] + δv[~ri] cos[~k⊥ · ~Rn · ri] (25)

Sn[~k⊥] → Sn[~k⊥] + δv[~ri] sin[~k⊥ · ~Rn · ri] . (26)

6. Return to Step 2 and repeat for a new lattice point.

7. After all lattice points have been examined, return to step 1.

Alternative orderings of these iteration steps can be used. For example, the order of step 5 and 6
can be inverted.

Once the minimum of H has been found, the image is given by v[~r], while the phase of the transform

is given in terms of Cn[~k⊥] and Sn[~k⊥].

Orientation Check: The scheme described here requires that the orientation of each pattern
be known and this task was described separately. In order to check this determination, which
is subject to errors arising from pattern intensity and noise, one may add to the above steps an
examination of each individual pattern error

err(n) =
∑

~k⊥

{
√

Cn[~k⊥]2 + Sn[~k⊥]2 −Mn[~k⊥]}2 . (27)

If this quantity is found to be large for a particular pattern n, after the iteration has had a chance
to partially converge, one may assume that it could be due to an poor determination of the pattern
orientation. Therefore go into the Rn(ψ, θ, φ), redetermine the euler angles to minimize err(n) for
the approximate image as given at that stage of the iteration, and then resume the full iteration
scheme.

Local Minima: To help the above scheme avoid and to test for local minima, it is possible to
insert a roughening step into the iteration scheme. After a given number of iterations steps, a
random variation can be added to the image at every point ~r. That is, v[~r] → v[~r] + σ〈v[~r]〉,
where 〈v[~r]〉 given by Eq. [8]. σ is a random variable satisfying −f < σ < f and the scale fraction
satisfies 0 < f < 1. The fraction f should start out less than one and be allowed to decrease as
the iteration converges.
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6 Results and Conclusions

The above formulation was implemented in a program written in C++ and a few small test cases
were run. A typical case used a full lattice of size N = 15, i.e., V = 3375, and an image size of
No = 9, i.e., Vo = 729 with σ = 4.6. Only a few shapes were examined, a football shaped object
with a density that increased towards its center, and an anti-football consisting of a rectangular
object with a football cut out of its center. No noise was added to the object. These objects were
sufficiently small and simple that there was no indication of locking into a local minima.

The data was input for ∼ 10 patterns in ~k⊥ calculated from the input object density distribution
at known orientations. The program ran at a rate of ∼ 10 iterations per minute. The initial image
was assumed to be either a constant or random. The constant initial start converged faster than
the random start and the results below are for this case. After 15 iterations, the fractional RMS
error in the density was typically

√
〈(vexact − v)2〉/〈v〉 ∼ 0.03 (anti− football) (28)

∼ 0.10 (football) , (29)

where 〈 〉 indicates an average over the volume Vo. For 45 iterations, the error ratio for the football
dropped to ∼ 0.04.

One of the advantages of this approach is that the fit to the data does not require any explicit
interpolation. Rather, it is performed implicitly by the formalism, see Eq. [5]. One related disad-
vantage is that the formulation does not admit the simple use of fast fourier transforms to spend
up the algorithm. However it should be noted that a full 3-D iteration of the phase iteration
method requires the transforms of N3 lattice points in addition to the interpolation stage. The
Hamiltonian method here requires the transform of M ×N2 lattice points. Normally, one expects
that M is considerably smaller than N . A test of the method on realistic data and a comparison
with other methods is planned.
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Appendix A—Definition of Transforms

A real positive image sequence vi will be defined by the pixel intensities at a set of discrete 3-
D points ~ri = (ix, iy, iz)∆ with N points in each dimension. Each component is in the range
−I <= i <= I, where N = 2I + 1 and for simplicity, the image is thought of as being centered
near the origin, i ≈ 0. This real image,vi, can be extended to a complex image with the ultimate
requirement that its imaginary part,wi, vanishes for the problems of interest in this note. In the
applications discussed in the text, the spatial integrals extend only over the restricted smaller
volume Vo, since the density vanishes identically in the outer region.

The fourier transform used here is given by

F [k] =
∑

j

(vj + iwj) exp[−iχ(j, k)] , (30)

where all sums are over 3-D lattices, i.e., j = (jx, jy, jz) . The inverse is

vj + iwj =
1

V3

∑

k

F [k] exp[+iχ(j, k)] , (31)

where χ(j, k) = K0[jxkx + jyky + jzkz] (32)

with K0 = 2π/N and V3 = N3. It is assumed that the image has support only in the center
of the range. Since all the sums in the following discussion are over the fixed interval −I,−I +
1, . . . , 0, . . . , I, only the summation variable will be denoted.

For later use, note the obvious relation

vi + iwi =
∑

k

F [k] exp[+iχ(i, k)] =
1

V3

∑

k

∑
j

(vj + iwj) exp[+ik1(i− j)k]

=
∑

j

(vj + iwj) δ(i, j) = vj + iwj ,

where δ(i, j) is the Kronecker delta function. Recall the normalization condition

∑

k

|F [k]|2 = V3

∑
j

(v2
j + w2

j ) . (33)

Now introduce the magnitude and phase of the transform as

F [~k] = M [~k] exp[−iφ[~k]] . (34)
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Equations (30) and (31) can now be written as the pairs

M [~k] cos φ[~k] =
∑

j

[vj cos χ(j, k) + wj sin χ(j, k)]

M [~k] sin φ[~k] =
∑

j

[vj sin χ(j, k)− wj cos χ(j, k)] . (35)

vi =
1

V3

∑

k

M [~k] [cos φ[~k] cos χ(i, k) + sin φ[~k] sin χ(i, k)]

wi =
1

V3

∑

k

M [~k] [cos φ[~k] sin χ(i, k)− sin φ[~k] cos χ(i, k)] . (36)

We will deal with the two variables cos φ[~k] and sin φ[~k] since this simplifies the choice of branch

for the angle φ[~k].
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