
 

  
Abstract—Grid Computing capabilities are increasingly needed 

for scientific research. Groups such as Globus and the Particle 
Physics Data Grid are developing tools to meet these needs. An 
additional challenge is the evaluation and fine-tuning of these 
applications, as well as support for long term monitoring, 
performance analysis, and troubleshooting. In September 2001, 
SLAC started the development of a toolkit for studying the 
available bandwidth as measured by various network sensing 
tools and comparing that with the bandwidth achievable by 
various bulk data transfer applications. This study has provided 
experience in the challenges of deploying and using the sensor 
tools and transfer applications, as well as information for fine 
tuning the applications and analyzing their performance. The 
results presented in this paper include the deployment challenges, 
techniques for optimizing the duration of measurements, the 
impacts of throughput on CPU utilization, optimizing windows 
and parallel streams, the impact on other users, comparisons of 
various throughput measurement techniques, patterns of 
throughput behaviors, forecasting, and comparisons of active and 
passive measurements. We finish up with possible avenues for 
future development. 

Index Terms— application steering, available vs. achievable 
bandwidth, measurement infrastructure, high performance bulk 
throughput, international networks, network measurements, 
passive vs. active measurement, quality of service.  

I. INTRODUCTION 

The strategies being adopted to analyze and store the 
unprecedented volumes of data being gathered by current and 
future High Energy and Nuclear Physics (HENP) experiments 
include the coordinated deployment of Grid technologies such 
as those being developed for the Particle Physics Data Grid 
(PPDG) [1] and the Grid Physics Network (GriPhyN) [2]. It is 
anticipated that these technologies will be deployed at 
hundreds of institutes. These institutes will be able to search 
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out and analyze information from an interconnected worldwide 
grid of tens of thousands of computers and storage devices. 
This in turn will require the ability to sustain, over long 
periods, the transfer of large amounts of data between 
collaborating sites, with relatively high throughput.  

The purpose of the Internet End-to-end Performance 
Monitoring – Bandwidth (IEPM-BW) project [3] is to develop  
a lightweight infrastructure, based on standard open 
technologies, to make passive and active end-to-end 
application and network performance measurements and 
predictions. The measurements and results are targeted at high 
performance network links, such as those used worldwide by 
Grid applications and other academic and research (A&R) 
applications. Typically these are deployed over high 
performance networks such as ESnet, Internet2 and other A&R 
networks in the developed world. It may be regarded as 
complementary to the lighter-weight PingER [4] infrastructure 
in that it is not as extensive, it is more network-intrusive, and 
is aimed more at high performance links.  

The monitoring toolkit and results are expected to be 
valuable for: 
• Providing planning information to applications, grid and 

network planners by:  
o Providing an understanding of the achievable 

performance in today’s network and application (file 
copy & ftp) throughput.  

o Providing historical information on growth and changes 
in performance.  

o Providing predictions of throughput to applications so 
they can make decisions on how and where to send and 
receive data. 

• Providing troubleshooting information to network 
administrators and users by:  

o Indicating when there are incremental or sudden   
changes, the magnitude of the changes, and providing 
alerts. 

o By comparing achievable throughput with known 
component performances and the performance of other 
paths with common links, thereby helping to pin-point 
whether a performance issue is in the host, network, 
firewall, application, or at some sub-component such as 
a disk. 
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• Providing network and applications developers with a 
better understanding of how networks and applications 
work together by:  

o Providing validation/correlation of how network 
performance relates to metrics such as delays and loss 
performance (e.g. bandwidth estimators).  

o Assisting users in selecting the optimum network 
parameters (e.g. windows, streams), host and 
application (e.g. compression) configuration options.  

o Providing a public domain network performance 
database, together with analyses, and web-accessible 
reports and raw data. This data and information can be 
used for further research, for predictions and for 
application steering.  

o Providing information on the challenges of establishing 
and maintaining the secure transfer of large amounts of 
data over long periods of time 

• Providing a base on which to test, compare and validate 
TCP stacks, configurations, various bandwidth 
measurement techniques and tools, determine their 
robustness, regions of applicability, resource 
consumption, and accuracy, and make recommendations 
to developers and users. 

There are several projects that are currently making 
continuous active (i.e. injecting probes) Internet End-to-end 
Performance Measurements. A fairly complete comparison 
made in July 1999 can be found in reference [5]. Several 
projects provide public (without subscription or some form of 
membership requirement) access to the data and reports. The 
AMP [6], PingER, and skitter/skping [7] projects perform ping 
and traceroute measurements but no bandwidth estimation or 
throughput measurements. Surveyor [8] and RIPE [9] make 
one-way delay, loss, inter-packet Delay Variability (IPDV), 
and traceroute measurements. RIPE also includes bandwidth 
and routing information but the results are only available by 
subscription. NIMI [10] is an infrastructure for making on 
demand measurements and does not have continuous 
measurements and reports. The European SCAMPI project 
[11] is developing a scaleable monitoring platform for the 
Internet, but there do not appear to be any Internet monitoring 
results published on a regular basis yet. The Network Weather 
Service (NWS) [12] makes round trip measurements and 
bandwidth estimates (single stream only). The NWS also has 
sophisticated prediction mechanisms. Unlike the infrastructure 
being described here, the NWS currently does not provide file 
copy/transfer application measurements. The Work Package 7 
of the European Data Grid [13] have developed an 
infrastructure for making ping (using PingER), TCP 
throughput and UDP measurements between seven European 
sites; but currently they make no file copy/transfer 
measurements.  

The current toolkit/infrastructure differs from most others 
since it makes measurements of applications as well as 
network performance. Other differences include: 
• It does not require dedicated hosts for the target hosts and 

can therefore run close to the real applications of interest.  

• It is cheap, simple and quick to extend.  
• It makes the measurements in a hierarchical fashion, as 

opposed to full mesh measurements. Thus it mimics the 
organization of many collaborations.  

• It runs under the same operating systems (Linux and 
Solaris) used by most Grid applications of interest. 

The current work is an outgrowth of the exploratory work 
[14] reported at PAM 2002. We have redesigned the 
infrastructure to provide for the addition of new probes 
(network sensors and applications) for making measurements, 
and to allow for the use of the probes in other scheduling 
environments. The current SLAC scheduling is provided by 
the UNIX cron facility, and measurements are made on a 
regularly scheduled basis with the reports being generated 
after each run. 

In the rest of this paper, we first describe the measurement 
methodology. We then describe results from the deployment. 
These include: deployment challenges, optimizing the 
measurement durations; the impact of high throughput on CPU 
utilization; comparisons of file transfer/copy application and a 
packet pair dispersion bandwidth estimation tool with iperf 
TCP throughputs; the impacts of maximum window size and 
number of parallel streams selection; the impacts of high 
throughput on other users; forecasting; and a comparison of 
active and passive measurements. We conclude with a 
summary of the most significant results so far, and finish up 
with a discussion of possible future directions. 

II. METHODOLOGY & DEPLOYMENT 

A. Methodology 

The methodology is described here in sufficient detail to 
enable an understanding of the results.  

There are 2 types of hosts, monitoring and target hosts. The 
“monitoring” hosts run the measurement tools (probes), log the 
data from their runs, extract, analyze, and report on the 
information via the web. The  “target” hosts receive the probes 
from the monitoring hosts and respond to them. The logs and 
data, although they are currently collected on each monitoring 
host, could be collected in a network file system. In that case 
the monitoring host function could be split into 2 or 3 separate 
hosts. One host would make the measurements, another would 
perform the analysis, and a third could be the web server. 

Each monitoring site works with its collaborators to decide 
on the target hosts to probe. Typically, multiple target hosts 
are monitored by a monitoring site. For each target host an 
account must be provided on it that is accessible, via the 
secure shell [15] (“ssh”), from the monitoring host. After 
installing the appropriate public key in the account on the 
remote host, the target host account is remotely configured and 
the target host toolkit is downloaded from the monitoring host. 
Information on the target hosts is kept in a target host 
configuration database which is accessible to the monitoring 
host. 

The monitoring host schedules the measurement runs. 
Currently they are at regular intervals driven by a Unix cron 



 

table entry. The scheduling interval for each monitoring host is 
determined by the monitoring host administrator. The actual 
interval chosen depends on the load acceptable on the 
monitoring host’s link, and the amount of time it takes to make 
a set of measurements to all target hosts. Typically at SLAC, 
the interval is about 90 minutes for 40 target hosts. At this 
time, for each set of measurements, the monitoring host selects 
each target host in turn and runs ping for 10 seconds, does a 
traceroute (with one probe per hop) followed by running the 
iperf [16] TCP transfer tool, secure file copy using the peer-to-
peer tool bbcp [17] with both memory to memory (bbcpmem 
reads from /dev/zero and writes to /dev/null) and disk to disk 
(bbcpdisk) copies, followed by the bbftp [18] file transfer 
program. Both bbcp and bbftp allow the selection of large 
window sizes and multiple parallel streams of data and provide 
measurements of the throughputs achieved. At one time 
pipechar [19] measurements were also performed, but they 
have been discontinued due to the inaccuracy of the results 
above 155Mbits/s and the time they take. The lists of probes 
done for any given target host can be specifically defined in 
the target host configuration file. The output from each probe 
is captured, identified with a token, time stamped and written 
to a “log” file. For each remote host there is one log file per 
probe type per day. 

To provide robustness, servers are remotely started and 
killed for each measurement. Also each probe command (e.g. 
iperf) is started as a separate task, so it can be timed out and 
killed in case of problems. Some sanity checks are also done, 
e.g. if ping is expected to work (as defined in the remote host 
configuration database), but it fails, the other measurements 
are not attempted.  

Following each measurement, the results are extracted and 
converted into space-separated tables that are made available 
via the web. The format of the extracted tables is documented 
in the first line of each file to enable others to access the data. 
The analysis is performed on the extracted data and it 
produces web accessible pages containing time series (short 
term for the last 28 days, and longer term aggregated) plots, 
histograms, scatter plots, statistical and analyzed tables 
(accessible over the web in formats suitable for loading into 
programs such as Excel), information on the success of the 
test,  and narrative. 

B. Current Deployment 

There are currently 10 monitoring hosts running the IEPM-
BW toolkit. They are at: APAN in Japan, the Stanford Linear 
Accelerator Center (SLAC) near San Francisco CA., FNAL 
near Chicago IL, Georgia Tech, INFN at Milan Italy, Internet 
2 (in Michigan), Manchester University in England, NIKHEF 
in Amsterdam the Netherlands, University College London 
England, and the University of Michigan. 

The results in this paper are from the SLAC monitoring 
host. The target host sites for the SLAC monitoring host were 
chosen from PPDG, HENP and major network monitoring 
collaborator sites. These  sites include: Argonne National 
Laboratory (ANL) in Chicago IL, Brookhaven National 

Laboratory (BNL) in Long Island NY, California Institute of 
Technology (Caltech) in Pasadena CA, Fermi National 
Accelerator Laboratory (FNAL), Thomas Jefferson National 
Laboratory (JLab) in Newport News VA, Los Alamos 
National Laboratory (LANL) in Los Alamos NM, Lawrence 
Berkeley National Laboratory (LBNL) in Berkeley CA, 
National Energy Research Scientific Computing Center 
(NERSC) in Oakland CA, Oak Ridge National Laboratory 
(ORNL) Oak Ridge TN, NASA/GSFC, San Diego 
Supercomputing Center (SDSC) in San Diego CA, Rice 
University in Houston TX, Stanford University in Palo Alto 
CA, Indiana University (IU), University of Florida (UFL) in 
Gainesville FL,  University of Illinois at Urbana Champaign 
(UIUC), the University of Michigan (UMich) in Ann Arbor 
MI, University of Wisconsin (UWisc) in Madison WI,  
Starlight in Chicago, CERN in Geneva Switzerland, CESnet in 
Prague Czech republic, KEK in Tokyo Japan, Rutherford 
Laboratory near Oxford England and Daresbury Laboratory 
near Liverpool England, IN2P3 in Lyon, France, Tri-
Universities Meson Factory (TRIUMF) in Vancouver Canada,  
Internet2 Southern Exchange (SoX) in Atlanta GA, 
INFN/Rome and Milan, NIKHEF in Amsterdam, Netherlands, 
and of course SLAC. There are currently (January 2003) 40 
active destination hosts at about 30 sites in 9 countries. 

Fig. 1 shows the logical routes between SLAC and its 
remote site participants in December 2002. The boxes with 
bold outlines are monitoring sites in their own right. The labels 
in italics in the boxes indicate the host has a 100Mbit/s 
connection. Other hosts have Gbits/s connections. The box 
shading indicates the participant type. Diagonal lines are for 
PPDG/GriPhyN/HENP collaborators, hashed shading 
indicates the site is a network measurement collaborator, and 
the un-shaded boxes are for European Data Grid collaborators. 
The clouds are for Internet Service providers (ISPs). The grey 
lettering in the clouds indicates the “GigaPoP” (e.g. ATL 
means Atlanta). The numbers by the sites indicate the average 
measured throughput from August 24 through October 26, 
2002. For the measurements reported SLAC had OC12 
(622Mbps) connections to ESnet and Internet2. Wide-area 
network connectivity between these sites is almost entirely 
managed by the Energy Sciences Network (ESnet) and the 
Internet2 networks. In this paper, Internet2 is considered to be 
the Abilene backbone network, and the regional connector 
networks such as the California Research and Education 
Network (CalREN). 

 



 

 

Figure 1: Routes and iperf TCP Mbits/s from SLAC to the 
remote sites. 

III. RESULTS 

A. Deployment Challenges 

  The deployment challenges can be classified in 3 categories: 
network, “security”, and operational challenges  
1. Networks are dynamic entities. Some applications require 

the reverse lookup of host names which can suddenly start 
to fail. Routes change over the course of time, sometimes 
failing and sometimes reconfiguring in a manner that 
provides for significantly lower throughput. The 
installation of rate limiting can result in greatly lowered 
throughput. These in turn can cause tests that run in a 
defined period of time (see operational challenges) to 
suddenly start timing out and/or failing.  

2. Security mechanisms present another challenge. Ports 
suddenly become blocked. Target nodes are occasionally 
upgraded, rebuilt and/or reconfigured resulting in the loss 
of ssh keys, a change in the speed of the network interface 
used, and/or a change in the allowable buffer and window 
sizes. Note that the use of ssh does not scale well. Every 
target node must be individually set up to allow for 
communication from any monitoring host which is going 
to probe it.  

3. Operational challenges result from instances of network 
and security challenges and under provisioning of the 
target hosts. Each and every probe must have a time out 
mechanism. Not all applications terminate gracefully 
when there is a network related problem. Sometimes the 
processes just hang around on the target and/or 
monitoring hosts, filling up process space, filling the 
network with data that is not being delivered, or chewing 
CPU. In cases where the ssh keys are no longer valid, the 
target host will sit for a long period of time before timing 
out on the password prompt. Tests can fail because the 
target host does not have enough disk space to store the 
data being transferred. Handling these challenges involves 

writing code that terminates the processes that are hanging 
around after a test, and removing any target test data files. 
Note that this code itself must be timedout out! 

B. Measurement Duration 

To evaluate the effect of the duration of the individual 
measurements on the throughput measured, we selected 
durations of 2, 5, 10, 20, 40, 80, 160, 250 and 320s, and 
window sizes of 256, 512, 1024, 2048 and 4096kbytes. For 
each of the above possible pairs we made a single stream 
measurement of the iperf TCP throughput from SLAC to the 
target host. We repeated this multiple times (17-20) to 
estimate the magnitude of the variation. We used a single 
stream since multiple streams are in general more agile to 
adjusting to network conditions such as loss, and are thus 
expected to require less time to reach a stable throughput rate. 
Fig. 2 shows the iperf median TCP throughput measured from 
SLAC to Caltech (40 ms. Round Trip Time (RTT)) for various 
window sizes. The points are the medians of each set of 
measurements, and the error bars are determined from the Inter 
Quartile Ranges (IQRs). It is seen that, in some cases, though 
the medians continue to rise for durations of over 10 seconds 
(by about 10% going from 10 to 20 seconds) to within the 
accuracy of the measurements this is a small effect. Similar 
results are found for other paths such as SLAC to IN2P3 (RTT 
177 ms and maximum throughputs of over 300 Mbits/s). Since 
we are interested in the performance for long duration 
transfers, we took the minimum duration that was 
representative of a long duration transfer. So for most of our 
measurements we settled on a duration of 10 seconds. 

 

 

Figure 2: Iperf TCP throughput by measurement duration 
from SLAC to Caltech, Aug 23 2001 

As one moves to larger RTT bandwidth products, slow start 
takes longer (e.g. for a single stream from about 1s for a 
100ms RTT 100 Mbits/s link to about 5s for a 200ms RTT and 
1Gbit/s link). Thus more time (to get 90% of the throughput 
outside slow start one needs about 10 * the slow start time) 
will be needed for the throughput to reach a stable value and 
for the data transferred during slow start to be a small fraction 



 

(say < 10%) of the total data transferred. Such a long probe of 
50 or more seconds would not be net friendly. We are 
therefore investigating using Web100 [20] to look at how 
many bytes have been transferred over the last second, once 
the initial TCP slow start is over, and use this as an estimate of 
the stable throughput. We will report on the effectiveness of 
this in a future paper.  

C. Impact on CPU Utilization 

Fig. 3 shows the behavior of the ratio of measurement host 
MHz / iperf TCP throughput as a function of the speed (MHz) 
of the source. The utilization was obtained using the Unix 
"time" command and is the sum of the "system" and "user" 
times. The points are the medians for each complete set of 
measurements made with the various window sizes and 
streams. The error bars are the Inter Quartile Range for each 
complete set.  

 

 

Figure 3: Ratio of measurement host MHz utilization to 
Mbits/s transferred 

It is seen that there is a lot of variability in the observed 
values. More measurements would be needed to determine 
whether one OS is superior to another in terms of minimizing 
MHz/Mbps. The averages of the median values of MHZ/Mbps 
are: all 24 hosts = 0.89+-0.48 (13 Linux hosts = 1.05+-0..58, 
11 Solaris hosts = 0.68+-0.27). The information on the MHz 
necessary to support high throughputs is important to enable 
selection of the monitoring host hardware. 

D. Windows & Streams 

To determine the optimum window size and number of 
parallel streams for each site, we first configured the hosts to 
use the maximum buffer and window sizes recommended in 
[21]. Then we used iperf to send TCP bulk data for 10 seconds 
from SLAC to an iperf server at the remote host. For each site 
we used window sizes from 8kbytes to 4Mbytes, and for each 
window size we used different numbers of parallel data 
streams from 1 up to 120 to comprise each transfer. The 
sequences of window sizes and number of parallel streams 
were deliberately chosen so they did not monotonically 

increase or decrease. Simultaneous with the data transfer, we 
also sent ten 100 byte pings separated by 1 second, each with a 
20 second timeout. Following each transfer, we also sent 10 
more pings with no iperf transfer. The idea of the two sets of 
pings was to evaluate the RTT with and without competing 
iperf TCP transfers. We then plotted the throughput versus 
streams for each of the window sizes. See Fig. 4 for a typical 
example in this case from SLAC to ANL.  

It is seen that, for small window sizes, the throughput grows 
linearly with number of streams. On unsaturated links, we can 
use this feature to generate TCP traffic with a known load. As 
the window size increases (in this case beyond 64kbytes), the 
throughput begins to saturate as the number of streams 
increases. Since typical operating system default maximum 
window sizes vary from 8kbytes to 64kbytes, it is apparent, 
that in cases such as illustrated in Fig. 4, many streams may be 
required to achieve optimal throughput. We selected a 
windows streams combination that achieved about 80-90% of 
the maximum throughput measured, while minimizing the 
number of streams. We wished to minimize the number of 
streams since each stream consumes resources (memory, a 
process, and CPU cycles). 

 

 

Figure 4: Ten second iperf TCP throughputs from SLAC 
to ANL 

E. Impact on Others 

To investigate the impact of high bulk throughput 
measurements on other users, we used iperf to send TCP 
traffic from a Sun Ultra 2 running Solaris 5.8 to a similar host 
in CERN. Iperf was set to have 1024kbyte windows and 20 
parallel streams. We ran iperf in this fashion for 35 minutes 
from 12:26 April 25 2002, simultaneously measuring the ping 
RTT and loss (we sent a 100 byte ping once a second with a 
timeout of 20 seconds). While doing this we also observed the 
link utilization. The aggregate measured throughput from 
SLAC to CERN was about 120Mbits/s, which was close to the 



 

bottleneck bandwidth at the time. The ping loss was about 
0.15%, the minimum ping RTT was 166ms, the average was 
295ms and the maximum was 408ms. We followed this up by 
measuring the ping RTT and loss for 24 minutes without 
generating any iperf traffic starting at 13:02. In this case there 
was no packet loss, and the minimum RTT was 166ms, the 
average was 167ms and the maximum was 377ms. The effect 
on the ping RTT distributions is seen in Fig. 5. The triangles 
indicate the RTT with no iperf load, and the squares indicate 
the RTT with an iperf load. The bottom axis is the ping RTT. 
The lines on the graph represent the Cumulative Distribution 
Functions (CDF) and their axis is labeled on the right. 

 

 

Figure 5: Ping RTTs with and without simultaneous iperf 
load. The triangles indicate the RTT with no iperf load, 
and the squares indicate the RTT with an iperf load. The 
bottom axis is the ping RTT. The lines represent the CDFs. 

It is seen that the unloaded RTT is sharply clustered 
between 166 and 170 ms (the CDF indicates that over 95% of 
the measured RTTs are in this range), while the loaded RTT 
distribution is fairly flat for over 150msec above the minimum 
RTT. We are looking for ways to alleviate this effect. Some 
possibilities include using the QBone Scavenger Service 
(QBSS) [22], self rate limiting the application (i.e. enable the 
application to restrict its throughput), providing a feedback 
loop for the application by using Web100 to measure the RTT 
and/or retransmissions and using these values to adjust the 
application’s offered throughput. 

Another way of looking at the impact is to look at the 
Web100 TCP information such as the smoothed RTT, re-
transmissions or congestion events to understand the effect of 
the high throughputs. The points in Fig. 6 are the smoothed 
RTTs measured between SLAC and ANL for the iperf TCP 
throughputs shown in Fig. 4. It can be seen that there is little 
effect on the ping RTT until the throughput exceeds over 300 
Mbits/s. Above 330Mbits/s (~73% of the maximum 
throughput observed) the smoothed RTT can increase 
dramatically by over 250%. Further work is in progress to 

understand how this information may be used to steer 
applications.  

 

 

Figure 6: Web100 smoothed RTT vs. iperf TCP 
throughput from SLAC to ANL, Mar 31 2002. 

F. Comparing Throughputs from Measurement Probes 

We compared the iperf throughput with the minimum 
available predicted by pipechar. An example is shown in Fig. 
7. Since iperf is using TCP while pipechar uses packet trains, 
one might expect the agreement not to be excellent. In general 
the agreement is particularly poor for 6 hosts with throughputs 
above 100Mbits/s. About 50% of the hosts have reasonable 
agreement. Given these difficulties for high speed paths, and 
the time taken for pipechar to complete a measurement, we 
currently do not run pipechar as part of the standard suite of 
sensors.  

At higher bandwidths (> 100Mbits/s), the packet dispersion 
method requires increased accuracy (better than tens of 
microseconds) of the measurement clock. Packet dispersion 
techniques using host timings will probably also suffer badly if 
the network interface card (NIC) coalesces interrupts inbound 
or does buffering and fragmentation outbound. We also looked 
at using other variable packet size techniques such as pathchar 
[23], pchar [24], and pathrate [25] but they all took too long 
(minutes to hours) to make an estimate. Investigations with 
early versions of pathload [26} also indicated that it gave poor 
agreement with iperf TCP for rates above 150 Mbits/s. 

 



 

 

Figure 7: Pipechar estimates vs. iperf TCP throughput 

To determine the relative performance of a file copy 
application without having to account for effects such as disk 
performance, file system, caching etc., we compared iperf TCP 
throughput versus bbcpmem throughput. An example of a 
scatter plot for iperf TCP vs. bbcpmem measurements, made 
for 28 days starting October 11, 2002, between SLAC and 
about 30 remote hosts, is shown in Fig. 8. 

 

 

Figure 8: Bbcp memory to memory vs. iperf TCP 
throughput. 

It is seen that the correlation is very variable (the square of 
the correlation coefficient is R2 ~ 0.5). In some cases 
bbcpmem performs as well or even better than iperf, however 
in general it does not perform as well. The line shows a linear 
regression fit with the parameters y=0.53x. It is reasonable to 
expect the bbcp throughput to be less than that of iperf since 
iperf simply measures TCP throughput while bbcp is a secure 
copy program built on top of TCP. Bbcp also synchronizes the 
streams, so a slow down on one stream (e.g. due to congestion 
or packet loss) will cause others to slow down, whereas for 

iperf the streams are asynchronous. If the cause of the losses is 
not due to congestion and thus does not affect all streams, then 
the bbcp synchronization strategy will be disadvantageous. 
The points in a given cluster observed in Fig. 8, are usually 
associated with a given host. In fact, for many of the hosts, the 
correlation for that host is quite weak since the measurements 
all cluster around small ranges. Looking at the iperf frequency 
histogram (see Fig. 9), we also observe vertical lines just 
under 45Mbps, 100Mbps and 150Mbps where the constraint is 
probably network capacity related (i.e. T3, Fast Ethernet and 
OC3).  

 

Figure 9: Iperf TCP throughput frequency histogram. 

Disk to disk performance of bbftp and bbcpdisk is still 
under investigation [27]. The performance depends critically 
on caching, the file-system (e.g. local disk vs. NFS), when the 
file is committed, and the file size. Ideally we wish to measure 
the performance for a large file (Gbytes), since this is closer to 
the large data replication HENP applications we have in mind. 
However, transferring such files can take considerable time, 
can be very intrusive on the network, and disk space may not 
be available at the remote host to save the file. Reference [27] 
indicates that one can utilize a relatively small file (64Mbytes), 
committing the portion of the file remaining in the disk cache 
to the disk at the end of the copy, to obtain similar results for a 
much larger file (2Gbytes). We are therefore modifying the 
toolkit to use the “commit at end” strategy, and will report on 
the results at a later time. 

G. Forecasting 

To enable use of the measurements for guiding applications, 
we looked at how to forecast the throughput from existing 
measurements. We developed a very simple prototype that, 
given a time, provides the average and standard deviation of 
the previous few measurements. Five was selected as a 
reasonable compromise between enabling a reasonable 
calculation of the variation, reasonable smoothing over the last 
few hours, and the need to reasonably closely track the most 
recent results. An example comparing the actual vs. forecasted 
values for the SLAC to Caltech path is seen in Fig. 10. Besides 
being useful to assist applications, forecasting may also be 
useful to decide how often to make active measurements. For 
example, if the measurements are very consistent, then we may 



 

Figure 11: Time-series plots of iperf and bbftp throughputs from iGrid2002 to CERN, and also the ping average RTTs. 

not need to make a measurement as frequently as otherwise. 
We also calculated the average error for the above type of 
measurements as:  
  error=average(abs(forecast-observed)/observed)  
The average errors between the forecasted and observed 
values are shown in Table 1 for measurements, averaged over 
the previous 5 observations, for 31 remote hosts for measured 
between June 23 and July 4, 2002. 

Table 1: Average error between the forecasted and 
observed measurements. 

33  
hosts 

iperf 
TCP 

bbcp 
mem 

bbcp 
disk 

bbftp pipechar 

error 10% 17% 15% 16% 3% 
Stdev 8% 15% 13% 12% 3% 

 
It can be seen that, even with this simple forecasting 

method, reasonable agreement is achieved (better than 17% in 
most cases) for 90 minutes after the last measurement. We also 
tried using Exponentially Weighted Moving Averages 
(EWMA), i.e. the current average avgi is given by: 

avg i = (1 – w) * yi + w * avg i-1 
We found that for the data in Table 1, using w = 0.7, the 
average errors differed by less than 2%, or well within the 
standard deviations. Fig. 10 also shows the EWMA 
predictions. 
 

H. Patterns of Throughput Behavior 

The achievable iperf TCP throughputs (see the numbers in Fig. 
1) varied by more than a factor of 10 from site to site. By 
design, hosts with 1000GE NICs had higher speed connections 
(typically 622Mbits/s) to the Internet and, as expected, higher 
performance was observed. By using large windows and 
multiple streams we were able to measure throughputs of 
several hundreds of Mbits/s across both transcontinental and 
transoceanic links. 

 

Figure 10: Forecasting iperf TCP throughputs: observed 
(+), moving average of last 5 observed point (triangles with 
error bars) and EMWA predictions (x). 

 
Viewing our time series plots of the throughputs, we 

observe two major types of behavior that may overlap at times.  
1. Sudden step changes in throughput, as can be seen in 

Fig. 11 around September 19. These are usually 
associated with a network change, e.g. a new route, or 
a link upgrade. They may also be associated with a 
remote host change, e.g. a new CPU or a change in the 
Network Interface Card (NIC) used.  

2. Oscillations in the throughput on a daily basis, e.g. 
high throughput at night or weekends when there is 
lower utilization and congestion, and higher 
performance at other periods. We refer to the daily 
changes as diurnal variations. 

If the time series are fairly flat (e.g. there are only small 
diurnal changes) then sudden changes in throughput show up 
as multimodal peaks in histograms of the throughput. They 
also show up in the moving averages with large relative 
standard deviations for the set of points close to the change. 
 About 25% of the probes to target hosts exhibit large 
diurnal variations (such variations can, for example, be 
observed in Fig. 12). For such hosts we use a simple fit to: 

f(x) = abs(a) * sin(x + b) + c 

 



 

 
where x = time of day (in radians, i.e. start of day = 0, end of 
day = 2 * pi). We use as the least-squares fit starting   values, c 
= average throughput, a = standard deviation of throughput, 
and b = pi/2. This fit enables an easy characterization of the 
diurnal variability. The fitting can be further simplified, by 
noting that b (the phase angle) should stay fairly constant for a 
given site (if there is a diurnal variation then the 
busy/congested periods are likely to be the same from 
weekday to weekday). Fig 12 shows a least squares fit to iperf 
TCP data measured from SLAC to Caltech from October 11 to 
November 8, 2002, where the x axis is the time of day of the 
measurement, and the weekday measurements have been 
separated from the weekend measurements. Also shown are 
the curves (dashed lines) from simply using the starting values 
for a and c, and leaving b at the value found in the fit. It can be 
seen that we can do almost as good with the simple fit, and not 
have to resort to least square fitting techniques. The difference 
in the fitted value and initial estimate can be expressed as diff 
= abs((fit-initial)/fit) and yields median values (for 39 remote 
hosts) of < 2% for a and  6% for b. Since a and c are simple to 
estimate from the data, and b should stay roughly constant for 
a given site, this proves to be a simple method for quantifying 
the diurnal nature of the data.  

We have found that we can roughly quantify the 
“diurnalness” of the data for a given node by looking at the 
error on the fit parameter b (δb). In essence, δb determines 
how the diurnal nature of the data is clearly defined to allow b 
to be well determined. Values of δb of < 0.2 appear to indicate 
candidates for paths with large diurnal variations. We identify 
these large diurnal variations by eyeball by looking at a plot 
such as shown in Fig. 12. For Fig. 12 the values of δb are 0.04 
(weekday) and 0.1 (weekend). 

As expected, there is usually different and less diurnal 
variation for weekend data. We are looking at ways to fold the 
diurnal variations into the predictions, for example by 
predicting the value at some time, from the value at the same 
time a week ago. Though this may be less accurate than a 
prediction from more recent data, it may be of value if there is 
no recent data. 

 

Figure 12: Iperf TCP diurnal variations 

I. Passive and Active Measurements 

To validate whether the sensors were reporting the correct 
throughputs, we read the Netflow records [28] from a Cisco 
6506 containing an MSFC module for routing. The Cisco 6506 
is located at the SLAC network border and is connected to the 
outside world by 1 Gbits/s links, one to ESnet, the other to 
Stanford University and thence to CalREN. The methodology 
of collecting the Netflow records is described in [29]. A 
Netflow record includes the source and destination IP address 
and port 4-tuple (source IP, destination IP, source port, 
destination port), the protocol, the number of packets and 
bytes, the start and end times and active time for each 
flow/stream. The flows were sorted by source and destination 
IP address and start time. Flows with the same source and 
destination address that start within a few (currently we use 5 
seconds, but are experimenting with better ways to associate 
the flows) seconds of one another are assumed to belong to a 
given application process. In some cases we could use the port 
number to further refine this selection. Thus we could 
aggregate the throughput for the application instance as the 
sum of the bytes for all streams divided by the sum of the 
active times for all streams divided by the number of streams. 
Typically we see about 10-20K applications per day 
transferring greater than one Mbyte of data between 100 to 
300 different pairs of hosts. 

We then compare the passive Netflow throughputs, 
calculated as above, with the throughputs recorded by the 
associated active application (probe) by means of time series, 
scatter plots, calculating err = (passive-active)/passive and the 
correlation coefficient R. An example of a time series is shown 
in Fig. 13. Fig. 13 shows the time series of active and passive 
throughput measurements for iperf from SLAC to Caltech for 
28 days starting April 1, 2002. For this case the err = 2% and 
R=0.99 and the agreement is seen to be excellent. 



 

 

Figure 13: Example of time series of active and passive 
throughputs from SLAC to Caltech, Mar-Apr 2002 

The overall agreements, for the 28 days starting April 1, 
2002, are shown in Table 2 below. The ranges are the 25 
percentile and 75 percentiles. On average the throughput for 
each probe to each host was measured 279 times in that 
period. We excluded remote host-sensor combinations where 
there were fewer than 50 measurements. It is seen that in 
general the correlations are strong. The err ranges indicate that 
there is not an overall systematic difference between the active 
and passive measurements. For a given remote host-sensor the 
active measurements can be systematically greater (i.e. the err 
is negative) than the passive measurements and vice versa for 
another remote host-sensor. On average the bbftp active sensor 
reported throughputs 25% lower than observed by the passive 
measurement. The next section describes a series of 
experiments used to determine the causes of low correlation 
and large err.  In general the sign of the err would track for the 
bbcp and iperf measurements for a given host (i.e. if the iperf 
err was negative for a given host then the bbcp err would also 
be negative). The strongest correlations are for iperf followed 
by bbcpdisk. The bbftp correlations are generally much 
weaker. Typically the agreement is poorer for probes to target 
hosts with lower throughputs, and the disagreement for low 
throughput usually coincides with a negative err.  

Table 2: Errs and correlation coefficients (R) between 
active and passive measurements for throughput sensors 
for about 25 remote hosts seen from SLAC in April 2002 

Metric iperf 
TCP 

bbcp 
mem 

bbcp 
disk 

bbftp Over 
all 

err 
median 

0% -3.9% -5.0% 25% 2.0% 

err 
range 

-4.5%, 
2.0% 

-7.5%, 
5% 

-14.5%, 
2.5% 

21.5%, 
37.5% 

-7%, 
12% 

R 
median 

0.99 0.86 0.94 0.68 0.94 

R range 0.98, 
0.99 

0.8, 
0.98 

0.82, 
0.98 

0.39, 
0.89 

0.73. 
0.99 

Remote 
hosts 

27 24 23 23  

 

In general, there is excellent correlation between the active 
and passive iperf and bbcp measurements, and the errs are < 
5% for the majority of remote hosts. This agreement is 
important since it encourages us to include passive 
measurements into the throughput measurement database. 
Thus we now have an important extra (roughly 100-300 pairs 
per day) source of throughput measurements for pairs of hosts 
matching real use patterns, but which do not add any extra 
load to the network. 

J. Explaining Low Correlation 

We conducted another series of experiments in order to 
explain the cases where we saw low correlation and high err 
between active and passive throughputs [38]. We used 
Web100 data to calculate throughput in order to validate both 
passive and active measurements and determine where the 
discrepancies lie. We created correlation tables for comparing 
passive, active, and Web100 throughputs (while Web100 is 
technically “passive”, we refer to its measurements as Web100 
throughputs rather than passive to avoid confusion with our 
convention  of referring to Netflow throughputs as passive). 
These tables differ from the previous active-passive 
comparisons in that we consider three alternative formulas to 
calculate passive and Web100 throughputs: 1) Sum of the 
bytes/time for each stream, 2) Sum of all bytes in all streams 
divided by average stream time, and 3) Sum of all bytes in all 
streams divided by maximum stream time. We will refer to 
these as methods 1, 2, and 3. Previously, we exclusively used 
method 2 in our passive throughput calculations. 

Passive and Web100 throughputs are very highly correlated. 
The average correlation over all tests was 0.96 and the error 
was less than 0.03 for all tests. This is expected, as passive and 
Web100 throughputs both are calculated from “passive” data, 
only differing in where they get flow information. Web100 
exposes TCP variables in the monitoring machine’s OS, while 
Netflow data is retrieved from the Cisco 6506 switch. 
However, there were still cases where the correlation was low. 
Examining the stream-by-stream records, it was determined 
that one possible cause of the low correlation is Netflow 
occasionally reporting exaggerated stream elapsed times. For 
example, during a 15 second bbcpmem test run, Web100 
properly indicated an elapsed time of approximately 15 
seconds for each flow. However, Netflow records indicated 
that one of the flows was open for over 700 seconds. We refer 
to these flows as long flows. Long flows dramatically decrease 
the passive throughput calculation for a given day, thus 
decreasing the overall correlation between passive and 
Web100 throughputs. We can see the effect of long flows in 
Table 3. The table only contains entries for bbcpmem and 
bbcpdisk because long flows seem to occur during bbcp tests 
at a much higher rate than iperf and bbftp. Determining what 
causes certain tests to be more susceptible to long flows will 
require further investigation.  



 

Table 3: Effect of long flows on R and err for bbcp 

Web100 vs. Passive measurements 
bbcpmem bbcpdisk Freq. of 

Long flow R avg |err| avg R avg |err| avg 
<  1% 0.963 0.023 0.975 0.036 
>= 1% 0.856 0.125 0.859 0.054 

Active vs. Passive measurements 
bbcpmem bbcpdisk Freq. of 

Long flow R avg |err| avg R avg |err| avg 
<  1% 0.923 0.054 0.916 0.079 
>= 1% 0.793 0.112 0.842 0.103 

 
Active and Web100 throughputs were generally highly 

correlated with low error. However, for the bbftp test runs, the 
error averaged an astounding -0.48 and the average correlation 
was also slightly lower than the other tests(0.87). The high 
error is not too surprising, considering the way that bbftp 
actively calculates its throughput. Bbftp considers the elapsed 
time be the duration of the entire transfer, which includes a 
connection setup phase where certain bbftp parameters are set 
up and communicated between the two nodes. This phase may 
last up to a few seconds, which is significant considering the 
entire data transfer may last only 10 or 20 seconds. Our 
passive and Web100 calculations ignore these connection-
setup streams. However, bbftp does not ignore this time, thus 
its active throughputs are significantly lower than our passive 
and Web100 measurements. Bbcp and iperf active calculations 
do not include the initial handshaking, so this problem does 
not affect those tests. However, there were still cases where 
correlation was low for bbcp and iperf. One possible cause is 
lingering sockets. During some transfers, especially ones with 
a large number of streams, we noticed that socket connections 
may linger around for a few seconds before the OS can 
properly close them, even though the application already 
considers the connection closed. This will cause the active 
elapsed time to be less than the Web100 (or Netflow) elapsed 
time, which results in a lower throughput. The exact amount of 
lingering time most likely varies between different runs, thus 
adversely affecting the correlation. Further investigation 
should be performed to determine exactly how often this effect 
is observed and how much the lingering time varies. 

Active and passive throughputs were generally highly 
correlated with low errors, with occasional exceptions. Many 
of these exceptions are likely caused by long flows.  The effect 
of long flows can be seen in Table 3. Bbftp had a large error (-
0.42), just as in the active/Web100 comparison. This error is 
again due to the way bbftp measures elapsed time. This brings 
up another important factor to keep in mind when viewing 
active versus passive throughputs – we must consider the way 
the application calculates its active throughput in order to 
understand the correlation between active and passive 
throughputs. In Tables 4 and 5, which show the distribution of 

R and err across three different throughput formulas, we can 
clearly see that only method 3 gives high correlation and low 
error for bbftp. This is because only method 3 approximates 
the method that bbftp uses to calculate throughput. Method 1 
gives slightly better agreement than method 2 or 3 for Iperf, 
since Iperf essentially uses method 1 to calculate its active 
throughput. Method 1 also gives the best agreement for bbcp. 
This makes sense, since long flows affect methods 2 and 3 
much more than method 1. Methods 2 and 3 sum the total data 
and divide by average stream time and maximum stream time, 
respectively. Clearly, even one long flow will have a 
significant effect on the average/max stream time and thus the 
method 2/3 throughput as well. On the other hand, method 1 
sums the individual throughputs for each stream. If relatively 
few streams suffer from long flow, the overall sum is not 
affected too much. This allows method 1 to lessen the effect of 
long flows. 

Table 4: Distribution of R  (active vs. passive) 

 x-axis (R) ranges from 0 to 1 in intervals of 0.1 
 y-axis ( % of samples in the interval) ranges from 0 to 100. 
 

 Method 1 Method 2 Method 3 
iperf 

   
bbcpmem 

   
bbcpdisk 

   
bbftp 

   

Table 5: Distribution of | err | (active vs. passive) 

 x-axis (err) ranges from 0 to 1 in intervals of 0.1 
 y-axis ( % of samples in the interval) ranges from 0 to 100. 
 

 Method 1 Method 2 Method 3 
iperf 

   
bbcpmem 

   
bbcpdisk 

   
bbftp 

   



 

IV. CONCLUSIONS 

Preliminary results from IEPM-BW so far indicate: 
• Using a hierarchical infrastructure, where each monitoring 

host selects the target hosts to probe (as opposed to a full 
mesh measurement infrastructure), lends itself very well to 
the requirements of HENP where there a few major sites 
providing access to large amounts of data, and each major 
site often collaborates with a different set of remote sites. 

• Using standard operating systems (Linux and Solaris) for 
the monitoring and remote hosts enabled us to easily take 
advantage of new sensors and applications that in some 
case have not been ported to other operating systems.  

• We have found the ssh infrastructure, that enables 
automatically installing software and dynamically start/kill 
servers at remote sites, to be valuable for making one time 
measurements, in particular for validating new 
measurement tools. However scaling it to a large number 
of nodes in a grid layout may not be practical. 

• Not having a dedicated centrally managed standard 
monitoring host at each site has drawbacks in terms of 
having to support multiple configurations. This has 
required the development of remote installation tools and 
an extensive database to parameterize the remote host. 
The advantage, however, is that the procurement, 
installation, administration, control, security etc. of the 
remote host is left to the remote site. This in turn enables 
us to add a new remote host in a matter of hours from 
being given the account and password. Occasionally this 
leads to incompatibilities with IEPM-BW; however, in 
almost all cases this has not been a problem so far. 

• Reasonable estimates of throughput can be made in our 
case with 10-second iperf measurements. This is much 
shorter than it typically takes many bandwidth estimators, 
such as pipechar, to make an estimate. However, as the 
bandwidth RTT product continues to increase, either 
longer measurements will be needed or new methods need 
to be developed. 

• Roughly speaking, about 1 MHz of CPU cycles provide 1 
Mbits/s throughput on today’s CPUs and OSs. 

• Throughputs can vary by an order of magnitude with time 
of day or day of week etc. 

• The bbcp file copy rates from memory to memory are 
typically (25 to 75 percentile) in the range of 58% to 96% 
of the iperf TCP throughputs. 

• Disk to disk file copy rates are typically 90% of the 
memory to memory rates for rates below 60Mbits/s, 
Above 40-60Mbits/s performance can vary depending on 
disk/file system performance, caching etc. Un-cached disk 
performance for the remote hosts we were measuring to 
appears to top out at between 4 and 8Mbytes/s in most 
cases. 

• When running high throughput applications, the RTT for 
other users can be noticeably increased. 

• We are able to predict performance 90 minutes into the 
future with less than 20% error. 

• Passive Netflow measurements agree to within 5% with 
active measurements for most target hosts. Poor 
agreement can occur due to long flows or as a result of 
using a passive throughput formula that is inconsistent 
with the way a test program calculates its active 
throughput. 

• The toolkit has also been effectively used for high 
throughput demonstrations [30]. Currently the aggregate 
(i.e. the throughput if all the measurements were made 
simultaneously) iperf throughput from SLAC to its remote 
hosts is about 4.5Gbits/s. 

We plan to port the monitoring host toolkit to more sites. 
Initially, to preserve flexibility, each monitoring site is saving 
its own data, and performs its own extraction/analysis and 
reporting. We are working on making the data available via 
more standard publish/subscribe methods. As we increase the 
number of monitoring sites we will also need to pursue ways to 
provide probe timing control [31] to ensure the measurements 
do not collide with one another.  

We are working on evaluating other probes (sensors and 
applications) including pathrate, pathload, GridFTP [32], 
INCITE [33], and UDPmon [34], and hope to select a new 
recommended set of base measurement sensors. As part of this 
we will simplify the way in which new probes are added and 
their data analyzed and added to the reports. We also intend to 
replicate the measurements from a second host at SLAC using 
various experimental TCP stacks [35], [36], [37]. This will 
enable us to compare the performance of the stacks on a wide 
variety of paths.  

We will look at more sophisticated methods to make the 
forecasts, as well as how to insert our data into their 
infrastructure. We hope the forecast study will also help to 
optimize the frequency of measurements. In addition we are 
integrating Web100 into the measurements that, besides 
providing detailed information from TCP, may also help in 
optimizing the duration of measurements. The analysis of the 
active measurements vs. the passive measurements of users’ 
applications is just beginning and further understanding of 
discrepancies is needed. Further work could involve looking at 
the effects and applicability of compression, application rate 
limiting, and providing tools to assist in making applications 
such as bbcp network aware. 
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