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Abstract
We present a statistical analysis of the temporal and spectral properties of SASE radiation
from an energy-chirped electron beam passing through along undulator. It isfound that
the coherence time is independent of the chirp, while the range of spectral coherenceis
linearly proportional to it. We consider the use of a monochromator to pick out a small
temporal slice of the radiation output. For the filtered radiation pulse, we determine the
pulse duration, the number of modes and the energy fluctuation. We apply our analysis

to schemes proposed to generate short x-ray pulses at the LCLS.
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. INTRODUCTION

Single pass free-electron lasers (FELs) based on self-amplified spontaneous-emission
(SASE) are being developed as sources of high-brightness short-wavelength radiation. In
particular, an x-ray SASE FEL, the LCLS[1], isunder design at SLAC. Achieving very
short (femtosecond) pulse duration is critical to facilitating important areas of scientific
research at thisfacility. Generating short pulses by frequency chirping FEL output has
been discussed [2-4], and recently such a scheme has been proposed [5,6] to produce
short pulses at the LCLS. Theideaisto send an energy-chirped electron beam through
the long LCLS undulator to produce frequency chirped output. A monochromator is then
used to select a narrow bandwidth. Since the radiated frequency is correlated with the
temporal position along the pulse, a short segment of the original radiation is transmitted.
Thisideacan be applied in two ways: (1) in the single-stage approach, the saturated
chirped output from the full undulator is monochromated and the filtered radiation is
transmitted to the experiment; (2) in the two-stage approach, the unsaturated chirped
radiation from afirst section of the undulator is extracted and used as a seed in the second
section, whereit is amplified to saturation by its interaction with the electron beam.

In arecent LEUTL experiment at Argonne National Laboratory [7], properties of
chirped SASE were studied using the frequency-resolved optical gating (FROG)
technique. It was observed that the spikes in the SASE output have a positive frequency
chirp even in the absence of an energy chirp in the electron beam. It was also confirmed
that an electron energy chirp mapped directly into the frequency chirp of the FEL output,
and under proper conditions the two chirps were made to cancel each other within a
spike.

In this paper, we use the one-dimensional FEL equations (neglecting dependence on
transverse coordinates) to analyze the temporal and spectral properties of unsaturated
frequency-chirped SASE generated by an energy-chirped electron beam. We
characterize the statistical properties of the radiation, determining the coherence time and
the range of spectral coherence. For thefiltered radiation at the exit of a monochromator,
we determine the pulse duration, the coherence time and the pulse energy fluctuation.

Therms pulse duration o; after amonochromator with rms bandpass o, is found to be

given by



2 0'3,+0',%+ 1

O-t = 2 )
u 4o,

(1.1)

where u= Aw/ At isthe frequency chirpand o, isthermsSASE bandwidth. This
result extends that of refs. [5,6] by including the dependence on the SASE bandwidth

0 4, Which limits the minimum duration that can be achieved for a given electron energy
chirp. Before saturation o, decreases as the electon beam travels along the undul ator.

Therefore shorter pulse duration can be obtained further downstream. In Fig. 1, we show
the dependence of the pulse duration on the monochromator bandpass and the electron
energy chirp near saturation where the SASE bandwidth is minimum. The results
presented in this paper will be important for frequency chirped SASE FELs and for
schemes using a monochromator to reduce the output pulse duration.

25 | 7
20
ﬁ15L//
10 | |
) b
5,
C
0. ‘
0 1 2 3 4 5
Om 4
—  (x10%)
Wo

[0}
Fig. 1. For LCLS, we plot the rms pulse duration o; of the 1.5 A (wo =1.2x10% s‘l)
radiation after a monochromator with rms bandpass o,/ g for a(full) energy chirp

across the 230 fs e ectron bunch of: (a) 0.5% as considered in refs. [5,6]; (b) 1% as
considered in the LCLS conceptual design report [1]; and (c) 2%. The SASE gain

bandwidth is taken to be o,/ @y =5 104, whichisthe value (equal to the Pierce

parameter) expected near saturation.



II. CHARACTERISTICS OF FREQUENCY CHIRPED SASE

Consider an electron beam passing through an undulator having period A,, =2z / ky,and

rmsfield strength parameter a,,. The jth electron hasenergy 7 (in unitsof itsrest

2
mass), average longitudinal velocity v = c[l— 1; aZW ] and arrives at the undulator
Vi

entrance at time t; . Inthe forward direction, the spontaneous radiated electric field has

theform

E@zt)e Y eikiz‘i‘”i(t‘ti)sj (zt-t;), 2.1)
j

where the wave number of the radiation from the jth electronis

i Vi 27k
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and the envelope function S; is given by
z
s(zt-t;) =1 E<t—tj<q,
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=0, otherwise
In this paper, we shall suppose the electron beam energy to have alinear chirp o
specified by [5,6]

1 (2.4)
Y0 Ty

where Ty, isthe full temporal width of the uniform density electron pulseand ct; isthe
longitudinal deviation from the beam center t; =0. From Eq. (2.2), we see that the

energy chirp givesriseto alinear frequency chirp

@j = dg+Uutj, (2.5)

where u = 2aawg /T, .



In the exponential growth regime before saturation, the SASE electric field has the

form

E(Z,t)ocz eiij—iwj(t—tj)g(z’t_tj;u)’ (26)
i

where the green’ s function can be approximated by (see Appendix A),

2
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We are ignoring the small reduction in gain [5,6] which entersin O(uz). InEq. (2.7), p

is the Pierce parameter and o, isthe SASE gain bandwidth,

o2 = 33 paR. (2.8)
KwZ

The complex parameter bis defined by

_3(q4 )42
b_4(1+ \/éjaw. (2.9)

The group velocity is vg = and the electron velocity corresponding to energy

Ko+ kw

} =708 Vo =ag/(ko+ky).
In the case of spontaneous radiation, the jth electron emits a wave packet of
frequency @ = ag + Ut , as exhibited in the phase factor in Eq. (2.1). Thisgivesriseto

an overall frequency chirp of the output radiation. The individual wave packets are not
chirped, since in spontaneous radiation each electron radiates independently and is
unaffected by the difference in energy of its neighbors. See Fig.2. In the case of SASE,

there s again the dependence of frequency on arrival time, wj = g+ Ut; , as expressed

in the phase factor in Eq. (2.6). Thisresults from the dependence of frequency on energy
of theinitial spontaneous radiation emitted early in the undulator which is amplified in
SASE. Inaddition, the frequency chirp in SASE also appears in the green’s function of
Eq. (2.7), since the gain process depends both on the emitting electron and those

electrons located one dlippage distance ahead of it. In fact, the imaginary part of the



parameter b in Eq. (2.9) givesriseto afrequency chirp of the SASE wave packet
associated with each electron, even in the absence of an energy chirp of the electron
beam, as observed inref. [7]. See Fig.3.
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Fig. 2. Time-frequency phase space for: (a) spontaneous radiation with no electron
energy chirp; and (b) spontaneous radiation with positive electron energy chirp. Thelittle
rectangles correspond to the wave packets emitted by three representative el ectrons.
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Fig. 3. Time-frequency phase space for SASE with: () no electron energy chirp; (b)

positive electron energy chirp; (c) negative energy electron chirp chosen to cancel
intrinsic SASE frequency chirp asin ref.[7]. The little rectangles represent the wave

packets associated with three representative electrons.



To analyze the statistical properties of the chirped SASE output, we consider the

arrival times t; to be random variables and average over the stochastic ensemble [8-10].

We find the time correlation function is given by (see Appendix B)

—-iut( z z
<E(Z,t—;)E*(z,t+;)> - e2p\/§ KyZ ez("()+CJei (g +ut)r e—of, 72 /2 (2.10)
and the coherence time [8-10]
< r A
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Note that the coherence time is given by the inverse of the SASE gain bandwidth,
independent of the electron energy chirp.
The frequency correlation function can be determined in terms of the time correlation

function according to

<I§(z a))l~E* (z 0+ Q)> = jdtei ot '[dr e‘i("”gxt”)(E(z,t)E* (zt+7)) (212
and using Eq. (2.10) one finds
_ofz z) o _059°
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The range of spectral coherence is given by

E[z,w—)lg*(z,a)+)>
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In the absence of the frequency chirp, Q.o =22 /Ty. In this paper, when we consider a
: 2n
chirped electron beam, we assume |ulzop >> BN
b

The Wigner function[11] is defined by



W(zt,0)= Jdr<E(z,t—%)E*(z,t+%)> el (2.15)

It can be thought of as analogous to a phase space density (Fig.4) of the radiation and one

can easily show that
SLWto)=(E@)) (2.16)
27

and

_ 2
Jdtw(zto)=(|Ez wi : (2.17)

From Egs. (2.10) and (2.15) one finds

2 Vo C
. (2.18)

W(zt,m )< 2P 3Kz exp —
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Fig. 4. Time-frequency phase space for chirped radiation.

The following intuitive picture has emerged. Before chirping the e ectron beam, the
radiation occupies a phase space area o, Ty, . Introducing an electron energy chirp results
in afrequency chirp of the radiation, but leaves the phase space area unchanged, still

equal to 0, Tp. The number of modes M [8,9] in aradiation pulseis given by



Ti _ Owa

M=—-= : (2.19)
Tcoh Jr
independent of the energy chirp. For the unchirped electron beam,
M = 2700 _ 270, (2.20)
Qcoh 2r [T,

In the case of the chirped electron beam, the width of the frequency distribution is uTy,,

and one can write

_ |U|Tb _ UTb

M .

(2.21)

I11. PULSE SLICING USING A MONOCHROMATOR

One can use a monochromator to select a short portion of the frequency chirped radiation
pulse. In order to investigate the properties of such filtered output, let us assume that the
electricfield Eg (t,z) after the monochromator has the form

_ (w_ Om )2

Lo~ 2
Er (z1)= jfz’_fe—'wt Ezo)e “om | 3.1)

where Ig(a) z) isthe Fourier component of the electric field before the filter. The
temporal profile of the intensity after the monochromator can be found in terms of the
frequency correlation function from the relation
(Ep (zt)Eg * (zt+7))
_(a)—a)m)2 _(a)+Q—a)m)2
_rdw a0ty 402, fd_Qei(aHQ)(tﬂ') e 462, <I~E(z,a))l~5* (Z,(U+Q)>

- -[ 3 2r
(3.2
Using Egs. (2.13) and (3.2), we find
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where
t(2) = Ym = +1(i+5} (3.4)
u 2\Vvp ¢C
The pulse duration is characterized by the rmswidth o; given by
2, .2
2_0Opt+om 1 (3.5)
m

From Eq. (3.5), it is seen that the pulse duration cannot be made smaller than o, /u,

which is also apparent from the phase space geometry shown in Fig. 4. Thelast termin
Eq. (3.5) assures that the filtered pulse cannot be shorter than the Fourier transform limit.

The minimum pulse duration is obtained for monochromator bandwidth

Om _ | M

p 20)
This corresponds to a minimum rms pul se duration,
2
o, +|U
(Ut )min = a;2| | . (37)

The fractional shot-to-shot energy fluctuation oy /W after the monochromator can be

expressed in the form [9]

~ 2 ~ 2
, Jda)da)’ EF(z,a)* E,:(z,a)# |gl(z,a),a)’}2
\Tvv\é: - : - 5 , (3.8
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where
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The second equality in Eq. (3.9) follows from Eq. (2.13)and (3.1). We also know that
_ (w_wm )2

2
- 2
EF(z, wi <e 20m (3.10)

Inserting Egs. (3.9) and (3.10) into Eq. (3.8), we find
2

oW _ Y _ 1 (3.10)
w2 \/u2+40§10§, Me
where
2 2
M, =[2n% 1 (3.12)
u

is the number of modes in the pulse after the monochromator.
The time-correlation function of the filtered radiation can be calculated using Eq.
(3.2), and one finds

5 2
omT
[t—tm(z)—lm}
2.2 u
ontt -

Lo - 2
<E,:(z,t—%]E,:*(z,t+%]>oceZP‘EkWZe'mee 2 e 20 . (313

The coherence time of the radiation after the monochromator is

(e gl (5] e

(Er (2 t)ER* (2 1)) ‘ MEg

2

Teon = [ d7 (3.14)
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V. SHORT X-RAY PULSESAT THE LCLS
We consider the linac coherent light source (LCLS) [1] under design at SLAC. The

fundamental wavelength of this SASE FEL is 1.5 Z\correspondi ngtoay = 1.2x10 s,

The SASE bandwidth near saturation is approximately givenby o,/ wg = p = 5x1074.
The electron bunch has a FWHM duration of T, =230fs. A one-percent energy chirp

across the electron bunch, o =.01, corresponds to a frequency chirp

u=Aw/At =7x10"2w8 . The coherencetime 7y, =77 /0, =.3fs and the range of

spectral coherence Qqgn = UTgon = 2.5% 10‘5500 = 6><10‘20w.

From Eq. (3.6), we see that the minimum pulse duration is obtained for

Om_ |L|2:6><10‘5. (4.1)
@\ 2a4

Using Eq. (3.7) and the fact that |u| << ag,, the corresponding minimum rms pulse

monochromator bandwidth

duration is found to be

O )i = TTT —6fs. (4.2)

The temporal coherence time near the minimum pulse length is [from Eq. (3.14)]

Jr

Teph = —=2.5fs | 4.3
coh O ( )

and the spectral coherence range is unchanged by using the monochromator,

Jrl x
Qeoh = | | =—. (4.9
Oy Ot
The number of modes at the minimum pulse duration is
MFZZ\/EUtEZUmGwzg’ (4.5)
Tcoh |U|
corresponding to afractional energy fluctuation
Ow _ 1 33y (4.6)
w Mg
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Asseenin Fig. 5, the minimum of o; asafunction of o, isbroad, soitisfeasibleto

choose the monochromator bandwidth larger than the optimum value in order to increase

the number of modes M g and thus decrease the pulse energy fluctuation oy /W .
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Fig. 5. For LCLS, we plot the rms pulse duration o; and the number of modes M g of

the radiation after a monochromator with rms bandpass o,/ &g for a (full) energy chirp

of 1%. The SASE gain bandwidth istaken to be o,/ ay = 5x10™* , which is the value

(equal to the Pierce parameter) expected near saturation.

V.SUMMARY AND DISCUSSION
We have carried out a statistical analysis of the temporal and spectral properties of SASE

from an energy-chirped electron beam passing through along undulator, characterizing
the radiation both before and after a monochromator used to select a short duration slice
of the radiation pulse. In our study, we have considered the number of modes M in the
radiation using the definition found in Goodman [8]. That is, the number of modesis

2

defined in terms of the pulse energy fluctuation M EW—Z. If Ty isthe (full) duration of

Ow

the pulse having step function profile, then Goodman defines the coherence time by
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Teoh = To . Another quantity of interest is the number of spikes observed in the SASE
M

output. Inref.[10], it was shown that for unchirped SASE the number of temporal spikes
is Ng=0.711M , where following Rice[14], the temporal spikes were characterized by

the existence of local maxima of the intensity. If we define the full spectral width to be
Aw=2y/7c, then the number of spectral peaksis[10] 0.641M .

A summary of some of our resultsisgivenin Table 1. In thistable the filtered

. . u
quantities are evaluated near the pulse length minimum, when o, = \/g << 0, . Also,

whenever the temporal or spectral distribution is Gaussian with rms deviation o , we

choose the “full width” to be 27z o .

Table 1. Properties of Unchirped, Chirped and Filtered SASE

Unchirped Chirped Filtered
Pulse duration Ty Th 27 04|l
Coherencetime NE Jrio, Jrlopn
Number of modes | 1.5 /./x Too /N7 200 4 ||
Spectral width 2Jr o, ufTy, 2Aron
Spectral coherence | 2z /T, Jz|/ o, NET e
range

As seen from Eq. (1.1), the minimum pulse duration after the monochromator cannot

be [ess than aw/|u| . Since o, o< 1 , shorter pulse duration is achievable for larger z

Jz
(before saturation). This has implications for the optimization of the two-stage approach.
Moreover, inclusion of three-dimensional effects may be important to obtain accurate
estimates for the SASE bandwidth and hence the minimum achievable pulse length.

14




ACKNOWLEDGEMENTS

Z.H. wishesto thank E. Saldin and S. Reiche for stimulating discussions on the
monochromatization of chirped SASE. Thiswork was supported by Department of
Energy contracts DE-AC03-76SF00515 and DE-AC02-98CH10886.

REFERENCES

[1] J. Gaayda, ed., Linac Coherent Light Source Conceptual Design Report, SLAC-R-
593 (2002).

[2] G.T.Moore, Nucl. Instrum. Meth. A272, 302 (1988).

[3] L.H.Yu, E. Johnson, D. Li, D. Umstadter, Phys. Rev. E49, 4480 (1994).

[4] C. Pélegrini, Nucl. Instrum. Meth. A445, 124 (2000).

[5] C.B. Schroeder, C. Pdlegrini, S. Reiche, J. Arthur and P. Emma, Nucl. Instrum.
Meth. A483, 89 (2002).

[6] C.B. Schroeder, C. Pdlegrini, S. Reiche, J. Arthur and P. Emma, J. Opt. Soc. Am.
B19 (2002).

[7] Y.L.Li,J Lewellen, Z. Huang, V. Sgjaev and S. Milton, Phys. Rev. Lett. 89,
234801-1 (2002).

[8] JW. Goodman, Satistical Optics, John Wiley & Sons, New Y ork (1985).

[9] E.L.Sddin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers,
Springer-Verlag, Berlin (2000).

[10] S. Krinsky and R.L. Gluckstern, Nucl. Instrum. Meth. A483, 57 (2002).

[11] K.J. Kim, “Characteristics of Synchrotron Radiation” in Proceedings U.S Particle
Accelerator School-1987, edited by M. Month et a, AlIP Conference Proceedings
184, New York: American Institute of Physics, 1989, pp. 565-632.

[12] S.O Rice, Bell System Technical Journal 24 (1945) 46.

[13] K.J. Kim, Nucl. Instrum. Meth. A250, 396 (1986).

[14] JM. Wang and L.H. Yu, Nucl. Instrum. Meth. A250, 484 (1986).

15



Appendix A: VLASOV-MAXWELL EQUATIONS

We shall now derive the approximate expression for the green’s function presented in
Eq. (2.7). Theradiated electric field E is expressed in terms of the slowly varying

amplitude A according to E = Aexp(ikgz— gt ). We introduce the dimensionless
variables Z =kyz, 6 = (kg +ky )z—agt, and p=2(3 —79)/ 79, and the electron

distribution function w (6, p,Z). The one-dimensional, linearized Vlasov-Maxwell

equations are [13,14]
W, po¥ _232 (Aei9+A*e—i9 Wo _q (A1)
oZ 0 ¥§ ap
Jd d Dy _-ie
—+— |A=—¢€ dpw (6, p,2Z), A2
(az+a¢9) . [dow (6, p.2) (A2)
with (mks units)
eayno[J] eay [ ]
D= WOl ond D,=—Wd (A3)
L 2k, 27 2k, me2
al, a
Nois the electron beam density and [JJ]= Jof —=*—— |- Jyf —*>— |. The
2(1+ay) 201+ ay)
equilibrium distribution of the chirped electron beam is taken to be
o =3d(p+ubp), (A4)
where
6o=6-pZ and p=ulag . (A5)

We can solve the Vlasov equation (A1) for the distribution in terms of the field
and insert the result in the Maxwell equation (A2) to obtain the dispersion relation

[6]. Assuming uZ <<1, we derive

N

J . 9 Dixe 10+HLZ0; oy o), £ (7 o N (Z-2)
(az+ae)A 7021:e i*#2% 500 01)+|(2p)3.(£dZ(Z Z)A@®,2")€ ,
(A6)
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2D,D
where 6; =-agtjand (2p) = =2

. This equation can be solved by Laplace
}’o

transform. We define

f(6,s)= sz e A06,2). (A7)

Then Eq. (A6) reduces to the following ordinary differential equati on

g%iyi@”3}_A@m+ Z e olo-0;) (A8)

(s—iud) S—iu;

whose solution is

(s—iub)s—iu®)

f6.5)= (} de’ exl{—8(9—9’)+ i2p)(6-6) J[A(H’,O)+%zm

e 0 S—iub;
(A9)
The field is then determined from the inverse Laplace transform
A@®,Z)= jﬁ e £(8,s). (A10)
2ri

We restrict our attention to the case of SASE and take A(6,0)=0. Then one can
derive

i2p)(0-6;)
A(H,Z):%Ze‘iei Ho-0;)f _ds(s+iu0; Jz-0+0; ) Slo-iu0-6)))
0

- (A11)
c 27is

where H (6) isthe Heaviside step function equal to 1 for 6 >0and to Ofor 6 <O0.
It then follows that

E=Ad©-2)
32 0002047 9 .: ) (A12
0]
DlZ ilk; z-o; )]g(Z,B—ej;ﬂ)
70

where
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L d i(2p)6
9(Z,6;1)=H (G)J:Zﬁ—sisexp[s(z _9)+S(s+ﬂ9)} (A13)

We estimate the contour integral in Eq. (A13) by a saddle point approximation. The
saddle point is determined as a power seriesin . Keeping only the linear term we
find

_ 962137 iu
9(Z,6; )= P34z pbi3+) 4z e2(Z 0)9. (A14)

We are ignoring the small reduction in gain [5,6] which entersin O(yz). Thisisthe
result used in Eq. (2.7).

APPENDIX B. TIME CORRELATION FUNCTION
Consider the electric field to be determined by Egs. (2.6) and (2.7), with

@j = wp+utj. Weaverage over the independent random variables t; and use

<eiatj >: 0 to derive

(E(Z)E* (zt+7)) o
2

(Y )2 _ufz 2 —(o+b*)| t-t; -2 | —2brr|t-t, - %
eZp@szei(wowt)re [b |2)1 e 2[V0+CJTZe( )( J VgJe [ " vy

j
(B1)

Replacing the sum by an integral over t; , wefind
<E(z,t)E*(z,t+r)>oceZp‘@kWZe 2 Vo g 2)) e 2 . (B2)

Theresult of Eg. (2.10) follows immediately.
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