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Abstract

Future linear colliders may require a nonzero crossing angle between the two beams at the interaction
point. This requirement in turn implies that the beams will pass through the strong interaction region
(IR) solenoid with an angle, and thus that the component of the solenoidal field perpendicular to
the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence
of a crossing angle will cause optical effects not observed for beams passing through the solenoid
on-axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects.
For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at
the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth
due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the
solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed
linear collider detector solenoid configurations are presented.
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Future linear colliders may require a nonzero crossing angle between the two beams at the interac-
tion point. This requirement in turn implies that the beams will pass through the strong interaction
region (IR) solenoid with an angle, and thus that the component of the solenoidal field perpendic-
ular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the
presence of a crossing angle will cause optical effects not observed for beams passing through the
solenoid on-axis; these effects include dispersion, deflection of the beam, and synchrotron radiation
effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly
cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size
growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the prod-
uct of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on
proposed linear collider detector solenoid configurations are presented.

I. INTRODUCTION

In order to meet the goals of particle physics experimenters, a future linear collider must achieve a
luminosity in excess of 1034cm−2sec−1 and a center-of-mass energy between 500 GeV and 5 TeV. In
addition, both engineering and other limitations will prohibit such a facility from consuming more
that a few hundred megawatts of electric power. Meeting the specifications of the experimenters
within such a tight energy budget can only be done by accelerating a long train of bunches on each
RF pulse and reducing the RMS size of the beam at the collision point to a few hundred nanometers
in the horizontal and a few nanometers in the vertical. The Next Linear Collider (NLC), for example,
can achieve a luminosity of 3×1034cm−2sec−1 at 1 TeV in the center of mass by accelerating 0.75×1010

particles per bunch, 192 bunches per train, 120 trains per second, and colliding 219 nanometer by
2.3 nanometer (RMS) beams at the IP. Each bunch train is 268 nanoseconds long; therefore the
spacing between bunches in a train is 1.4 nanoseconds [1].

Because the beam density at the collision point is so high, the beam-beam focusing effect is very
strong. As a result, the beams which emerge from the collision have a much larger angular divergence
than the beams which enter the collision, and appropriate stay-clears for the outgoing beam are
required. In the case of the NLC, the incoming beam divergence is approximately 20 microradians
RMS in both horizontal and vertical; the stay-clear requirement for the outgoing beam is defined by a
cone of “beamstrahlung” photons which contains approximately 1 megawatt of average power within
an RMS angular divergence of 100 microradians (horizontal) by 50 microradians (vertical) [2]. An
additional constraint on interaction region design is that parasitic collisions between the two beams
must be avoided. In the case of the NLC, both of these issues – parasitic collisions and providing
adequate aperture for the outgoing beam – can be addressed by introducing a small crossing angle
at the IP. By colliding the beams at an angle of 20 milliradians, the transverse offset at the first
parasitic collision can be made so large that the beams essentially do not influence one another, and
the outgoing beam can exit through a beampipe with a larger aperture than the incoming beamline.
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An alternate approach to managing the pathologies of high-luminosity collisions is to dramatically
increase the spacing of bunches within a single train. Such a design choice permits head-on collisions
if the vacuum chamber through the final lenses in the detector is large enough to accommodate the
disrupted outgoing beam. For example, the TESLA superconducting linear collider design stipulates
an intra-bunch spacing of 337 nanoseconds [3] and a relatively large final doublet aperture radius
of 2.4 centimeters [4]. Unfortunately, such a large intra-bunch spacing is out of the question for
a room-temperature linear collider. In addition, collisions at a center-of-mass energy significantly
above 1 TeV will result in substantial pair production through coherent processes. The particles
generated in this way will have energies far below the energy of the beam, and they will leave the
collision point with angles on the order of milliradians. It is not possible to remove these particles
from the detector through the quads used to focus the incoming beams; a quad-free exit hole with
an acceptance of at least several milliradians is required to safely remove both the high-energy spent
beam and the low-energy pairs from the detector. Consequently, a linear collider with a center-of-
mass energy over 1 TeV will almost certainly require a crossing angle, no matter what the choice of
accelerating technology [5].

If the particle physics detector is positioned symmetrically with respect to the two beams, then
each beam will travel with an angle θc with respect to the detector’s longitudinal axis, as shown
schematically in Figure 1. As a result, the beam will pass through the detector solenoid at an
angle. This has two effects: the beam has a small angle with respect to the longitudinal field of the
solenoid, and the beam is far from the solenoid’s axis when it passes through the fringe field at the
end of the solenoid. Both of these effects cause the beam to encounter a nonzero vertical bending
field. As a result, the beam is deflected vertically from its original trajectory as it passes through
the solenoid. Because particles at lower energies experience a larger deflection than those that are
at relatively high energies, the deflection gives rise to a vertical dispersion. Finally, the beam will
emit synchrotron radiation as it is deflected. All of these effects are potentially deleterious: the
deflection can cause the two beams to miss at the nominal collision point; dispersion can cause the
beam size to increase; and synchrotron emission in a dispersive region can cause irreversible growth
in the IP spot size. Because all of these effects operate in the vertical plane, and the vertical beam
size is typically much smaller than the horizontal, the impact of the solenoid on the luminosity can
be especially severe.

In this paper, we estimate the impact of these effects in the case of a beam with energy E, magnetic
rigidity Bρ, and Lorentz factor γ ≡ E/mec

2 as it passes through a pure solenoid with angle θc relative
to the solenoid axis (thus θc is half the beam-beam crossing angle). The solenoid is assumed to have
a design field of B0 at the collision point, and the collision point occurs at the symmetry point of the
solenoid. Our coordinate system is chosen such that z ≡ 0 is at the center of the solenoid, and z > 0
along the path of the beam (i.e., the beam has a velocity which is negative in this coordinate system).
In general we assume the particles of interest are positrons, to simplify the selection of signs. The
focusing effect of the solenoid is typically quite weak for the parameters of a linear collider, and is
neglected here.

II. OPTICAL EFFECTS

In the simplest model of a detector solenoid – in which the solenoidal field is uniform and longi-
tudinal, ~B = B0ẑ, for z < zmax and falls instantly to zero for z ≥ zmax – the vertical deflection of a
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positron beam at any point z0 ≤ zmax is given by:

y(z) =
∫ zmax

z
(z′ − z)y′′(z′)dz′ (1)

=
1

2

B0 sin θc

Bρ
(zmax − z)2.

In the absence of transverse focusing effects, the dispersion function, ηy(z), is equal and opposite to
the deflection: ηy(z) = −y(z).

A somewhat more accurate model of the solenoid includes the fringe field, Br(r, z), and a non-
uniform longitudinal field Bz(r, z). For the coordinate system and conventions used in Figure 1, in
which Br and Bz are both positive and r(z) ≡ z tan θc, Equation 1 can be rewritten as:

y(z) =
1

Bρ

∫ ∞

z
(z′ − z) [sin θcBz(z

′ tan θc, z
′)− cos θcBr(z

′ tan θc, z
′)] dz′. (2)

Equation 1 shows that the fringe field acts to reduce the total deflection of the beam. In fact, the
deflections due to the fringe field and the longitudinal field of the solenoid will exactly cancel at the
collision point if the beam enters the solenoid through the “endcap” and not the “barrel” (i.e., the
beampipe does not pass between the windings of the solenoid).

A. Cancellation of the Deflection

Conceptually, the simplest refinement to the “hard-edged” solenoid model which includes the
solenoid’s fringe field is shown in Figure 2: as before, the magnetic field is uniform and longitudinal,
~B = Bz ẑ for z < z0 and ~B = 0 for z > z0; the one change from the “hard-edged” model is a radial
field with magnitude Br(r, z) which is confined to a region of length dz at z = z0. The integral form
of Gauss’ law of magnetostatics can be applied to a cylindrical pillbox at z = z0, with length dz and
radius r (henceforth the pillbox shall be referred to as volume V ). Gauss’ law in this case requires
that:

∫ 2π

0
dψ

∫ r

0
dr′ r′ Bz(r

′, ψ, z0 − dz/2) =
∫ 2π

0
dψ r dz Br(r, ψ, z0), (3)

where we have used ψ as the azimuthal variable. By construction, Bz is a constant at all points
between z = 0 and z = z0, so the left hand side of Equation 3 is easily evaluated. If we require that
V be centered on the axis of the solenoid, then Br is required to have azimuthal symmetry, which
permits the integral on the right hand side of Equation 3 to be completed by inspection. Thus,

πr2Bz = 2πr dz Br(r, z0). (4)

By cancelling common factors and substituting a value of z0 tan θc for r, we can find a useful relation
between the radial field and the longitudinal field experienced by a beam passing through the solenoid
with an angle θc relative to the axis:

Br(r = z0 tan θc, z0)dz =
1

2
z0 tan θcBz. (5)

We can now evaluate the deflection of the beam at the IP resulting from the radial field at z = z0

and the corresponding longitudinal field which fills the space from z = 0 to z = z0. We can rewrite
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Equation 2:

y(z = 0) =
1

Bρ

[∫ z=z0

z=0
dz′z′ sin θcBz − z0 cos θcBr(r = z0 tan θc, z0)dz

]
. (6)

Equation 6 can be simplified by using Equation 5 to eliminate Br(r = z0 tan θc, z0)dz from the second
term on the right, and by moving constants out of the integral in the first term on the right:

y(z = 0) =
1

Bρ

[
sin θcBz

∫ z=z0

z=0
dz′z′ − 1

2
z2
0 cos θc tan θcBz

]
(7)

=
1

Bρ

[
1

2
z2
0 sin θcBz − 1

2
z2
0 sin θcBz

]

= 0.

We can extend our result from this somewhat idealized situation to a real detector solenoid by
noting that the real radial field of the solenoid along the beam trajectory, Br(r = z tan θc, z), can be
expressed as a superposition of longitudinal slices of the form described above. Each longitudinal slice
of radial field is accompanied by a change in the longitudinal magnetic field which satisfies Equation
5; the combination of the radial field and the change in the longitudinal field will cancel for each slice
of radial field, thus the total deflection from all slices is also zero. Note that if the beampipe passes
between the windings of the solenoid, one of the conditions of the preceding derivation (specifically,
a uniform value of Bz downstream of the slice of radial field) cannot be satisfied and therefore the
derivation holds only for beams which enter the solenoid through the “endcap” region.

In an actual linear collider installation, the ideal solenoidal field depicted above will not be achiev-
able and therefore some residual offset will be present at the IP. Effects which will break the re-
quired symmetries include dipole steering magnets in the solenoid, insertion of quadrupoles into
the solenoid, and asymmetries in the detector endcaps. The steering from these perturbations is
nonetheless much smaller than what would be expected in the case where the cancellation between
the fringe and longitudinal fields is not taken into account.

B. A Note on Colliding Beams

The calculations above have all shown the dynamical effects of the solenoid on one beam entering
from z > 0 and approaching the IP. For the purposes of luminosity production, the interaction of
the other beam must be considered as well.

The colliding-beam case is shown in Figure 3. The symmetries of the solenoid dictate that the
fringe field on the z < 0 side of the detector will have the same effect as the fringe field on the
z > 0 side for beams of like charge. Thus, if the fringe field on the z > 0 side of the detector deflect
positron beams down and electron beams up, the fringe field on the z < 0 side will also deflect
positron beams down and electron beams up. The longitudinal field obeys the same symmetry.

In the case in which positrons enter from z > 0 and electrons from z < 0, and assuming a field
map as shown in Figure 4, the positrons will be deflected down and back up, the electrons will be
deflected up and then down, and the beams will collide at z = 0. In this case, each beam has a
vertical angle with respect to the solenoid’s axis, but the beams collide head-on – their angle with
respect to one another is zero. If instead the collision is electron-electron, both beams will be bent
up and then down to collide, but in this case the beams will collide with a vertical crossing angle.
In the case considered here, the crossing angle is 68 microradians for 1 TeV CM, and is inversely
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proportional to the beam energy. Since the vertical diagonal of the beam, σy/σz, is approximately
21 microradians for the NLC’s 1 TeV CM parameters, a vertical crossing angle of 68 microradians
will result in a reduction in luminosity unless a vertical crab cavity or other mitigating technology
is used.

III. SYNCHROTRON RADIATION EFFECTS

The deflection of the beam by the field of the solenoid will result in the emission of synchrotron
radiation. This emission will result in a reduction of the average energy of the beam as it travels to
the IP, and will also result in an increase in the RMS energy spread of the beam.

A. Average Energy Loss

The principal optical effect of the average beam energy loss is that the cancellation of the fringe
field and the longitudinal field of the solenoid is no longer complete: the longitudinal field will
deflect the beam more than the fringe field, resulting in a nonzero vertical offset and dispersion at
the collision point.

How severe an effect is the average energy loss? The fractional energy loss per unit length is given
by [6]:

dδ

ds
=

Cγ

2π

E3

ρ2
, where (8)

Cγ =
4π

3

r2
e

(mec2)3
.

If we restrict our consideration to the influence of the solenoid’s strong longitudinal field, Equation
8 can be rewritten and expressed in more conventional units as:

dδ

ds
≈ 1.3× 10−6E[GeV]B2

z[T
2] sin2 θc. (9)

As an example, consider a 5 T field which is uniform over 3 meters in s, a 10 milliradian crossing
angle, and a 500 GeV beam energy. Equation 9 indicates that the average fractional energy loss of
the beam will be less than 5 parts per million. The resulting deflection of the beam at the collision
point will be on the order of 2 nanometers. Such an offset can easily be corrected with a fairly weak
steering dipole.

B. RMS Energy Loss

A much more interesting problem is the RMS energy loss within the solenoid. As discussed in
previously, the vertical dispersion is nonzero throughout the bulk of the solenoid. The stochas-
tic emission of synchrotron radiation in a region with vertical dispersion will cause an irreversible
increase in the beam size at the collision point.

The increase in beam size at the collision point can be determined by computing the RMS increase
in energy spread and the R36 transport matrix element to the collision point at each point throughout
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the solenoid, and adding these contributions in quadrature. The mean-squared increase in relative
energy spread due to synchrotron radiation is given by [7]:

σ2
δ (z) =

55

24
√

3

reλeγ
5

|ρ3(z)|dz, (10)

where re is the classical electron radius of 2.8× 10−15 meters, λe is the electron Compton radius of
3.9× 10−13 meters, and ρ is the instantaneous bending radius. The R36 from the point s to the IP
is given by:

R36(z → 0) = −
∫ z

0
z′dz′

B⊥(z′)
Bρ

, (11)

where we define B⊥(z) to be the component of the solenoidal field which is perpendicular to the beam
trajectory at z: B⊥(z) ≡ sin θcBz(θcz, z) − cos θcBr(θcz, z). If we further define Cδ ≡ 55

24
√

3
reλe

(mec2)5
≈

4.1× 10−11m2/GeV5, we can write:

(∆σ∗y)
2 = Cδ

∫ ∞

0
dz

E5

|ρ3(z)|

[∫ z

0
dz′z′

B⊥(z′)
Bρ

]2

. (12)

Equation 12 can be written in a more convenient form by replacing 1/ρ(z) with B⊥(z)/Bρ:

(∆σ∗y)
2 = Cδ

∫ ∞

0
dz
|B3

⊥(z)|E5

(Bρ)3

[∫ z

0
dz′z′

B⊥(z′)
Bρ

]2

. (13)

Equation 13 can be further simplified by making the following 4 changes:

• Assume that θc is small and replace sin θc with θc and cos θc with 1 in the definition of B⊥.

• Define dimensionless parameter b(z) such that b(z)B0θc = B⊥(z)

• Perform the outer integral from z = 0 to z = zmax, where zmax is defined to be the value of z

for which the solenoid’s effects are reduced to negligible levels and R36(zmax → 0) ≡ 0

• Introduce dimensionless parameter u such that u(z)zmax = z.

With these changes, Equation 13 becomes:

(∆σ∗y)
2 = Cδ(B0θczmax)

5

(
E

Bρ

)5 ∫ u=1

u=0
du|b3(u)|

[∫ u′=u

u′=0
du′u′b(u′)

]2

. (14)

In Equation 14, all of the dimensionful parameters that set the scale of the beam size dilution are
outside of the integrals, while the two integrals are over dimensionless parameters that relate only
to the shape of the solenoid’s field, not its magnitude. Note also that the beam size growth does
not depend upon the beam energy, since each factor of E is cancelled by a factor of Bρ, which is
linearly proportional to E. Given this, we can re-express Equation 14 in MKS units as:

(∆σ∗y)
2[m2] ≈ 1.0× 10−13 (B0θczmax)

5 [(T.m.rad)5]
∫ u=1

u=0
du|b3(u)|

[∫ u′=u

u′=0
du′u′b(u′)

]2

. (15)

As an example, consider the solenoidal field shown in Figure 4. This field map was produced for
an early version of the Linear Collider Detector (LCD) design, and corresponds to a value of θc of
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10 mrad. Figure 5 shows as functions of u: the normalized deflecting field, b(u) (a); the dispersion
integral, Iη(u) ≡ [

∫ u′=u
u′=0 du′u′b(u′)]2 (b); the complete value of the outer integrand, I(u) = |b(u)|3Iη(u)

(c). The value of the complete integral,
∫ u=1
u=0 duI(u), is 7.9 × 10−5 for this example. Thus, for a 6

T solenoid, a 10 mrad crossing angle, and a value of zmax of 3.9 meters, Equation 15 indicates that
synchrotron radiation introduces a growth in the beam size of 0.074 nanometers, which is added
in quadrature with the nominal beam size (typically 2 nm for 1 TeV center-of-mass linear collider
designs).

Although 0.074 nm is a negligible contribution to the beam size at the collision point in all linear
collider designs under consideration, the rapid scaling of the beam size growth with the solenoidal
field, crossing angle, and solenoid longitudinal size must not be underestimated. If, for example, the
solenoid was doubled in length, the resulting beam size growth would increase to 0.42 nm, which
begins to be a significant contribution to the total beam size.

C. RMS Energy Loss in Misaligned Solenoid

The preceding calculation assumed that the beam trajectory is perfectly aligned with respect to
the solenoid’s symmetry axis. In an actual system, the solenoid and the accelerator axis are likely
to be misaligned with respect to one another in the horizontal plane. This means that the beam will
encounter a stronger radial field than would be expected for perfect alignment, which in turn means
that the synchrotron radiation growth of the beam size will be enhanced.

A reasonably accurate estimate of the beam size growth for a horizontally misaligned solenoid
can be obtained by using Equation 13, and replacing B⊥(z) with Bz(z) sin θc − Br(z) cos θc[1 +
∆x/(z sin θc)], where ∆x is the expected misalignment. It is helpful to first obtain a closed-form,
upper-bound estimate on the degree of spot size dilution that can be expected from a horizontal
misalignment.

Inspection of Figure 5 allows us to formulate a few simplifying assumptions that will permit a
conservative estimate of the effect of a horizontal misalignment:

• Assume that the radial field’s contribution to the spot size increase comes entirely from a
limited region of the solenoid, from u = u1 to u = u2 (for example, in Figure 5(c), u1 ≈ 0.65
and u2 ≈ 0.77)

• Assume that for u1 < u < u2, the Bz contribution to B⊥ is negligible

• Assume that for u1 < u < u2, the value of the dispersion integral [
∫

dz′z′B⊥(z′)]2 is dominated
by the design value of B⊥.

With these assumptions, the expression for the beam size dilution from synchrotron radiation in the
region from u1 to u2 is given by:

(∆σ∗y)
2
u1,u2

≈ CδE
5

Bρ5

∫ u=u2

u=u1

dz

∣∣∣∣Br(z) cos θc

(
1 +

∆x

z sin θc

)∣∣∣∣
3

[∫ z

0
dz′z′

B⊥(z′)
Bρ

]2

, (16)

where Br and B⊥ are the magnetic field values for a perfectly-aligned solenoid. If u2 − u1 is small
compared to the average of u1 and u2, we can rewrite Equation 16 as follows:

(∆σ∗y)
2
u1,u2

≈ CδE
5

Bρ5

(
1 +

∆x

zmaxũ sin θc

)3 ∫ u=u2

u=u1

dz|Br(z) cos θc|3
[∫ z

0
dz′z′

B⊥(z′)
Bρ

]2

, (17)
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where ũ ≡ (u1 + u2)/2 is the center of the region that is producing the synchrotron radiation beam
size growth. The integrand in Equation 17 can be recognized as the integrand that would be required
to evaluate the beam size growth from u1 to u2 in the absence of a misalignment. We can therefore
state that the misaligned solenoid will give an increase in the beam size growth given by:

∆(∆σ∗y)
2
u1,u2

≈ (∆σ∗y)
2
u1,u2

[
3

∆x

zmaxũ sin θc

+ 3
(

∆x

zmaxũ sin θc

)2

+
(

∆x

zmaxũ sin θc

)3
]
, (18)

where (∆σ∗y)
2
u1,u2

is the increase in the spot size due to the fringe field between u = u1 and u = u2

for a perfectly-aligned solenoid.
We can make a further improvement in Equation 18 by noting that, by definition, ũ ≤ 1, and that,

for a perfectly aligned solenoid, the increase in the spot size due to the field between u = u1 and
u = u2 must be less than or equal to the increase over the entire solenoid. Thus,

∆(∆σ∗y)
2
u1,u2

(∆σ∗y)2
<

[
3

∆x

zmax sin θc

+ 3
(

∆x

zmax sin θc

)2

+
(

∆x

zmax sin θc

)3
]
. (19)

As an example, consider the field map in Figures 4 and 5: since zmax = 4 m, and θc = 10 mrad, a 1
centimeter horizontal misalignment will increase the value of (∆σ∗y)

2 by (3×1/4+3×(1/4)2+(1/4)3,
or 95%. The 0.074 nm which is added in quadrature for a perfectly-aligned solenoid increases by
almost

√
2, to 0.10 nm. This is still a tolerable spot size growth, but the additional growth from the

solenoid misalignment will grow rapidly with ∆x. Furthermore, a solenoid misalignment as large as
1 centimeter is considered highly unlikely given modern techniques for fiducialization and alignment;
a more realistic value is on the order of 1 mm [8].

IV. CONCLUSIONS

The solenoidal field surrounding the collision point of a linear collider will cause a vertical deflection
of the beams if the collider employs a horizontal crossing angle. The deflections can result in a net
offset of the beams at the collision point, beam size growth due to vertical dispersion, and beam size
growth due to synchrotron radiation.

Because of the azimuthal symmetry of the detector solenoid, the optical effects from the crossing
angle – vertical offset and dispersion – will vanish at the collision point. This is due to the cancellation
of the deflections introduced by the solenoid’s longitudinal field and its radial fringe field.

Synchrotron radiation emission will break the symmetry that causes the solenoid’s vertical deflec-
tions to cancel, but this effect is a rather weak one and will typically cause only a few nanometers’
static offset of the colliding beams; this can easily be corrected using weak dipole steering magnets.
A more significant effect is the beam size growth due to RMS energy loss from synchrotron radi-
ation. This causes a growth in the mean-squared beam size which grows as the fifth power of the
solenoidal field, the crossing angle, and the length of the solenoid, and which is independent of the
beam energy. In the case of a realistic model of a next-generation linear collider detector field, the
resulting spot size growth was found to be less than 0.1 nm added in quadrature with the nominal
RMS vertical beam size of approximately 2 nm. The synchrotron radiation growth is enlarged if the
solenoid is horizontally misaligned with respect to the beam trajectory, but conservative estimates
of the size of the effect indicate that centimeter-scale misalignments are tolerable.

In the case of a horizontally misaligned solenoid, the beam will experience a vertical deflection
at the IP. The vertical offset is linearly proportional to the horizontal misalignment; in the case
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x>0

z>0

Beam Trajectory 
(s axis)

θc

B

FIG. 1: (color) Plan view schematic of beam passing through a solenoid with a horizontal crossing angle.

considered, the constant of proportionality was 1/295. Unlike the other effects of the solenoid
considered here, this source of vertical deflection is present even for designs which forego a crossing
angle, and becomes more severe at lower beam energies.

None of these effects are expected to pose a serious limitation to a linear collider operating in the
center-of-mass energy regime of 0.5 to 1.0 TeV with a peak luminosity on the order of 1034cm−2sec−1.
For operation at much lower energy it may be necessary to reduce the strength of the detector
solenoid to limit the coupling of horizontal jitter of the beam or solenoid to the vertical beam
position. Given the inexorable demands for more capable detectors with higher solenoid fields,
and simultaneous requirements for higher luminosity and smaller vertical beam sizes, the beam size
growth from synchrotron radiation may begin to play a role in a more futuristic linear collider than
those presently under consideration.

In a realistic linear collider interaction region, the final quadrupole lenses will typically protrude
into the field of the solenoid some extent. This will introduce perturbations to the expressions used
for estimating the optical and quantum-emission effects of the solenoid; the degree of perturbation
is a strong function of the detailed geometry of the interaction region (depth of penetration of the
magnets into the solenoid, use of superconducting or permanent magnets for the quads, etc.), and
each design will require careful individual study and optimization. Nonetheless, the low severity of
the phenomena surveyed here suggests that the system will remain tractable even when the effects
of IR quadrupoles are included.
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FIG. 2: (color) Beam passing through an idealized solenoid consisting of a uniform longitudinal magnetic field Bz which drops
abruptly to zero at z = z0, and a radial field of infinitessimal length at z = z0. The cylindrical Gaussian volume V, as defined
in the text, is shown.
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