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Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from
independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction
of the radiation power will be emitted in damping wigglers. In this paper, the longitudinal wakefield
and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter K.
After an appropriate scaling, the results can be expressed in terms of universal functions, which are
independent of K. Analytical asymptotic results are obtained for the wakefield in the limit of large
and small distances, and for the impedance in the limit of small and high frequencies.
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I. INTRODUCTION

Many modern advanced accelerator projects [1–3] call
for short bunches with low emittance and high peak cur-
rent where coherent synchrotron radiation (CSR) effects
may play an important role. CSR is emitted at wave-
lengths longer than or comparable to the bunch length
whenever the beam is deflected [4, 5]. The stringent beam
requirements needed for short wavelength SASE Free-
Electron Lasers have led to intensive theoretical and ex-
perimental studies [6–17] over the past a few years where
the focus has been on the magnetic bunch compressors
required to obtain the high peak currents. In addition to
these single-pass cases, it is also possible that CSR might
cause a microwave-like beam instability in storage rings.
A theory of such an instability in a storage ring has been
recently proposed in Ref. [18] with experimental evidence
published in [19]. Other experimental observations [20–
24] may also be associated with a CSR-driven instability
as supported by additional theoretical studies [25–27].
The previous study of the CSR induced instability

assumed that the impedance is generated by the syn-
chrotron radiation of the beam in the storage ring bend-
ing magnets [18]. In some cases (e.g. the NLC damping
ring [28]), a ring will include magnetic wigglers which
introduce an additional contribution to the radiation
impedance. The analysis of the microwave instability
in such a ring requires knowledge of the impedance of
the synchrotron radiation in the wiggler. Although there
have been earlier studies of the coherent radiation from a
wiggler or undulator [29, 30], the results of these papers
cannot be used directly for the stability analysis.
In this paper, we derive the CSR wake and impedance

for a wiggler. We focus our attention on the limit of
a large wiggler parameter K because this is the most
interesting case for practical applications. It also turns
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out that, in this limit, the results can be expressed in
terms of universal functions of a single variable after an
appropriate normalization.
The paper is organized as follows. In Sec. 2, we write

down equations for the energy loss of a beam in a wiggler.
We then derive the synchrotron radiation wakefield in the
limit of a large wiggler parameter K in Sec. 3. In Sec.
4, we obtain the synchrotron radiation impedance for a
wiggler, and in Sec. 5 we discuss our results.

II. ENERGY LOSS AND LONGITUDINAL
WAKE IN WIGGLER

The longitudinal wake is directly related to the rate of
energy loss dE/dt of an electron in the beam propagating
in a wiggler. For a planar wiggler, a general expression
for dE/dt as a function of the position s of the electron
in the bunch and the coordinate z in the wiggler was
derived in Ref. [30]. We reproduce here the results of
that work using the authors’ notation:

d E
c dt

= e2 kw

∫ s

−∞
d s′ D(ŝ− ŝ′,K, ẑ)

d λ(s′)
ds′

, (1)

where λ(s) is the bunch linear density,

D(ŝ, K, ẑ) =
1
ŝ
− 2×

∆−K2 B(∆, ẑ) [sin∆ cos ẑ + (1− cos∆) sin ẑ]
∆2 +K2 B2(∆, ẑ)

,(2)

B(∆, ẑ) = (1− cos∆−∆sin∆) cos ẑ
+ (∆cos∆− sin∆) sin ẑ , (3)

and ∆ is the solution of the transcendental equation

ŝ =
∆
2

(
1 +

K2

2

)
+

K2

4∆
{[2(1− cos∆)−∆sin∆]

× (cos∆ cos 2ẑ + sin∆ sin 2ẑ)− 2(1− cos∆)}. (4)
In the above equations, we use the following dimension-
less variables: ŝ = γ2 kw s and ẑ = kw z. The parameter
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∆ is equal to kw (z−zr), where z and zr are the projected
coordinates on the wiggler axis of the current position of
the test particle and the retarded position of the source
particle, respectively. The internal coordinate s is defined
so that the bunch head corresponds to a larger value of s
than the tail. The wiggler parameter K is approximately
K ≈ 93.4Bw λw, with Bw the peak magnetic field of the
wiggler in units of Tesla and λw the period in meters. In
addition, γ is the Lorentz factor, e is the electron charge,
c is the speed of light in vacuum, and kw = 2π/λw is
the wiggler wavenumber. Note that the function D is
a periodic function of ẑ with a period equal to π. Also
note that, desipte assuming K � 1, we still assume a
small-angle orbit approximation, i.e., K/γ � 1.
We introduce the longitudinal wake W (s) of the bunch

as the rate of the energy change averaged over the z co-
ordinate:

W (s) = − 1
e2

d Ē
c dt

= −kw

∫ s

−∞
d s′ G(s− s′)

d λ(s′)
ds′

, (5)

where

G(s) =
1
π

∫ π

0

d ẑ D(ŝ, K, ẑ), (6)

and we dropped K from the list of arguments of the func-
tion G. The positive values of W correspond to the en-
ergy loss and the negative values imply the energy gain.
The usual longitudinal wake w(s) corresponding to the
interaction of two particles is then defined as

w(s) = −kw
dG(s)
d s

, (7)

so that

W (s) =
∫ s

−∞
ds′ w(s − s′)λ(s′). (8)

Note that the wake Eq. (7) is localized in front of the
particle and vanishes behind it, w = 0 for s < 0.
In the limit of large K, we can neglect unity in the

first bracket of Eq. (4), assuming that K2/2 � 1. Such
an approximation is valid, if we are not interested in the
very short distances of order of (K kw γ2)−1 (0.5Å for
the NLC damping ring wiggler [28]). We also introduce
a new variable ζ ≡ ŝ/K2 which eliminates the parameter
K from Eq. (4):

ζ(∆, ẑ) =
∆
4

+
1
4∆

{[2(1− cos∆)−∆sin∆]

× (cos∆ cos 2ẑ + sin∆ sin 2ẑ)
− 2(1− cos∆)}. (9)

In this limit, the expression for D, Eq. (2) can also be
simplified:

D(ζ, ẑ) = 2
sin∆ cos ẑ + (1− cos∆) sin ẑ

B(∆, ẑ)
, (10)

as long as ∆ is not too small, ∆ � 1/K. Again, the
parameter K is eliminated from this equation. A detailed
analysis supporting this approximation can be found in
Appendix A.

III. WAKEFIELD

Using Eq. (6) and (10) we find

G(ζ) =
2
π

∫ π

0

d ẑ
sin∆ cos ẑ + (1− cos∆) sin ẑ

B(∆, ẑ)
, (11)

where ∆ = ∆(ζ, ẑ) is implicitly determined by Eq.
(9). The integrand in this equation has singularities at
points ẑ = ẑs where B(∆(ζ, ẑs), ẑs) = 0. It is shown
in Appendix B that in the vicinity of a singular point
B(∆(ζ, ẑ)) ∝ (ẑ−ẑs)1/3, and the singularity is integrable.
We plot in Fig. 1 the function G(ζ) calculated by nu-

merical integration. A characteristic feature of the func-
tion G is the presence of cusp points, at which the func-
tion reaches local maxima and minima. An approximate

0 1 2 3 4 5 6
2ζ/π

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

G

FIG. 1: The solid curve represents the G(ζ) defined in Eq.
(11) as a function of the normalized coordinate 2ζ/π. The
(×)-signs are the approximation given in Eq. (12).

location of these cusp points and the value of the func-
tion G at these points can be understood with a simple
physical argument presented in Appendix C. It turns out
that the minima are located at distances s between the
particles equal to the integer number of the fundamental
radiation wavelength in the wiggler, and the maxima ap-
proximately correspond to the distance equal to an odd
number of half-wavelength. A simple analytical calcula-
tion in Appendix C gives the following results
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G(ζ) =

{
0 ; for ζ = n π

2 with n = 1, 2, · · ·
− 4 (2 n+1) π

4+[(2 n+1) π]2 ; for ζ ≈ (2n+1) π
4 − 1

(2n+1) π with n = 0, 1, · · · (12)

These are the “×” points in Fig. 1, showing very good
agreement with the numerical result.

A. Short-range limit

In the limit ζ � 1, it follows from Eq. (9) that ∆ �
1 as well. Eq. (9) can then be solved using a Taylor
expansion of the right-hand side:

∆ =
(

24 ζ

cos2 ẑ

)1/3

. (13)

Expanding the integrand in Eq. (11), keeping only the
first non-vanishing term in ∆ and substituting ∆ from
Eq. (13) yields

G(ζ) = − 1
π

2
(3 ζ)1/3

∫ π

0

dẑ cos2/3 ẑ

= −4 32/3 Γ
(

11
6

)
5
√
π Γ
(

4
3

) ζ−1/3 ≈ −0.99 ζ−1/3. (14)

The above result can also be obtained if one considers
a wiggler as a sequence of bending magnets with the
bending radius R = γ/kwK| cos ẑ|. Indeed, in a bending
dipole, the corresponding Gbend(s) = −2 s−1/3/(3R2)1/3

[7, 8]. Averaging Gbend over the wiggler period yields
Eq. (14). The reason why such a model gives the correct
result in this limit, is that the formation length of the ra-
diation is much shorter than the wiggler period, and one
can use a local approximation of the bending magnet for
the wake.

B. Long-range limit

In the limit ζ � 1, the parameter ∆ is also large, and
Eq. (9) can be further simplified:

ζ =
∆
4

− sin∆ cos(∆− 2ẑ)
4

. (15)

In Eq. (3), we keep only the largest term

B(∆, ẑ) = −∆ sin(∆− ẑ) . (16)

For D, one now finds,

D(ζ, ẑ) ≡ F (ζ, ẑ)
ζ

, (17)

with

F (ζ, ẑ) ≡ sin ẑ

2 sin(ẑ −∆(ζ, ẑ))
− 1

2
, (18)

where the function ∆(ζ, ẑ) is implicitly determined by
Eq. (15). Averaging over one wiggler period, we find

G(ζ) ≡ F̄ (ζ)
ζ

, (19)

with

F̄ (ζ) ≡ 1
π

∫ π

0

d ẑ F (ζ, ẑ)

=
1
2 π

(
−π +

∫ π

0

d ẑ
sin ẑ

sin(ẑ −∆)

)
. (20)

It is easy to check that the function F̄ is periodic, F̄ (ζ+
π/2) = F̄ (ζ), and F̄ (0) = 0, F̄ (π/4) = −1 in agreement
with Eq. (12). The average value F̄ (ζ) is equal to −1/2.
Since F̄ is periodic in ζ with a period of π/2, using Eq.
(20), we get a Fourier series representation for F̄ (ζ):

F̄ (ζ) = −1
2
+

1
2

∞∑
n=0

[
Jn

(
2n+ 1

2

)
− Jn+1

(
2n+ 1

2

)]2
cos(4(2n+ 1)ζ) , (21)

where Jn(x) is the Bessel function of the first kind. Derivations of the Fourier coefficients are presented in
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Appendix D. In Fig. 2, we plot the function F̄ (ζ) defined
in Eq. (21) for one period.

The corresponding long-range wake is then

G(ζ) = − 1
2ζ

+
1
2ζ

∞∑
n=0

[
Jn

(
2n+ 1

2

)
− Jn+1

(
2n+ 1

2

)]2
cos(4(2n+ 1)ζ) . (22)

It is worth noting, that the asymptotic expression in
the limit ζ � 1 in Ref. [30] is incorrect—instead of the F̄ -
function the authors obtained a sine function, which only
corresponds to the fundamental mode of the radiation
and neglects contribution from higher-order harmonics.

0.0 0.5 1.0
2ζ/π

−1.0

−0.5

0.0

F

FIG. 2: Plot of F̄ (ζ) of Eq. (21).

The longitudinal wake defined in Eq. (7) is plotted in
Fig. 3.

IV. IMPEDANCE

The impedance Z(k) is defined as the Fourier trans-
form of the wake,

Z(k) =
∫ ∞

0

dsw(s) e−iks

= − i k
K2

γ2

∫ ∞

0

dζ G(ζ) e− 4 i k
k0

ζ , (23)

where k0 ≡ 4γ2kw/K2 is the wiggler fundamental radia-
tion wavenumber.
We evaluated the integral in Eq. (23) using numeri-

cally calculated values of the function G(ζ) in the inter-
val [ζmin, ζmax], where ζmin ≈ 10−3 and ζmax ≈ 50. The
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FIG. 3: The normalized wake Green function
−w(s)[K/(γkw)]2 as a function of the normalized coor-
dinate 2ζ/π.

contribution to the integral outside of this interval was
calculated using asymptotic representations Eqs. (14)
and (22).
The resulting imaginary and real parts of the

impedance are shown in Fig. 4 and Fig. 5 respectively.
The real part of the impedance can be related to the

wiggler radiation spectrum I(ω) [31]:

ReZ(ω) =
π

e2
I(ω) . (24)

The spectrum I(ω) in the limit K � 1 is calculated in
Appendix E. It shows a perfect agreement with the result
presented in Fig. 5.
Simple analytical formulae for the impedance can be

obtained in the limit of low and high frequencies.
The low-frequency impedance corresponds to the first

term in Eq. (22) for function G which does not oscillate
with ζ:

G(ζ) = − 1
2 ζ

. (25)
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FIG. 4: The imaginary part of the normalized impedance
Z(k)/kw as a function of the normalized wavenumber k/k0.
Solid line—numerical solution from Eq. (23), dotted line—
analytical low-frequency asymptotic behavior from Eq. (26),
and dashed line—analytical high-frequency asymptotic be-
havior from Eq. (27).

Using the definition in Eq. (23), we then obtain the low-
frequency asymptotic behavior of the impedance as

Z(k) = − i 2 kw
k

k0

[
γE + log

(
4k
k0

)
+ i

π

2

]

≈ π kw
k

k0

[
1− 2 i

π
log
(

k

k0

)]
, (26)

where, γE ≈ 0.5772 is the Euler Gamma constant. This
asymptotic low-frequency impedance is plotted in Figs.
4 and 5 for comparison with the numerical solution.
Since we have an analytical expression for the short-

range G(ζ) in Eq. (14), we get the asymptotic high-
frequency impedance as

Z(k) = −i
6 Γ
[
11
6

]
5
√
π Γ
[
4
3

] A (Kkw

γ

)2/3

k1/3

≈ − 0.71 i A

(
Kkw

γ

)2/3

k1/3 , (27)

with A = 3−1/3Γ(2/3)(
√
3 i−1) ≈ 1.63 i−0.94 [18]. This

asymptotic high-frequency impedance is plotted in Figs.
4 and 5 for comparison with the numerical solution.

V. DISCUSSION AND CONCLUSION

In this paper, we derived the wakefield and the
impedance for wigglers with K2/2 � 1 due to the syn-
chrotron radiation. Analytical asymptotic results are
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FIG. 5: The real part of the normalized impedance Z(k)/kw

as a function of the normalized wavenumber k/k0. Solid line—
numerical solution from Eq. (23), dotted line—analytical low-
frequency asymptotic behavior from Eq. (26), and dashed
line—analytical high-frequency asymptotic behavior from Eq.
(27).

obtained for the wakes in the limit of small and large
distances, and for the impedance in the limit of small
and high frequencies. The results obtained in this pa-
per are used for the beam instability study due to the
synchrotron radiation in wigglers [32].
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APPENDIX A: DETAILS FOR DERIVING EQ.
(10)

In the limit of ∆ � 1, according to Eq. (3), B ∼ ∆2.
In the numerator of the second term on the right hand
side of Eq. (2), we would have K2B(∆, ẑ)[sin∆ cos ẑ +
(1 − cos∆) sin ẑ] ∼ K2∆3 � ∆, as long as ∆ � 1/K.
This is allowed, since we are interested in the limit of
K � 1. Hence, ∆ is neglected in the numerator. In the
denominator of the second term, then K2B2 ∼ K2∆4 �
∆2, as long as ∆ � 1/K, hence ∆2 is dropped. There-
fore, the second term of Eq. (2) is on the order of 1/∆.
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According to Eq. (4), in the limit of ∆ � 1, we have
ŝ ∼ K2∆, so the first term of Eq. (2) is on the order of
1/(K2∆), hence is much smaller than the second term in
the limit of K � 1. Therefore the first term 1/ŝ could
be dropped. All these considerations lead us to Eq. (10).
For ∆ ∼ 1 and K � 1, according to Eq. (4), we have

ŝ ∼ K2 � 1. Eq. (3) suggests that B(∆, ẑ) ∼ 1. Now,
in Eq. (2), in the limit of K � 1, we can neglect ∆
in comparison with K2 in the numerator and ∆2 in the
denominator of the second term on the right hand side.
We then note that the second term is on the order of 1,
and is much larger than the first term 1/ŝ ∼ K−2 � 1,
hence we can drop 1/ŝ to obtain Eq. (10).
Now let us study the limit of ∆ � 1. Eq. (3) suggests

that B(∆, ẑ) ∼ ∆. For K � 1, then in Eq. (2), ∆ and
∆2 could be dropped in the numerator and denominator
of the second term on the right hand side, respectively.
The second term is on the order of 1/∆. Now, according
to Eq. (4), in the limit of ∆ � 1, we have ŝ ∼ K2∆.
Hence, in the limit of K � 1, the first term of Eq. (2),
which is on the order of 1/(K2∆), is negligible, compared
with the second term. Hence, we obtained Eq. (10).
So, in general, for large K, as long as ∆ is not too

small, i.e., ∆ � 1/K, the simplification leading to Eq.
(10) is always acceptable.

APPENDIX B: SINGULAR POINTS IN D(ζ, ẑ)

To find the scaling of the singularity, we assume that
at the vicinity of the zeroes ẑs of B(∆, ẑ), the leading
term scales as

B ≈ b (ẑ − ẑs)α , (B1)

then we have

B′ ≈ α b (ẑ − ẑs)α−1 , (B2)

where the prime indicates the derivative with respect to
ẑ.
Let us first calculate B′. From Eq. (3) we have,

B′ = − sin ẑ + sin(ẑ −∆)
+ cos(ẑ −∆)∆− cos(ẑ −∆)∆∆′ . (B3)

To find ∆′, we revert to Eq. (9), where, we find

∆′ =
C(∆, ẑ)
B2(∆, ẑ)

(B4)

with

C(∆, ẑ) = 2 sin(2ẑ −∆) sin
(
∆
2

)
∆

×
[
2 sin

(
∆
2

)
− cos

(
∆
2

)
∆
]

. (B5)

Note that C(∆, ẑ) is a well defined function at the zeroes
of B(∆, ẑ).
Combining Eqs. (B1), (B3), (B4), (B5), we have, near

the zeroes ẑs,

B′(∆, ẑ) =
Ξ

b2 (ẑ − ẑs)2α
, (B6)

where,

Ξ = − cos(ẑ −∆)∆× C(∆, ẑ)|ẑ=ẑs;∆=∆(ζ,ẑs)

= − cos(ẑ −∆)∆
{
2 sin(2ẑ −∆) sin

(
∆
2

)
∆×

[
2 sin

(
∆
2

)
− cos

(
∆
2

)
∆
]}∣∣∣∣

ẑ=ẑs;∆=∆(ζ,ẑs)

. (B7)

Here, ẑs is defined as the solution of B(∆(ζ, ẑs), ẑs) = 0.
Therefore, combining Eqs. (B6) and (B2), we find the
scaling index α = 1/3 and b = (3Ξ)1/3. This means that
D(ζ, ẑ) has only an integrable singularity at z = zs with
D ∝ (ẑ − ẑs)−1/3.

As a numeric illustration of the origin of the singular-
ity, we plot in Fig. 6 functions B(∆(ζ, ẑ), ẑ) and ∆(ζ, ẑ)
for ζ = 1.0. This plot shows that at the point where
B = 0, both derivatives B′ and ∆′ are infinite, in accor-
dance with Eqs. (B2) and (B4).

APPENDIX C: SIMPLE PHYSICS MODEL

Here, we give some explanation about the peaks and
the zeroes in Fig. 1 based on a simple physics model.
The CSR wake is actually the field emitted by a trail-

ing particle which acts on the particle in front. Using a
model presented in Ref. [8], the longitudinal force on the
leading particle can be thought of as the component of
the trailing particle’s transverse Coulomb field projected
onto the leading particle’s direction of motion:

W|| = eE⊥(z) sin θ , (C1)

where E⊥(z) is the magnitude of the transverse Coulomb
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FIG. 6: A concrete example for ζ = 1.0. Solid line: B(∆(ζ =
1.0, ẑ), ẑ) as a function of ẑ; Dashed line: ∆(ζ = 1.0, ẑ) as a
function of ẑ.
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FIG. 7: Physics model to explain the longitudinal CSR wake.
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FIG. 8: Physics model to explain the peaks and zeroes of
G(s) shown in Fig. 1. The solid line stands for the electron
trajectory. The ellipses stand for the electrons. The arrows
stand for the instantaneous direction of the motion. We group
the four electrons into two pairs, one with solid arrows and
the other with dashed arrows.

electric field at the retarded position from the trailing
particle at retarded time. The argument z indicates that
the amplitude of the transverse electric field is actually
varying along the trajectory. In Eq. (C1), θ is the angle
between the direction of motion of the trailing particle
and that of the particle at front. To illustrate the model,
we give a schematic plot in Fig. 7.

To understand the wiggler wakefield, let us look at the
four electrons in Fig. 8. The pair with solid arrows is
separated by integer number times of the wiggler funda-
mental radiation wavelength. During their journey, when
the light emitted by the trailing electron cathches the
electron in front, the instantaneous direction of motion
of the front electron is always parallel to the direction
of motion of the trailing electron at the retarded time
when it emitted the light. Hence we have θ = 0. So
according to Eq. (C1), the longitudinal force is always
zero. This explains the zeroes in the longitudinal wake
potential plotted in Fig. (1). The pair with dashed ar-
rows is separated by odd integer number times of half of
the wiggler fundamental radiation wavelength. Averaged
over one period, they make the largest angle between the
instantaneous direction of motion of the front electron
and the direction of motion of the trailing electron at the
retarded time. Hence according to Eq. (C1), the longi-
tudinal force reaches maximum. This explains the peaks
shown in Fig. (1).

Let us calculate the values at these cusps points. Ac-
cording to Eq. (9), when ∆ = 2nπ, we have ζ = nπ/2.
According to Eq. (11), the numerator of the integrand
is zero at ∆ = 2nπ, while B(∆, ẑ) = 2nπ sin ẑ accord-
ing to Eq. (3). Hence the integral is zero. So we have
G(nπ/2) = 0 for n = 1, 2, · · · . We find that it is true in
the numerical solution in Fig. 1.

At ∆ = (2n+ 1)π, according to Eqs. (11) and (3), we
get

G(ζ) =
2
π

∫ π

0

dẑ
2 sin ẑ

2 cos ẑ − (2n+ 1)π sin ẑ

= − 4 (2n+ 1)π
4 + [(2n+ 1)π]2

for ∆ = (2n+ 1)π. (C2)

According to Eq. (9), we have

ζ =
∆
4
− 2
∆

cos2 ẑ ≈ ∆
4
− 1
∆

for ∆ = (2n+1)π. (C3)

In the above approximation, we average ζ over one period
in ẑ. This becomes a good approximation, when ∆ is
large. This manifests itself in Fig. 1. As we find from
Fig. 1, with the increasing of ζ, therefore, the increasing
of ∆, the above approximate value gets closer and closer
to the numerical solution. Combining the results at the
zeroes and the peaks, we get Eq. (12).
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APPENDIX D: CALCULATION FOR THE
FOURIER COEFFICIENTS

Since we find that the function F̄ (ζ) is periodic in ζ
with a period of π/2, we could represent it in a Fourier

series. The calculation for the Fourier coefficients are
straightforward. We here illustrate one example. For
m = 1, 2, · · · ,

〈F̄ (ζ) cos[4(2m+ 1)ζ]〉 ≡ 4
π

∫ π
2

0

dζF̄ (ζ) cos[4(2m+ 1)ζ]

=
2
π2

∫ π
2

0

dζ cos[4(2m+ 1)ζ]
∫ π

0

dẑ
sin ẑ

sin(ẑ −∆)

=
1
π2

∫ 2π

0

d∆
∫ π

0

dẑ sin ẑ sin(ẑ −∆) cos
[
(2m+ 1)∆− (2m+ 1) sin[2(∆− ẑ)]

2
− (2m+ 1) sin 2ẑ

2

]
. (D1)

Notice that, we have used the definition of F̄ in Eq. (20).
We also changed integral variable pair (ζ, ẑ) to (∆, ẑ),
using Jacobian obtained from Eq. (15). To complete
the integral in Eq. (D1), we make use of the well-known
identities

cos(z cos θ) =
∞∑

n=0

ε2n(−)nJ2n(z) cos 2nθ , (D2)

with, ε0 = 1, εn = 2 for n = 1, 2, · · · , and

sin(z cos θ) = 2
∞∑

n=0

(−)nJ2n+1(z) cos(2n+ 1)θ . (D3)

All the other Fourier coefficients, including the average
value 〈F̄ (ζ)〉 = −1/2, are obtained in the same manner.
We then obtain the Fourier series representation in Eq.
(21).

APPENDIX E: REAL PART OF THE
IMPEDANCE AND THE WIGGLER RADIATION

SPECTRUM

Our approach to calculate I(ω) is based on the paper
of Alferov et al. [33] and that of Krinsky et al. [34].
The only difference is that we are dealing with large K
case, hence we could eliminate K from the equations as
was done for the impedance. Let us illustrate this in the
following. The energy radiated per electron per unit solid
angle per unit frequency interval per unit length is given
by

dI(ω)
dΩ

=
e2 γ2 N

cλw

∞∑
m=1

Gm(K, γ θ, φ)Hm

(
ω

ω1

)
, (E1)

where m is the harmonic number of frequencies in the
spectrum. N is the number of periods of the wiggler.
The polar coordinates θ and φ are defined so that, θ = 0

corresponding to the forward direction along the wiggler
axis, and φ = 0 to be the plane of electron motion. For a
large K, ω1 ≈ 2 c kw γ2/(K2/2 + γ2 θ2) is the fundamen-
tal radiation frequency, and

Gm(K, γ θ, φ) ≈ 4m2(
1
2 K2 + γ2 θ2

)2 {[S1 γ θ cosφ

−
(
S1 +

2
m

S2

) 1
2 K2 + γ2 θ2

2 γ θ cosφ

]2
+ (γ θ)2 S2

1 sin2 φ
}

, (E2)

where, we define

ξz ≡ K2

4
(

K2

2 + γ2 θ2
) , (E3)

and

ξx ≡ 2K γ θ cosφ
K2

2 + γ2 θ2
, (E4)

and in turn

S1 ≡
∞∑

n=−∞
Jn(mξz)J2n+m(mξx) , (E5)

and

S2 ≡
∞∑

n=−∞
nJn(mξz)J2n+m(mξx) . (E6)

For finite, but large N ,

Hm

(
ω

ω1

)
=

sin2
[
N π

(
ω
ω1

−m
)]

π2 N2
(

ω
ω1

− m
)2 , (E7)

determines the bandwidth of the radiation. In our theory,
we focus on an infinite long wiggler, i.e., we are interested
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in the limit of N → ∞. Under such condition, we have
Hm → ω1 δ(ω − mω1)/N . Now we are ready to get the
radiation spectrum by integrating over the entire solid
angle.

I(ω) =
∫ π

0

d θ sin θ

∫ 2π

0

dφ
d I(ω)
dΩ

. (E8)

Due to the δ-function in Hm, the integral over θ could
be done first. Also due to the fact that θ is small, we
approximate sin θ ≈ θ. Then the integral in Eq. (E8) is
reduced into a 1-D integral as the following,

I(k) =
4 e2

c λw

∞∑
m=1

∫ π
2

−π
2

dφ

(
m− k

k0

)

×




S1 cosφ−

(
S1 +

2
m

S2

)
m

2 cosφ
(
m− k

k0

)



2

+ S2
1 sin2 φ

}
. (E9)

Notice, the integrand has a period of π, hence we need
only integrate for one period. S1 and S2 are further sim-
plified as

S1 =
∞∑

n=−∞
Jn

(
k

2k0

)

× J2n+m

(
cosφ

√
8k
k0

(
m− k

k0

))
, (E10)

and

S2 =
∞∑

n=−∞
nJn

(
k

2k0

)

× J2n+m

(
cosφ

√
8k
k0

(
m− k

k0

))
. (E11)

Now based on Eqs. (24) and (E9), we could compute
the real part of the impedance as

Re[Z(k)] ≡ 2 kw

∞∑
m=1

∫ π
2

−π
2

dφ

(
m− k

k0

)
×




S1 cosφ−

(
S1 +

2
m

S2

)
m

2 cosφ
(
m− k

k0

)



2

+ S2
1 sin2 φ


 . (E12)

Notice K is eliminated from this equation, as long as
K is large. We sum up the first 30 harmonics to obtain
the real part of the normalized impedance up to the 4th
harmonic. Adding higher harmonics will not change the

impedance within this frequency region within numerical
accuracy. The result is identical to Fig. 5, supporting
the validity of our calculation.
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