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Abstract

The microwave instability driven by the coherent synchrotron radiation (CSR)

has been previously studied [1] neglecting effect of the shielding caused by the

finite beam pipe aperture. In practice, the unstable mode can be close to the

shielding threshold where the spectrum of the radiation in a toroidal beam pipe

is discrete. In this paper, the CSR instability is studied in the case when it is

driven by a single synchronous mode. A system of equations for the beam-wave

interaction is derived and its similarity to the 1D FEL theory is demonstrated. In

the linear regime, the growth rate of the instability is obtained and a transition

to the case of continuous spectrum is discussed. The nonlinear evolution of

the single-mode instability, both with and without synchrotron damping and

quantum diffusion, is also studied.
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I. INTRODUCTION

A relativistic electron beam moving in a circular orbit in free space can radiate coher-

ently if the wavelength of the synchrotron radiation exceeds the length of the bunch. In

accelerators coherent radiation of the bunch is usually suppressed by the screening effect

of the conducting walls of the vacuum chamber [2–4]. The screening effect is much less

effective for short wavelengths, but if the wavelength is shorter than the length of the bunch

(assuming a smooth beam profile), the coherent radiation becomes exponentially small.

However, an initial density fluctuation with a characteristic length much shorter than the

screening threshold would radiate coherently. If the radiation reaction force is directed so

that it drives the growth of the initial fluctuation, one can expect an instability that leads

to micro-bunching of the beam and an increased coherent radiation at short wavelengths.

In Ref. [1] the growth rate of the beam instability driven by the coherent synchrotron

radiation (CSR) was found using the so called “CSR impedance” [5, 6] that neglects the

shielding effect of the walls and assumes a continuous spectrum of radiation. The maximum

growth rate was found to correspond to the wavenumber k = ω/c of the order of k ∼ Λ2/3R−1,

where

Λ =
nbre

|η|γδ2
0

. (1)

Here nb is the linear bunch density, η is the momentum compaction factor, δ0 is the rms

energy spread in the beam, re and γ are classical electron radius and relativistic factor,

respectively. For small Λ, the instability is limited to relatively long wavelength where it

may be affected by the wall shielding effect [2]. Close to the shielding threshold, one has to

take into account that spectrum of the synchronous modes of radiation is discrete, and the

instability may be driven by a single synchronous mode rather than a continuous spectrum.

In this paper we study such a single-mode CSR instability. As in Ref. [1], we assume that

the bunch is much longer than the wavelength of the modulation and consider a coasting

beam model.

The paper is organized as follows. In Section II be briefly review properties of travelling

modes in a toroidal waveguide. In Section III we derive linear equations for the beam
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instability, and in Section IV we solve the dispersion relation and find the growth rate of the

instability. In Section V we discuss the transition from a single-mode to multi-mode regime

of the instability. In Section VI we derive a system of equations for the evolution of the

instability in nonlinear regime, and in Section VII we add to this system terms responsible

for synchrotron damping and quantum diffusion. A numerical solution to this system is then

obtained that demonstrates continuous growth of the wave amplitude on a long time scale.

We also find an approximate asymptotic solution to the system and show a good agreement

the numerical one. We summarize the main results of the paper in the last Section VIII.

II. SYNCHRONOUS MODES IN TOROIDAL BEAM PIPE CLOSE TO

SHIELDING THRESHOLD

A relativistic beam moving in a toroidal beam pipe interacts with synchronous modes

that have phase velocity equal to the speed of light. Such modes in a toroidal pipe have

been extensively studied in the past [4, 7, 8]. Recently, a new approach to the problem [9]

extended the previous analysis and allowed to treat arbitrary cross section of the toroid.

Following Ref. [9], we assume that the characteristic size of the pipe cross section a is

much smaller than the toroid radius R, so that the ratio
√
a/R is a small parameter. For

a given toroid, the synchronous modes have wavenumbers k greater than a minimal value

kmin = ωmin/c:

k ≥ ωmin

c
∼ R1/2

a3/2
� a−1 .

The lowest synchronous mode wavenumber is of order of k0, where

k0 =
π

a

√
R

a
.

For example, for a beam pipe of a square cross-section with the side a, kmin = 1.52 k0. The

loss factor per unit length χ and the group velocity vg for this mode are

χ =
4.94

a2
, 1− vg

c
= 0.62

a

R
. (2)

Note that such modes propagate with the group velocity close to the speed of light. The

next mode with a nonzero loss factor has a frequency ω2 = 2.79 ck0 and the loss factor
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χ = 3.01/a2. We emphasize here that the distance between the synchronous modes in the

vicinity of ωmin is of the order of their frequency, and in that sense the modes are well

separated on the frequency scale. Similar results hold for the round toroidal pipe [9].

III. INTERACTION OF THE BEAM WITH A SINGLE SYNCHRONOUS

MODE IN LINEAR APPROXIMATION

The interaction of the beam with electromagnetic waves is usually described in terms of

the beam impedance (see, e.g., [10]). For discrete synchronous modes, the beam impedance

has singularities centered at the mode frequencies. In this case, a direct application of the

standard approach, as we show in Appendix A, may give an incorrect result. In this section,

we derive the governing equations describing this interaction starting from the Maxwell-

Vlasov system of equations without using the concept of the impedance.

We use a one dimensional model for the beam, neglecting the effect of the finite trans-

verse emittance and considering a distribution function f(z, δ, t), where z is the longitudinal

coordinate measured from a reference particle moving with the speed of light, and δ is the

energy offset relative to the nominal energy E0, δ = (E − E0)/E0. We also assume that

the modulation wavelength is small compared to the bunch length and consider a coasting

beam with the linear density nb equal to the local linear density of the bunch.

In the linear approximation, the perturbation due to the electromagnetic field can be

considered as small:

f = f0(δ) + f1(z, δ, t) ,

with f1 � f0. The linearized Vlasov equation for f1 is

∂f1

∂t
− ηcδ

∂f1

∂z
+

e

γmc
E(z, t)∂f0

∂δ
= 0 , (3)

where γmc2 is the nominal beam energy and E(z, t) is the longitudinal component of the

electric field. The function f is normalized so that
∫
fdzdδ gives the number of particles in

the beam. For what follows, it is convenient to introduce the Fourier transform g1 of the
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perturbation of the distribution function

g1(ω, q, δ) =

∫
dtdz e−i(qz−ωt)f1(z, δ, t) . (4)

The electromagnetic field is excited by the beam current. Let us consider a Fourier

component of the field with the frequency ω:

Eω(r, s) =

∫
dt eiωtE(r, s, t) . (5)

where s is the arc length along the beam path and r = (x, y) is the two-dimensional vector

in the transverse plane perpendicular to the orbit. This field can be represented as a sum of

toroidal modes in an empty waveguide [11]. Assuming that the electric and magnetic fields

of the n-th mode of frequency ω are given by

En(r, s) = en(r)e
−iωt+iq(n,ω)s , Hn(r, s) = hn(r)e

−iωt+iq(n,ω)s , (6)

where q(n, ω) is the wavenumber of the n-th mode, we have

Eω(r, s) =
∑

n

Cn(s)en(r) , Hω(r, s) =
∑

n

Cn(s)hn(r) . (7)

In these equations, en and hn describe the transverse distribution of the electric and magnetic

fields in the mode, respectively, and Cn(s) is the varying in space complex amplitude of the

mode. Note that the quantity E(z, t) is equal to the longitudinal component of E(r, s, t)

taken at the location s = ct+ z on the axis r = 0, E(z, t) = Es(0, s = ct+ z, t). The Fourier

coefficient Cn(q, ω) of the amplitude is defined by the following equation:

Cn(q, ω) =

∫ ∞

−∞
ds e−iqs Cn(s) . (8)

The coefficients Cn(s) can be related to the function g1 by means of the Lorentz reciprocity

theorem [12]: ∫
dS(Eω × H∗

n + E∗
n × Hω) = −Z0

∫
dV jω · E∗

n , (9)

where Z0 = 4π/c is the free space impedance. This equation allows us to find the coefficients

Cn(q, ω) in terms of the Fourier component jω of the beam current density. For a filament

beam current moving along the axis s, jω = s Iω δ(x)δ(y), where Iω is the frequency compo-

nent of the current and s is the unit vector in the direction of the beam motion. For ideal
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conductivity of the wall, integration in Eq. (9) over the volume of the beam pipe between

two cross sections s = s1 and s = s2 gives∫
dq

2π
Cn(q, ω)

(
ei[q−q(n,ω)]s2 − ei[q−q(n,ω)]s1

)

= − 1

Nn

(e∗
n(0) · s)

∫ s2

s1

ds′Iω(s
′)e−iq(n,ω)s′ . (10)

Here Nn is the norm of the n-th mode

Nn =
1

Z0

∫
dS(en × h∗

n + c.c.) , (11)

where the integration goes over the cross section of the pipe and “c.c” stands for the complex

conjugate term. The norm Nn does not depend on the location of the cross section in the

integral of Eq. (11) and is equal to four times the energy flow in the mode [11].

The beam current I(s, t) can be obtained by integrating the distribution function:

I(s, t) = ec

∫
dδf1(s− ct, δ, t) ,

where we used the relation z = s− ct. For the Fourier component Iω(s) one finds

Iω(s) = ec

∫
dq

2π
eiqs

∫
dδg1(ω − qc, q, δ) . (12)

The amplitudes Cn can be found from Eqs. (10) and (12)

Cn(q, ω) =
i

Nn

ec (e∗
n(0) · s)

q − q(n, ω)− iε

∫
dδg1(ω − qc, q, δ) . (13)

The infinitely small ε > 0 in this equation takes into account casuality. Making Fourier

transform of Eq. (3) and using Eqs. (5), (7) and (8) yields

(ω + ηcδq) g1(ω, q, δ) = −i e

γmc

∂f0

∂δ

∑
n

(s · en(0))Cn(q, ω + qc) . (14)

Substituting then Eq. (13) into Eq. (14) gives

(ω + ηcδq) g1(ω, q, δ) =
rec

2

γ

∂f0

∂δ

∑
n

(1− βg)χ

vg(q − q(n, ω + qc)− iε)

∫
dδ′g1(ω, q, δ

′) , (15)

where βg = vg/c, re = e2/mc2, vg is the group velocity , and χ is the loss factor associated

with the n-th mode [9]:

χ =
vg

1− βg

|(s · en(0))|2
Nn

.
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It follows from this equation, that the dependence of g1 on δ can be factored out

g1(ω, q, δ) =
G(ω, q)

ω + ηcδq

∂f0

∂δ
,

where the function G does not depend on δ. Putting this equation into Eq. (15) yields the

dispersion equation

1 =
∑

n

λ

q − q(n, ω + qc) + iε

∫
dδ

∂f0/∂δ

ω + ηcqδ
, (16)

where

λ =
rec

2

γvg

(1− βg)χ .

As always in stability theory, the integration in Eq. (16) goes in the complex plane above the

pole δ = −ω/ηcq. For a real value of q, Eq. (16) defines a complex frequency ω the imaginary

part of which gives the growth rate of the instability. Alternatively, we can consider real ω

and find a complex wavenumber q describing a periodic perturbation growing or decaying

along the beam pipe.

Note that the frequency of the mode Ω observed in the laboratory frame, where it has a

dependence ei(qs−Ωt), is equal to Ω = ω + qc.

IV. DISPERSION RELATION FOR A SINGLE MODE

Let us assume that the distribution function f0(δ) is Gaussian with the rms energy spread

δ0, f0 = (nb/δ0)ρ0(δ/δ0) with ρ0(ξ) = e−ξ2/2/
√
2π. In the single-mode approximation, we

leave only one term in the dispersion equation Eq. (16) which takes the form

q − q(n,Ω) =
nbλ

δ0

∫
dξ

dρ0(ξ)/dξ

Ω− qc+ ηcδ0qξ + iε
. (17)

We expect that the instability develops close to the mode frequency ω0,

Ω = ω0 +∆Ω, ∆Ω � ω0 . (18)

The function q(n,Ω) can be expanded in the vicinity of ω0,

q(n,Ω) ≈ q0 +
∆Ω

vg

. (19)
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The frequency ω0 is defined as the frequency of the synchronous mode n under consideration

in an evacuated waveguide, ω0 = cq(n, ω0), and q0 = q(n, ω0) is the wavenumber of this mode.

The denominator in the integral of Eq. (17) is Ω− qc+ ηcδ0qξ ≈ ∆Ω− (q − q0)c+ ηω0δ0ξ.

Eq. (17) then takes the following form

∆Ω− vg∆q = −nbλvg

ηω0δ2
0

∫
dξ
dρ0

dξ

(
∆Ω− c∆q

ηω0δ0
+ ξ + iε

)−1

, (20)

where ∆q = q − q0.

Depending on the ratio ∆Ω/ηω0δ0, there are two possible regimes for the instability: a

large energy spread regime, when |∆Ω| � |ηω0δ0|, and a “cold beam” approximation when

the opposite inequality holds. We consider here the latter case only, as a more relevant to

the parameters of the existing accelerators (see below). In this case, we can evaluate the

integrand in Eq. (20) asymptotically in the limit |(∆Ω− c∆q)/ηω0δ0| � 1, which results in

the cubic dispersion equation:

(∆Ω−∆qvg) (∆Ω−∆qc)2 = −nbλvgηω0 . (21)

For ∆q = 0, one of the roots has a positive imaginary part:

∆Ω = µ eiπ/3 , (22)

where we introduced the parameter µ

µ = (nbλvgηω0)
1/3 = c

[
renbω0ηχ

cγ
(1− βg)

]1/3

. (23)

Note that for a cold beam there is no threshold for the instability. The estimate of the

integral term in the dispersion equation used above neglects the Landau damping and is

valid provided |µ| � ηω0δ0.

For a general case of arbitrary detuning ∆q, Eq. (21) can be written in the dimensionless

form as

x2(x+ y) + 1 = 0 , (24)

by introducing

x =
∆Ω− c∆q

µ
, y =

c∆q(1− βg)

µ
. (25)
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Eq. (24) can be easily solved numerically—it has three roots one of which corresponds to

the instability. The dimensionless growth rate Imx as a function of the variable y is plotted

in Fig. 1. We see that the maximum growth rate is achieved at zero detuning, ∆q = 0.

0 5 10
y

0

0.2

0.4

0.6

0.8
Im

x

FIG. 1: Dimensionless growth rate Imx as a function of the dimensional detuning y. The

maximum of Imx is reached at y = 0, and approaches to zero at y = −1.89; Im x = 0 for

y < −1.89.

Table 1 gives parameters and compares the growth rate for four accelerators: the Low

Energy Ring (LER) and the High Energy Ring (HER) of PEP-II accelerator at SLAC,

Advanced Light Source at the Berkeley National Laboratory, and the VUV ring at the

National Synchrotron Light Source at BNL. For the ALS, we used beam parameters for the

regime in which bursts of infrared radiation were observed [13]. Calculations were made for

the lowest synchronous mode assuming a square cross section of the vacuum chamber with

the size a equal to the vertical full gap of the beam pipe. Since the real shape of the cross

section usually differs from the square, the results in the table should be considered as a

rough estimate of the instability parameters. For the linear density of the beam nb, we used

the quantity Np/
√
2πσz, which gives the maximum linear density in a gaussian bunch (Np is

the number of particles in the bunch, σz is the rms bunch length). Note the ratio µ/ηω0δ0 in

the last line of the table related the cold beam approximation—it is large in all cases except
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for the HER PEP-II where it is close to one.

TABLE I: Parameters relevant to the instability for PEP-II low energy (LER)

and high energy (HER) rings, ALS, and VUV NSLS ring.

Parameter units LER HER ALS VUV NSLS

Energy GeV 3.1 9.0 1.5 0.81

η 10−3 1.3 2.1 1.4 2.4

δ0 10−4 8.1 6.1 7.1 5.0

nb 1010 cm−1 3.7 0.82 7 3.6

a cm 5 5 4 4.2

R m 13.7 165.0 4.0 1.9

ω0/2π GHz 75.5 260 57 36.6

χ V/pC/m 18 18 28 25

µ 106 s−1 7.5 2.5 18 22

ncr 1010 cm−1 13 140 3 0.8

µ/(ηω0δ0) 15 1.2 84 50

V. TRANSITION TO CONTINUOUS SPECTRUM

In the previous sections, we focused on the interaction of the beam with a single mode

of frequency ω0 � ωmin near the shielding threshold of the instability. As was pointed out

before, interaction with high-frequency modes at ω � ωmin can be treated in terms of the

CSR impedance [1]. In this section, we consider the transition from the single-mode regime

to the continuous spectrum interaction, and find a criterion on the electron beam density

which determines such a transition.

The spectrum of synchronous modes in a toroidal waveguide with perfectly conducting

walls consists of discrete modes. The width of the spectral lines in an evacuated waveguide is
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infinitely thin, corresponding to delta functions at the mode frequencies. Excitation of those

modes by the beam can be considered as broadening of those infinitely thin lines, so that

they can be characterized by some width ∆ωmode. When this width becomes comparable or

exceeds the distance between the modes ∆ω, the spectrum can be considered as continuous.

The average distance between the modes ∆ω can be estimated as ∆ω ∼ (dNmode/dω)
−1,

where dNmode/dω is the mode density in the frequency space. The latter can be found from

the equation for synchrotron power radiation spectrum dP/dω of a point charge e (recall

that we assume frequencies well below the critical frequency):

dP

dω
= e2χ(ω)

dNmode

dω
,

where χ(ω) is the loss factor per unit length as a function of frequency of the mode.

The spectrum of the synchrotron radiation below the critical frequency is dP/dω =

0.52(e2/R)(kR)1/3, and the loss factor χ(ω) is estimated in Ref. [9] as χ ∼ a−2 (ck0/ω)
1/3,

which gives for ∆ω

∆ω ∼ ck0

(
ck0

ω

)2/3

.

The width of the mode ∆ωmode can be estimates as c∆q where ∆q can be found from the

second of Eq. (25) as ∆q ∼ ∆yµ/(1−βg). Observing from Fig. 1 that ∆y ∼ 1, we conclude

that ∆q ∼ µ/(1− βg). It is interesting to note that ∆ωmode � ∆Ω. The overlapping takes

place when cµ/(1− βg) � ck0(ck0/ω)
2/3, or

Λ (ηδ0)
2

(
k

k0

)2/3

(ka)2 � 1 , (26)

where the parameter Λ is defined by Eq. (1) and k = ω/c.

The growth rate of the instability Γ for a cold beam in the continuous spectrum modes

[1] can be estimated as (
Γ

c

)
cont

= Λ1/2

(
ηδ0
a

)(
k

k0

)2/3

.

It is easy to check that at Λ given by Eq. (26), Γcont ∼ µ, which means that the growth

rates in both theories match at the boundary of their validity regions.

Eq. (26) shows that the mode overlapping occurs easier for high frequency modes. In the

continuous spectrum model, the maximum growth rate is achieved for kR � Λ3/2 [1]. Eq.
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(26) gives the critical linear bunch density ncr at which overlapping occurs for this frequency,

ncr ∼ γδ0
re

(ηδ0)
3/5

(
R

a

)3/5

.

The model of Ref. [1] is valid if the beam linear density nb is larger than ncr. It describes

the instability of higher modes where the shielding effect of the walls can be neglected. As

the same time, the lowest toroidal modes are described by the single mode model developed

in this paper. As shown in Table I, typically nb � ncr except for the NSLS VUV ring.

VI. NONLINEAR REGIME OF THE INSTABILITY

When the amplitude of the unstable mode becomes large, the linear theory is not valid

any more and one has to use the full Vlasov equation for the distribution function f(z, δ, t):

∂f

∂t
− ηcδ

∂f

∂z
+

e

γmc
E(z, t)∂f

∂δ
= 0 . (27)

An important approximation that we make in the nonlinear regime is that the evolution of

the instability is governed by a single mode with a wavenumber qw. One would expect that

this wavenumber is equal to q0—the mode that has the maximum growth rate in the linear

regime—however, for the sake of generality, we treat qw as arbitrary (but close to q0). The

derivation of the equation for E(z, t) describing the interaction of the beam with the mode

is presented in Appendix B. The result is given by Eq. (B7) which we reproduce here:

E(z, t) = −ecχ(1− βg)
qw

2π

×
∫ ∞

−∞
dδ

∫ t

−∞
dt′

∫ 2π/qw

0

dz′ eiqw(z−z′)+ic(qw−q0)(1−βg)(t−t′)f(z′, δ, t′) + c.c. .

It is convenient to introduce dimensionless variables τ , ζ, and p instead of t, z and δ,

respectively, where

τ = µt, ζ = qwz, p = −ηω0

µ
δ ,

and µ is given by Eq. (23). We also introduce the amplitude A(τ) such that,

E = −γmcµ

eηω0

[
A(τ)eiqwz + c.c.

]
,
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where

A(τ) =
rec

2χηω0(1− βg)

γµ2

qw

2π

×
∫ ∞

−∞
dδ

∫ t

−∞
dt′

∫ 2π/qw

0

dz′ e−iqwz′+ic(qw−q0)(1−βg)(t−t′)f(z′, δ, t′) , (28)

and the dimensionless distribution function

F (ζ, p, τ) =
1

2πnb

µ

ηω0

f ,

normalized by the condition
∫ ∞
−∞ dp

∫ 2π

0
dζF (ζ, p, τ) = 1. Note that we use an approximation

cqw ≈ ω0. In these variables, the beam dynamics is described by the following equation,

∂F

∂τ
+ p

∂F

∂ζ
+

[
A(τ)eiζ + c.c.

] ∂F
∂p

= 0 , (29)

and the amplitude A(τ), as if follows from Eq. (28), satisfies the equation

∂A(τ)

∂τ
= 〈e−iζ〉+ iuA , (30)

with

〈e−iζ〉 =
∫ ∞

−∞
dp

∫ 2π

0

dζF (ζ, p, τ) e−iζ , u =
c

µ
(qw − q0)(1− βg) . (31)

Note that characteristics of Eq. (29) are equations of motion for a single particle:

dζ

dτ
= p,

dp

dτ
= [A(τ)eiζ + c.c.] . (32)

Eq. (29), (30) and Eq. (31) constitute a full system of equations. It has a universal

form of beam-wave interaction describing particles moving in the external potential of the

unstable mode which amplitude and frequency has to be defined in a self-consistent way.

These equations have an integral of motion:

C = |A|2 − 〈p〉 , (33)

which reflects conservation of energy—the sum of the wave energy and the beam energy is

constant during the interaction.

The system of equations (29), (30) and Eq. (31) is encountered in other problems of

nonlinear beam-wave interaction, e.g., in the one-dimensional FEL theory [14, 15], with the
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parameter µ being equivalent to the Pierce parameter ρ. The solution of the system on a

limited time interval can be obtained by numerical methods. In the numerical approach,

the beam is represented by a finite number M of macroparticles, and the average 〈eiζ〉 is
approximated by the sum

∑M
1 e−iζk over all particles’ coordinates ζk. The result of such a

solution—the absolute value |A| of the amplitude of the wave—is shown in Fig. (2). It shows

that the amplitude of an initial small perturbation saturates after an initial exponential

growth and exhibits oscillations at frequency of the order of the bounce frequency of particles

in the bucket of the excited wave. Fig. 2 agrees with a similar solution obtained earlier in

Ref. [14].

0 20 40
0

0.5

1

|
|

FIG. 2: The dependence of the amplitude |A| versus τ in the nonlinear regime of the

instability. After τ � 1, the exponential growth of the linear regime changes to oscillations

with the average amplitude |A| � 1 and the frequency of the oscillations � 1.

VII. SYNCHROTRON DAMPING AND QUANTUM DIFFUSION

Contrary to the FEL theory, where it usually suffices to track the solution on several gain

lengths only, for a beam in the storage ring we may be interested in time comparable to the

synchrotron damping time. The analysis in this case has to include the synchrotron damping

and diffusion due to quantum fluctuations effects. One of the difficulties of such analysis
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is that the damping time typically is larger than the synchrotron oscillation period in the

damping right so that one has also take into account synchrotron oscillations of particle in

the bunch. In this section, however, we will consider an idealized formulation which neglects

synchrotron oscillations, but includes synchrotron damping and diffusion due to quantum

fluctuation in synchrotron radiation. A more detailed study, with account of synchrotron

motion, can be found in Ref. [16].

To include the effects of synchrotron damping and quantum diffusion into the interaction

of the wave with the beam, we need to use the Vlasov-Fokker-Planck equation [17]. In our

dimensionless variables it has the following form

∂F

∂τ
+ p

∂F

∂ζ
+

[
A(τ)eiζ + c.c.

] ∂F
∂p

= Γ
∂

∂p

(
∆2∂F

∂p
+ pF

)
, (34)

where Γ and ∆ are related to the synchrotron radiation damping γSR and the rms energy

spread δSR due to the quantum fluctuations in the synchrotron radiation:

Γ =
γSR

µ
, ∆ =

ηω0δSR

µ
.

Note that with damping the integral C in Eq. (33) is not conserved any more; we have

d

dτ

(|A|2 − 〈p〉) = Γ〈p〉

instead of Eq. (33).

First, we will show that Eqs. (30), (32) do not have a steady state solution corresponding

to a constant amplitude A. For simplicity, we consider only the synchronous wave with

qw = q0. Indeed, assume that A(τ) does not depend on time, A(τ) = (iA0/2)e
iα0 , where α0

is an arbitrary phase. We then have the following equations of motion for particles,

dζ

dτ
= p,

dp

dτ
= −A0 sin(ζ + α0) .

It is easy to see that these are the pendulum equations with the Hamiltonian H,

H(p, ζ) =
p2

2
+ A0[1− cos(ζ + α0)] .

The Fokker-Plank equation Eq. (34) in this case has a steady-state solution

F (p, ζ) = Z−1e−H(p,ζ)/∆2

,
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where Z is the normalization constant. The amplitude A0 and the phase α0 have to satisfy

the condition that follows from Eq. (30) with dA/dτ = 0 (recall that u = 0),

〈e−iζ〉 = Z−1

∫ ∞

−∞
dp

∫ 2π

0

dζe−iζ e−H(p,ζ)/∆2

= 0 .

Due to periodicity in ζ, this condition is reduced to

∫ 2π

0

dζe−2(A0/∆2) sin2 ζ cos ζ = 0 .

It is easy to see that this equation does not have a solution with A0 �= 0.

In order to carry out numerical simulation of the Vlasov-Fokker-Plank equation, we note

that this equation is equivalent to the set of single-particle equations of motion with damping

and an external force κ(τ):

dζ

dτ
= p,

dp

dτ
= [A(τ)eiζ + c.c.]− Γp+ κ(τ) .

where κ(τ) is a random function of time τ with zero average value 〈κ〉 = 0 and the correlation

function

〈κ(τ)κ(τ ′)〉 = 2Γ∆2 δ(τ − τ ′) .

In our simulation, we used a discrete time mesh τi with the time step τi+1 − τi = τs

and a finite number of particles M . On each interval, we first solved the system of the

differential equations Eqs. (32) and (30) without damping and fluctuations. The damping

and fluctuations were taken into account at the end of each step by changing variables p of

each particle:

pk → pk − Γτspk +
√
24τsΓ∆2 ξ ,

where ξ is a random number uniformly distributed in the range [−1/2, 1/2]. This algorithm
was tested on the case without the wave, A = 0, and also for the case of an external wave

with constant amplitude A = const, when the Vlasov-Fokker-Planck equation has analytical

solutions. In both cases we found a good agreement between the numerical and analytical

solutions.

The simulations were carried out for the parameters close to that of ALS: µ = 3.2 · 107

s−1, ω0 = 1.0 · 1012 s−1, ∆ = 0.032. However, to speed up the tracking, we increased the
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parameter Γ from the ALS value 2.0 10−6 to 2.0 10−2. We expect that such a rescaling of

Γ accelerates the manifestation of the synchrotron damping effects without qualitatively

changing the solution. Typically we used from 200 to 800 particles in the simulation.

The results of the tracking for τ ≈ 1000 (corresponding to approximately 20 damping

times) are shown in Fig. 3 and Fig. 4. Fig. 3 shows the amplitude A0(τ), and Fig. 4

0 250 500 750 1000
Τ

0

2

4

6

A
0

FIG. 3: The absolute value of the amplitude |A(τ)| as a function of τ . Black curve–result

of simulation, red curve–analytical solution of Eq. (42).

shows the average over distribution function momentum 〈p〉 and the rms spread in p, ∆prms,

as functions of time. For the time interval small compared with the damping time τ � 50,

results of tracking reproduce Fig. 2. For larger time intervals, τ � 50, we see that the

amplitude A0 keeps growing, and the beam comes to a quasi equilibrium, with a slowly

changing values of 〈p〉 and ∆prms. Note also a relatively small value of ∆prms, which means

that particles of the beam are well localized in the p-space.

The numerical results shown in Figs. 3 and 4 give us an indication of an analytical

solution to the problem in the limit of large τ . In this solution we assume that

A(τ) =
1

2
iA0(τ)e

−iν(τ)τ , (35)

where the function A0(τ) and frequency ν(τ) are slow functions of time. Without loosing

generality, we can assume that both A0 and ν are real. Substituting Eq. (35) into Eq. (32)
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FIG. 4: Numerical simulation of nonlinear regime of the instability: a)—the average mo-

mentum 〈p〉, b)—the rms momentum spread ∆prms. The red line shows the the result of the

analytical model.

yields:

dζ

dτ
= p,

dp

dτ
= −A0 sin(ζ − ντ) , (36)

where the amplitude A0 has to be determined in a self-consistent way from Eq. (30).

Let us make a canonical transformation of variables from ζ and p to ξ and r, respectively,

ξ = ζ − ντ, r = p− ν . (37)

18



The Fokker-Plank equation Eq. (34) in new variables takes the form

∂F

∂τ
+ r

∂F

∂ξ
− A0 sin ξ

∂F

∂r
= Γ

∂

∂r

[
∆2∂F

∂r
+ (r + ν)F

]
. (38)

Because A0 and ν are assumed to vary slowly, in this equation we can neglect their time

dependance and consider them as constant. We then find a steady-state solution of Eq. (38)

as

F (r, ξ) = Z−1 exp

(−r2 − 2A0U(ξ)

2∆2

)
, (39)

where Z is a normalization constant and the potential U is

U(ξ) = 1− cos ξ +Υξ ,

with Υ = Γν/A0. Note that U depends on time only through adiabatic dependence of A0

and ν. For the purpose of illustration, Fig. 5 shows the plot of the potential U for Υ = 0.25.

�10 �5 0 5 10
Ξ

0

2

4

U

FIG. 5: Potential U = Υξ + (1− cos ξ) for Υ = 0.25.

The condition of self-consistency defines time-dependence of the parameters A0 and ν.

Substituting Eq. (35) into Eq. (30) yields:

dA0

dτ
= iνA0 − 2i〈e−iξ〉 . (40)
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Separating the real and imaginary parts in this equation we get two equations:

dA0

dτ
= −2〈sin ξ〉, ν =

2

A0

〈cos ξ〉 . (41)

Note that the non-zero detuning u would shift ν → ν + u/2.

Our numerical simulations show that at large τ particles tend to accumulate at the bottom

of local wells of the potential U (see Fig. 5) with a small momentum r ≈ 0. The adiabatic

approximation can be simplified even further if the averaging in Eq. (40) is replaced by the

value of the function eiξ taken at the location of the minimum ξ0 of the potential U(ξ):

〈e−iξ〉 ≈ e−iξ0 .

It is straightforward to show that sin ξ0 = −Υ. Using Eq. (41), we find Υ = [1 +

A4
0/(2Γ)

2]−1/2 and equation for A0(τ),

dA0

dτ
=

2√
1 + A4

0/(2Γ)
2
. (42)

Since this equation determines asymptotic behavior of A in the limit τ → ∞, the initial

condition for it is not well defined. For the purpose of comparison with the numerical

solution, we considered an initial condition A(τ0) = A∗, with A∗ as a fitting parameter.

The result of integration of Eq. (42) with A(100) = 2.5 is shown in Fig. 3 in red color, in

good agreement with the numerical solution. It is straightforward to show that for large τ

it follows from Eq. (42): A0 ∝ τ 1/3. The averaged momentum of the particles 〈p〉 in this

model can be found from equation r ≈ 0 which gives 〈p〉 ≈ ν = 2 cos ξ0/A0. This curve is

shown as a red line in Fig. 4a.

VIII. CONCLUSION

In this paper, we studied stability of the beam interacting self-consistently with a single

synchronous mode in a toroidal wave guide. We first derived the beam-mode interaction

equations in linear approximation, obtained the growth rate of the instability, and compared

the result with the model of the CSR instability with continuous spectrum. We also showed
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that the latter follows from the singe-mode model in the limit when the resonances overlap,

and obtained the criterion for transition from one regime to the other.

We then derived equations for nonlinear beam-mode interaction, assuming that the in-

teraction is dominated by a single synchronous mode. For relatively small time intervals,

the interaction can be described by a system of equations which, after proper scaling, has a

universal form that does not depend on parameters of the system. We note that this system

of equations is analogous to a one-dimensional free electron laser theory, and leads to the

same beam dynamics.

For a storage ring, one is interested in long-term evolution of the instability, when effects

of synchrotron damping and quantum diffusion become important. Using the Vlasov-Fokker-

Planck equation to describe these effects, we showed, both numerically and analytically, that

in the long term there is no saturation of the instability: the amplitude of the mode keeps

growing although at a slow rate. Our analytic approximation to the solution describes such

an asymptotic behavior and shows a good agreement with the numeric one.
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APPENDIX A: DERIVATION OF THE DISPERSION RELATION BASED ON

SINGLE MODE IMPEDANCE

The dispersion relation in the standard theory of the stability of a coasting beamis [10]

1 = i
nbrec

2

γδ0
Z(Ω)

∫
dp dρ0(p)/dp

(Ω− kc) + ηcδ0kp
,

where Z(Ω) is the beam impedance, and k is the wavenumber. The resonant impedance for

a mode of frequency ωn is

Z(Ω) =
Rn

1 + iQn(ωn/Ω− Ω/ωn)
, (A1)

where Rn and Qn are the shunt impedance, and Q-factor of the mode, respectively. If the

Q-factor is large, Qn � 1, in the vicinity of the resonant frequency Ω ≈ ωn, the impedance

is simplified:

Z(Ω) =
i

2

ωn

Ω− ωn

Rn

Qn

= i
χn

∆Ω
. (A2)

where the loss factor χn = ωnRn/2Qn.

Eq. (25) now takes the form

1 = −nbrec
2χn

γδ0Ω

∫
dpdρ(p)/dp

(Ω− kc) + ηcδ0kp
. (A3)

The same results follows from Eqs. (17-19) for q = qn = k except for the additional factor

1− βg. Eq. (25) is, strictly speaking, implies a localized impedance and has to be corrected

for the impedance due to propagating modes with large group velocity.

APPENDIX B: EQUATIONS DESCRIBING INTERACTION OF THE BEAM

WITH A SINGLE MODE

The equation for the electric field can be obtained analogously to the derivation of Eq.

(13). The only difference is that instead of the Fourier component of the perturbation of

the distribution function g1 one has to use the full distribution function g:

Cn(q, ω) =
i

Nn

ec (e∗
n(0) · s)

q − q(n, ω)− iε

∫
dδg(ω − qc, q, δ) , (B1)
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where

g(ω, q, δ) =

∫
dtdz e−i(qz−ωt)f(z, δ, t) . (B2)

In a single-mode approximation, we assume that in the nonlinear regime the electro-

magnetic field is dominated by a mode with the wavenumber qw close to the synchronous

wavenumber q0. In this case, the distribution function f is a periodic function of z with the

period equal to 2π/qw. This means that the function g given by Eq. (B2) can be represented

as

g(ω, q, δ) =
∑

k

g(k)(ω, δ)δ(q − kqw) ,

where

g(k)(ω, δ) = qw

∫ 2π/qw

0

dz

∫
dtf(z, δ, t)e−i(kqwz−ωt)dz .

The dominant part of the interaction of the beam with the wave is determined by the first

harmonic of the distribution function. For this reason, we will keep only harmonics g(±1) in

Eq. (B1).

Note that the quantity E(z, t) in Eq. (27) is equal to the longitudinal component of

E(r, s, t) taken at the location s = ct + z on the axis r = 0, E(z, t) = Es(0, s = ct + z, t).

Using Eqs. (B1), and (B2), we find for E(z, t):

E(z, t) =
∫

dωdq

(2π)2
Cn(q, ω) (en(0) · s) e−iωt+iq(z+ct)

=
iec

Nn

∫
dωdq

(2π)2
|en(0) · s|2

q − q(n, ω)− iε
e−iωt+iq(z+ct)δ(q − qw)

∫
dδg1(ω − qc, δ) + c.c.

=
iec

Nn

∫
dωdq

(2π)2
|en(0) · s|2

q − q(n, ω)− iε
e−iωt+iq(z+ct)qwδ(q − qw)

×
∫

dδdt′dz′ e−i(qz′−(ω−qc)t′)f(z′, δ, t′) + c.c. . (B3)

The integration over the frequency can be carried out using the following relation

∫
dω

2π

e−iω(t−t′)

q − q(n, ω)− iε
= ivg(q)Θ(t− t′)

(
e−iωn(q)(t−t′) + eiωn(q)(t−t′)

)
, (B4)

where Θ(t) is the step function, ωn(q) is the solution of the dispersion relation q(n, ωn) = q,

and vg(q) = dωn(q)/dq is the group velocity. In Eq. (B4) we took into account that for

each q there are two values of ωn with opposite signs corresponding to waves propagating in
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opposite directions (we will assume ωn(q) > 0 below). Substituting Eq. (B4) into Eq. (B3)

gives

E(z, t) = − ec

Nn

∫
dq

2π
vg(q)|en(0) · s|2qwδ(q − qw)

×
∫

dδdt′dz′Θ(t− t′) eiq(z−z′)
(
ei(cq−ωn(q))(t−t′) + ei(cq+ωn(q))(t−t′)

)
f(z′, δ, t′) + c.c.

≈ − ec

γNn

qw

2π
vg(qw)|en(0) · s|2

×
∫

dδdt′dz′Θ(t− t′) eiqw(z−z′)+i(cqw−ωn(qw))(t−t′)f(z′, δ, t′) + c.c. , (B5)

where we kept only the resonant terms in the equation. One can expand ωn(qw) ≈ ωn(q0) +

(qw − q0)vg(q0) and also assume vg(qw) ≈ vg(q0). With this expansion, integration over q in

Eq. (B5) with account of both contributions from +q0 and −q0 yields

E(z, t) = − ec

Nn

qw

2π
vg|en(0) · s|2

×
∫

dδdt′dz′Θ(t− t′) eiqw(z−z′)+ic(qw−qn)(1−βgn)(t−t′)f(z′, δ, t′) + c.c. , (B6)

where vg, βg = vg/c and en(0) now refer to the synchronous mode. It is worth noting that

the retardation time in the distribution function in Eq. (B6) depends on the relative speed

of the particles (assumed here close to c) and the group velocity of the wave vg.

The coefficient in Eq.(B6) is related to the loss factor χ per unit length of the synchronous

mode [9]:

χ =
vg

1− βg

|(s · en(0))|2
Nn

,

so that Eq. (B6) can be also written as

E(z, t) = −ecχ(1− βg)
qw

2π

×
∫

dδdt′dz′Θ(t− t′) eiqw(z−z′)+ic(qw−q0)(1−βg)(t−t′)f(z′, δ, t′) + c.c. . (B7)

Eqs. (27) and (B7) describe nonlinear interaction of a synchronous mode with the coasting

beam.
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