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Abstract

The coherent synchrotron radiation (CSR) instability at the shielding threshold
may be driven by a single synchronous mode excited by the beam in the beam pipe.
The instability in this case has been analyzed [1] in the coasting beam approximation
neglecting synchrotron motion. The later becomes important at large time intervals
in storage rings where it substantially affects the beam dynamics. The single-mode
CSR instability of a bunched beam with the synchrotron motion taken into account
is described in this paper both in linear and nonlinear regimes. Analysis is relevant
to other instabilities where the interaction is dominated by a single mode.

Introduction

The coherent synchrotron radiation (CSR) can drive beam instability. In the previous
paper [1] we studied the CSR instability [2] of a coasting beam interacting with a single
wave-guide mode. The argument for using the coasting beam model aside of substantial
simplification of the theory was based on the fact that the wave length of the relevant
perturbation is small compared to the bunch length. The instability was studied both
in the linear and non-linear regimes. It was shown that even on the large time scale
comparable or larger than the damping time there is no saturation of the instability: the
amplitude of the perturbation keeps growing slowly but steadily.

To be valid on such time intervals, however, the approach has to be reconsidered taking
into account the synchrotron motion. Another motivation for the study is provided by the
recent proposal to build a dedicated storage ring for generation of the infrared coherent
radiation [3].
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The paper is organized in the following way. First, the basic equations describing the
beam dynamics and the interaction of the beam with the excited EM wave are obtained.
Then, it is shown that although the steady-state solution exists, it is unstable and the
growth rate for a bunched beam is determined in the linear approximation. For exist-
ing machines, the linear regime is limited to the time intervals less than a microsecond.
Therefore, it is important to consider the nonlinear regime of the instability. The qual-
itative analysis of the nonlinear regime and the estimate of the growth rate is given in
the following two sections. Then, the results of numeric simulations are presented and
compared with the qualitative analysis.

Basic equations

The beam dynamics is described neglecting the nonlinearity of the rf field assuming that
the nonlinearity is dominated by the beam-wave interaction VB(z, t),

dz

dt
= −ηcδ,

dδ

dt
=

ω2
s

ηc
z + VB(z, t), (1)

where z is position of a particle along the bunch, δ is the relative energy offset, ωs/(2π)
is the synchrotron frequency, and η is the momentum compaction factor. The EM wave
excited by the beam in the wave guide is defined by the wave frequency ωw, the wave
vector qw = ωw/c, the loss factor per unit length χ, and the group velocity βg. VB is
defined [1] by the distribution function f ,

∫

dzdδf(z, δ, t) = 1 (see Appendix)

VB(z, t) = −reNBc2

γ
(1−βg)χ

∫ t

−∞
dt′dδ′f [z+c(t−t′)(1−βg), δ

′, t′]e−i(1−βg)ωw(t−t′)+c.c. (2)

Here NB is the number of particles per bunch, and γ is the relativistic parameter of the
beam (not to be confused with the radiation damping γSR = 1/τSR below).

It is convenient to use dimensionless variables (τ , ζ, P ), and interaction V (ζ, τ) intro-
ducing

τ = µt, ζ = qwz, P = −ηωw

µ
δ, V (ζ, τB) =

ηωW

µ2
VB(z, t), (3)

where µ depends on the peak density in a bunch nB = NB/(σB

√
2π).

(
µ

c
)3 =

renB

cγ
(1 − βg)χηωw. (4)

It is convenient to use notations

κ = (
ωw

µ
)(1 − βg), ∆ =

ηωwδ0

µ
, Γ =

γSR

µ
, Ω =

ωs

µ
, (5)

where δ0 is the rms of the relative energy spread. The corresponding Hamiltonian H is

H(ζ, P, τ) =
P 2

2
+

Ω2ζ2

2
+ U(ζ, τ). (6)
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The potential U is defined by dU/dζ = V ,

V (ζ, τB) = −λ3
∫ τ

−∞
dτ ′dP ′F [ζ + (τ − τ ′)κ, P ′, τ ′]e−iκ(τ−τ ′) + c.c. (7)

where

λ3 =
√

2π
∆

Ω
, (8)

and the integration over τ ′ from −∞ implies that a small ε− > +0 is added to the
exponent.

The distribution function F (ζ, P, τ) is normalized,
∫

dPdζF (ζ, P, τ) = 1 and satisfies
the Fokker-Plank equation

∂F

∂τ
+ P

∂F

∂ζ
− [Ω2ζ + V (ζ, τ)]

∂F

∂P
= Γ

∂

∂P
[∆2 ∂F

∂P
+ P F ]. (9)

Let us define w(ζ, τ), V (ζ, τ) = w(ζ, τ) + c.c.. The Fourier harmonics w̃(q, τ)

w(ζ, τ) =
∫ dq

2π
w̃(q, τ)eiqζ (10)

is related to F ,

∂w̃(q, τ)

∂τ
= i(q − 1) κ w̃(q, τ) − λ3

∫

dζ dPe−iqζF (ζ, P, τ). (11)

Note that ∆/Ω = qwσB >> 1 for the high frequency waves with the wave length 2π/qw

which is small in comparison to the rms bunch length σB.
Parameters of four typical machines are given in Table.

Table 1: Parameters for several machines.

LER HER ALS VUV NSLS

µ, 1/µs 8.15 31.9 22.7 2.7
κ 138.9 98.5 138.4 121.3
Ω 3.9E-3 1.3E-3 0.33E-3 14.E-3
∆ 0.072 0.031 0.012 0.92

1 Steady-state solution

The Fokker-Plank Eq. (9) has a formal steady-state solution which, after integration over
P , takes the form

F (ζ) =
1

|N |e
− 1

∆2 [Ω
2ζ2

2
+U(ζ)], (12)

3



where |N | is normalization constant and U(∞) = 0.
It can be solved by iterations starting with a Gaussian bunch

F0(ζ) =
1√

2π∆2
e−

1
2
(Ωζ

∆
)2 . (13)

In the first iteration, the potential and the distribution function are

U1(ζ) = −2λ3

κ

∫ ∞

ζ
dz′F0(z) sin(z − z′)

F1(ζ) =
1

|N |
√

2π∆2
e−

1
∆2 [Ω

2ζ2

2
+U1(ζ)]. (14)

The potential is given in terms of the error function

U1(ζ) = Re{2∆

κΩ

√

π

2
e−

∆2

2Ω2 [eiζ Erfi(
∆2 − iΩ2ζ√

2∆Ω
) − sin(ζ)]}. (15)

The iterations can be repeated. The distribution functions F0 and F1 calculated with
parameters ∆ = 0.3, Ω = 0.01, κ = 90 are shown in Fig.(1). The difference is very small.
However, the linear analysis below shows that such a steady-state solution is unstable.
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Figure 1: The steady-state solution obtained by iterations.

The analysis presented above leaves open question whether there is a time-independent
solution F (ζ, τ) = F (ζ) with large amplitude of perturbation V (ζ).

The following arguments indicate (although do not prove) that such a solution does
not exist.

Eq. (7) can be written as

V (ζ) = A(ζ) eiζ + c.c.

A(ζ) = −λ3

κ

∫ ∞

ζ
dζ ′e−iζ′F (ζ ′). (16)

4



Hence, the steady-state solution is given by the system of equations

dU(ζ)

dζ
= A(ζ)eiζ + c.c.,

dA(ζ)

dζ
=

λ3

κ
e−iζ F (ζ), F (ζ) =

1

|N |e
− 1

∆2 [Ω
2ζ2

2
+U(ζ)], (17)

|N | =
∫

dζe−
1

∆2 [Ω
2ζ2

2
+U(ζ)].

The system is suitable for simulations.
The trivial solution A(ζ) = (a/2)e−iζ , U(ζ) = Re[a] does not exists. Indeed, the

second equation gives a′ − ia = realfunction. Hence, a(ζ) = 0, while a′ 6= 0.
It can be proven that a solution of the form

U(ζ) = a cos(ζ − ζ0), (18)

where a and ζ0 are real functions with slow dependence on ζ does exist but with a = const.
Such a solution can be obtained by direct numeric solution of Eq. (18). However, the
obtained solution gives U(ζ) oscillating with a constant amplitude for all ζ what is not
acceptable. This arguments show that the steady-state solution which is non-zero only
behind the bunch, probably, does not exist.

2 Linerized Vlasov equation with the synchrotron

motion

In this section, we show that the steady-state solution with the zero amplitude of the
perturbation is unstable: a small perturbation grows in time exponentially.

With the synchrotron motion taken into account, there is no periodicity over ζ even
for a bunch interacting with a single EM wave. Let us introduce the Fourier harmonics
of the distribution function

F (ζ, P, τ) =
∫ dq

2π
eiqζF̃ (q, P, τ). (19)

Assuming the time dependence of the harmonics in the form w̃(q, τ) = ŵ(q)e−iντ , F̃ (q, P, τ) =
F̂ (q, P )e−iντ with amplitudes F̂ (q, P ) and ŵ(q), respectively, we get from Eq. (11):

ŵ(q) = −iλ3

∫

dP F̂ [q, P ]

(q − 1)κ + ν
. (20)

In the zero approximation, the distribution function is F0(ζ, P ),

F0(ζ, P ) =
1

Z
e−

1
∆2 (P2

2
+Ω2ζ2

2
), (21)
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where the normalization constant Z = 2π∆2/Ω. The contribution of F0 to Eq. (20) is
exponentially small when q ' 1.

In the linear approximation, F (ζ, P, τ) = F0 +[f(ζ, P )e−iντ + c.c.], and F̂ (q, P ) in Eq.
(20) can be replaced by f̂(q, P ).

Eq. (9) is reduced to the Vlasov equation for f(ζ, P, τ):

∂f

∂τ
+ P

∂f

∂ζ
− Ω2ζ

∂f

∂P
= V (ζ, τ)

∂F0

∂P
. (22)

Eq. (22) can be easily solved using characteristics

ζ(τ) = ζ0 cos(Ωτ) +
P0

Ω
sin(Ωτ), P (τ) = −Ωζ0 sin(Ωτ) + P0 cos(Ωτ). (23)

The solution is

f(ζ, P, τ) = −F0(ζ, P )

∆2

∫ τ

−∞
dτ ′[Ωζ sin φ + P cos φ] V [ζ cos φ − P

Ω
sin φ, τ ′], (24)

where φ = Ω(τ − τ ′).
Substitute Eqs. (24) and (21) in the definition of the Fourier harmonics

f̂(q, P ) =
∫

dζe−iqζ+iντ f(ζ, P, τ). (25)

Integration over P and ζ gives

∫

dP f̂(q, P ) =
iq

Ω

∫ dq′

2π
V̂ (q′)e−

1
2
(∆
Ω

)2(q−q′)2S(q, q′), (26)

where
S(q, q′) =

∫ ∞

0
dτeiντ sin(Ωτ)e−(∆

Ω
)2q q′ [1−cos(Ωτ)]. (27)

Combining Eqs. (20), (26) we get

V̂ (q) =
λ3 q

Ω[ν + (q − 1)κ]

∫ dq′

2π
V̂ (q′)e−

1
2
(∆
Ω

)2(q−q′)2S(q, q′). (28)

As it was mentioned above, the ratio Ω/∆ = 1/(qwσb) << 1 for the short wave
length perturbations. Therefore, the integral in Eq. (28) can be estimated taking factors
V̂ (q′)S(q, q′) at q′ = q. Eq. (28) then gives the dispersion equation

1 =
λ3q

∆
√

2π

S(q, q)

ν + (q − 1)κ
. (29)

The function Ω S(q, q) is function of two parameters

S(q, q) =
1

Ω

∫ ∞

0
dx sin(x)ei(ν/Ω)xe−b2(1−cos x), (30)
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where b = q∆/Ω >> 1. The main contribution to the integral Eq. (30) is given by |x| <<
1. The other contributions come from the narrow vicinities of xk = 2πk, k = integer,
which cancel each other provided there are no resonances ν/Ω = integer. Therefore, for
Ω/∆ << 1, the integral can be simplified,

S(q, q) =
Ω

(q∆)2
G[

ν

q∆
], (31)

where
G[a] =

∫ ∞

0
xdxeiaxe−x2/2. (32)

For large |a| >> 1, G(a) ' −(1/a2), and Eq. (29) gives

ν2[ν + (q − 1)κ] = − λ3q√
2π

Ω

∆
. (33)

Using definition Eq. (8), we get for q = 1

ν3 = − λ3 Ω

∆
√

2π
= −1. (34)

The growth rate Im(ν) = sin[π/3] exactly corresponds to the growth rate defined before [1]
for a cold beam (i.e. for ∆ << ν). The synchrotron motion does not change the result
provided Ω/∆ << 1, i.e. for the short wave lengths.

The value q = 1 corresponds to the modulation V (ζ, τ) ∝ ei(ζ−ντ) and the perturbation
of the distribution function of the form F (ζ, P, τ) ∝ eiζ = eiqwz, i.e. the spatial modulation
with the wave length of the EM wave.

For q 6= 1, the growth rate is reduced provided κ >> 1. The function Im[ν] is shown
in Fig. (2) as function of q for κ = 25.

Eq. (33) gives for 1 >> |q − 1|κ >> |ν|/κ

ν2 = − 1

(q − 1)κ
. (35)

Eq. (35) gives the estimate for the width of the resonance and shows that instability is
substantial only for harmonics of the distribution function F (q) in the narrow vicinity
of q = 1. From these results, it is clear that, in the linear approximation, different EM
modes in the beam pipe can be considered independently.

3 Particle motion in the nonlinear regime: qualita-

tive analysis

Fast initial growth predicted by the linear theory is limited to a short period of time
of the order of the inverse growth rate, τ ' 1, t ' 1/µ. After that, the growth of
the amplitude is substantially nonlinear. For the time intervals small compared with the
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Figure 2: The growth rate Im[ν] as function of the detuning for κ = 25.

period of synchrotron oscillations, the nonlinear beam dynamics is the same as for the case
of a coasting beam [1]. Describing the non-linear behavior at larger time we found that
it is necessary to distinguish the short-range and the long-range nonlinear regimes. The
first regime can be analyzed similarly to the analysis given for the coasting beam [1] and
is presented in this section. In spite of similarity, the growth rate in this regime is quite
different from the one for coasting beam and depends on Ω. Analysis and simulations of
the second regime are given in the following sections.

As it shown above, in the linear regime the beam-wave interaction with a single mode
can be written as V (ζ, τ) = aq0 sin(q0ζ − ντ) with the wave vector q0 ' 1 and the
amplitude a exponentially growing in time. We assume that in the nonlinear regime
V (ζ, τ) has the same form where the mode frequency ν(τ) and the amplitude a(τ) are
real but the amplitude a and the tune ν may vary slowly in time.

Interaction with such a mode can be described by the system of equations equivalent
to the Fokker-Plank equation Eq. (9),

ζ̇(τ) = P, Ṗ (τ) + Ω2ζ = −ΓP − a q0 sin(q0ζ − ντ). (36)

The quantum fluctuations can be taken into account by adding a random force to the
right-hand-side of the second equation but can be neglected for a time intervals smaller
than the damping time.

The left-hand-side of Eq. (36) corresponds to motion of a particle in the potential, see
Fig. (3),
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U(ζ, τ) =
Ω2ζ2

2
+ a[1 − cos(q0ζ − ντ)]. (37)

The potential has minima at the points defined by the equation

ζ +
q0a

Ω2
sin(q0ζ − ντ) = 0. (38)

The potential is a chain of micro-potential wells. For a >> Ω2, they are centered at

ζk(τ) ' 1

q0

(1 − Ω2

ω2
)(ντ + 2πk), k = integer, (39)

where ω2 = Ω2 + q2
0 a. Eq. (39) is valid for (Ω/ω)2|ντ + 2πk)| < 1.

-10 0 10
Ζ
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50
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150

U
to

t
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Figure 3: The total potential Utot = ζ2/2 + a sin(ζ − ντ) for ντ = (0, π/4, π/2, 3π/4) and
a = 10. A particle trapped in the local minimum remains trapped and moves with the
minimum until it reaches large ζ ' a.

For a fixed τ and large a >> 1, there are approximately

nwell '
a q2

0

πΩ2
(40)

potential wells within the distances |ζ| < a separated by ∆ζ = 2π/q0, see Fig. (3).
In the linear approximation, the wave amplitude a(τ) grows to a ' 1 much faster than

the synchrotron period. Hence, initially, position and momentum of a particle do not
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change. Particles remain distributed approximately uniformly in the phase space within
|ζ| < ∆/Ω and |P | <

√
2∆.

Then, trapped particles start synchrotron oscillations with the amplitude zmax < π.
The frequency of small oscillations is

ω =
√

a + Ω2 (41)

and the maximum momentum of a trapped particle is of the order of Pmax = zmaxω. Note
that the frequency of oscillations of a trapped particle ω may be large compared to the
synchrotron frequency Ω for amplitudes a >> 1.

The depth of the potential wells is proportional to the amplitude a. The energy
of a particle H = ωJ where action J = const if a(τ) changes adiabatically. Because
H ' ω2z2 ' P 2, the amplitude of particle oscillations z and the energy spread of trapped

particles ∆rms(τ) =
√

〈P 2〉 − 〈P 〉2 scale with the amplitude |a(τ)| as

z ∝
√

1

ω
∝ a−1/4, ∆rms(τ) ∝

√
ω ∝ a1/4. (42)

Additional to the oscillations, a particle trapped in the micro-potential-well drifts with
the potential well at the rate dζ/dτ = ν as it is clear from Fig. (3). It is easy to see that
particle can be trapped as long as |ζ| < zdr = a/Ω2.

The condition of adiabaticity which is implied here requires that the shift of a well
minimum ∆ζ ' ν∆T during one period of oscillations of trapped particles ∆T = 2π/ω is
small compared to the well separation 2π. That means ω >> ν and is justified for large
a >> ν2.

The time of the drift to the amplitude zdr is τdr = a/(νΩ2) and the energy of a trapped
particle increases in the rf potential well to large values Udr = (a/Ω)2.

The depth of a micro-well ∆Uk(τ) = U(ζk∓π)−U(ζk) in which particles were initially
trapped at ζk(0), decreases when ζk(τ) > |ζk(0)| provided a(τ) grows slower than zk(τ)
increases. In this case, the micro-well population would be reduced with time releasing
particles. The released particles start synchrotron oscillations with large amplitude zdr

and momentum |P | ' Ωzdr.
This qualitative picture is confirmed by numeric calculations of a trajectory defined

by the equations of motion Eq. (36) with fixed a = 5.0 and the zero initial conditions.
The result and other parameters are shown in Fig. (4).

The released particles may be trapped again mostly due to the radiation damping be-
cause the frequency of the synchrotron oscillations and the tune ν are not commensurate.
If damping is strong, particles are trapped and released in a pattern similar to relaxation
oscillations, see Fig. (5).

3.1 Growth rate in the nonlinear regime for τ < τdr

The distances between macro-bunches released from the micro-wells depend on time. Such
bunches are not equidistant as in the case of trapped particles. In addition to that, such
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A=5.0,Ν=0.5,W=0.1,G=0,ΖH0L=0,PH0L=0.0
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Figure 4: Trajectory of a particle defined by Eq. (36) with a constant amplitude a = 5.0.
The phase plane is zoomed in the bottom right at small 0 < τ < 15 indicating oscillations
of trapped and drifting particles. Parameters are shown in the figure. The drift time and
the amplitude are in agreement with the estimates zdr ' a/Ω2, |P | ' Ωzdr, τdr ' zdr/ν.
At small τ , ω ' √

a and the shift in ζ per period is 2πν/ω.

particles have large energy spread and their interaction with the wave is reduced by the
Landau damping. Therefore, interaction of such particles with the wave is small. The wave
grows mostly due to the interaction with trapped particles what can be approximately
described in the following way.

At large amplitudes a >> ∆2, particles trapped in the micro-wells can be considered
as a macroparticle located at the minima ζk, see Eq. (39).

Therefore, we can write an approximate expression for the distribution function F (ζ, τ) =
∫

dPF (ζ, P, τ) as
F (ζ, τ) =

∑

k

Nk(τ) δ[ζ − ζk(τ)]. (43)

Initial micro-bunch population is defined by F (ζ, 0) ∝ exp[−(1/2)(Ωζk/∆)2]. There is
substantial population

Nk(0) =
√

2π(
Ω

∆
) e

−( Ω2

2∆2 )( 2πk
q0

)2
(44)

only in the range |k| < q0∆/(2πΩ), i.e. for |ζk| < q0 (∆/Ω). F (ζ, τ) is normalized,
∫

dζF (ζ, τ) =
∑

Nk = 1.
First, we want to show that F (ζ, τ) in Eq. (43) during the time less than the drift time

τdr is consistent with the form of the potential U , Eq. (37), provided a and ν are slowly
varying with time.

Neglecting slow damping and diffusion, we can replace the Fokker-Plank equation by
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Figure 5: Trajectory of a particle defined by the equation ζ ′′+Γζ ′+ζ = a sin(ζ−ντ) with
the zero initial conditions z(0) = z ′(0) = 0 in the case of strong damping. Paramaters:
a = 10, Γ = 0.1, ν = 0.1

the system of equation of motion Eq. (36) (with Γ = 0). It is natural to describe the
motion of a particle trapped in the k-th micro-well by the coordinates x, ẋ,

x = q0ζ − ντ − 2πk, ẋ = Q = q0P − ν. (45)

The oscillations of a particle is defined by the equation

d2xk

dτ 2
+ Ω2x + aq2

0 sin x = −Ω2(2πk + ντ). (46)

For large a, the amplitude of oscillations is small, and sin x ' x. Then, Eq. (46)
describes a linear oscillator with the frequency ω, ω2 = q2

0a + Ω2 and has the solution

x(x0, Q0, τ) = −(
Ω

ω
)2(2πk + ντ) + [x0 + 2πk(

Ω

ω
)2] cos(ωτ) +

1

ω
[Q0 + ν(

Ω

ω
)2] sin(ωτ),

Q(x0, Q0, τ) = −ν(
Ω

ω
)2 − ω[x0 + 2πk(

Ω

ω
)2] sin(ωτ) + [Q0 + ν(

Ω2

ω
)2] cos(ωτ). (47)

Here, x0 and Q0 are constant integrals of motion. They are related to the initial
conditions ζ(0) = ζ0 and P (0) = P0 at τ = 0,

x0 = q0ζ0 − 2πk, Q0 = q0P0 − ν. (48)

12



The initial Gaussian bunch F (ζ, P, 0) ∝ exp[− 1
∆2 (P

2
0 + Ω2ζ2

0 )]. At τ > 0,

F (ζ, P, τ) =
∑

k

∫

dζ0dP0F (ζ0, P0, 0)δ[ζ − 1

q0

(x(ζ0, P0, τ) + ντ + 2πk)]

δ[P − 1

q0

(Q(ζ0, P0, τ) + ν)], (49)

where x(ζ0, P0, τ) and Q(ζ0, P0, τ) after substitution of x0 and Q0 from Eq. (48) are
defined by Eq. (47).

Integrating Eq. (49) and averaging terms oscillating with the frequency ω, we get
F (ζ, P, τ). After additional integration over P ,

F (ζ, τ) =
Ω

q0∆2

√

ω2 + Ω2

2

∑

k

e
−ω2+Ω2

4∆2 [ζ− ντ+2πk

q0(1+Ω2/ω2)
]2− 1

2
( 2πkΩ

q0∆
)2

, (50)

where small terms of the order of (ν/ω)2(Ω/∆)2 << 1 and (2πk)2Ω4/(∆ω)2 < (Ω/ω)2 <<
1 are neglected.

Eq. (50) is valid for (Ω/ω)2|ντ + 2πk)| < 1 that is, for τ < τdr = ω2/(νΩ) provided
ω >> Ω.

For large a >> ∆2, the normalized distribution function Eq. (50) can be written as
sum of δ-functions

F (ζ, τ) =
∑

k

√
2π

Ω

q0∆
e
−2( πkΩ

q0∆
)2

δ[ζ − ντ + 2πk

q0(1 + Ω2/ω2)
]. (51)

This form was assumed in Eq. (43).
The Fourier transform of the distribution function is the sum

F̃ (q, τ) =
∑

k

Nk(τ)e−iqζk(τ). (52)

Such a sum is a sharp function of |q − q0|. It can be written as

F̃ (q, τ) = F̃ (q0, τ)Φ(q, q0, τ),

Φ(q, q0, τ) =

∑

Nk(τ)e−iqζk(τ)

∑

Nk(τ)e−iq0ζk(τ)
. (53)

Here
F̃ (q0, τ) =

∫

dζ dPF (ζ, P, τ)e−iq0ζ (54)

and can be easily calculated numerically as it will be shown below.
The factor Φ(q, q0, τ) can be determined using Nk, Eq. (44), and the estimate

∞
∑

k=−∞

e−2πiak−bk2/2 '
√

2π

b
e−

2π2

b
{a}2

(55)
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valid for small 0 < b << 1. The curly brackets here mean the fractional part of a,
{a} = a mod(1).

Calculations give

Φ(q, q0, τ) ∝ e
− 1

2
(

q0∆

Ω
)2{ q

q0(1+Ω2/ω2 }
2

. (56)

This is a narrow function around q equal to multiples of q0 with the width ∆q =
Ω/∆ << 1. The self-consistent potential is generated by the harmonic q ' q0. Neglecting
all other harmonics, Eq. (56) takes the form

Φ(q, q0, τ) = Φ0(q − q0)e
q−q0

q0
(1−Ω2

ω2 )[−iντ+(
q0∆

ω
)2]

, (57)

where
Φ0(q − q0) = e−

1
2
(

q0∆

Ω
)2(q−q0)2 . (58)

Numeric calculations of Φ(q, q0, τ) show that the estimate Eq. (57) works very well for
the parameters of interest.

Now we can calculate V (ζ, τ) ≡ w(ζ, τ) + c.c..
The Fourier harmonics w̃(q, τ) are defined by Eq. (??),

w̃(q, τ) = −λ3
∫ τ

−∞
dτ ′F̃ (q, τ ′)ei(q−1)κ(τ−τ ′). (59)

Substituting Eqs. (53), (57), we get

w̃(q, τ) = − i

2
λ3Φ0(q − q0)A(q, q0, τ), (60)

where

A(q, q0, τ) = −2i
∫ τ

−∞
dτ ′F̃ (q0, τ

′)ei(q0−1)κ(τ−τ ′)e
q−q0

q0
(1−Ω2

ω2 )[−iντ ′+(
q0∆

ω
)2]

. (61)

Let us consider the short time interval, τ < ∆/(νΩ). Then, approximation Φ0(q−q0) '
(2π/λ3)δ(q − q0) gives

w(ζ, τ) =
∫ dq

2π
eiqζw̃(q, τ) = − i

2
A(q0, q0, τ)eiq0ζ

A(q0, q0, τ) = −2i
∫ τ

−∞
dτ ′F̃ (q0, τ

′)ei(q0−1)κ(τ−τ ′). (62)

Comparison of the first of Eq.(62) with the assumed form V (ζ, τ) = q0a(τ) sin(q0ζ −
ντ), defines a = A(q0, q0, τ) eiντ .

The largest growth rate can be expected at q0 = 1. To determine the slow dependence
on time of the real functions a(τ) and ν(τ) in this case, we use the second of Eq. (62) in
the differential form
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ȧ = iνa + 2ieiντ F̃ (q0, τ),

F̃ (q0, τ) =
∑

k

Nke
−iq0ζk(τ) ' e−i(1−Ω2

ω2 )ντ . (63)

Separating real and imaginary parts, we get two equations which can be solved for
small τ << τdr where the time of the drift τdr ' a/(νΩ2). In this case, the exponent in
Eq. (63) can be expanded, giving

a(τ) = [6(Ωτ)2]1/3, ν =
2

a
. (64)

The amplitude growth depends on Ω and is much faster than that for the coasting beam [1].
The frequency ν decreases with time as ν ∝ τ−2/3.

4 Numerical simulations

In this section, we describe the approximate method based on Eqs. (62) and valid for
τ < τdr. More general method is described in the next section.

In both cases, we replace the Fokker-Plank equation by the system of equations of
motion for each of the npart test particles taking into account the synchrotron motion:

dζ

dτ
= P,

dP

dτ
= −Ω2ζ − V (ζ, τ) − ΓsP + ξ(τ). (65)

The synchrotron damping and fluctuations are taken into account in the second equation
where ξ is random variable,

〈ξ〉 = 0, 〈ξ(τ)ξ(τ ′)〉 = 2Γ∆2δ(τ − τ ′). (66)

The interaction V (ζ, τ) = 2Re[w(ζ, τ)] for the time intervals τ < τdr can be approxi-
mated, see Eqs. (62), as

V (ζ, τ) = Re[−iA(τ)eiq0ζ ],

dA

dτ
= i(q0 − 1)κA − 2iF̃ (q0, τ). (67)

Here, F̃ (q0, τ) = 〈e−iq0τ 〉 can be written in terms of the sum of the npart test particles,

〈e−iq0ζ〉 =
1

npart

∑

k

e−iq0ζk(τ). (68)

Note that we can expect that A(τ) ' a(τ)e−iντ where dependence of a(τ) was esti-
mated in the previous section.
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Eqs. (65), (67) and (68) is the full system of equations which were used for simulations.
Initial beam dynamics is the same as one described for the coasting beam [1]. Initial

exponential growth predicted by the linear theory is followed at τ > 1 (i.e. t > µ) by
oscillations with substantial growth of the rms energy spread.

Results of the long-range tracking of 1000 particles interacting with a single mode q0 =
1 are shown in Figs. (6) and (7). The following parameters were used in the simulation:
∆ = 0.3, Ω = 0.05, Γ = 0. Initially, the amplitude A(0) = 1.0 10−6 and particles were

distributed in the phase plane with coordinates ζ(0) =
√

2J/Ω sin θ, P (0) =
√

2JΩ cos θ

uniformly within the area −π < θ < π and 0 < J < ∆2/Ω.
In Fig. (6) the upper row shows variation in time of the absolute value of the amplitude

|A(τ)| and its real part. The absolute value of the amplitude varies as |A(τ)| ∝ τ α where
α is between 2/3 and 1. Re(A) oscillates with the frequency ν which decreases while
amplitude grows. The second row shows the time dependence of the average and the rms
momenta. The increase of the rms momentum follows the estimate Eq. (42). Parameter
σz depicted in Fig. (6) is the rms length of the of the train of micro-bunches rather than
the rms width of the micro-bunch estimated in Eq. (42). The average bunch centroid
and bunch length rms are shown in the bottom raw. The distributions over ζ and P are
given in the bottom row. Fig. (7) shows the phase plane and the distribution over ζ and
momentum at the end of the tracking.

Results confirm the expected drift of particles to large amplitudes and increasing rms
momentum spread. The results have to be compared with the estimates Eq. (64) which
predict the amplitude a = 15.5, the tune ν = 2/a and the period of oscillations 2π/ν ' 90
at the end of the run (at τ = 500). The growth of the rms momentum follows Eq. (64),
and the distance of the drift zdr = ντ = 64.5 are in a good agreement with the estimate.

Fig. (8) compares the growth rate of the amplitude for several cases of ∆, Ω and
damping Γ. Results confirm that the growth rate depends mostly on Ω and in reasonable
agreement with the estimate Eq. (64). The case (a) corresponds to ∆ = 0.03, Γ = 0
and two values of Ω = 0.05 (upper curve) and Ω = 0.01 (lower curve). Eq. (64) predicts
in the first/second case |A| = 15.5 and |A| = 5.3 at τ = 500. In both cases (b) and (c)
Ω = 0.005 is the same, but in the case (b) ∆ = 0.3 is 10 times larger than in (c) without
effect on the growth rate. Effect of the damping is very small and illustrated by the case
(d) where damping is turned on, Γ = 0.01 while ∆ = 0.03, and Ω = 5E − 4. Such a small
Ω does not give any noticeable growth.

The results of numeric simulations discussed above are in good agreement with the
analytic estimates of the previous section. It should be reminded, however, that the
simulations are based on the equations which are valid only at τ < τdr ' a/[Ω2ν(0)]
where ν(0) is the coherent tune shift of the linear approximation.

In the next section we study whether there is an asymptotic steady-state regime.
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Figure 6: Results of tracking of 1000 particles with zero damping and detuning. Param-
eters: A(0) = 1.0E − 6, ∆ = 0.3, Ω = 0.05. Upper row: time dependence of A(τ) (left)
and ReA(τ) (right). Middle row: variation of the average momentum and the momentum
rms with time. Bottom row: time dependence of the bunch centroid and the rms bunch
length.

5 Full simulations

For large time intervals τ > τdr most of the initially trapped particles are released and
start synchrotron oscillations with large amplitudes. The approximation Eq. (67) can not
be used in this case and simulations has to be based on the exact expression Eq. (??) for
V (ζ, τ). Changing variables, we write it as

V (ζ, τ) = −λ3

κ

∫ ∞

ζ
dζ ′F (ζ ′, τ − ζ ′ − ζ

κ
) e−i(ζ−ζ′) + c.c. (69)

In the simulations, we use a mesh covering the range −20σζ < ζ < 20σζ , where σζ = ∆/Ω
is the initial rms bunch length, divided in bins with the step size ∆ζ. The later is chosen as
2π/12 to have 12 mesh points within the expected wave length of perturbation λ = 2π/q
with q = 1. The total number of mesh points was rounded to nm = 512 to be suitable for
Fourier analysis.

Initial distribution of particles in the phase space was the same as in the previous
section. To avoid the artificial excitation of bunch centroid motion, the set ζk, Pk was
corrected to put the average 〈ζ〉 and 〈P 〉 to zero.

The time evolution was obtained by solving the equation of motion Eq. (65) with the
time steps ∆τ for each of the M test particles. The solution on each step was obtained
using the subroutine from the FORTRAN IMSL library and the synchrotron radiation
diffusion and damping were taken into account at the end of a step by changing variables
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p of each particle:
pk → pk − Γ∆τpk +

√
24∆τΓ∆2 ξ. (70)

Here ξ is random variable uniformly distributed in the interval −1/2 < ξ < 1/2 and
k = 1, 2..M . At each time step, the particle density F (ζ) was calculated at the mesh
points allocating each test particle to the two closest mesh points. Attempt was also made
to refine the result changing the width of the bins according to the initial bin population,
recalculating the population of the new bins, and recalculating the distribution function.
Fig. (9) shows the distribution function calculated with 4, 10, and 20 bins per ∆ζ =
2π interval. For the following calculations we choose 12 lines per 2π interval as it was
mentioned above.

The integral in Eq. (69) was calculated using 3-mesh-point interpolation method. The
time step ∆τ = ∆ζ/κ was used to simplify the bookkeeping: with such a choice, the shift
by one mesh step ∆ζ corresponds also to the shift by one time step ∆τ . The density
F (ζ, τ) was stored as a matrix nm × nm and updated at each time step.

Results of simulations depicted below are obtained for the following parameters: ∆ =
0.3, Ω = 0.05, κ = 10.0, Γ = 0.01. The number of the test particles in simulations was
M = 105. The total number of time steps, 15000, corresponds to the time interval more
than 7 damping times. The CPU time for simulations with these parameters is 1.3 hours
on 476 MHz PC.

The time evolution of the average momentum and position of the bunch centroid as
well as time dependence of the rms of momentum spread and bunch length is shown in
Fig. (10).

Distribution of particles in the phase plane (ζ, P ) is shown in Fig. (11) at τ = 0 and
τ = 31.5, when the instability already substantially distorted the distribution. The snap
shots of the phase plane at the end of simulations, τ ' 700, are shown in Fig. (12) with
the time interval of a quarter of synchrotron period.

The snap shots of the bunch density F (ζ, τ) is depicted in Fig. (13) with the time
intervals of a quarter of synchrotron period Ts/4 = 2π/(4Ω). The periodic modulation
of the density profile is clearly seen in the initial steps of simulations. The amplitude of
the modulation decreases with time but does not disappear completely corresponding to
the distortion at the periphery of the distribution in the phase plane, see Fig (12). Note
also the change of the range in the ζ-axes indicating the synchrotron motion of the bunch
centroid.

The first several snap shots of V (ζ, τ) vs ζ (left column) and the Fourier spectrum
Ṽ (q, τ) vs q (right column) taken with the time interval π/(4Ω). The spectrum is centered
at q ' 1, but become wider with time. The maximum amplitude of V (ζ, τ) decreases with
time. The time dependence of V (τ) has some similarity with simulations for continuous
spectrum [4] but several peaks in the beginning are transients and disappear later. It is
worth noting that these peaks are not artifact or noise: in the interval 0 < τ < 100 in
Fig. (15) there are 2000 data points.
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6 Conclusion

We studied the beam dynamics affected by the microwave coherent synchrotron radiation
(CSR) generated by relatively long bunches in storage rings close to the shielding threshold
where it can be dominated by a single EM mode excited in the beam pipe. In the
dimensionless variables, there are only few parameters ∆, Ω and κ, which determine the
instability. For high frequency perturbations, the ratio Ω/∆ << 1. The linear theory
predicts strong instability and generation of the EM wave with the exponentially growing
amplitude where the growth rate is larger than the synchrotron frequency. We tried to
understand whether such growth may lead to a steady-state saturation regime that would
have interesting experimental implications. We show that, in the nonlinear regime, the
synchrotron motion substantially affects the instability. After initial exponential growth
of the linear regime at the time intervals τ <' 1, the beam dynamics is substantially
different for the time intervals small and large than the drift time τdr. In the first interval,
particles are trapped by fast growing wave leading to formation of a chain of micro-
bunches. The particle density is strongly modulated with the wave length of the mode.
The energy spread of particles is much larger than the initial rms ∆. The interaction of
a chain of trapped particles with the wave is strong and the wave amplitude V grows in
time faster than for a coasting beam. Later, for τ > τdr, most of particles are pulled to the
edge of the rf potential, released, and start synchrotron oscillations with large amplitudes.
Because trapped particle are released asymmetrically only at one edge of the rf potential
well, strong oscillations of the bunch centroid are excited. The released particle do not
form a regular pattern in the bunch density. The modulation of the bunch distribution
is visible only at the periphery of the phase plane and the amplitude of the generated
wave V decreases. The remnant amplitude, nevertheless, is sufficient to compensate the
synchrotron radiation damping and support the large energy spread in the bunch. There
are several peaks in V (τ) dependence but they are transient phenomena.

If particles survive, they can be trapped again due to the radiation damping. However,
the trapping and the drift of trapped particles both lead to a large rms energy spread and
to oscillations of particles with large synchrotron amplitudes. In the beam pipe with a
finite aperture that would lead to particle loss and, probably, makes such regime of insta-
bility inappropriate for applications. Probably, a betatron with the coasting beam may
have advantage compared to the bunched beam in synchrotrons for a machine designed
as a source of microwave radiation.
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8 Appendix: interaction of the beam with a single

mode

The equation for electric field can be obtained analogously to one given for the coasting
beam, see Appendix [1],

E(z, t) =
ie(1 − βg)χ

βg

∫

dz′dt′f(z′, t′)
∫ dq

(2π)
eiq[z−z′+c(t−t′)]

∫ dω

(2π)

e−iω(t−t′)

q − q(n, ω) − iε
. (71)

Integration over ω is defined by the contribution of the pole ωn(q) = q,

∫ dω

2π

e−iω(t−t′)

q − q(n, ω) − iε
= ivn(q)Θ(t − t′)e−iωn(q)(t−t′), (72)

where vn(q) = dωn(q)/dq, and Θ(t − t′) is the step-function.
The force E(z, t) = eE(ct + z, t) acting on the trailing particle with displacement z

from the bunch centroid (z > 0 is in the head of the bunch) is given by the longitudinal
component E(s, t) excited by the bunch,

E(z, t) = −e2c(1 − βg)Nbχn

∫

dt′dz′f(z′, t′)Θ[t − t′]
∫ dq

2π
eiq(ct+z)−iωn(q)te−iq(ct′+z′)+iωn(q)t′ + c.c. (73)

Here f(z, t) is the distribution function of the bunch normalized by the condition
∫

dzf(z, t) = 1, and the coefficient is determined using definition of the loss factor χn of
the n-th mode for a point-like bunch, f(z, t) = δ(z). Eq. (73) shows that the sign of ε > 0
in Eq. (72) corresponds to the condition of casuality.
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Neglecting dispersion d2(ω/c)/dq2 ' b3/R2 (where b is the beam pipe radius and R
is the bend radius), we can expand ωn(q) = qnc + (q − qn)vg. Here vg and ωn = qnc
are the group velocity and frequency of the synchronous component of the n-th mode,
respectively. Then

E(z, t) = −e2c(1 − βg)Nbχn

∫ t

−∞
dt′f [z + c(1 − βg)(t − t′), t′] e−iqnc(1−βg)(t−t′) + c.c. (74)

In the steady-state, where f(z, t) = f(z),

E = −e2Nbχ
∫ ∞

z
dz′f(z′)e−iqn(z′−z) + c.c. (75)

In the dimensionless variables, see Eq. (??), the interaction V in Eq. (9) is

V = −dP

dτ
= −λ3

κ

∫ ∞

ζ
dζ ′f(ζ ′)ei(ζ−ζ′) + c.c.. (76)
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Figure 14: The first several snap shots of V (ζ, τ) vs ζ (left column) and the Fourier
spectrum Ṽ (q, τ) vs q (right column) taken with the time interval π/(4Ω). The spectrum
is centered at q ' 1, but become wider with time.
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