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Abstract

The instanton partition function of N = 2, D = 4 SU(2) gauge theory is obtained
by taking the field theory limit of the topological open string partition function, given
by a Chern-Simons theory, of a CY3-fold. The CY3-fold on the open string side is
obtained by geometric transition from local IP1 × IP1 which is used in the geometric
engineering of the SU(2) theory. The partition function obtained from the Chern-
Simons theory agrees with the closed topological string partition function of local
IP1 × IP1 proposed recently by Nekrasov. We also obtain the partition functions for
local F1 and F2 CY3-folds and show that the topological string amplitudes of all three
local Hirzebruch surfaces give rise to the same field theory limit. It is shown that
a generalization of the topological closed string partition function whose field theory
limit is the generalization of the instanton partition function, proposed by Nekrasov,
can be determined easily from the Chern-Simons theory.
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1 Introduction

Large N dualities in the context of closed and open topological strings on different CY3-

fold backgrounds have been the source of much excitement recently [1, 2]. These dualities

have interesting consequences for both N = 2 and N = 1 D=4 field theories which can be

geometrically engineered using the type II strings and D-branes on the CY3-folds [3, 4, 5, 6].

One example of large N duality, which will be relevant for our purpose, is the calculation

of the partition function of A-model topological closed strings propagating on a CY3-fold

from the partition function of topological open strings on a different CY3-fold [7, 8, 9].

The CY3-fold on which the open strings propagate is obtained from the CY3-fold which is

the background of the closed topological strings by multiple conifold-like transitions on the

exceptional curves [7]. The open string theory on the dual CY3-fold reduces to a Chern-

Simons theory on each of the S3’s [10], obtained by the transition from exceptional curves,

plus corrections coming from holomorphic curves with boundaries on the 3-cycles [8, 9].

The A-model topological string amplitude (the log of the topological closed string partition

function) is the generating function of Gromow-Witten invariants of all genera and therefore

is the answer to an enumerative problem [11]. It also has a physically interesting interpre-

tation in the N = 2 D=4 theory obtained by compactifying type IIA strings on a CY3-fold:

the topological string amplitude gives certain holomorphic corrections to the effective action

of the four dimensional theory [11]. In the context of geometric engineering of gauge theories

the genus zero amplitude, in a certain limit, computes both the perturbative and instanton

corrections to the prepotential of the N = 2 gauge theory [3, 4].

In this paper we show that it is possible to obtain the exact instanton partition function

[14, 15, 16, 17] 1 of the N = 2 SU(2) SYM [12, 13] by taking the field theory limit of an open

string partition function. The topological open strings propagate on a CY3-fold which is ob-

tained by multiple geometric transitions from the local Fm CY3-folds used in the geometric

engineering of the N = 2 SU(2) SYM theory [4, 3]. The instanton partition function ob-

tained in this way agrees exactly with the partition function proposed recently by Nekrasov

[15] and calculated in [17]. Moreover, the complete open string partition function agrees

with the A-model partition function of local F0 obtained by Nekrasov from an index calcu-

lation [15]. A more general partition function can be obtained by taking the Chern-Simons

coupling constant to be different for different 3-cycles as opposed to the usual identification

of the Chern-Simons coupling constants with the string coupling constant, 2π
ki+Ni

= gs. The

field theory limit of this partition function agrees with the generalized instanton partition

1By instanton partition function, Z(~), we mean the field theory limit (see section 2) of the topo-
logical string partition function

∑
g2g−2

s Fg such that the prepotential of the field theory is given by
lim~→0 ~2 logZ(~). An intrinsic field theory definition of this is given in terms of the topological twisted
four dimensional theory [15].



functions proposed by Nekrasov [15, 16].

The paper is organized as follows. In section two we briefly review the geometric engineering

of N = 2 SU(2) SYM theory from local Fm CY3-folds. In section three, we review the

geometric transitions at the heart of the open-closed large N-duality [8]. We consider the

case of local IP2 in detail, and use these results to motivate the expected transitions for

local Fm 3-folds. In section four, we evaluate the Chern-Simons partition functions for the

local Hirzebruch surfaces. We obtain the partition function in a form that is well-suited

for taking the field theory limit. In section five, we show that the field theory limit of the

partition function gives an exact expression for the instanton partition function which agrees

with the expression given by Nekrasov and is the same for all local Fm. We also show that

the full partition function, after some rearrangement of the factors, is exactly equal to the

A-model expression given by Nekrasov [15]. In the appendix, we fill in some details on the

geometric transition in the case of local IP2 and give some curve counting functions which

can be used to determine integer invariants of three and four instanton contribution to higher

genus corrections.

Topological closed strings
(A-model) on local Fm

Topological open strings
on deformation of local Fm

N = 2 SU(2) SYM

Chern-Simons theories
with Wilson line insertions

large N-duality

α′ → 0

section 2

section 3

section 4

section 5

world-sheet instantons

space-time instantons

world-sheet instantons
with boundary

Figure 1: Outline of paper.

2 Geometrical engineering of pure N = 2 SU(2) theory

The Calabi-Yau threefold compactification of type IIA strings provides a very powerful way

of studying N = 2 D=4 quantum field theories [3, 4]. The prepotential of the D=4 theory
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is given by the genus zero topological string amplitude of the corresponding Calabi-Yau

threefold. The gauge symmetry in the field theory arises from D2-branes wrapping collapsing

curves in the CY3-fold. Thus to get a particular gauge symmetry one has to study a CY3-

fold with the appropriate singularity. We will restrict ourselves to the case of SU(2) gauge

symmetry and only discuss the relevant CY3-folds for this case.

Geometrical engineering of pure N = 2 theories with SU(2) gauge symmetry was studied

in [3, 4]. The relevant singularity is of A1 type, i.e. of the form C2/Z2. The local CY2-fold

T ∗IP1 develops this type of singularity as we take the area of the base to zero. To obtain an

effective 4 dimensional theory, we need to fiber this space over an additional IP1. We hence

choose a Hirzebruch surface Fm as the compact base of the local CY3-fold. The line bundle

over this base which leads to a total space of vanishing first Chern class is the canonical line

bundle. For m > 2, the total space of the canonical line bundle contains additional compact

4-cycles, aside from Fm. Although for this reason we will restrict attention to F0, F1 and F2

our results hold for general m as well. For m > 2 using the partition function derived in the

next section one can get the invariants of those curves lying in Fm.

Let us now briefly review the field theory limit. To obtain this limit, we push the string scale

to infinity. By asymptotic freedom of the 4 dimensional gauge theory, the gauge coupling

hence goes to zero. Since the 6 dimensional and the 4 dimensional gauge coupling are related

via the area of the base IP1 of the Hirzebruch surface, the field theory limit requires large

base size. At the same time, to keep the mass of the W-bosons, given by the area of the

fiber (remember that the gauge symmetry enhancement occurs when this area shrinks to

zero), finite in the limit in which the string scale is taken to infinity, we must consider the

small area limit of the fiber. Since the running of the gauge coupling is dominated at weak

coupling by the logarithm of the W-boson mass, these two limits are related as Tb ∼ − log Tf ,

where Tb and Tf denote the Kähler parameters corresponding to the base and the fiber of

the Hirzebruch surface.2 In fact, by invoking the discrete symmetry of the gauge theory

(left over from the anomalous U(1) R-charge), we know that the n-instanton contribution

∼ e
− n

g2 is accompanied by a factor ( 1
a
)4n [18], where a parametrizes the VEV of the scalar

field breaking the SU(2) gauge symmetry, a ∼ Tf . Retaining all instanton contributions in

the field theory limit hence requires scaling the Kähler parameters as

Qb := e−Tb = (
βΛ

2
)4 , Qf := e−Tf = e−2βa . (1)

Here, Λ is the quantum scale in four dimensions, and the parameter β is introduced such

that the field theory limit corresponds to β → 0. In section 5, we will be taking the field

theory limit of the topological partition function
∑

g2g−2
s Fg. It turns out that we obtain

2Here Tb, Tf are the quantum corrected Kähler parameters i.e., they are solutions of the relevant Picard-
Fuchs equations that go like Tb,f = tb,f+

∑
n,m cn,me−ntb−mtf , where tb,f are the Kähler parameters occurring

in the linear sigma model description of local Fm.
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finite contributions from all genera if we scale the string coupling such that q := eigs = eβ~.

~ will serve to distinguish between the contributions at different gs (the notation is chosen

in accordance with [15]).

The prepotential of the theory has both 1-loop perturbative and non-perturbative (instanton)

contributions,

F = Fclassical + F1−loop + a2

∞∑

k=1

ck(
Λ

a
)4k . (2)

The k-instanton contribution to the prepotential, ck(
Λ
a
)4k, comes from world-sheet instantons

wrapping the curves {kB+mF | m = 0, 1, 2, · · · } and is therefore captured by the field theory

limit of the genus zero topological string amplitude [4]. From the expansion of the genus

zero topological string amplitude

F0(Tb, Tf ) = P3(Tf , Tb) +
∑

(k,m)6=(0,0)

∞∑

n=1

N0
(k,m)

n3
e−nkTb−nmTf , (3)

(here P3(Tb, Tf) is a cubic polynomial from which one gets the classical contribution to the

prepotential) it is clear that the k-instanton contribution is proportional to the regularized

sum
∑

m N0
(k,m), where N0

(k,m) is (up to a sign) the Euler characteristic of the moduli space

of the D-brane wrapped on the curve kB + mF . In section 5, we will see that these sums

can be easily obtained from the Chern-Simons theory arising in the open string geometry

dual to the closed string geometry of the CY3-fold used in the geometric engineering of the

SU(2) theory.

There are various ways of obtaining the closed topological string amplitudes: localization,

B-model calculations, or large N duality with topological open strings. Direct localization

calculations are difficult since we want to sum up the contribution of all curves kB + mF

for a fixed k, B-model calculations can sum up the contribution of all curves to the k-th

instanton sector, as was discussed in detail in [19], but become more difficult for large k and

for higher genus. We will therefore use the large N duality with topological open strings

on a deformed CY3-fold background to determine the exact instanton partition function.

This method yields all higher genus contributions to the closed string partition function

simultaneously. More precisely, the all genus closed string partition function was shown in

[20] to have the following integrality structure

Fclosed(ω) :=

∞∑

g=0

g2g−2
s Fg(ω) =

∑

Σ∈H2(X)

∞∑

g=0

∞∑

n=1

Ng
Σ

n
(2 sin(n

gs

2
))2g−2 e−nΣ·ω . (4)

The Chern-Simons calculation yields all Gopakumar-Vafa invariants Ng
Σ up to a given degree

in Σ.
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3 Closed to open transition

Open topological string theory on a local CY X is related to CS-theory in the following way

[10]: a CS theory lives on every Lagrangian submanifold of X on which open strings can

end. In addition, contributions from strings wrapping compact holomorphic curves in X and

ending on these submanifolds are captured in the CS theory by insertions of Wilson lines:

these compute the holonomy of the CS-connection around the boundaries of the holomorphic

curves. Since the U(N) gauge bundles over the Lagrangian submanifolds are required to be

flat, these Wilson lines calculate invariants of the homotopy class of the curves.

Enumerating the compact holomorphic curves of a complex manifold is usually a very difficult

problem. The crucial ingredient in calculating closed world-sheet instantons using Chern-

Simons theory following the methods of [8] consists in deforming the local Calabi-Yau which

is the target space of the closed topological string to obtain a geometry in which the compact

holomorphic curves are under strict control: they are isolated cylinders and their multicovers,

stretching between certain of the Lagrangian submanifolds. The basic local model for this

deformation is the conifold transition, which we briefly review.

On the closed string side, one considers the bundle O(−1) ⊕ O(−1) → IP1. Taking the

volume of the IP1 to 0 yields the singular geometry of the conifold. This space is described

by the equation xy = uv in C4. String theory on this space is not singular if we turn on the

NS-NS 2-form. This setup is described by a purely imaginary complexified Kähler parameter

t of the IP1, t = 2πiN
k+N

(this choice will not be a limitation on what we can compute on the

closed string side, as the partition functions are holomorphic in t, i.e. can be obtained for

arbitrary value of t by analytic continuation). The singular geometry allows a deformation,

described by xy = uv + µ, µ ∈ C, which replaces the singular locus of the conifold by an

S3 with volume µ. Since µ is a complex structure moduli, the A-model amplitudes we are

considering do not depend on it.

If we introduce an additional C valued variable z, s.t. z = xy and z = uv+µ, we can visualize

the deformed geometry as a R2 ×T 2 fibration over C as follows. At each value of z, we have

a real plane. One real axis is parametrized by gluing the two half-lines |x| ∈ [
√

|z|,∞) and

|y| ∈ [
√

|z|,∞) at |x| = |y| =
√
|z|, the other analogously for u and v. As far as these real

planes are concerned, nothing special happens at z = 0 and z = µ. This is not true for

the T 2 factor of the fiber. The compact T 2 is coordinatized by the phases of x, y and u, v,

with the transition functions φx = −φu, φu = −φv on the overlaps at |x| = |y|, |u| = |v|
respectively. We see that a cycle degenerates along a line in the real plane at the values

z = 0 and z = µ. This geometry is encoded in Fig. 2.

The S3 of the deformed conifold is given by the T 2 fibration over the real line z = t, x =
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(|x| = |y| =
√
|z|,

|u| = |v| =
√

|z − µ|, z)

(|x| = |y| =
√

|µ|,
|u| = |v| = 0, z = µ)

(|x| = |y| = 0,

|u| = |v| =
√
|µ|, z = 0)

|x|

|y|
|u||v|

Re(z)

Figure 2: Deformed conifold; a cycle of the T 2 fiber degenerates along each of the red lines (the
horizontal, vertical line respectively in the two lower planes).

y =
√

t, u = v =
√

t − µ for t ∈ [0, µ] which connects the two degeneration loci. Note that

the only holomorphic curves in this geometry ending on S3, i.e. intersecting the S3 along a

circle, have constant z value. This will be an important constraint in finding the compact

holomorphic curves in related geometries with several Lagrangian 3-manifolds, to which we

now turn.

3.1 Local IP2

As a concrete example, consider O(−3) → IP2. Though the base contains three IP1s invariant

under the torus action (these are given by (a : b : 0), (a : 0 : b), (0 : a : b)), they are in the

same Weyl class as the hypersurface divisor, i.e. are not exceptional and hence cannot

undergo a conifold transition. To obtain a manageable geometry for the CS theory, i.e. a

6



geometry of the type referred to above, we blow up the three toric fixed points of the base,

obtaining a local del Pezzo B3. Using standard methods, detailed in the appendix, we find

three patches with which we can cover the singular limit of this geometry in which the size

of the three exceptional curves is taken to 0. Each patch is described by 4 variables, x, y, u, v

in the first patch, the corresponding variables tilded, primed in the second and third patch,

satisfying one constraint equation, xy = uv in the first patch, the tilded, primed version

of this equation in the second, third patch. The transition functions between these patches

are given in the appendix. The three exceptional divisors we have obtained in this way can

undergo a conifold transition. We perform the following deformations

xy = uv + µ1 , (5)

x̃ỹ = ũṽ + µ2 , (6)

x′y′ + µ1 = u′v′ + µ2 . (7)

The resulting geometry is depicted in Fig. 3).

L

L

L

2

1
0

H
H

H

x

y

u

v

x̃

ỹ

ũ

ṽ

x′

y′

u′ v′

Figure 3: Deforming flopped local B3. The lines L0, L1, L2 encode the degeneration locus of the
T 2 fiber in the real plane at z = 0, µ1, µ2 respectively.

As in the conifold case, we now introduce a new variable z such that z = xy = x̃ỹ = x′y′+µ1.

For this system of equations to be consistent, we must also deform the transition functions

between the patches. This is done in the appendix. An important feature of this construction

is that the relation between the phases of the complex coordinates in the overlap of the
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different patches, as given by the transition functions, is encoded in the relative slopes of the

lines L0, L1, L2 in Fig. 3. As the two cycles of the T 2 fiber are given by the phases of these

coordinates, the slopes of these lines allow us to read off which cycle of the T 2 is degenerating

in the real planes at z = 0, z = µ1, and z = µ2.

Lines in the complex z-plane connecting the points z = 0, z = µ1, z = µ2 have a T 2 fibered

over them with a cycle degenerating at either end. Each of these T 2 fibrations over an

interval form a closed 3-manifold, which has a convenient description in terms of a Heegaard

splitting [21]. This splitting allows us to describe the 3-manifolds as obtained by gluing

two solid tori together along their surface using an SL(2, Z) map (SL(2, Z) encompasses

all self-diffeomorphisms of a torus up to homotopy). To this end, we divide the interval I

connecting the two points in the z-plane into two intervals I1, I2. I1 and I2 coordinatize

the depth direction of the two solid tori. The torus worth of points at each depth i ∈ I1

or i ∈ I2 is identified with the fiber over the corresponding point of the interval I. The

two endpoints of I, over which the T 2 fiber degenerates, correspond to the depth 0 points

∂I1 ∩ ∂I or ∂I2 ∩ ∂I of the solid tori. To obtain a correct realization of the T 2 fibration over

I, we must in the final step glue the two solid tori together such that the appropriate cycles

are identified. Let us introduce a basis for the second homology of the three T 2s in the game,

A and B for the T 2 fiber over I, such that the cycles degenerating at the endpoints of I are

A and aA + bB, Ai and Bi, i = 1, 2 for the tori comprising the surfaces of the two solid tori,

such that A1 and A2 are the cycles which become trivial when we fill in the tori. Hence, we

need to identify A with A1 and aA+bB with A2. This fixes two of the entries of the SL(2, Z)

gluing diffeomorphism between the surfaces of the two solid tori. Next, we would like to fix

the Bi cycles to be the S1s along which the two compact holomorphic annuli intersect the

3-manifold. Note that since the Ai cycles of the fiber are degenerate along the holomorphic

curves, multiples of these can be added to the Bi at will. Hence, the above identifications

fix the SL(2, Z) gluing diffeomorphism only up to this ambiguity,
(

1 0
1 1

)n2
(

A2

B2

)
=

(
a b
c d

) (
1 0
1 1

)n1
(

A1

B1

)
, (8)

where n1 and n2 are arbitrary integers. These SL(2, Z) transformations will play an impor-

tant part in evaluating the CS amplitudes in the next section. In the CS framework, the

cycles Bi + niAi are wrapped by Wilson loops. The integer ambiguity (n1, n2) in the choice

of these matrices corresponds to a framing ambiguity in the CS picture which we will fix by

hand.

It is not hard to show that the three 3-manifolds arising in our geometry are all S3s. 3

After the deformation, we hence arrive at an S3 situated at each vertex of the original web
3This is done by an analysis of the first fundamental group of the 3-manifold obtained by gluing the two

solid tori [21]. Let us briefly sketch how information on the 3-manifold M can be obtained from considering
π1(M). By the Seifert-Van Kampen theorem, this group is generated by the disjoint union of the generators

8



diagram. This geometry contains compact holomorphic curves. These curves end on the S3s.

The same considerations as in the conifold case show that any such curve must therefore

have constant z coordinate. By choosing the complex deformation parameters appropriately,

we can ensure that the S3s pairwise intersect only in one point in the z-plane (recall that z

is a complex coordinate), and that these intersection points all coincide with values of z at

which some cycle of the T 2 fibration degenerates (in other words, the finite intervals which

represent the S3s in the z-plane only touch at their endpoints). Arguing patchwise, we can

easily see that the only compact holomorphic curves in the geometry thus obtained (annuli

and their multicovers) have axes along the line in the R2 plane along which a cycle on the

T 2 degenerates: in the first patch, say, at z = 0, we must satisfy xy = 0, uv = −µ1 and

furthermore, we want to intersect the S3 at x = ȳ, u = v̄ in a circle. It is not hard to show

that this is only possible for x = y = 0, u = sm for s ∈ C, |s| ≥ |µ1|
1

2m or |s| ≤ |µ1|
1

2m .

We must establish the relation between the open and closed geometry parameters: the com-

plex Kähler parameters ti of the blown down exceptional IP1s of the closed string geometry

are the ’t Hooft couplings on the open string side, ti = 2πiNi

k+N
. In addition, we have the Kähler

parameters r′i of the curves in the base that do not partake in the conifold transition. On

the open string, the corresponding parameters classically should be the areas of the world-

sheet instanton annuli ri stretched between the S3s (the geometric data on the open string

side also includes the volumes of the S3s, which are however complex structure moduli and

therefore not relevant for the A-model amplitudes).

To relate the CS-partition function we obtain on the geometry of Fig. 3 to the closed string

partition function of local IP2, we must consider the limit ti → ∞ (again, we are deforming

Kähler parameters; the reason we can do this without impunity is that the closed string

partition functions are holomorphic in these parameters). For this limit to exist, we will see

that the Kähler parameters r′i of the non-exceptional curves of the closed string geometry

must receive contributions, in the mapping from open to closed string parameters, from the

’t Hooft couplings in addition to the expected contribution from the area ri of the annuli.

It would be interesting to see this more directly, e.g., as suggested in [8], by utilizing the

GLσM approach employed in [22] to prove the large N-duality in the conifold case.

From this example, the path we would like to follow for a local CY on any toric base is clear:

we would like to blow up the vertices of the toric fan (these correspond to fixed points of

the torus action), then perform a conifold transition on each of the exceptional curves so

of the two tori modulo the relations imposed by the gluing diffeomorphism. In the notation above, these two
generators are B1 and B2 (or more precisely the images of these cycles under the embedding of the surface
tori into the solid tori). By equation (8) and the triviality of the embedded cycles A1 and A2, Bb

1 = 1.
Hence, if b 6= 0, 1, π1(M) contains a torsion element. In particular, M cannot be S3. A more careful analysis
[21] shows that the only 3-manifolds one can obtain via the construction described above are S3, S2 × S1,
and Lens spaces Lb.

9



as to obtain a 3-manifold at each such vertex. 4 This gives rise to Feynman-like rules for

computing the closed string partition function, as pointed out in [23].

3.2 Hirzebruch surfaces

The geometries that will be relevant for the field theory application in this paper are the

canonical line bundles over the first three Hirzebruch surfaces Fm
5 . These surfaces are IP1

bundles over a IP1 base. F0 is the trivial bundle IP1 × IP1. The toric fans and web diagrams

for these local CYs are depicted in Fig. 4.

B

F F

B

B

F

F

B

F

F
B+2FB+F

local F0 local F1 local F2

Figure 4: The fans and web diagrams for the canonical line bundle over the first three Hirzebruch
surfaces.

The second homology H2(Fm, Z) of the Hirzebruch surfaces is spanned by the cycles B and

F , represented by the base and fiber. The intersection numbers of these cycles are

B2 = −m , F 2 = 0 , B · F = 1 . (9)

To obtain an open string geometry, we blow up the vertices of these diagrams and per-

form the conifold transition on the exceptional divisors thus obtained.6 This is illustrated

diagrammatically for the case of F0 in Fig. 6.

4That this deformation is always possible is suggested by analogues of Fig. 3. However, since we argue
patchwise, care needs to be taken that the deformed patches can consistently be glued together. This will
require deforming the transition functions in addition to the constraint equations in each patch.

5for m > 2 the surface Fm is accompanied by other 4-cycles in the non-compact CY3-fold. For these
cases, the partition functions that we will write down give only the contribution of curves in Fm to the total
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B

FF

ee

e e1

23

4

U1
1

U2
1

U1
2

U2
2

U1
3

U2
3

U1
4

U2
4

Figure 5: The large N transition in the case of F0. The U i
j indicate Wilson loop insertions in the

CS theories as explained in section 4.

Note that in blowing up local F2, the fan of the geometry is no longer convex. In the web dia-

gram, this manifests itself in terms of crossing lines. The local CY hence contains additional

4-cycles. It would be interesting to check explicitly whether this affects the deformation ar-

gument. The fact that we obtain the correct invariants using the open geometry we naively

obtain from such a deformation suggests that this is not so.

4 Chern-Simons partition function for local Hirzebruch

surfaces

In this section, we compute the CS partition functions ZCS, with the appropriate Wilson loop

insertions, based on the geometries obtained from deforming the local Hirzebruch surfaces

Fm, m = 0, 1, 2 as outlined in the previous section. We will follow closely the discussion of [8]

where the case of local F0 was discussed in detail. According to the large N duality conjecture,

these computations should reproduce the closed topological string partition functions (4) for

the respective local CY3-folds. We will use this equality in the next section to determine

the Gopakumar-Vafa invariants of the closed geometries as well as to study the field theory

limit of the compactification of type IIA on them.

partition function.
6Note that the base of F1 is an exceptional curve. In fact, F1 and B1, i.e. IP2 blown up at one point,

are isomorphic. Hence, to calculate the partition function of F1, we could perform the conifold transition
on this exceptional curve and only two additional ones obtained by blowing up the two vertices at which F

and B + F intersect in Fig. 4. This yields exactly the geometry of local B3 that we considered in the case of
local IP2. To regain F1, we now would send two of the three Kähler paramters ti of the exceptional curves to
infinity [8]. We can even obtain the partition function for F2 from this geometry, by sending the appropriate
combination of Kähler parameters to infinity.
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We will start by discussing the case F0 which was studied in detail in [8]. The open string

geometry is depicted in Fig. 5. The Chern-Simons partition function for the full geometry

is given by [8]

ZCS(ri, Ni; q) =

∫ 4∏

i=1

(DAie
SCS(Ai))O(U2

1 , U1
2 ; rB)O(U2

2 , U1
3 ; rF )O(U2

3 , U1
4 ; rB)O(U2

4 , U1
1 ; rF ).(10)

Here, logO(U, V ; r) is the correction to the Chern-Simons action coming from annuli of length

r with boundary on two S3’s [8](note that we have taken r1 = r3 = rB and r2 = r4 = rF in

equation (10) in accordance with the F0 geometry),

O(U, V ; r) = exp{
∞∑

n=1

e−nr

n
TrUnTrV −n} =

∑

R

e−lRrTrRU TrRV −1 . (11)

U i
j computes the holonomy of the CS-connection Aj along the boundary γi of a compact

holomorphic annuli ending on the j-th S3 (in the cases we consider, there will be two curves

γ1 and γ2 per S3),

U i
j = Pexp

∮

γi

Aj . (12)

The last equality in equation (11) follows from an application of the Frobenius formula. The

sum is over all representations of the special unitary group, lR counts the number of boxes

in the Young tableaux of the representation R. This identity allows us to write the partition

function (10) as a simple sum of products of partition functions of the individual CS-theories,

ZCS(ri, Ni; q) = 〈O(U2
1 , U1

2 ; rB)O(U2
2 , U1

2 ; rF )O(U2
3 , U1

4 ; rB)O(U2
4 , U1

1 ; rF )〉 , (13)

=
∑

R1,2,3,4

e−r1(l1+l3)−r2(l2+l4)WR1R4(λ4, q)WR4R3(λ3, q)WR3R2(λ2, q)WR2R1(λ1, q) .

WRiRj
are expectation values in the individual CS theories with ’t Hooft coupling ti =

2πiNi

ki+Ni
= log λi (recall that q = eigs, hence λi = qNi), given by

WRiRj
(λ, q) = 〈TrRi

(U1)TrRj
(U2)〉 . (14)

In the following, we will reserve the notation WRiRj
for the special constellation of curves γi

that occurs in the case of F0 in each of the four S3s, at zero framing (i.e. n1 = n2 = 0, in

the notation of equation (8)): the γi wrap orthogonal cycles, hence form a Hopf link. The

Hopf link invariants WRiRj
can be easily calculated using the results of [24, 25].

As explained in the previous section, we need to consider the limit λi → ∞ in order to

recover the partition function for F0, and later for F1 and F2. The leading power of λ in

WR1R2(λ, q) is λ(lR1
+lR2

)/2 [8]. Hence, ZCS naively diverges in this limit. We remedy this by

12



scaling ri together with λi, such that the appropriate linear combination of these parameters

is finite in the λi → ∞ limit. We interpret these linear combinations as the renormalized

Kähler parameters of the closed string geometry. They are given by

TB = rB +
t2 + t3

2
= rB +

t1 + t4
2

, (15)

TF = rF +
t1 + t2

2
= rF +

t3 + t4
2

. (16)

The CS partition function for local F0 now becomes

ZCS(QB, QF ; q) =
∑

R1,2,3,4

Q
−(l1+l3)
B Q

−(l2+l4)
F WR1R4(q)WR4R3(q)WR3R2(q)WR2R1(q) ,

(17)

where, as before, QB = e−TB , QF = e−TF , and we have defined

WRiRj
(q) = lim

λ→∞
λ−(li+lj)/2WRiRj

(λ, q) . (18)

We can simplify this expression and perform two of the sums over representations explicitly.

To this end, we introduce the quantity

KR1R2(Q) =
∑

R

QlRWR1R(q)WRR2(q) . (19)

In terms of KR1R2(Q), the CS partition function in equation (17) becomes

ZCS(Qb, Qf ; q) =
∑

R1,R2

Ql1+l2
b KR1R2(Qf )

2 . (20)

We will denote the trivial representation by a point. From our discussion in the previous

section, we see that the function K·· yields the partition function of the closed string on the

local CY T ∗(IP1) × C. Below, based on the explicit evaluation of this case, we will make an

ansatz for the form of KR1R2(Q) in the case of arbitrary R1 and R2 which will drastically

simplify the computation of this expression.

Diagrammatically, we can depict KR1R2(Q) as in Fig. 4.

To evaluate the CS partition function for local F1 and local F2, we need similar expressions

for the diagrams to the right of the dashed lines in Fig. 7, as depicted in Fig. 8. If we denote

these contributions by K
(m)
R1R2

(Q), we can express the partition function for local F(m) as

Z
(m)
CS (Qb, Qf ; q) =

∑

R1,R2

Q
lR1

+lR2
b Q

mlR2
f KR1R2(Qf)K

(m)
R1R2

(Qf) , (21)

13



R

R1

2

Figure 6: KR1R2(Q)

B

F

B

F F

B+F

B

F F

B+2F

B

F

a) b) c)

Figure 7: Splitting local Fm into K
(m)
RiRj

contributions.

(1−m,1)

(m,−1)

(m+1,−1)

R

R

1

2

Figure 8: K
(m)
R1R2
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where the factor of Q
mlR2
b appears since the rational curve associated with the two parallel

internal lines of the web diagram are B and B + mF for local Fm (see Fig. 4).

The open string geometry which can be used to determine K
(m)
R1R2

(Q) is shown in Fig. 9 and

is given by

K
(m)
R1R2

(Q) = lim
λ→∞

λlR+
lR1

+lR2
2 〈TrR1U1 O(U3, U4; r) TrR2U

−1
2 〉 , (22)

= lim
λ→∞

∑

R

QlRλ
lR1

+lR

2 WR1R(λ, q)λ
lR+lR2

2 WRR2(λ, q) (−1)m(lR1
+lR2

)q
m
2

(κR2
−κR1

) ,

where Q = e−r. The m dependent factors stem from a choice of framing n1 = −n2 = m,

n1 = −n2 = −m at the two vertices respectively. 7 This choice was made by hand by

matching the lowest Gopakumar-Vafa invariants we obtain with those calculated in the

literature using localization methods. It would clearly be desirable to justify this choice

intrinsically. Comparing to equation (19), we obtain

(m,−1)

R

R

1

2

Figure 9: The open string geometry which determined K
(m)
R1R2

(Q).

K
(m)
R1R2

(Q) = (−1)m(lR1
+lR2

)q
m
2

(κR2
−κR1

)KR1R2(Q) . (23)

The CS partition function in equation (20) now becomes

Z
(m)
CS (Qb, Qf ; q) =

∑

R1,R2

Q
lR1

+lR2
b Q

mlR2
f (−1)m(lR1

+lR2
)q

m
2

(κR2
−κR1

)KR1R2(Qf )
2 . (24)

In order to evaluate KR1R2(Q), we need to calculate the leading order contribution in λ to

WR1R2(λ, q). This is given by [24, 25, 8]

WR1R2(q) = WR1(q) qlR2
/2 Sµ2(Eµ1(t)) . (25)

7In the notation of [8], this corresponds to the choice of gluing matrices T−mS−1T−m and T mS−1T m.
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Here, µ1 and µ2 are the Young tableaux associated to the representations R1 and R2, and

Sµ is the Schur polynomial of the representation described by µ. Further,

Eµ(t) = (1 +

∞∑

n=1

(

n∏

i=1

1

qi − 1
)tn) (

d∏

j=1

1 + qµj−jt

1 + q−jt
) , (26)

WR(q) = qκR/4
∏

1≤i<j≤d

[µi − µj + j − i]

[j − i]

d∏

i=1

µi∏

v=1

1

[v − i + d]
, (27)

where [x] = qx/2 − q−x/2, d denotes the number of rows in the tableau µ, µi denotes the

number of boxes in the i-th row of µ, and κR is given by

κR = lR +

d(µ)∑

i=1

µi(µi − 2i) . (28)

We refer the reader to the cited references and the recent review article [26] for a derivation

of these formulae.

In the next section, we will take the field theory limit to get the instanton partition function.

For this reason, it is important to know how WR(q) behaves in the limit q → 1. Since

[x] ≈ (q − 1)x in this limit, the first product on the RHS of equation (27) is finite in this

limit, but the second diverges as (q − 1)−lR. It follows that

WR(q) =
LR(q)

(q − 1)lR
, (29)

where LR(q) is finite at q = 1 and given by

LR(1) =
∏

1≤i<j≤d

µi − µj + j − i

j − i

d∏

i=1

µi∏

v=1

1

v − i + d
. (30)

If both R1 and R2 are the trivial representation, then, as pointed out above, KR1R2 computes

the closed string partition function for the CY3-fold T ∗(IP1)×C. The partition function for

this geometry was obtained in [8] and has the form

K· ·(Q) = Exp{
∞∑

n=1

Bn(q)Qn} , Bn(q) =
qn

n(qn − 1)2
=

B1(q
n)

n
. (31)

Notice that K··(Q) diverges in the field theory limit. For non-trivial R1, R2, we can parametrize

KR1R2 in the form

KR1R2(Q) = K··(Q)WR1(q)WR2(q)Exp{
∞∑

n=1

fn
R1R2

(q)Qn} . (32)
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It is natural to expect that

fn
R1R2

(q) =
fR1R2(q

n)

n
, (33)

even for non-trivial representations (the intuition behind this ansatz is that the f(qn)
n

n-

dependence stems from having contributions from a single isolated curve and its multicovers,

which is a generic feature of the geometries to which the K
(m)
R1R2

contribute). We have

explicitly calculated the first few terms of KR1R2 for some non-trivial representations and

found the results to be in agreement with this ansatz. Using this ansatz, calculating the sum

over all representations in KR1R2 is reduced to determining a single term in the series, the

coefficient of Q. This can easily be determined to be

fR1R2(q) =
WR1,

WR1

W ,R2

WR2

−W2 (34)

=
q

(q − 1)2
{1 + (q − 1)

d1∑

j=1

(qµ1
j−j − q−j)}{1 + (q − 1)

d2∑

j=1

(qµ2
j−j − q−j)} − q

(q − 1)2
.

The above expression for fR1R2(q) can be simplified to the following form,

fR1R2(q) = (q − 2 + q−1)fR1(q)fR2(q) + fR1(q) + fR2(q) =:
∑

k

Ck(R1, R2)q
k , (35)

where

fR(q) := fR1, .(q) =

d∑

j=1

q−(j−1)(1 + q + q2 + · · ·+ qµj−1) , (36)

=

d∑

j=1

µj∑

v=1

qv−j .

The following properties of the function fR1R2(q), which are easily read off from equations

(35) and (36), will be useful later,

fRT
1 RT

2
(q) = fR1R2(q

−1) , (37)

fR1R2(1) =
∑

k

Ck(R1, R2) = lR1 + lR2 ,

dfR1R2(q)

dq

∣∣∣∣
q=1

=
∑

k

k Ck(R1, R2) =
κR1 + κR2

2
.

Using the above form of fR1R2(q), we get

KR1R2(Q) = K··(Q)WR1WR2

∏

k

(1 − qkQ)−Ck(R1,R2) , (38)
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and thus, the partition function is given by

Z
(m)
CS = K2

··(Qf)
∑

R1,R2

Q
lR1

+lR2
b Q

mlR2
f (−1)m(lR1

+lR2
)q

m
2

(κR1
−κR2

) W2
R1

(q)W2
R2

(q)∏
k(1 − qkQf )2Ck(R1,R2)

. (39)

5 Counting curves and instantons

We now want to use the results obtained in the previous section to compute the Gopakumar-

Vafa invariants of the local Hirzebruch surfaces and to study the field theory limit of type

IIA string theory compactified on these spaces.

The closed string partition function for a CY 3-fold X, equation (4), can be put in the

following form

Fclosed(ω) =
∞∑

g=0

g2g−2
s Fg(ω) =

∑

Σ∈H2(X)

∞∑

g=0

∞∑

n=1

N̂g
Σ qn(1−g)

n(qn − 1)2−2g
e−nΣ·ω , (40)

where q = eigs and ω is the quantum corrected Kähler form on X. The integer invariants N̂g
Σ

are essentially Gopakumar-Vafa invariants, related to the invariants Ng
Σ introduced in [20]

by N̂g
Σ = (−1)g−1Ng

Σ. Recall that H2(Fm, Z) is spanned by the homology classes B and F of

the base IP1 and the fiber IP1 respectively. The exponential in the partition function hence

takes the form e−n(kTB+lTF ) = Qnk
B Qnl

F . The generating functions of the topological string

amplitudes defined above can then be written as

Fclosed(TB, TF ) =
∞∑

n=1

N̂0
F qn

n(qn − 1)2
Qn

f +
∞∑

k=1

Qk
b

∞∑

g=0

∑

r|k

qr(1−g)

r(qr − 1)2−2g
f (k/r)

g (Qr
f ) , (41)

where

f (n)
g (x) =

∑

m

N̂g
(n,m)x

m . (42)

f
(k)
g (x) is the generating function for the genus g invariants of curves kB + ∗F . In the

field theory limit, the first term in equation (41), coming from multicovers of F , gives

the perturbative contribution to the prepotential as was shown in [4]. We will see that

computations in Chern-Simons theory on the open string side determine the generating

functions of invariants f
(k)
g (x) in a straightforward way.

In subsection 5.3, we will take the field theory limit of the CS partition function directly, i.e.

without the intermediate step of expressing it in terms of A-model quantities. We will see

after a slight manipulation it is the same as the expression given by Nekrasov [15].
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5.1 Curves

To simplify extracting the generating functions (42) for the Gopakumar-Vafa invariants from

the CS partition functions (39), we perform a series of manipulations on the expression for

the closed string partition function, Zclosed = eFclosed.

We will express Zclosed in terms of the following function G,

G(q, ω) =
∑

Σ∈H2(X,ZZ)

∞∑

g=0

N̂g
Σ q1−g

(q − 1)2−2g
e−Σ·ω (43)

=
N̂0

(0,1) q

(q − 1)2
Qf +

∞∑

k=1

Qk
bGk(q, Qf ) ,

where

Gk(q, Qf) =
∞∑

m=0

∞∑

g=0

N̂g
(k,m) q1−g

(q − 1)2−2g
Qm

f =
∞∑

g=0

1

(q1/2 − q−1/2)2−2g
f (k)

g (Qf ) . (44)

We have used the fact that Ng
(0,m) ∼ δg,0δm,1, which was already pointed out in [4].8 The

closed string partition function in terms of G is given by

Zclosed = Exp{
∞∑

n=1

G(qn, nω)

n
} (45)

= K· ·(Qf )
N̂0

(0,1) Exp{
∞∑

n=1

1

n

∞∑

k=1

Qkn
b Gk(q

n, Qn
f )} .

Let us define Zk(Qf , q) such that

ZCS(Qb, Qf ; q) = K2
· ·(Qf)

∞∑

k=0

Qk
bZk(Qf , q) . (46)

Then, specializing to F0 (the cases F1 and F2 can be treated analogously; the results are

quoted in the appendix), we obtain from equation (39)

Zk(q, Qf) =
∑

{R1,R2|lR1
+lR2

=k}

W2
R1

W2
R2∏

m(1 − qmQf)2Cm(R1,R2)
. (47)

8[4] only considered the case g = 0. The δg,0 reflects the fact that a higher genus surface cannot be
mapped holomorphically into a sphere.
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Thus Zclosed = ZCS implies that N̂0
(0,1) = 2 (consistent with [4]) and

G1(q, Qf) = Z1(q, Qf) , (48)

G2(q, Qf) = Z2(q, Qf) −
1

2
Z1(q, Qf)

2 − 1

2
Z1(q

2, Q2
f) ,

G3(q, Qf) = Z3(q, Qf) + Z1(q, Qf)Z2(q, Qf ) − Z1(q, Qf )Z1(q
2, Q2

f) −
1

3
Z1(q

3, Q3
f)

−2

3
Z1(q, Qf)

3 ,

G4(q, Qf) = Z4(q, Qf) − Z3(q, Qf)Z1(q, Qf) + Z2(q, Qf )Z1(q, Qf)
2

−Z1(q, Qf)
2 Z1(q

2, Q2
f) −

1

2
Z2(q

2, Q2
f) −

1

2
Z2(q, Qf)

2 − 2

3
Z1(q, Qf)Z1(q

3, Q3
f )

+
1

4
Z1(q

2, Q2
f)

2 − 7

12
Z1(q, Qf)

4 .

The functions Zk(q, Qf) are easy to determine. From the above relations, we find that (for

k = 1, 2, 3, 4)

f (k)
g (x) =

P
(k)
g (x)

(1 − x)2g+4k−2
, (49)

where the functions P
(k)
g (x) are finite at x = 1. This behavior will become important when

considering the field theory limit in the next subsection.

k=1: In this case, since all curves B + mF are of genus zero, it is possible to obtain

the invariants Ng
B+mF directly. The moduli space of curves is just IP2m+1 and therefore

Ng
(1,m) = −(2m + 2)δg,0, hence we expect

f
(1)
0 (x) = − 2

(1 − x)2
, f

(1)
g>0(x) = 0 . (50)

This is exactly what we obtain from Z1(q, Qf).

k=2: In this case, by calculating G2(q, Qf), one can give an exact expression for all invari-

ants,

f (2)
g (x) =

(3g + 6)xg+1 + (6g + 8)xg+2 + (3g + 6)xg+3

(1 − x)2g+6(1 + x)2
. (51)

k=3:

f (3)
g (x) =

xg+4H
(3)
g (x)

(1 − x)2g+10(1 + x + x2)2
, (52)
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where H
(3)
g (x) is such that

H(3)
g (x) = H(3)

g (1/x) =

g+3−[ g+1
2

]∑

k=−g−3+[ g+1
2

]

Akx
k . (53)

H
(3)
0 (x) := 8(x3 + x−3) + 46(x2 + x−2) + 100(x + x−1) + 124 , (54)

H
(3)
1 (x) := 68(x3 + x−3) + 336(x2 + x−2) + 692(x + x−1) + 880

H
(3)
2 (x) := 12(x4 + x−4) + 436(x3 + x−3) + 1874(x2 + x−2) + 3736(x + x−1) + 4732 ,

H
(3)
3 (x) := 156(x4 + x−4) + 2496(x3 + x−3) + 9515(x2 + x−2) + 18464(x + x−1) + 23120 ,

H
(3)
4 (x) := 16(x5 + x−5) + 1304(x4 + x−4) + 13368(x3 + x−3) + 46118(x2 + x−2)

+87180(x + x−1) + 107852 ,

H
(3)
5 (x) := 276(x5 + x−5) + 8920(x4 + x−4) + 68388(x3 + x−3) + 217040(x2 + x−2)

+399888(x + x−1) + 489312 ,

k=4:

f (4)
g (x) =

x2g+6H
(4)
g (x)

(1 − x)2g+14(1 + x)2g+6
. (55)

H
(4)
0 (x) = 10(x5 + x−5) + 208(x4 + x−4) + 1472(x3 + x−3) + 5072(x2 + x−2) (56)

+10310(x + x−1) + 12864 ,

H
(4)
1 (x) = 300(x6 + x−6) + 5392(x5 + x−5) + 38977(x4 + x−4) + 156500(x3 + x−3)

+397376(x2 + x−2) + 681628(x + x−1) + 812710 ,

H
(4)
2 (x) = 116(x8 + x−8) + 7114(x7 + x−7) + 105688(x6 + x−6) + 768492(x5 + x−5)

+3394424(x4 + x−4) + 10082352(x3 + x−3) + 21285960(x2 + x−2)

+32970906(x + x−1) + 38079720 ,

H
(4)
3 (x) = 15(x10 + x−10) + 4560(x9 + x−9) + 146856(x8 + x−8) + 1891720(x7 + x−7)

+13702561(x6 + x−6) + 64651284(x5 + x−5) + 214971644(x4 + x−4)

+527911700(x3 + x−3) + 985697328(x2 + x−2) + 1424513408(x + x−1)

+1608879864 ,
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H
(4)
4 (x) = 1560(x11 + x−11) + 120984(x10 + x−10) + 2793760(x9 + x−9) (57)

+32488976(x8 + x−8) + 233788052(x7 + x−7) + 1156821600(x6 + x−6)

+4187974036(x5 + x−5) + 11538312784(x4 + x−4)

+24830267172(x3 + x−3) + 42464519560(x2 + x−2) + 58354404732(x + x−1)

+64833791552 ,

H
(4)
5 (x) = 276(x13 + x−13) + 62765(x12 + x−12) + 2707868(x11 + x−11) + 50597066(x10 + x−10)

+545520996(x9 + x−9) + 3898919969(x8 + x−8) + 19995586316(x7 + x−7)

+77346747002(x6 + x−6) + 233315291868(x5 + x−5) + 561626870823(x4 + x−4)

+1096392376436(x3 + x−3) + 1755278206204(x2 + x−2) + 2321514065296(x + x−1)

+2547127635094 .

5.2 Instantons

In the last subsection, we saw that the generating functions for Gopakumar-Vafa invariants

counting curves kB + lF with fixed k can conveniently be extracted from the open string

partition function. As pointed out above, the world-sheet instantons wrapping these curves

contribute to the k gauge instanton correction to the prepotential of the N = 2 theory.

From the expansion of the relevant part of the topological string amplitude

Finstanton(Qb, Qf , gs) =
∑

(k,m)6=(0,0)

∞∑

g=0

∞∑

n=0

N̂g
(k,m) qn(1−g)

n(qn − 1)2−2g
Qnk

b Qnm
f , (58)

and recalling the field theory limit (1) as β → 0, we see that the divergence of f
(k)
g (Qn

f ) ∼
β2−2g−4k is exactly cancelled by the β dependence of

Qnk
b

(qn−1)2−2g ∼ β4kn+2g−2 for the case of

single wrappings, n = 1. Multiwrapping contributions vanish in the field theory limit.

The k-instanton contribution is thus given by Fk,

Fk = lim
β→0

(
βΛ

2
)4k{

∞∑

g=0

f
(k)
g (1 − 2aβ)

(β~)2−2g
} , (59)

= a2 (
Λ

a
)4k ck ,

where

ck(~, a) =

∞∑

g=0

1

~2−2g

P
(k)
g (1)

22g−2+8k a2g
. (60)
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The coefficient of ~−2 in the expansion of ck(~, a) is the k-instanton contribution to the

prepotential. The coefficient of ~0 is the k-instanton contribution to the coefficient of the∫
TrR2

+ term in the effective action arising when the field theory is coupled to gravity.

For the N = 2 D=4 SU(2) theory this has been confirmed by comparing the results from

the topologically twisted theory and matrix model calculations [19, 27]. The field theory

interpretation of the coefficients of ~2g−2 (g > 1) in the expansion of ck(~, a) are as yet

unclear (recall that these stem from the higher genus topological string amplitudes; in the

low energy limit of type IIA, they describe the coupling of the graviphoton to R2
+).

From the results of the previous subsection, we can easily calculate the first few instanton

contributions.

Since f
(1)
g (x) = δg,0

2
(1−x)2

, we get

c1(~, a) =
1

~2

1

25
. (61)

For c2(~, a), we extract P
(2)
g (1) = 3g + 5 from

f (2)
g (x) =

(3g + 6)xg+1 + (6g + 8)xg+2 + (3g + 6)xg+3

(1 − x)2g+6(1 + x)2
. (62)

Thus we get

c2(~, a) =
∞∑

g=0

1

~2−2g

3g + 5

22g+14a2g
=

1

~2

5

214
+

1

213a2
+ ~

2 11

218a4
+ ~

4 7

219a6
+ · · · . (63)

For c3(~, a) we have, from equation (55), the following expansion up to g = 10,

c3(~, a) =

∞∑

g=0

1

~2−2g

P
(3)
g (1)

22g+22a2g
=

1

~2

3

217
+

1

3.214a2
+

~2

a4

117

222
+

~4

a6

293

223
+

~6

a8

8413

2.226
(64)

+
~8

a10

3261

226
+

~10

a12

59465

230
+

~12

a14

400493

3.231
+

~14

a16

1184499

234

+
~16

a18

650505

233
+

~18

a20

68040919

3.238
+ · · · .
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For c4(~, a) we have, from equation (58), the following expansion up to g = 10,

c4(~, a) =
∞∑

g=0

1

~2−2g

P
(4)
g (1)

22g+30a2g
=

1

~2

1469

231
+

1647

229a2
+

~2

a4

171201

234
+

~4

a6

985823

235
(65)

+
~6

a8

42777927

239
+

~8

a10

112053387

239
+

~10

a12

1147794293

241

+
~

12

a14

5785079481

242
+

~
14

a16

460910273265

247

+
~

16

a18

568311318115

246
+

~
18

a20

22248943631667

250
+ · · · .

5.3 Field theory limit of Chern-Simons partition function

In the last subsection, we expressed the gauge instanton contributions in terms of curve

counting formulas (equation (60)), i.e. with the interpretation of the field theory as the

low energy limit of type IIA in mind. We can equally well express the complete instanton

partition function by taking the field theory limit of Z
(m)
CS (Qb, Qf ; q) in (4) directly, i.e.

without the intermediate transcription to closed string quantities. In this spirit, it would be

interesting to formulate a direct relationship between the three dimensional CS and the four

dimensional N = 2 theory.

Unlike the previous subsection, we will here consider all three cases Fm, m = 1, 2, 3 si-

multaneously. It will turn out that all m dependence cancels in the field theory limit, as

expected, provided we introduce a sign factor when relating the field theory to the geometric

parameters, in the following way

Qb = (−1)m(
βΛ

2
)4 , Qf = e−2aβ , q = e−β~ . (66)

It would be interesting to justify the factor of (−1)m intrinsically.

Using these relations in equations (32) and (29),

KR1R2(Qf )

K· ·(Qf )
=

LR1(q)

(q − 1)lR1

LR2(q)

(q − 1)lR2

∏

k

(1 − qkQf)
−Ck(R1,R2) , (67)

we obtain in the limit β → 0

KR1R2(Qf )

K· ·(Qf )
=

1

(β~)lR1
+lR2

{LR1(1)LR2(1)
∏

k

(2aβ + β k ~)−Ck(R1,R2) + O(β)} , (68)

=
1

β2lR1
+2lR2

{LR1(1)LR2(1)

~lR1
+lR2

∏

k

(2a + k~)−Ck(R1,R2) + O(β)} ,
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where we have used the fact that
∑

k Ck(R1, R2) = lR1 + lR2 . Thus,

ZSU(2)(Λ, a; ~) := lim
β→0

Z
(m)
CS (Qb, Qf ; q)

K··(Qf)2
=

∑

R1,R2

(
Λ

2
√

~
)4l1+4l2

LR1(1)2LR2(1)2

∏
k(2a + k~)2Ck(R1,R2)

, (69)

where the m-dependence cancels as promised. Hence, From eq(66) it follows that all local

Fm 3-folds yield the same results in the field theory limit for all genus.

5.4 Relation with Nekrasov’s conjecture

The above instanton partition function agrees with the partition function proposed by

Nekrasov [15] and recently calculated in [17]. To see this, recall that Z
(m)
CS (Tb, Tf , q) is given

by

Z
(m)
CS (Tb, Tf ; q)

K··(Qf )2
=

∑

R1,R2

Q
lR1

+lR2

b Q
mlR2

f (−1)m(lR1
+lR2

)q−
m
2

(κR2
+κR1

)
W2

R1
W2

RT
2∏

k(1 − qkQf )2Ck(R1,RT
2 )

.(70)

The term K··(Q)2 gives the 1-loop contribution to the prepotential in the field theory limit.

We have divided the Chern-Simons partition function by K··(Q)2 so that we only get the

instanton contribution in the field theory limit. Now using the definition of WR(q) given in

equation (27) and the following identity

∏

∞>j>i=1

[µi − µj + j − i]

[j − i]
=

∏

d(µ)≥j>i≥1

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

µi∏

ν=1

1

[ν − i + d(µ)]
, (71)

we see that for q = e−β~

W2
R(q) = 2−2lR qκR/2

∏

i,j

sinh β~(µi − µj + j − i)

sinh β~(j − i)
. (72)

One can also check that
∏

k

(1 − qkQf)
−2Ck(R1,RT

2 ) = Q
−lR1

−lR2

f 2−2(lR1
+lR2

)q−
1
2
(κR1

−κR2
) (73)

∏

l 6=n,i,j

sinh β(aln + ~(µl,i − µn,j + j − i))

sinh β(aln + ~(j − i))
, l, n = 1, 2; i, j ≥ 1 .

where we have identified Qf = e−2aβ and a12 = −a21 = 2a. Thus we get

Z
(m)
CS (Tb, Tf = 2aβ; q = e−β~) =

∑

R1,2

((−1)m Qb

24Qf
)lR1

+lR2Q
m lR2
f

q−
m
2

(κR1
+κR2

)
∏

l,n=1,2

∞∏

i,j=1

sinh β(aln + ~(µl,i − µn,j + j − i))

sinh β(aln + ~(j − i))
.
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For m = 0 (local F0) we get

Z
(0)
CS = K··(Qf)

2
∑

R1,R2

ϕlR1
+lR2

∏

l,n=1,2

∞∏

i,j=1

sinh β(aln + ~(µl,i − µn,j + j − i))

sinh β(aln + ~(j − i))
, (74)

where

ϕ =
Qb

24Qf

=
Qb e2aβ

24
. (75)

This is exactly the form of the partition function derived by Nekrasov from an index calcu-

lation in [15] 9. In the field theory limit Qb = (βΛ
2

)4 with β → 0, we get

ZSU(2)(Λ, a; ~) = limβ→0

Z
(m)
CS (Tb = 4 log(βΛ

2
), Tf = 2aβ; q = e−β~)

K··(Qf )2
(77)

=
∑

R1,R2

(
Λ

2
)4(lR1

+lR2
)

∏

l,n=1,2

∞∏

i,j=1

aln + ~(µl,i − µn,j + j − i)

aln + ~(j − i)
.

The fact that the expression is equal to the one given in equation (69) follows from the β → 0

limit of the identities given in equation (72) and equation (74).

The above partition function is a limit (~1 = ~2 = ~) of a more general partition function

discussed in [15, 16, 17]. On the CS side (open string side) there exists a natural way

of defining a more general open string partition function by taking the coupling constant

associated with the CS-theory on each 3-cycle to be different. This more general partition

function is given by

ZCS(q1, q2, Qb, Qf) =
∑

R1,2

Ql1+l2
b KR1R2(q1, q2, Qf )

2 , (78)

where

KR1R2(q1, q2, Qf ) =
∑

R

QlR
f WR1R(q1)WRR2(q2). (79)

For q1 = q2 we get back the original partition function. In this case also one can express the

above as

KR1R2(q1, q2, Qf) = WR1(q1)WR2(q2)Exp{fn
R1R2

(q1, q2)Q
n
f} , (80)

9A generalization of this to SU(N) was also given by Nekrasov [15]

ZSU(N)(Qb, Qf1,2,··· ,N−1
; q) =

∑

R1,··· ,N

ϕl1+···+lN

N∏

l,n=1

∞∏

i,j=1

sinhβ(aln + ~(µl,i − µn,j + j − i))

sinhβ(aln + ~(j − i))
. (76)

The above expression, we believe, is the topological string partition function of the local toric CY3-fold
which is a ZN orbifold of the resolved conifold for Qfi

= e−2βai,i+1 , ϕ = Qb

22N Qf1
···QfN−1

, q = e−β~.
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where

fn
R1R2

(q1, q2) =
fR1R2(q

n
1 , qn

2 )

n
. (81)

Thus we only need to determine the coefficient of Qf which is easy to obtain and is given by

fR1R2(q1, q2) =
WR1, (q1)

WR1(q1)

W ,R2(q2)

WR2(q2)
−W (q1)W (q2)

=
q
1/2
1 q

1/2
2

(q1 − 1)(q2 − 1)
{1 + (q1 − 1)

d1∑

j=1

(q
µj−j
1 − q−j

1 )}{1 + (q2 − 1)

d2∑

j=1

(q
νj−j
2 − q−j

2 )} .

The above expression can be simplified to the following form

fR1R2(q1, q2) =

√
q2

q1

q1 − 1

q2 − 1
fR1(q1) +

√
q1

q2

q2 − 1

q1 − 1
fR2(q2) +

(q1 − 1)(q2 − 1)√
q1q2

fR1(q1)fR2(q2)

=
∑

k1,k2

Ck1,k2(R1, R2)q
k1
1 qk2

2 ,

where fR1(q) =
∑d1

j=1 q−(j−1)(1 + q + · · · qµj−1).

Then this more general partition function is given by

ZCS(q1, q2, Qb, Qf) =
∑

R1,2

Ql1+l2
b

W2
R1

(q1)W2
R2

(q2)∏
k(1 − qk1

1 qk2
2 Qf )

2Ck1,k2
(R1,R2)

. (82)

In the field theory limit we get

Z(Λ, a; ~1, ~2) =
∑

R1,2

(
Λ

2
)4(l1+l2)L2

R1
(1)L2

R2
(1)

~2l1 ~2l2

∏

k1,k2

(2a + ~1k1 + ~2k2)
−2Ck1,k2

(R1,R2) . (83)
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Figure 10: The fan and web diagram for B3.

Appendix

Details for local IP2

From the toric diagram Fig. 10, we can read off the following σ model charges

( 1 1 1 −3 0 0 0 )
( 0 −1 −1 1 1 0 0 )
( −1 0 −1 1 0 1 0 )
( −1 −1 0 1 0 0 1 )

The monomials invariant under the four U(1)s encoded in these charges are generated by

the following set

{x1x2x3x4x5x6x7, x2
1x2x4x6x

2
7, x1x

2
2x4x5x

2
7, x2x

2
3x4x

2
5x6, (84)

x2
2x3x4x

2
5x7, x1x

2
3x4x5x

2
6, x2

1x3x4x
2
6x7}

We cover the geometry with the 3 patches

Patch I: x3, x5, x6 6= 0 (85)

Patch II: x1, x6, x7 6= 0

Patch III: x2, x5, x7 6= 0 .
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In each patch, the invariant monomials are generated by the following set

Patch I: x =
x1x7

x3x5

, y = x2x
2
3x4x

2
5x6, u =

x2x7

x3x6

, v = x1x
2
3x4x5x

2
6 → xy = uv (86)

Patch II: x̃ =
x3x5

x1x7

, ỹ = x2
1x2x4x6x

2
7, ũ =

x2x5

x1x6

, ṽ = x2
1x3x4x

2
6x7 → x̃ỹ = ũṽ

Patch III: x′ =
x3x6

x2x7
, y′ = x1x

2
2x4x5x

2
7, u′ =

x1x6

x2x5
, v′ = x2

2x3x4x
2
5x7 → x′y′ = u′v′ .

The transition functions in the overlap of the patches can easily be read off from these

equations:

x =
1

x̃
, y = x̃ũṽ , u =

ỹ

ṽ
, v = x̃ṽ , (87)

x̃ =
x′

u′
, ỹ = y′u′ ũ =

1

u′
, ṽ = u′2v′ ,

x′ =
v

xy
, y′ = uxy , u′ =

x

u
, v′ =

xy2

v
.

Note that the relation of the phases of the coordinates in different patches can be read

off from the web diagram. We now perform the following deformations on the constraint

equations

xy = uv + µ1 , (88)

x̃ỹ = ũṽ + µ2 , (89)

x′y′ + µ1 = u′v′ + µ2 . (90)

To enforce the relation z = xy = x̃ỹ = x′y′+µ1, we must also deform the transition functions,

x =
1

x̃
, y = x̃ũṽ + µ2x̃ , u =

ỹ

ṽ
− µ1

x̃ṽ
, v = x̃ṽ , (91)

x̃ =
x′

u′
, ỹ = y′u′ + µ1

u′

x′
, ũ =

1

u′
, ṽ = u′2v′ ,

x′ =
v

x

1

y − µ2

x

, y′ = ux(y − µ2

x
) , u′ =

v

y − y−µ2

x

, v′ =
x

v
(y − µ2

x
)2 .

These deformations maintain the phase relations of the coordinates in the three patches.
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local F0

Here we list functions H
(n)
g (x) for n = 3, 4 and g = 0, · · · 15.

H
(3)
6 (x) = 20(x6 + x−6) + 2860(x5 + x−5) + 54344(x4 + x−4) + 338204(x3 + x−3)

+1000022(x2 + x−2) + 1797108(x + x−1) + 2177844

H
(3)
7 (x) = 428(x6 + x−6) + 23152(x5 + x−5) + 306968(x4 + x−4) + 1629392(x3 + x−3)

+4532536(x2 + x−2) + 7953136(x + x−1) + 9556104

H
(3)
8 (x) = 24(x7 + x−7) + 5296(x6 + x−6) + 161552(x5 + x−5) + 1643952(x4 + x−4)

+7688416(x3 + x−3) + 20272814(x2 + x−2) + 34777628(x + x−1) + 41468492 ,

H
(3)
9 (x) = 612(x7 + x−7) + 49736(x6 + x−6) + 1020652(x5 + x−5) + 8462384(x4 + x−4)

+35667972(x3 + x−3) + 89686864(x2 + x−2) + 150623428(x + x−1) + 178358464 ,

H
(3)
10 (x) = 28(x8 + x−8) + 8804(x7 + x−7) + 393728(x6 + x−6) + 6006028(x5 + x−5)

+42249200(x4 + x−4) + 163151268(x3 + x−3) + 393139474(x2 + x−2)

+647251192(x + x−1) + 761564668 ,

H
(3)
11 (x) = 828(x8 + x−8) + 94240(x7 + x−7) + 2772832(x6 + x−6) + 33511552(x5 + x−5)

+205862000(x4 + x−4) + 737434848(x3 + x−3) + 1709869228(x2 + x−2)

+2763195520(x + x−1) + 3232117936 ,

H
(3)
12 (x) = 32(x9 + x−9) + 13576(x8 + x−8) + 836744(x7 + x−7) + 17934000(x6 + x−6)

+179430424(x5 + x−5) + 983373728(x4 + x−4) + 3299321448(x3 + x−3)

+7386742102(x2 + x−2) + 11731393228(x + x−1) + 13647278764 ,

Ĥ
(3)
13 (x) = 1076(x9 + x−9) + 163256(x8 + x−8) + 6521908(x7 + x−7) + 108732192(x6 + x−6)

+929691024(x5 + x−5) + 4620614976(x4 + x−4) + 14631592752(x3 + x−3)

+31725047776(x2 + x−2) + 49571743936(x + x−1) + 57373130752 ,

H
(3)
14 (x) = 36(x10 + x−10) + 19804(x9 + x−9) + 1608728(x8 + x−8) + 46170268(x7 + x−7)

+626678580(x6 + x−6) + 4690016816(x5 + x−5) + 21410770496(x4 + x−4)

+64389042000(x3 + x−3) + 135558792610(x2 + x−2) + 208614265444(x + x−1)

+240290143540 ,

H
(3)
15 (x) = 1356(x10 + x−10) + 264400(x9 + x−9) + 13772840(x8 + x−8) + 303539824(x7 + x−7)

+3467940668(x6 + x−6) + 23141374272(x5 + x−5) + 98036368128(x4 + x−4)

+281441631392(x3 + x−3) + 576623540332(x2 + x−2) + 874793870512(x + x−1)

+1003092794248 .
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H
(4)
6 (x) = 20(x15 + x−15) + 20776(x14 + x−14) + 1802422(x13 + x−13) + 55118752(x12 + x−12)

+887791786(x11 + x−11) + 9032681160(x10 + x−10)

+64154932056(x9 + x−9) + 338318599184(x8 + x−8) + 1379961590592(x7 + x−7)

+4479333446968(x6 + x−6) + 11809327834558(x5 + x−5) + 25665330292512(x4 + x−4)

+46479319690946(x3 + x−3) + 70678653611736(x2 + x−2)

+90710040683380(x + x−1) + 98545938094688 ,

H
(4)
7 (x) = 4266(x16 + x−16) + 839844(x15 + x−15) + 43543660(x14 + x−14) + 1056778816(x13 + x−13)

+15241810336(x12 + x−12) + 148139062508(x11 + x−11) + 1046335719584(x10 + x−10)

+5642396903464(x9 + x−9) + 24036080776384(x8 + x−8) + 82894576962384(x7 + x−7)

+235675324886872(x6 + x−6) + 559907882759836(x5 + x−5)

+1122949968857408(x4 + x−4) + 1915763227378616(x3 + x−3)

+2795404761655196(x2 + x−2) + 3501738224591460(x + x−1) + 3773935482414956 ,

H
(4)
8 (x) = 496(x18 + x−18) + 273912(x17 + x−17) + 25434960(x16 + x−16) + 947885136(x15 + x−15)

+19453650776(x14 + x−14) + 257567625014(x13 + x−13) + 2412441992944(x12 + x−12)

+16956815818608(x11 + x−11) + 93128479478936(x10 + x−10)

+411350743539242(x9 + x−9) + 1492803031085792(x8 + x−8)

+4523350413679026(x7 + x−7) + 11586657433749704(x6 + x−6)

+25330337013080364(x5 + x−5) + 47609815386901776(x4 + x−4)

+77364284922244622(x3 + x−3) + 109129776774805848(x2 + x−2)

+134003186940618748(x + x−1) + 143470224614509472 ,

H
(4)
9 (x) = 25(x20 + x−20) + 61316(x19 + x−19) + 11068374(x18 + x−18) + 652429176(x17 + x−17)

+19259125692(x16 + x−16) + 347810000852(x15 + x−15) + 4300723919714(x14 + x−14)

+39070905330120(x13 + x−13) + 273457920809930(x12 + x−12)

+1524969346570920(x11 + x−11) + 6945674565624384(x10 + x−10)

+263257650262280089(x9 + x−9) + 84243018258047546(x8 + x−8)

+230185454300541696(x7 + x−7) + 541844957793011864(x6 + x−6)

+1106543100329064720(x5 + x−5) + 1971231278784742349(x4 + x−4)

+3076166028299942844(x3 + x−3) + 4218295082475696624(x2 + x−2)

+5093897002657007052(x + x−1) + 5423687898801824948 ,
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H10(x) = 8982(x21 + x−21) + 3578472(x20 + x−20) + 348034206(x19 + x−19)

+15037643104(x18 + x−18) + 372747895080(x17 + x−17) + 6084321194460(x16 + x−16)

+71140851380158(x15 + x−15) + 629960905795240(x14 + x−14)

+4392643781205418(x13 + x−13) + 24815217549021088(x12 + x−12)

+116039047539664182(x11 + x−11) + 456636168407024952(x10 + x−10)

+1532000433014962822(x9 + x−9) + 4427463940221909760(x8 + x−8)

+11113497261742849754(x7 + x−7) + 24391020745301746344(x6 + x−6)

+47054462823805306748(x5 + x−5) + 80129270910314118520(x4 + x−4)

+120842120340657126960(x3 + x−3) + 161785295782709385240(x2 + x−2)

+192612749016106866042(x + x−1) + 204120388510473361224 ,

H11(x) = 776(x23 + x−23) + 847738(x22 + x−22) + 144344832(x21 + x−21)

+9357879388(x20 + x−20) + 321867505044(x19 + x−19) + 6960563372879(x18 + x−18)

+104659625277760(x17 + x−17) + 1167957443029360(x16 + x−16)

+10119596098395264(x15 + x−15) + 70330233541355881(x14 + x−14)

+401754102187227592(x13 + x−13) + 1922054663797082448(x12 + x−12)

+7815436357972473172(x11 + x−11) + 27328823525971791460(x10 + x−10)

+82962081227932553344(x9 + x−9) + 220327585105407247080(x8 + x−8)

+515123507705963450920(x7 + x−7) + 1065676633098908467490(x6 + x−6)

+1958880323008004536300(x5 + x−5) + 3209930502325208372372(x4 + x−4)

+4701228070777034064356(x3 + x−3) + 6165909219169186575432(x2 + x−2)

+7251680674388081571600(x + x−1) + 7653871498185950485200 ,
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H12(x) = 30(x25 + x−25) + 142952(x24 + x−24) + 46397758(x23 + x−23)

+4666992904(x22 + x−22) + 226254790488(x21 + x−21)

+6528038807672(x20 + x−20) + 126479209707000(x19 + x−19)

+1776522953134224(x18 + x−18) + 19057077119890680(x17 + x−17)

+162049457830972496(x16 + x−16) + 1122934839735652880(x15 + x−15)

+6476817384316875496(x14 + x−14) + 31612278725628725440(x13 + x−13)

+132300992609304637960(x12 + x−12) + 479854874693771928080(x11 + x−11)

+1521505193447041212400(x10 + x−10) + 4247761951357534695194(x9 + x−9)

+10503538092109971310456(x8 + x−8) + 23116405003776992480010(x7 + x−7)

+45463376413349088082344(x6 + x−6) + 80165702837137187676152(x5 + x−5)

+127072760262836311167104(x4 + x−4) + 181450624018663596285928(x3 + x−3)

+233770042020772015684072(x2 + x−2) + 272031823542995558909304(x + x−1) +

286109526001880184530336 ,

H13(x) = 16248(x26 + x−26) + 11441484(x25 + x−25) + 1867609602(x24 + x−24)

+130313168272(x23 + x−23) + 5068617330184(x22 + x−22)

+127122681176684(x21 + x−21) + 2249626573376071(x20 + x−20)

+29833194044232700(x19 + x−19) + 309352842642427198(x18 + x−18)

+2587963124320382488(x17 + x−17) + 17886698663434866553(x16 + x−16) +

104041685392475379304(x15 + x−15) + 516863496360020461678(x14 + x−14)

+2219175312759092765388(x13 + x−13) + 8315148255251476062787(x12 + x−12)

+27408849538963007252540(x11 + x−11) + 80010468270453478393296(x10 + x−10)

+207995282777817187829848(x9 + x−9) + 483761555487399956706890(x8 + x−8)

+1010575072306854645122796(x7 + x−7) + 1902256171458206034909248(x6 + x−6)

+3235110563313776191505496(x5 + x−5) + 4981575619223563155734966(x4 + x−4)

+6957331918466546588154936(x3 + x−3) + 8824248101674959733825220(x2 + x−2)

+10173350240915563250118496(x+ x−1) + 10666791272137599144340470
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H14(x) = 1116(x28 + x−28) + 2123034(x27 + x−27) + 597858776(x26 + x−26)

+61694966866(x25 + x−25) + 3280150367480(x24 + x−24) + 107249898982190(x23 + x−23)

+2398456260768240(x22 + x−22) + 39334297729267612(x21 + x−21)

+496590877057032204(x20 + x−20) + 4999965296583002358(x19 + x−19)

+41233256060532653688(x18 + x−18) + 284316242947879915100(x17 + x−17)

+1666176504493064118336(x16 + x−16) + 8408482528507356296876(x15 + x−15)

+36936675268551592344472(x14 + x−14) + 142494162691476258768526(x13 + x−13)

+486350783413982018389556(x12 + x−12) + 1477790555674438148532576(x11 + x−11)

+4018472087633195293071392(x10 + x−10) + 9822352746135144088586634(x9 + x−9)

+21662099226298401054640968(x8 + x−8) + 43239893498911642392701526(x7 + x−7)

+78327490163691445755024792(x6 + x−6) + 129044537123542177935391914(x5 + x−5)

+193702544707394610401774948(x4 + x−4) + 265286854476302190398619068(x3 + x−3)

+331854109645644252336639088(x2 + x−2) + 379452019419503320388448152(x + x−1)

+396769857245681885554908928 ,

H15(x) = 35(x30 + x−30) + 286744(x29 + x−29) + 151909916(x28 + x−28)

+24014981300(x27 + x−27) + 1776678078197(x26 + x−26) + 76462540562016(x25 + x−25)

+2171568812362050(x24 + x−24) + 44128251927349080(x23 + x−23)

+678229429084167029(x22 + x−22) + 82055061961991846889(x21 + x−21)

+80513486253657266932(x20 + x−20) + 655602921413643536680(x19 + x−19)

+4511043260336323140811(x18 + x−18) + 26612229682448017966692(x17 + x−17)

+136204891358039983634884(x16 + x−16) + 610736662112601476054180(x15 + x−15)

+2418823210255342971140237(x14 + x−14) + 8519606663089707541414760(x13 + x−13)

+26842281493690029147172220(x12 + x−12) + 76023106991445943817131912(x11 + x−11)

+194367691907203562148213795(x10 + x−10) + 450207515759262474725900584(x9 + x−9)

+947630554842568898139897502(x8 + x−8) + 1817312857981270397216413376(x7 + x−7)

+3182248997707767165484154515(x6 + x−6)

+5097338277427026638104847412(x5 + x−5)

+7480058119725431973984814452(x4 + x−4)

+10067787731012537908374528440(x3 + x−3)

+12440072163092579373241505125(x2 + x−2)

+14120405833090393940001592152(x + x−1)

+14728907025122899597601666232 .
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local F1

Here we list the functions H
(n)
g (x) for n = 3 and g = 0, · · · 15. The invariants of local F0 and

local F1 are related to each other for curves with even wrapping number on the base, as can

be seen easily by using the affine E8 Weyl symmetry of local 1
2

K3. Thus the n = 4 case for

local F1 can be derived from the functions H
(4)
g (x) defined in the previous subsection.

H
(3)
6 (x) = 348(x11/2 + x−11/2) + 14800(x9/2 + x−9/2) + 151712(x7/2 + x−7/2) (92)

+626785(x5/2 + x−5/2) + 1412346(x3/2 + x−3/2) + 2075489(x1/2 + x−1/2) ,

H
(3)
7 (x) = 22(x13/2 + x−13/2) + 3956(x11/2 + x−11/2) + 96574(x9/2 + x−9/2) + 778054(x7/2 + x−7/2)

+2906210(x5/2 + x−5/2) + 6311298(x3/2 + x−3/2) + 9127550(x1/2 + x−1/2) ,

H
(3)
8 (x) = 516(x13/2 + x−13/2) + 34576(x11/2 + x−11/2) + 576860(x9/2 + x−9/2)

+3862860(x7/2 + x−7/2) + 13270807(x5/2 + x−5/2) + 27851098(x3/2 + x−3/2)

+39687211(x1/2 + x−1/2) ,

H
(3)
9 (x) = 26(x15/2 + x−15/2) + 6904(x13/2 + x−13/2) + 257348(x11/2 + x−11/2)

+3236514(x9/2 + x−9/2) + 18699598(x7/2 + x−7/2) + 59831120(x5/2 + x−5/2)

+121660400(x3/2 + x−3/2) + 170998970(x1/2 + x−1/2) ,

H
(3)
10 (x) = 716(x15/2 + x−15/2) + 69360(x13/2 + x−13/2) + 1717944(x11/2 + x−11/2)

+17331516(x9/2 + x−9/2) + 88704772(x7/2 + x−7/2) + 266850161(x5/2 + x−5/2)

+526995098(x3/2 + x−3/2) + 731312489(x1/2 + x−1/2) ,
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H
(3)
11 (x) = 30(x17/2 + x−17/2) + 11020(x15/2 + x−15/2) + 582314(x13/2 + x−13/2)

+10602230(x11/2 + x−11/2) + 89528346(x9/2 + x−9/2) + 413833342(x7/2 + x−7/2)

+1179215768(x5/2 + x−5/2) + 2266727282(x3/2 + x−3/2) + 3108299684(x1/2 + x−1/2) ,

H
(3)
12 (x) = 948(x17/2 + x−17/2) + 125232(x15/2 + x−15/2) + 4318452(x13/2 + x−13/2)

+61670124(x11/2 + x−11/2) + 449427764(x9/2 + x−9/2) + 1903914844(x7/2 + x−7/2)

+5169507095(x5/2 + x−5/2) + 9691341866(x3/2 + x−3/2) + 13142378339(x1/2 + x−1/2) ,

H
(3)
13 (x) = 34(x19/2 + x−19/2) + 16496(x17/2 + x−17/2) + 1172832(x15/2 + x−15/2)

+29239874(x13/2 + x−13/2) + 342547768(x11/2 + x−11/2) + 2204219504(x9/2 + x−9/2)

+8656118128(x7/2 + x−7/2) + 22505083592(x5/2 + x−5/2) + 41221499060(x3/2 + x−3/2)

+55320776984(x1/2 + x−1/2) ,

H
(3)
14 (x) = 1212(x19/2 + x−19/2) + 209296(x17/2 + x−17/2) + 9589584(x15/2 + x−15/2)

+184678652(x13/2 + x−13/2) + 1833812848(x11/2 + x−11/2)

+10604121856(x9/2 + x−9/2) + 38955683296(x7/2 + x−7/2)

+97377061565(x5/2 + x−5/2) + 174547100714(x3/2 + x−3/2)

+231970177529(x1/2 + x−1/2) ,

H
(3)
15 (x) = 38(x21/2 + x−21/2) + 23524(x19/2 + x−19/2) + 2165078(x17/2 + x−17/2)

+70882310(x15/2 + x−15/2) + 1104236060(x13/2 + x−13/2)

+9526203334(x11/2 + x−11/2) + 50192855128(x9/2 + x−9/2)

+173767515352(x7/2 + x−7/2) + 419069234222(x5/2 + x−5/2)

+736192496108(x3/2 + x−3/2) + 969443089694(x1/2 + x−1/2) .

local F2

By invoking the affine E8 Weyl symmetry of local 1
2

K3 as above, the invariants of F2 can

be related to those of F0 via

Ng
nB+kF (F0) = Ng

nB+(k+n)F (F2) . (93)

Our computations of F2 invariants using the large N duality are in exact agreement with

this formula.
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