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Abstract
We develop a perturbation expansion for the solution of the nonlinear one-dimensional

free-electron laser equations. For a monochromatic wave, the radiation field is expanded
inaTaylor series having afinite radius of convergence. Analytic continuation using
Pade approximates yields accurate results well into the saturation regime. We aso
formulate the perturbation expansion for finite bandwidth, self-amplified spontaneous-
emission (SASE), and determine the lowest order correction to the well-known linear
theory. Motivated by an approximation to the expansion coefficients, we introduce a
simplified model for the SASE radiation field, and use it to discuss SASE statistics in the
saturation regime, before the onset of the sideband instability.
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I. INTRODUCTION

Free-Electron Laser (FEL) amplifiersin the exponential growth regime are accurately
described by linear equations, which have been studied in great detail [1-13] and are very
well understood. The theory of FELsin thislinear region of operation is quite mature.
On the other hand, the theoretical description [14-19] of the saturation of the gain process
due to nonlinear phenomenaisin aless advanced state. At present, most studies of
saturation are based upon computer simulation [20-22].

In this paper, we develop a perturbation expansion to treat the nonlinearity in the one-
dimensional free-electron laser equations. For a monochromatic wave, the resulting
Taylor series for the radiation field has afinite radius of convergence. We find that
analytic continuation using Pade’ approximates yields results in agreement with
numerical integration of the equations, well into saturation.

We also formulate the perturbation expansion for finite bandwidth, self-amplified
spontaneous-emission (SASE). Motivated by the narrowness of the FEL gain-bandwidth,
we consider an approximate expression for the nonlinear SASE radiation field, in terms
of the result of linear SASE theory and the solution of the nonlinear single-frequency
FEL equations. This simplified model for the nonlinear SASE field is used to obtain an
approximate description of the statistical properties of SASE in the saturation regime.
We obtain good agreement with the simulation results of ref. [22] before the onset of the
sideband instability.

The perturbation expansion is developed in Section |1 for the case of amplification of
amonochromatic wave, and in Section 11, for finite bandwidth SASE. Motivated by an
approximation to the expansion coefficients, we suggest in Section 1V a simplified model
for the nonlinear SASE field and use this model in Section V to obtain an approximate
description of the statistical properties of SASE in the saturation regime. A summary of

resultsis given in Section VI.



1. SINGLE FREQUENCY
The scaled equations [4] for the evolution of a one-dimensional electron distribution and

amonochromatic radiation field are:

do.

do. : y

é%:—Aéﬂ—A*e@, (2.2)
dA _/ s

EZ_@ >. (2.3)

6, = (k, +k,)z—at;(2) isthe phase of the jth electron relative to the radiation and and
P, =() =)o)/ P}, isits(scaled) energy deviation. We define: ) therelativistic
parameter; Z = 2ok, z the scaled distance along the undulator axis; 27/ k,, the undulator
period; 27i/k, the radiation wavelength; and t;(z) thearrival time of the jth electron at

position z. Theradiated electric field has the form Eexp[ik,(z - ct)] and the scaled
amplitude A= E/,/pn,y,mc*/e, (mksunits), where g isthe Pierce parameter and n,

the electron density. The bracket < > indicates the average over the initial electron

distribution. The average energy loss per electron is given by

(Bylyo) =-pIA", (2.4)
and the average radiated power per unit areais
P/Z= (noc)(yom2)<_Ay/ yo>' (2.5)

equal to the electron flux, n,c, timesthe average energy loss per electron.

We shall develop the solution of Egs. (2.1-2.3) as a perturbation expansion in the
small parameter ¢ , which we take to be the initial value of the radiation amplitude,

A0) = ¢ . (2.6)
Without loss of generality we can consider ¢ to bereal. Expanding in powersof ¢, we
write:
0(Z) =6, + p,Z +£6,(Z,6,,p,) +£°0,(Z,6,, p,) ++- , (2.7)
AZ)=eA(Z)+EA(Z)+°A(Z) +---. (2.8)



The constraints:

6,(00=6,(0=0, (n=21 (2.9

A0 =1 A(0)=0 (n23 (2.10)

assurethat 6(0) =6,, 6'(0) = p,, and A(0) =¢ . For aninitially uniform electron beam,

and a monochromatic electromagnetic wave, the system is periodic so we can restrict our
attention to theinterval 0< 6, < 27 .

The electron beam entering the undulator at Z = 0is described by the distribution
f (64, Py)- Theaverage of aquantity O(6,, p,) is defined to be

(0) = [ d6,dpsO(y. o) T (65 o) - (2.11)
If the electron beam is initially monoenergetic with zero detuning (p, = 0), the
distribution is
1
f (65, o) :Ed(po)- (2.12)
In this case,
dé,
=, 2.13
(=], (213)
and
(&™) =30, (2.14)

where ¢, , isthe Kronecker deltawhich equals unity for m=0 and vanishes for all

m#0.
Egs. (2.1)-(2.3) imply:

6'=-Ae? - A*e?, (2.15)
A -iA=IA* (€77) - (67 e7). (2.16)
The prime denotes derivative with respect to Z . Let usinsert the expansions of Egs.

(2.7) and (2.8) into Egs. (2.15) and (2.16), and equate terms having equal powers of ¢ .

In this manner we find:



=-Ae® -A*e™®, (2.17)

6,"=-iAGEe® +iA*6e"”, (2.18)
A=A =0, (2.19)
=iA* (e™%(-2i6,)) - <91'2 e}, (2.20)

A=A =IA (€20 (-216, - 267)) - (e7*(-i6,%6,+26,°6,")).  (2.21)

The first-order amplitude A has the well-known solution [1,3,4],

A(Z) = % (2 +e™2 +e) (2.22)
where
sz V3,1 (2.23)
2 2

There are three modes: growing; decaying and oscillating. For Z >>1, the exponentially

growing mode dominates and
A(Z) D%esz. (2.24)

Since we are interested in the leading behavior for large Z , we can use the
approximation (2.24). Wethen find from Egs. (2.17) and (2.18) that

1 i —2i6,
DEAfeMO—SJrS* A&Ai*+4s*,6&*2 e %, (2.26)

We have dropped terms that are needed to satisfy the initial conditions of Egs. (2.9) and
(2.10), but are negligible for large Z . Inserting Egs. (2.25) and (2.26) into Eqg. (2.21), we

derive
A=A = %—FE@A* (2.27)

Since the right-hand side of Eq. (2.27) has a smple exponential Z -dependence,
exp[(2s+ s*)Z], the inhomogeneous solution is easily found. The homogeneous
solution isrequired to satisfy theinitial condition of Eqg. (2. 10), but is negligible for large

Z . For this reason, we keep only the inhomogeneous solution and write



13+i5V3[,, , ,
%DE#E%A . (2.28)

Extending the approach outlined above one can show that for large Z , the

perturbation coefficients 6, and A, have the form:
0.(2,6,) = ; b(n,n—2K)A"*(Z)A ** (2)€"% | (n=1) (2.29)

and

Apmn(Z) = 2(MA™(Z)A *" (Z). (m20)  (230)
b(n,n—2k) and a(m) are complex constants independent of Z , to be determined
recursively from Egs. (2.15) and (2.16). a(0) =1. Wehaveaready found 6,,6,and A,
asgivenin Egs. (2.25), (2.26) and (2.28). Next, we can determine 6,,6, from Eq. (2.15).
Once thisis accomplished, A. can befound from Eq. (2.16). In general, suppose we
know 6,,6,,---,6,,, and A, A;,---, A, ,» then 6, and 6,,,, can be determined from
Eq. (2.15), and then A,,., can befound from Eq. (2.16).

Let usintroduce the new variable,
&= %ezeﬁz . (2.31)

From Egs. (2.8) and (2.30), we see that the radiation amplitude satisfies the scaling
relation:

AZ;e)e 2 0JEhE), (Z>>1) (2.32)

with

h($) = Za(m)f " (2.33)

The fact that the right-hand side of Eq. (2.32) does not depend on ¢ and Z
independently, but only in the combination specified in Eq. (2.31), means that for large
Z achangeintheinitia value of the radiation field, ¢, correspondsto atrandationin
Z.
Using Mathematica we have computed the coefficients a(1),...,a(12) of the power
seriesin EQ. (2.33). InTable 1, columns 2 and 3, we present the magnitude and argument



of the complex ratios, a(n)/a(n—1). We see that after the first few values of n, the

argument of thisratio remains close to 2.397 rad. The magnitude of the ratio also varies

dowly. Thevariation is further reduced if we multiply by n/(n—1/2). Theseresults

n la(n)/a(n-1)| | Argla(n)/a(n-1)] la(n)/a(n-1) n
n-1/2
1 216951 2.55393 1433903
2 272966 2.43870 363955
3 298157 2.42034 357788
4 .310309 2.40888 354639
5 318838 2.40122 354264
6 325133 2.39864 354690
7 329361 2.39838 354696
8 332254 2.39793 354404
9 334581 2.39709 354262
10 336581 2.39662 354296
11 338190 2.39659 354294
12 339444 2.39654 354203

Table 1. Ratiosof coefficientsin expansion for h(¢é) [EQ. (2.33)]

suggest the existence of an inverse square root branch point at

-i2.397

O : 2.34
&0, (234
Support for thisis given by noting the relation
1 - I(n+1/2) |, n
= / . 2.35
1-E1§, 2 rnryra & (239




The singularity limits the radius of convergence of the power seriesin Eq. (2.33).
Therefore in order to use it to study the saturation of the FEL, we need to carry out an
analytic continuation. One approach to the analytic continuation of a Taylor seriesisthe
use of Pade’ approximates [23]. In this approach, one constructs a sequence of rational
functions to approximate the unknown function. The rational functions are chosen such
that when they are expanded, the coefficients match the original series expansion as well
aspossible. Asanexample[23], let us consider the function

/2
+2X 15 13 141
Fo0=FF2H m1e iy By 14, 2.36
9 [1+x |:H 2 8 16 128 (2.30)

Clearly, the Taylor series fails to converge for any value of x>1/2. Thefirst Pade'
approximate is

M:l+lx—§x2+§x3—%x4+... (237)
1+ (5/4)x 2 8 32 128

This simple approximation has the value 1.4 at x = oo which should be compared to the
exact value,~/2 . The next approximation is

1+ (13/ 4)x + (41/16) X2

5 (2.38)
1+ (11/4)x +(29/16)x
whosevalueis1.4138 at X = oo .
For Z >>1, theradiation intensity has the form:
2
A2 Dey ame” =10, (239)

In EQ. (2.39), the coefficients a(m) are complex and the variable ¢ introduced in Eq.
(2.31) isreal. We expand the right-hand side of (2.39) in powers of ¢ and attempt to
analytically continue by using Pade' approximates. We denote by [M,N], the Pade
approximate in which the numerator is a polynomial of degree M and the denominator is

apolynomial of degreeN. InFig. 1, we plot the intensity |A(Z)|2versus Z for the [N,N]

approximates, with N=1,...,6. It is seen that convergence out to about Z =10 has been
achieved for the [5,5] and [6,6] approximates. In Fig. 2, we compare our result to that
obtained by numerically integrating Egs. (2.1)-(2.3). The equations were solved



numerically using Mathematica, taking A(0) = ¢ =.003, and 1000 electrons, initially
equally spaced in phaseintheinterval 0< 6; < 27 . Excellent agreement is observed in

the region of convergence of the Pad€’ approximates.
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Fig. 1. The dimensionlessintensity |A(Z)|2 as derived from the [N,N] (N=1,...,6) Pade/
approximates (for & =.003) versus dimensionless distance Z traveled along the
undul ator.

Using Egs. (2.32) and (2.33), we have calculated a power series expansion for the
phase ¢ of theradiation field (A=|A€?). InFig. 3, wecompare ¢ =Z/2 as
calculated from the [6,6] Pade’ approximate with the result obtained by numerically
integrating Egs. (2.1)-(2.3). Excellent agreement is observed out to about Z =10.
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Fig. 2. The dimensionlessintensity |A(Z)|zcomputed (for £ =.003) from the [6,6] Pade

approximate (dashed curve), and the result of numerically integrating the 1-D FEL
equations (solid curve), plotted versus dimensionless distance Z traveled aong the
undulator. The agreement is seen to be excellent out to about Z =11.
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Fig. 3. Theradiation phase ¢ —Z /2 ascalculated (for £ =.003) by the [6,6] Pade

approximate (dashed curve), and by numerically integrating the 1-D FEL equations (solid
curve), plotted versus the dimensionless distance Z traveled along the undulator.
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It isof interest to compare the result of our analysis with the phenomenological
approximation considered by Dattoli and Ottaviani [19]. They suggest modeling the
intensity at saturation using the approximate form:

1 Pe'*?

1+9':f(e@'Z -1)

sat

P(Z) =

(2.40)

In our notation, the initial power P, = £* and the saturated power P_, =1.4. Hence, their

model corresponds to approximating the scaling function | (¢) [Eq. (2.39)] by

()0 (2.41)

é .
1+ 4

In Fig. 4, we compare (for £ =.003) the approximation of Eq. (2.41) with the result of
numerically solving Egs. (2.1)-(2.3). It should be noted that the approximation givenin

Eq. (2.41) isnot the [1,1] Pade approximate, which was shownin Fig. 1.
|ntensity

2 4 6 8 10 12 14
Fig. 4. The dimensionless intensity|A(Z)|2 as computed by numerically solving Egs.

(2.1)-(2.3), solid curve; and as approximated by Eqg. (2.41), dashed curve, plotted versus
the dimensionless distance Z traveled aong the undulator.
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1. FINITE BANDWIDTH

We again usethe variable Z = 20k ,z asthe scaled distance along the undulator axis and
introduce the variable 7 = 2p[(k, +k,,)z— & t] to describe the scaled time along the
electron bunch. The phase of the j th electron relative to the radiation is

6, = (ks +k,)z—at;(2), where t;(z) isitsarrival time at position z. For a coasting
electron beam with average electron line density n,, the one-dimensional FEL equations

in time-domain can be written in the form:

do,

Wi AZ.200)6°% - A* (2,200 )6 3.2
E_A(’pj)e (!pj)e ’ ()
o 0 1 <« -6

EHE+$§A=N—26 %81 -2p8,), (33)

c |

where N, =n, / 20k isthe number of electronsin acooperation length ¢/, = A, /47 p.

These equations are equivalent to those considered in refs. [24,25]. Introducing the

Fourier transform,

A(Z,T) = Ig_g A (Z)€" (3.4)
we obtain the FEL equationsin frequency domain:
Ci=p, 39
% =-[ g_?T Oy glas, A o118 E’ (3.6)
% +igA, = Nic Z o100 - <e—i(1+&)ej>, 3.7)

where q=2pq = ATO’ These equations are equivalent to those considered in refs.

[7,26].
Asin the single frequency case, we shall look for a solution using a perturbation

expansion:

12



0(Z2) =6, +£0,(Z) +£°6,(Z2) +--- , (3.8

A(Z) = EAL(2) + E°AL(Z) +--. (39)
For finite bandwidth radiation, the system is no longer periodic in 6, and for a coasting
electron beam we must consider the interval — o < 6, < . The average behavior of the

coasting beam is represented by
<e‘“39°> - 215(q). (3.10)

Egs. (3.5-3.7) imply:

dk O, it Siaske O
Q= —[— Lp g8 4 p % gil+k)e 3.11
IZHﬁk A & -

A HOA, " -IA, =i J’% A* <e“<2+@+3*>9> —<9’2 e“(“a’9>. (3.12)

Inserting the expansions of Egs. (3.8) and (3.9) into Egs. (3.11) and (3.12), and equating

terms having equal powers of ¢, we find:

6, = _J-g_; Eb‘ikei(l+k)go + A, o ()6, E’ (3.13)
oo cdk . i1K)8 LA % Sk g, O
o, —J’ZT E—lAlkele +iA, * G e a (3.14)
Ay HOA, A, =0, (3.19)
. dk i +A+A ; 12 - +A o
0=if— A" <e (et (-2 91)> —<91 2 g0 > (3.16)

qun;_l_iqAEqn_iqu = IJ‘% A&k * <e—i(2+k+q)90 (_ 2 92 _ 2812)> _ <e—i(1+q)90 (_ i 9112 91 + 2011821)>
(3.17)

In the case of SASE, the first-order amplitude has the well-known solution:

13



0O se¥ e’ s.e¥ O
Aiq(z):/\th a + S + e 0=A.G(Z,9),
S,78)s7s) (878)(s—8) (S —S)(s.—S)0O
(3.18)
where the shot noise in the beam is represented by
1 =i +A .
N, = N ye 60 (3.19)

c |

In the discussion leading to Eq. (5.4) in Section V, we note that a reasonable choice for

the perturbation parameter is £ =1/,/N,. . InEq. (3.18), s,,s,, S, arethethree solutions

of the cubic equation,
s’ -igs® -i =0. (3.20)
A useful approximation is
[ 1
sOu-—q-—0a°. 321
Ho387 g, (3.2)
The three modes: growing; decaying and oscillating; correspond to
M= §+|—2 —§+|§, —i. For Z >>1, the exponentially growing mode dominates

and
A4(2) =G(Z,9)A, OC,e™, (3.22)

where we denote the exponent of the growing mode by s, . Itsreal part is approximated

by
V34 1,0
Res, D7§ S (3.23)
and
G(Z,q) Déexp(\/?’: Z)exp[ﬁ%x/é ZqZEEl (3.24)

Let us now determine the first nonlinear correction to the SASE field amplitude.
From Egs. (3.13) and (3.14), wefind

14



J.df DAu dane o A A.w —|(1+2)HOS

2 s’ O (3.25)
O A&pAlé' i(2+;o+:;‘)€ AlpAi/ * i(%—/ﬂa)e 0
e TP 4 gPTm
6, i O (s, +5)° 5, %2 (S, +5%)’ . 226
'[277 2”%_ Aip * Au -i(%—?)@, _ Aip * Au * e—i(2+?)+a)905f
g S’(s,* +s,)? s, *2 (s, * +5,%)? &
Using these resultsin EQ. (3.17) leads to the equation,
vy oon vy on_.~dk dp df
A3q +IqA’,q _IAsq - IIZ_772_772_77 f3(k’ p’g)AikAipAié * 277'5([) +k-1- q) ’ (327)
where we have defined
2 1 10
fa(k,p,0) == - =0
$Hs,+s)’ s
D 2 1 B 2 N 2 B 2 S
@Ks S * 5*°s)S  §S*2(S,tS*) SSiS,+S*) S *S(S,tS)F
(3.28)
Using Eg. (3.22), the inhomogeneous solution of Eqg. (3.27) isfound to be
dk dp d¢ fi(k, p, )A(Z)A, (Z)%*(Z)Zﬂé(wk {-Q)
AL (2)= - A . (3.29)

21 21 21 (S *s, + s,*)® +iq(s, + S, + s,*)% -

Asin the single-frequency case, we do not keep the homogeneous solution that is
required to satisfy the initial conditions, becauseit is negligible for large Z .

15



IV.SIMPLIFIED MODEL FOR SASE

In the previous section, we developed a systematic perturbation expansion for the case of
finite bandwidth SASE, and explicitly found the lowest order correction to the well-
known linear theory. Unfortunately, the determination of the higher-order terms appears
to be complex. We shall not attempt to compute the higher-order termsin this paper, but
shall instead consider asimplified model that is suggested by an approximation to the
coefficients in the perturbation series. The motivation for our approximation is the

observation that for Z >>1, the first-order solution A, is sharply peaked about k=0.
Therefore, it seems reasonable to consider approximating s, LIS, =S in the expression
for f, in Eg. (3.28) and in the denominator of the integrand of Eqg. (3.29). We also set

0=0 in the denominator. It then follows that

-9J3+i)/4 dk dp dr
Ay DK(23+—S*)3—Li %igﬂkﬂp%*ZNé-(p'*k‘ﬁ‘Q)- (4.1)

Noticing that the integral on the right-hand side is the convolution of the Fourier
transforms, we can rewrite this expression in terms of the time-domain amplitude.
We obtain,

A(2) Da[ SERZ DA ZD)e ™, 42
where the coefficients a(m) were defined in Eq. (2.30). The Fourier transform of this
resultis

A(Z,1) Da)A(Z,1) A * (2,1) (4.3)
In the same spirit, the general term in the perturbation expansion can be approximated
by:
A (Z,7) Da(m) A™(Z,1)A*" (Z,7). (4.4)
Note that Eq. (4.4) reducesto Eq. (2.30) when A (Z,7)isreplaced by afunction A(Z)
independent of 7 . It then follows from Egs. (4.4) and (3.9) that for Z >>1,
Az.1:6) DeA(Z,D)hle?|AZ, 1)), (4.5)

where,

0

h(¢) = Za(m)f " (4.6)

m=!

16



was previously defined in Eq. (2.33) of Section I1. Therefore, we have introduced a
model in which the SASE radiation field is expressed in terms of the linear
approximatione A (Z,7) , and the functionh(¢) determined by the solution of the
nonlinear single-frequency equations (2.1)-(2.3). Slippage istaken into account in the
linear approximation, but not in the function h(¢é) that approximates saturation.

The function h(¢) can be evaluated from the Pade’ approximate of Section Il. It can
also be determined by direct numerical integration of the single frequency equations.
Let A, (Z) denote the solution to Egs. (2.1)-(2.3) corresponding to the initia condition

A (0) =&, then
VEN(E) = A, (Z,(&))e™ ", 47
with
Z,(&) = (¢n& +n(91 £2))1/3. (4.8)
The model intensity has the form:
Az e oA n)?) (4.9)

where the function | (¢) was previously defined in Eq. (2.39) and can be expressed as

16) =|A Z,&) (4.10)
Let us discuss the expected region of validity of the approximate expression for the
SASE amplitude givenin Eq. (4.5). Suppose at position Z along the undulator, early in
saturation, the SASE pulse is comprised of temporal spikes[27] having widths equal to a
few cooperation lengths (A, /47 o). Thefield amplitude at this point is still reasonably

described by the linear approximation. Asthe electrons travel several more gain lengths
down the undulator, the slippage is on the order of the coherence length, so the energy
transfer between the electrons and field may take place in a manner similar to the steady
state case discussed in Section 11, and the model of Eqg. (4.5) may provide a useful
description. But as the electrons continue further along the undulator, the slippage
exceeds the original coherence length and the model can be expected to lose validity. Eq.
(4.5) cannot explain all of the features observed in computer simulations [22] based upon
solution of the time-dependent FEL equations. In the model, the intensity of the spikes
saturates at the “ steady state” value given by the solution of the single-frequency

17



equations. Effects due to frequency chirping [28] in the spikes may make it possible for
higher saturation values to be reached, and these effects are not included in the model.

V. NONLINEAR SASE STATISTICS
For SASE, in the linear regime, it follows from Egs. (3.18) and (3.19) that

1 « w960
eA(Z) DG(Z,q)N—CZe . (5.1)

The start-up from shot noise in the electron beam is described by considering theinitial

electron phases 6, (0) as stochastic variables uniformly distributed [22,29]. Averaging

over the stochastic ensemble, one finds:
1 _dqg 2 iq(r.—
C(Z,r.-1,)=(eA(Z,7.)eA*(Z,1.)) =— [—|G(Z,q)[ €1=™ (52
(21, -1) = (AR T)EAT (Z.1) = - [ [6(Z.0) (5.2)
and
2 2 2 2
<|£A(Z,ra)| eA(Z,1,)] >:c Z0)+[c@zr, -1, (5.3)
Eqg. (5.2) suggests that a reasonable choice for the perturbation parameter is
e=1/,N, . (5.9

In the region of exponential growth, we can use the approximation for |G(Z, q)|2

c(z,7) Oi(2) exp%% (5.5)

where the coherence timein the linear regime is given by

givenin Eqg. (3.24) to derive

217

7.(2) = el

(5.6)

and the average intensity is

exp(+/32)

W2 N.,(Z) (.7

(2) = (A7) 0

18



Now let us use Egs. (4.5) and (4.10) to discuss the statistics of SASE in the nonlinear
saturation regime [22]. Since the SASE intensity in the linear regime is described by the

exponential distribution [22], %exp(— 1 /{1)), we can express the average nonlinear
SASE intensity in the form:
(|Az. 1)) = [dQew(-Q) Qi (2)). (58)
We also can write
(|Az ") = [dQexw(- Q) *(Qi.,(2). (5.9)

The intensity fluctuation is then given by

(2. 0f') - (a0
(laz.nf )

In Fig. 5, we plot the average intensity <|A(Z, r)|2> versus Z, as determined from Eq,

2

07 (2) =

(5.10)

(5.8). Inthisfigure and those that follow, we have chosen:

N, =nA, /4mp =15%x10". (5.11)
Inref. [22], they define N, =nA /27 o, so the value given in EQ. (5.11) corresponds to
the value of 3x10" used in their calculations. Fig. 5isin good agreement with their Fig.
6.13 out to about Z=14. After this point their smulations are dominated by spectral
broadening phenomena not included in our simplified model. In Fig. 6, we plot the
intensity fluctuation o, (Z) asdetermined from Eq. (5.10). The fluctuation at the

intensity maximum at Z=13 is about 25% which is one half of that found in the
simulations (Fig. 6.15) of ref. [22].
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Fig. 5. The average dimensionless SASE intensity calculated from Eq. (5.8), plotted
versus the dimensionless distance Z traveled along the undul ator.
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Fig. 6. The SASE intensity fluctuation o, (Z) as determined from Eq. (5.10), plotted

against the dimensionless distance Z traveled along the undulator.

The intensity correlation can be expressed in the form:
(AZ T IAZ. 1)) = [dQu0QP Q0 Qi 2,7y = 7)1 (Qu 1 (2D (Q, 14 (2)),
(5.12)
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where the joint probability R, (Q,,Q,;Z,7, —1,) for finding the normalized intensity
Q.at 7, and Q, at 7, isgiven by Eq. (5.13) with k=0 [29]:

g P

. - = ’:P\I ﬁaanQb H
Pk(Qa’Qb’Z'Ta Tb) 1_[3ab kH 1_,Bab H (513)
where
Z’ a ’ Z! b ’ _ 2
- (X T)2| A r)|2> e 1)
(a@r) Aoy’ 1 7@
(5.14)

and |, (x) isthe Bessel function of imaginary argument.

The radiation field correlation is given by (see Appendix A):

(AZ,1)A*(Z,1,)) = [ 0QdQR Q. Q. Z,T, = T )y Qula (D) Qs (DNQui (2 * Q4 (2)
(5.15)

where P, isdefined by Eqg. (5.13) with k=1. Theintegrand in Eq. (5.15) is symmetric in
Q,and Q,, hence the field correlation as given within this approximation is real, whereas
the precise result isa complex quantity. In our model the spectral broadening at
saturation is symmetric, while in simulations it becomes asymmetric due to the sideband
instability. In Fig. 7, we show the field correlation before and during saturation. Our
results are seen to agree with Figs. 6.16 and 6.17 of ref. [22] upon noting that our
definition of the scaled time 7 istwice theirs.

Knowledge of the field correlation, allows us to compute the coherence time [22] from

the equation
re(2) = [ drlg, (2.0, (5.16)
where g,(Z,7) =(A(Z,0)A* (Z,r)>/<|A(Z,0)|2> . The coherencetimeis plotted in Fig. 8.

The results are seen to be in good agreement with Fig. 6.22 of ref. [22]-- note our

definition of 7, istwicetheirs.
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Fig. 7. Thefield correlation g,(Z,7) =(A(Z,0)A* (Z,r)>/<|A(Z,O)|2> asgivenin Eq.

(5.15), plotted against dimensionlesstime 7 , for dimensionless distance traveled along
the undulator: (a) Z =8; (b) Z =13; and (c) Z =15.
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Fig. 9. The dimensionless coherencetime 7_,,(Z) as computed from Eq. (5.16) plotted

against the dimensionless distance Z traveled along the undulator.
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VI.SUMMARY OF RESULTS

In this paper, we devel op a perturbation expansion for the solution of the nonlinear one-
dimensional FEL equations. In the case of the amplification of a monochromatic input
wave (Section I1), the perturbation parameter is the initial value of the dimensionlessfield

amplitude, ¢ = A(0) <<1. For dimensionless distance traveled along the undulator

Z =2pk,z>>1, the amplitude satisfies the scaling relation:

AZ;€)e ' 0,/Eh(E), (6.1)
wherethe variable ¢ isdefined by

£= %szeﬁ’z . (6.2)

The fact that the right-hand side of Eqg. (6.1) does not depend on ¢ and Z independently,
but only in the combination specified in EQ. (6.2), meansthat for large Z , achangein the
initial value of the radiation field, €, correspondsto atrandationin Z. It followsfrom
Eqg. (6.1) that the intensity is determined by

AZ;e)" D@ =1(8). (6.3)
We have expressed the function h(é)in aTaylor series:

00

h(¢) = Za(m)f ", (6.4)

having afinite radius of convergence. In order to describe saturation, it is necessary to
carry out an analytic continuation. We accomplished this using Pade approximates.
Excellent agreement with the numerical solution of the nonlinear single-frequency
equations was found well into saturation.

We also studied the perturbation expansion for SASE (Section I11). In this case, the

perturbation parameter is € =1/,/N_ <<1, where N_isthe number of electronsin a
cooperation length ¢_ = A,/ 47 p . Motivated by the narrow bandwidth of the FEL gain,
we approximated the expansion coefficients (Section IV) for Z >>1, obtaining the
simplified model for the SASE amplitude,
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AzZ.7:6) DeA(Z D)0 AZ, 1)) (6.5)
Inthis equation, £ A (Z,1) isthe linear approximation to the SASE amplitude at position
Z aong the undul ator, observed at dimensionlesstime 7 in the output pulse. The
function h(¢) isthe same asthat introduced in Eg. (6.1) for the single-frequency case.
Whereas the scaling relation for amplification of a monochromatic wave, Eg. (6.1), isa
precise asymptotic relation for large Z , the relation (6.5) for SASE relieson an
additional approximation, of limited validity. In particular, the smplified model cannot
describe the sideband instability that may occur once saturation has been reached.
Slippage is taken into account in the linear approximation £ A(Z,7), but not in the
function h(¢) describing saturation.

Some justification for using our model to describe theinitia saturation processis as
follows: Suppose at position Z along the undulator, early in saturation, the SASE pulse
is comprised of temporal spikes[27] having widths equal to afew cooperation lengths
(A 147 p). Thefield amplitude at this point is still reasonably described by the linear

approximation. As the electrons travel several more gain lengths down the undulator, the
dlippage is on the order of the coherence length, so the energy transfer between the
electrons and field may take place in amanner similar to the steady state case discussed
in Section I1, and the model of Eqg. (4.5) may provide a useful description. But asthe
electrons continue further along the undulator, the slippage exceeds the original
coherence length and the model can be expected to lose validity. EQ. (4.5) cannot explain
all of the features observed in computer simulations [22] based upon solution of the time-
dependent FEL equations. In the model, the intensity of the spikes saturates at the
“steady state” value given by the solution of the single-frequency equations. Effects due
to frequency chirping [28] in the spikes may make it possible for higher saturation values
to be reached, and these effects are not included in the mode!.

Our approximation for the SASE intensity when Z >>1 hasthe form:

Az e o1laEnf). (6.6)
where 1 (¢) wasintroduced in Eg. (6.3), during the discussion of the single-frequency

case. Using Egs. (6.5) and (6.6), we have approximately determined the statistical
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properties of SASE in theinitial stage of saturation (Section V) in terms of the known
statistical properties of the linear approximation £ A(Z,7) .

Overall our model gives a reasonable description of the nonlinear SASE statistics
early in the saturation regime (out to about Z=14 in the example considered), providing a
good approximation to the average intensity and coherence time, but underestimating the
intensity fluctuation. Simulations exhibit phenomena characterized by increased
fluctuation and asymmetric spectral broadening that are not included in our
approximation.
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Appendix A: Derivation of EqQ. (5.15)

In the linear regime, let us introduce the normalized field amplitude
a,(z,7)= A(Z,1)/ <|A(Z,r)|2> . Thejoint probability
P(X,, Yar Xo» Yo Z, 1, — T,) that the normalized amplitude has the values,

a(Z,1,) = X, +iy, =+/Q, €% and a,(Z,1,) = %, +iy, =+/Q, €, a fixed position

Z dong the undulator, but at different times 7,7, , isgiven by [29]:

P(X,, Yar Xor Yoi 2,1, —1,) =

1 o H XY =26 = Yo = 20 (X% + Ya¥b) = Ve (Xa Yo = %, Ya) E
Y
m-By) C 1= Bay
(A1)
where
<a1(Z’Ta)a1*(Z’Tb)>:uab +ivy, =By €". (A2)
Using the approximate expression of Eq. (4.5) for the nonlinear field amplitude,
Az,7) DAz D)h Az D)), (A3)

the correlation function can be written in the form

(NZ,1)A*(Z,1,)) =

Idxadyadxbdyb p(xa' ya’ Xb' yb' Z’ Ta - Tb)iav(z)\/ QaQb ei(%_%)h(iav(Z)Qa).l * (iav(Z)Qb)

(A4)
I, (1) was defined in Eq. (5.7). We change the integration variablesto Q,,Q,,¢.,¢,,
and carry out the integrations in (A4) over the phase angles to obtain Eq. (5.15):
(NZ,T,)A*(Z,1,)) =
€ [dQ,dQ,R Q. Qi Z. o ~ Ty )Y Qe (2)Qyi (D)NQ,s (D)) * (Qy1 (2))

(AS)

where P, wasdefined in Eq. (5.13). When £, isapproximated by Eq. (5.14),
¢, =0.
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