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Abstract 
We develop a perturbation expansion for the solution of the nonlinear one-dimensional 

free-electron laser equations.   For a monochromatic wave, the radiation field is expanded 

in a Taylor series having a finite radius of convergence.  Analytic continuation using 

Pade′ approximates yields accurate results well into the saturation regime.  We also 

formulate the perturbation expansion for finite bandwidth, self-amplified spontaneous-

emission (SASE), and determine the lowest order correction to the well-known linear 

theory. Motivated by an approximation to the expansion coefficients, we introduce a 

simplified model for the SASE radiation field, and use it to discuss SASE statistics in the 

saturation regime, before the onset of the sideband instability. 
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I.  INTRODUCTION 

Free-Electron Laser (FEL) amplifiers in the exponential growth regime are accurately 

described by linear equations, which have been studied in great detail [1-13] and are very 

well understood.  The theory of FELs in this linear region of operation is quite mature.  

On the other hand, the theoretical description [14-19] of the saturation of the gain process 

due to nonlinear phenomena is in a less advanced state.  At present, most studies of 

saturation are based upon computer simulation [20-22].   

     In this paper, we develop a perturbation expansion to treat the nonlinearity in the one-

dimensional free-electron laser equations.   For a monochromatic wave, the resulting 

Taylor series for the radiation field has a finite radius of convergence.  We find that 

analytic continuation using Pade′ approximates yields results in agreement with 

numerical integration of the equations, well into saturation.   

     We also formulate the perturbation expansion for finite bandwidth, self-amplified 

spontaneous-emission (SASE). Motivated by the narrowness of the FEL gain-bandwidth, 

we consider an approximate expression for the nonlinear SASE radiation field, in terms 

of the result of linear SASE theory and the solution of the nonlinear single-frequency 

FEL equations. This simplified model for the nonlinear SASE field is used to obtain an 

approximate description of the statistical properties of SASE in the saturation regime.  

We obtain good agreement with the simulation results of ref. [22] before the onset of the 

sideband instability. 

      The perturbation expansion is developed in Section II for the case of amplification of 

a monochromatic wave, and in Section III, for finite bandwidth SASE.  Motivated by an 

approximation to the expansion coefficients, we suggest in Section IV a simplified model 

for the nonlinear SASE field and use this model in Section V to obtain an approximate 

description of the statistical properties of SASE in the saturation regime.  A summary of 

results is given in Section VI.   
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II. SINGLE FREQUENCY  

The scaled equations [4] for the evolution of a one-dimensional electron distribution and 

a monochromatic radiation field are:   

                                       j
j p

dZ

d
=

θ
,                                                                    (2.1)  

                                      jj iij eAAe
dZ

dp θθ −−−= * ,                                               (2.2) 

                                       jie
dZ

dA θ−= .                                                               (2.3) 

)()( ztzkk jswsj ωθ −+=  is the phase of the jth electron relative to the radiation and and 

00 /)( γργγ −=jp  is its (scaled) energy deviation.  We define : γ  the relativistic 

parameter; zkZ wρ2=  the scaled distance along the undulator axis; wk/2π  the undulator 

period; sk/2π  the radiation wavelength; and )(zt j  the arrival time of the jth electron at 

position z.  The radiated electric field has the form )](exp[ ctzikE s −  and the scaled 

amplitude 0
2

00 // εγρ mcnEA ≡   (mks units), where ρ is the Pierce parameter and 0n  

the electron density. The bracket  indicates the average over the initial electron 

distribution.  The average energy loss per electron is given by 

                                                 
2

0/ Aργγ −=∆ ,                                                  (2.4) 

and the average radiated power per unit area is   

                                                0
2

00 /))((/ γγγ ∆−=Σ mccnP ,                              (2.5) 

equal to the electron flux, cn0 , times the average energy loss per electron. 

     We shall develop the solution of Eqs. (2.1-2.3) as a perturbation expansion in the 

small parameter ε , which we take to be the initial value of the radiation amplitude, 

                                                     ε=)0(A .                                                                   (2.6)   

Without loss of generality we can consider ε  to be real.  Expanding in powers of ε , we 

write:                                

                                 �++++= ),,(),,()( 002
2

00100 pZpZZpZ θθεθεθθθ  ,             (2.7) 

                                  �+++= )()()()( 5
5

3
3

1 ZAZAZAZA εεε .                                  (2.8)  
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The constraints: 

                                           

                                                     0)0(’)0( == nn θθ ,       )1( ≥n                                  (2.9)      

                                                  )3(,0)0(,1)0(1 ≥== nAA n                                (2.10)    

assure that 0)0( θθ = , 0)0(’ p=θ , and ε=)0(A .  For an initially uniform electron beam, 

and a monochromatic electromagnetic wave, the system is periodic so we can restrict our 

attention to the interval πθ 20 0 ≤≤ . 

     The electron beam entering the undulator at 0=Z is described by the distribution 

).,( 00 pf θ  The average of a quantity ),( 00 pO θ  is defined to be 

                                        ∫≡ ),(),( 000000 pfpOdpdO θθθ .                                      (2.11) 

If the electron beam is initially monoenergetic with zero detuning )0( 0 =p , the 

distribution is  

                                                   )(
2

1
),( 000 ppf δ

π
θ = .                                              (2.12) 

In this case, 

                                                            �� ∫≡ π
θ

2
0d

 ,                                               (2.13) 

and 

                                                                0,
0

m
ime δθ =− ,                                              (2.14) 

where 0,mδ  is the Kronecker delta which equals unity for 0=m  and vanishes for all 

0≠m . 

     Eqs. (2.1)-(2.3) imply: 

                                                          

                                                          θθθ ii eAAe −−−= *’’ ,                                        (2.15) 

                                                   θθ θ ii eeiAiAA −− −=− 22 ’*’’’ .                              (2.16) 

The prime denotes derivative with respect to Z .  Let us insert the expansions of Eqs. 

(2.7) and (2.8) into Eqs. (2.15) and (2.16), and equate terms having equal powers of ε .  

In this manner we find: 
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                                                            00 *’’ 111
θθθ ii eAeA −−−= ,                                  (2.17) 

                                                        00
11112 *’’ θθ θθθ ii eiAeiA −+−= ,                             (2.18) 

                                                                 0’’’ 11 =−iAA ,                                               (2.19) 

                                                      00 2
11

2
1 ’)2(*0 θθ θθ ii eieiA −− −−= ,                     (2.20) 

                  )’’2’()22(*’’’ 211
2

1
2

12
2

133
00 θθθθθθ θθ +−−−−=− −− ieieiAiAA ii .         (2.21) 

     The first-order amplitude 1A  has the well-known solution [1,3,4], 

                                               ( )iZZssZ eeeZA −− ++= *
1 3

1
)(                                          (2.22) 

where 

                                                          
22

3 i
s += .                                                        (2.23) 

There are three modes: growing; decaying and oscillating.  For 1>>Z , the exponentially 

growing mode dominates and 

                                                  sZeZA
3

1
)(1 ≅ .                                                            (2.24) 

Since we are interested in the leading behavior for large Z , we can use the 

approximation (2.24).  We then find from Eqs. (2.17) and (2.18) that 

                                    00 *
*

11
12121

θθθ ii eA
s

eA
s

−−−≅ ,                                               (2.25) 

                         00 22
111

22
12 *

*4

1
*

*

1

4

1 θθθ ii eA
s

AA
ss

eA
s

−+
+

−≅ .                              (2.26) 

We have dropped terms that are needed to satisfy the initial conditions of Eqs. (2.9) and 

(2.10), but are negligible for large Z .  Inserting Eqs. (2.25) and (2.26) into Eq. (2.21), we 

derive 

                                         *
44

39
’’’ 1

2
133 AA

i
iAA 





+−=− .                                         (2.27) 

Since the right-hand side of Eq. (2.27) has a simple exponential Z -dependence, 

]*)2exp[( Zss + , the inhomogeneous solution is easily found.  The homogeneous 

solution is required to satisfy the initial condition of Eq. (2. 10), but is negligible for large 

Z . For this reason, we keep only the inhomogeneous solution and write 
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                                            *
72

3513
1

2
13 AA

i
A 




 +−≅ .                                              (2.28) 

     Extending the approach outlined above one can show that for large Z , the 

perturbation coefficients nθ  and nA  have the form: 

                       ∑
=

−−−=
n

k

knikkn
n eZAZAknnbZ

0

)2(
110

0)(*)()2,(),( θθθ ,   ( 1≥n )           (2.29) 

and 

                                     )(*)()()( 1
1

112 ZAZAmaZA mm
m

+
+ = .                 )0( ≥m           (2.30) 

)2,( knnb −  and )(ma  are complex constants independent of Z , to be determined 

recursively from Eqs. (2.15) and (2.16).  1)0( =a .  We have already found 21,θθ and 3A  

as given in Eqs. (2.25), (2.26) and (2.28).  Next, we can determine 43,θθ  from Eq. (2.15).  

Once this is accomplished, 5A  can be found from Eq. (2.16).  In general, suppose we 

know m221 ,,, θθθ �  and 1231 ,,, +mAAA �  ,  then 12 +mθ  and 22 +mθ  can be determined from 

Eq. (2.15), and then 32 +mA  can be found from Eq. (2.16).   

     Let us introduce the new variable, 

                                                      Ze 32

9

1 εξ ≡ .                                                          (2.31) 

From Eqs. (2.8) and (2.30), we see that the radiation amplitude satisfies the scaling 

relation: 

                                                )();( 2/ ξξε heZA iZ ≅− ,      )1( >>Z                           (2.32) 

with 

                                                     ∑
∞

=

=
0

)()(
m

mmah ξξ .                                                  (2.33)       

The fact that the right-hand side of Eq. (2.32) does not depend on ε and Z  

independently, but only in the combination specified in Eq. (2.31), means that for large 

Z  a change in the initial value of the radiation field, ε , corresponds to a translation in 

Z .   

     Using Mathematica we have computed the coefficients a(1),…,a(12) of the power 

series in Eq. (2.33).  In Table 1, columns 2 and 3, we present the magnitude and argument 
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of the complex ratios, )1(/)( −nana .  We see that after the first few values of n, the 

argument of this ratio remains close to 2.397 rad.  The magnitude of the ratio also varies 

slowly.  The variation is further reduced if we multiply by )2/1/( −nn .  These results  

  

          n    )1(/)( −nana  )]1(/)([ −nanaArg  

2/1
)1(/)(

−
−

n

n
nana  

          1 .216951 2.55393 .433903 

          2 .272966 2.43870 .363955 

          3 .298157 2.42034 .357788 

          4 .310309 2.40888 .354639 

          5 .318838 2.40122 .354264 

          6 .325133 2.39864 .354690 

          7 .329361 2.39838 .354696 

          8 .332254 2.39793 .354404 

          9 .334581 2.39709 .354262 

         10 .336581 2.39662 .354296 

         11 .338190 2.39659 .354294 

         12 .339444 2.39654 .354203 

                  

                          Table 1.  Ratios of  coefficients in expansion for )(ξh  [Eq. (2.33)] 

 

  

 

suggest the existence of an inverse square root branch point at   

                                                           
354.

397.2

0

ie−

≅ξ .                                                      (2.34) 

Support for this is given by noting the relation 

                                              n

n n

n
)/(

)2/1()1(

)2/1(

/1

1
0

10

ξξ
ξξ ∑

∞

= Γ+Γ
+Γ=

−
.                      (2.35) 
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     The singularity limits the radius of convergence of the power series in Eq. (2.33).  

Therefore in order to use it to study the saturation of the FEL, we need to carry out an 

analytic continuation.  One approach to the analytic continuation of a Taylor series is the 

use of Pade′ approximates [23].  In this approach, one constructs a sequence of rational 

functions to approximate the unknown function.  The rational functions are chosen such 

that when they are expanded, the coefficients match the original series expansion as well 

as possible.  As an example [23], let us consider the function 

 

                            �+−+−+=






+
+= 432

2/1

128

141

16

13

8

5

2

1
1

1

21
)( xxxx

x

x
xf      (2.36) 

Clearly, the Taylor series fails to converge for any value of x>1/2.  The first Pade′ 

approximate is  

                                           �+−+−+=
+
+ 432

128

125

32

25

8

5

2

1
1

)4/5(1

)4/7(1
xxxx

x

x
 .          (2.37) 

This simple approximation has the value 1.4 at ∞=x which should be compared to the 

exact value, 2 .  The next approximation is 

                                                        
2

2

)16/29()4/11(1

)16/41()4/13(1

xx

xx

++
++

,                                    (2.38) 

whose value is 1.4138 at ∞=x .     

      For 1>>Z , the radiation intensity has the form: 

                                        )()()(
2

0

2 ξξξ ImaZA
m

m ≡≅ ∑
∞

=

.                                           (2.39) 

In Eq. (2.39), the coefficients a(m) are complex and the variable ξ   introduced in Eq. 

(2.31) is real.  We expand the right-hand side of (2.39) in powers of ξ  and attempt to 

analytically continue by using Pade′ approximates.  We denote by [M,N],  the Pade′ 

approximate in which the numerator is a polynomial of degree M and the denominator is 

a polynomial of degree N.  In Fig. 1, we plot the intensity 
2

)(ZA versus Z for the [N,N] 

approximates, with N=1,…,6.  It is seen that convergence out to about 10=Z  has been 

achieved for the [5,5] and [6,6] approximates.  In Fig. 2, we compare our result to that 

obtained by numerically integrating Eqs. (2.1)-(2.3).  The equations were solved 
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numerically using Mathematica, taking 003.)0( == εA , and 1000 electrons, initially 

equally spaced in phase in the interval πθ 20 ≤≤ j .  Excellent agreement is observed in 

the region of convergence of the Pade′ approximates. 

           

          

6 8 10 12 14
Z

�0.5

0.5
1

1.5
2

2.5
3

Intensity
1

2,3

4

5

6

 
    

Fig. 1.  The dimensionless intensity 
2

)(ZA  as derived from the  [N,N] (N=1,…,6) Pade′ 
approximates (for 003.=ε ) versus dimensionless distance Z traveled along the 
undulator.   
 
 
     Using Eqs. (2.32) and (2.33), we have calculated a power series expansion for the 

phase ψ  of the radiation field )( ψieAA = .  In Fig. 3, we compare 2/Z−ψ  as 

calculated from the [6,6] Pade′ approximate with the result obtained by numerically 

integrating Eqs. (2.1)-(2.3).  Excellent agreement is observed out to about 10=Z . 
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Fig. 2.  The dimensionless intensity 
2

)(ZA computed (for 003.=ε ) from the  [6,6] Pade′ 
approximate (dashed curve), and the result of numerically integrating the 1-D FEL 
equations (solid curve), plotted versus dimensionless distance Z  traveled along the 
undulator.  The agreement is seen to be excellent out to about 11=Z . 
 
 

              6 7 8 9 10 11 12
Z

0.2

0.4

0.6

0.8

1

Phase

 
 
       
Fig. 3.  The radiation phase 2/Z−ψ  as calculated (for 003.=ε ) by the [6,6] Pade′ 
approximate (dashed curve), and by numerically integrating the 1-D FEL equations (solid 
curve), plotted versus the dimensionless distance Z  traveled along the undulator. 
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     It is of interest to compare the result of our analysis with the phenomenological 

approximation considered by Dattoli and Ottaviani [19].  They suggest modeling the 

intensity at saturation using the approximate form: 

                                                
( )1

9
1

9

1

)(
30

3
0

−+
=

Z

sat

Z

e
P

P

eP
ZP .                                         (2.40) 

In our notation, the initial power 2
0 ε=P  and the saturated power satP =1.4.  Hence, their 

model corresponds to approximating the scaling function )(ξI  [Eq. (2.39)] by 

                                                                

4.1
1

)( ξ
ξξ
+

≅I .                                             (2.41) 

In Fig. 4, we compare  (for 003.=ε ) the approximation of Eq. (2.41) with the result of 

numerically solving Eqs. (2.1)-(2.3).  It should be noted that the approximation given in 

Eq. (2.41) is not the [1,1] Pade′ approximate, which was shown in Fig. 1. 

       
2 4 6 8 10 12 14

Z
0.2
0.4
0.6
0.8

1
1.2
1.4

Intensity

 

 

Fig. 4.  The dimensionless intensity
2

)(ZA  as computed by numerically solving Eqs. 

(2.1)-(2.3), solid curve; and as approximated by Eq. (2.41), dashed curve, plotted versus 

the dimensionless distance Z  traveled along the undulator. 
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III. FINITE BANDWIDTH 

 

We again use the variable zkZ wρ2=  as the scaled distance along the undulator axis and 

introduce the variable ])[(2 tzkk sws ωρτ −+=  to describe the scaled time along the 

electron bunch.  The phase of the j th electron relative to the radiation is 

)()( ztzkk jswsj ωθ −+= , where )(zt j  is its arrival time at position z. For a coasting 

electron beam with average electron line density 1n , the one-dimensional FEL equations 

in time-domain can be written in the form: 

                                     j
j p

dZ

d
=

θ
,                                                                                  (3.1) 

                                      jj i
j

i
j

j eZAeZA
dZ

dp θθ θρθρ −−−= )2,(*)2,( ,                            (3.2) 

                                     ∑ −=






∂
∂+

∂
∂ −

j
j

i

c

je
N

A
Z

)2(
1 θρτδ

τ
θ ,                                   (3.3) 

where sc knN ρ2/1=  is the number of electrons in a cooperation length ρπλ 4/sc =� .  

These equations are equivalent to those considered in refs. [24,25].  Introducing the 

Fourier transform,  

                                                ∫= τ

π
τ iq

q eZA
dq

ZA )(
2

),( ,                                              (3.4) 

we obtain the FEL equations in frequency domain: 

                                     j
j p

dZ

d
=

θ
,                                                                                  (3.5) 

                                     ∫ 



 +−= +−+ jj qi

q
qi

q
j eAeA

dq

dZ

dp θθ

π
)1()1(

^^

*
2

,                                 (3.6) 

                                     jj qi

j

qi

c
q

q ee
N

Aiq
dZ

dA θθ )1()1(
^^1 +−+− ≡=+ ∑ ,                              (3.7) 

where 
ω
ωρ ∆=≡ qq 2

^

.  These equations are equivalent to those considered in refs. 

[7,26].   

     As in the single frequency case, we shall look for a solution using a perturbation 

expansion:   
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                                     �+++= )()()( 2
2

10 ZZZ θεεθθθ  ,                                         (3.8)  

                                    �++= )()()( 3
3

1 ZAZAZA qqq εε .                                             (3.9) 

For finite bandwidth radiation, the system is no longer periodic in 0θ  and for a coasting 

electron beam we must consider the interval ∞<<∞− 0θ . The average behavior of the 

coasting beam is represented by                     

                                                        )(20

^

qe qi δπθ =− .                                               (3.10) 

Eqs. (3.5-3.7) imply:  

 

                                          ∫ 



 +−= +−+ θθ

π
θ )1()1(

^^

*
2

’’ ki
k

ki
k eAeA

dk
,                              (3.11) 

                           ∫ +−++− −=−+ θθ θ
π

)1(2)2(
^^^

’*
2

’’’’’ qiqki
kqqq eeA

dk
iiAiqAA .               (3.12)     

Inserting the expansions of Eqs. (3.8) and (3.9) into Eqs. (3.11) and (3.12), and equating 

terms having equal powers of ε , we find:         

                                   ∫ 



 +−= +−+ 0

^

0

^
)1(

1
)1(

11 *
2

’’ θθ

π
θ ki

k
ki

k eAeA
dk

,                                (3.13) 

                                   ∫ 



 +−= +−+ 0

^

0

^
)1(

11
)1(

112 *
2

’’ θθ θθ
π

θ ki
k

ki
k eiAeiA

dk
,                        (3.14) 

 

                                            0’’’’’ 111 =−+ qqq iAiqAA ,                                                    (3.15) 

                              ( )∫ +−++− −−= 0

^

0

^^
)1(2

11
)2(

1 ’2*
2

0 θθ θθ
π

qiqki
k eieA

dk
i ,                    (3.16) 

( ) ( )∫ +−−−−=−+ +−++− ’’2’22*
2

’’’’’ 211
2

1
)1(2

12
)2(

1333
0

^

0

^^

θθθθθθ
π

θθ ieieA
dk

iiAiqAA qiqki
kqqq

                                                                                                                                      (3.17) 

 

     In the case of SASE, the first-order amplitude has the well-known solution: 
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),(
))(())(())((

)(1 qZG
ssss

es

ssss

es

ssss

es
ZA q

bcac

Zs
c

abcb

Zs
b

caba

Zs
a

qq

cba

Λ≡







−−

+
−−

+
−−

Λ= ,                         

                                                                                                                                      (3.18) 

 

where the shot noise in the beam is represented by 

                                                ∑ +−=Λ
j

qi

c
q

je
N

)0()1(
^1 θε .                                               (3.19) 

In the discussion leading to Eq. (5.4) in Section V, we note that a reasonable choice for 

the perturbation parameter is cN/1=ε  .  In Eq. (3.18), cba sss ,,  are the three solutions 

of the cubic equation, 

                                           023 =−− iiqss .                                                               (3.20) 

A useful approximation is 

                                         2

9

1

3
qq

i
s

µ
µ −−≅ .                                                            (3.21) 

The three modes: growing; decaying and oscillating; correspond to 

.,
22

3
,

22

3
i

ii −+−+=µ  For 1>>Z , the exponentially growing mode dominates 

and 

                                 Zs
qqq

qeCqZGZA ≅Λ= ),()(1 ,                                               (3.22) 

where we denote the exponent of the growing mode by qs .  Its real part is approximated 

by 

                                



 −≅ 2

9

1
1

2

3
Re qsq ,                                                      (3.23) 

and 

                                    ( ) 




 −≅ 22

3
9

1
exp3exp

9

1
),( qZZqZG .                             (3.24) 

      Let us now determine the first nonlinear correction to the SASE field amplitude.  

From Eqs. (3.13) and (3.14), we find 
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                               ∫ 
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"
� ii e
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                                      (3.25)

 

     

 

  ∫
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*

*)(*

*

)(

22 θθ

θθ

ππ
θ

qpi
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ppi

p

p

pi

p

ppi

p

p

e
sss

AA
e

sss

AA

e
sss

AA
e

sss

AA

ddp
i

""

""

""

"

"

""

""

""

"

�
.                (3.26) 

Using these results in Eq. (3.17) leads to the equation, 

 

   ∫ −−+=−+ )(2*),,(
222

’’’’’ 1113333 qkpAAApkf
ddpdk

iiAiqAA pkqqq ��
�

"
πδ

πππ
,         (3.27) 

where we have defined 

   












+

−
+

+
+

−+−












−

+
≡

)(*

2

*)(

2

*)(*

2

*

1

*

2

1

)(

12
),,(

22222

2223

kpkppkpkkppk

pkpk

ssssssssssssssssss

ssss
pkf

""""""

�

                                                                                                                                      (3.28) 

Using Eq. (3.22), the inhomogeneous solution of Eq. (3.27) is found to be 

    

    ∫ −+++++
−−+

=
isssiqsss

qkpZAZAZApkfddpdk
iZA

pkpk

pk
q 23

1113
3 *)(*)(

)(2)(*)()(),,(

222
)(

""

"
��� πδ

πππ
.        (3.29) 

As in the single-frequency case, we do not keep the homogeneous solution that is 

required to satisfy the initial conditions, because it is negligible for large Z . 
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IV. SIMPLIFIED MODEL FOR SASE  

In the previous section, we developed a systematic perturbation expansion for the case of 

finite bandwidth SASE, and explicitly found the lowest order correction to the well-

known linear theory.  Unfortunately, the determination of the higher-order terms appears 

to be complex.  We shall not attempt to compute the higher-order terms in this paper, but 

shall instead consider a simplified model that is suggested by an approximation to the 

coefficients in the perturbation series.  The motivation for our approximation is the 

observation that for 1>>Z , the first-order solution kA1  is sharply peaked about k=0.  

Therefore, it seems reasonable to consider approximating sss kk ≡≅ =0  in the expression 

for 3f  in Eq. (3.28) and in the denominator of the integrand of Eq. (3.29).  We also set 

q=0 in the denominator.  It then follows that   

         
( )

∫ −−+
−+

+−≅ )(2*
222*)2(

4/39
11133 qkpAAA

ddpdk

iss

i
A pkq �

�
"

πδ
πππ

.                        (4.1) 

Noticing that the integral on the right-hand side is the convolution of the Fourier 

transforms, we can rewrite this expression in terms of the time-domain amplitude. 

We obtain,   

                                 ∫ −≅ τττ
π
τ iq

q eZAZA
d

aZA ),(*),(
2

)1()( 1
2
13 ,                                  (4.2) 

where the coefficients a(m) were defined in Eq. (2.30).  The Fourier transform of this 

result is        

                                        ),(*),()1(),( 1
2
13 τττ ZAZAaZA ≅ ,                                       (4.3) 

     In the same spirit, the general term in the perturbation expansion can be approximated 

by: 

                                       ),(*),()(),( 1
1

112 τττ ZAZAmaZA mm
m

+
+ ≅ .                             (4.4) 

Note that Eq. (4.4) reduces to Eq. (2.30) when ),(1 τZA is replaced by a function )(1 ZA  

independent of τ .  It then follows from Eqs. (4.4) and (3.9) that for 1>>Z , 

                                         ( )2

1
2

1 ),(),();,( τετεετ ZAhZAZA ≅  ,                                 (4.5) 

where,  

                                                     ∑
∞

=

=
0

)()(
m

mmah ξξ                                                     (4.6)        
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was previously defined in Eq. (2.33) of Section II.  Therefore, we have introduced a 

model in which the SASE radiation field is expressed in terms of the linear 

approximation ),(1 τε ZA , and the function )(ξh  determined by the solution of the 

nonlinear single-frequency equations (2.1)-(2.3).  Slippage is taken into account in the 

linear approximation, but not in the function )(ξh  that approximates saturation. 

     The function )(ξh  can be evaluated from the Pade′ approximate of Section II. It can 

also be determined by direct numerical integration of the single frequency equations.   

Let )(ZA fs  denote the solution to Eqs. (2.1)-(2.3) corresponding to the initial condition 

fsfsA ε=)0( , then  

                                                      2/)(
0

0))(()( ξξξξ iZ
sf eZAh −= ,                                  (4.7) 

with 

                                                     3/))/9(()( 2
0 sfnnZ εξξ �� += .                                (4.8) 

The model intensity has the form: 

                                                   ( )2

1
22

),();,( τεετ ZAIZA ≅   ,                                   (4.9) 

where the function )(ξI was previously defined in Eq. (2.39) and can be expressed as                                  

                                                              ( )2

0 )()( ξξ ZAI fs= .                                      (4.10)   

     Let us discuss the expected region of validity of the approximate expression for the 

SASE amplitude given in Eq. (4.5).  Suppose at position Z along the undulator, early in 

saturation, the SASE pulse is comprised of temporal spikes [27] having widths equal to a 

few cooperation lengths ( ρπλ 4/s ).  The field amplitude at this point is still reasonably 

described by the linear approximation. As the electrons travel several more gain lengths 

down the undulator, the slippage is on the order of the coherence length, so the energy 

transfer between the electrons and field may take place in a manner similar to the steady 

state case discussed in Section II, and the model of Eq. (4.5) may provide a useful 

description.  But as the electrons continue further along the undulator, the slippage 

exceeds the original coherence length and the model can be expected to lose validity.  Eq. 

(4.5) cannot explain all of the features observed in computer simulations [22] based upon 

solution of the time-dependent FEL equations.  In the model, the intensity of the spikes 

saturates at the “steady state” value given by the solution of the single-frequency 



 18 

equations.  Effects due to frequency chirping [28] in the spikes may make it possible for 

higher saturation values to be reached, and these effects are not included in the model.        

 

 

 

V.  NONLINEAR SASE STATISTICS 

For SASE, in the linear regime, it follows from Eqs. (3.18) and (3.19) that 

                                     ∑ +−≅
j

qi

c
q

je
N

qZGZA )0()1(
1

^1
),()( θε .                                   (5.1)  

The start-up from shot noise in the electron beam is described by considering the initial 

electron phases )0(jθ  as stochastic variables uniformly distributed [22,29].   Averaging 

over the stochastic ensemble, one finds: 

              )(2

11 ),(
2

1
),(*),(),( baiq

c
baba eqZG

dq

N
ZAZAZC ττ

π
τετεττ −∫=≡− ,    (5.2)  

and 

                     
222

1

2

1 ),()0,(),(),( baba ZCZCZAZA τττετε −+= .                    (5.3) 

Eq. (5.2) suggests that a reasonable choice for the perturbation parameter is                           

                                                cN/1=ε .                                                              (5.4) 

      In the region of exponential growth, we can use the approximation for 
2

),( qZG  

given in Eq. (3.24) to derive 

                                              




 −≅
)(2

exp)(),( 2

2

Z
ZiZC

c
av τ

τπτ ,                                 (5.5) 

where the coherence time in the linear regime is given by 

                                                                
33

2
)(

Z
Zc

πτ = ,                                             (5.6) 

and the average intensity is 

                                                
)(29

)3exp(
),()(

2

1
ZN

Z
ZAZi

cc

av τ
τε ≅=  .                        (5.7)        
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     Now let us use Eqs. (4.5) and (4.10) to discuss the statistics of SASE in the nonlinear 

saturation regime [22].  Since the SASE intensity in the linear regime is described by the 

exponential distribution [22], ( )II
I

/exp
1 − , we can express the average nonlinear 

SASE intensity in the form:  

                                  ( )∫ −= ))((exp),(
2

ZiQIQdQZA avτ .                                     (5.8) 

We also can write 

                                    ( )∫ −= ))((exp),( 24
ZiQIQdQZA avτ .                                 (5.9) 

The intensity fluctuation is then given by 

                                          22

224

2

),(

),(),(
)(

τ

ττ
σ

ZA

ZAZA
ZI

−
= .                                 (5.10) 

     In Fig. 5, we plot the average intensity 
2

),( τZA  versus Z, as determined from Eq. 

(5.8).  In this figure and those that follow, we have chosen: 

                                               7
1 105.14/ ×== ρπλsc nN .                                          (5.11) 

In ref. [22], they define ρπλ 2/1 sc nN = , so the value given in Eq. (5.11) corresponds to 

the value of 7103×  used in their calculations.  Fig. 5 is in good agreement with their Fig. 

6.13 out to about Z=14.  After this point their simulations are dominated by spectral 

broadening phenomena not included in our simplified model.  In Fig. 6, we plot the 

intensity fluctuation )(ZIσ  as determined from Eq. (5.10).  The fluctuation at the 

intensity maximum at Z=13 is about 25% which is one half of that found in the 

simulations (Fig. 6.15) of ref. [22]. 
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Fig. 5.  The average dimensionless SASE intensity calculated from Eq. (5.8), plotted 

versus the dimensionless distance Z traveled along the undulator. 
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Fig. 6.  The SASE intensity fluctuation )(ZIσ  as determined from Eq. (5.10), plotted 

against the dimensionless distance Z  traveled along the undulator.                   

 

     The intensity correlation can be expressed in the form: 

    ∫ −= ))(())((),;,(),(),( 0

22
ZiQIZiQIZQQPdQdQZAZA avbavababababa ττττ ,  

                                                                                                                                     (5.12) 
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where the joint probability ),;,(0 baba ZQQP ττ −  for finding the normalized intensity 

aQ at aτ  and bQ  at bτ  is given by Eq. (5.13) with k=0 [29]: 

            









−−







−
−







−
−

=−
ab

baab
k

ab

ab

b

ab

a

babak

QQ
I

QQ

ZQQP
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β
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1

2

1

1
exp

1
exp

),;,( ,          (5.13) 

where 

                    




 −−
≅−=

)(

)(
exp1

),(),(

),(),(
2

2

2

1

2

1

2

1

2

1

ZZAZA

ZAZA

c

ba

ba

ba

ab τ
ττπ

ττ

ττ
β ,                   

(5.14) 

and )(xI k  is the Bessel function of imaginary argument. 

     The radiation field correlation is given by (see Appendix A): 

  

( ) ( ))(*)()()(),,,(),(*),( 1 ZiQhZiQhZiQZiQZQQPdQdQZAZA avbavaavbavababababa ττττ −= ∫
                                                                                                                                      (5.15) 

where 1P  is defined by Eq. (5.13) with k=1.  The integrand in Eq. (5.15) is symmetric in 

aQ and bQ , hence the field correlation as given within this approximation is real, whereas  

the precise result is a complex quantity.  In our model the spectral broadening at 

saturation is symmetric, while in simulations it becomes asymmetric due to the sideband 

instability.  In Fig. 7, we show the field correlation before and during saturation.  Our 

results are seen to agree with Figs. 6.16 and 6.17 of ref. [22] upon noting that our 

definition of the scaled time τ  is twice theirs. 

     Knowledge of the field correlation, allows us to compute the coherence time [22] from 

the equation 

                                             ∫
∞

∞−
= 2

1 ),()( τττ ZgdZcoh ,                                              (5.16) 

where 2

1 )0,(/),(*)0,(),( ZAZAZAZg ττ = .  The coherence time is plotted in Fig. 8. 

The results are seen to be in good agreement with Fig. 6.22 of ref. [22]-- note our 

definition of cohτ  is twice theirs. 
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Fig. 7.  The field correlation 2

1 )0,(/),(*)0,(),( ZAZAZAZg ττ =  as given in Eq. 

(5.15), plotted against dimensionless time τ , for dimensionless distance traveled along 

the undulator: (a) 8=Z ; (b) 13=Z ; and (c) 15=Z . 
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Fig. 9.  The dimensionless coherence time )(Zcohτ  as computed from Eq. (5.16) plotted 

against the dimensionless distance Z  traveled along the undulator. 
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VI. SUMMARY OF RESULTS 

In this paper, we develop a perturbation expansion for the solution of the nonlinear one-

dimensional FEL equations.  In the case of the amplification of a monochromatic input 

wave (Section II), the perturbation parameter is the initial value of the dimensionless field 

amplitude, 1)0( <<= Aε .  For dimensionless distance traveled along the undulator 

12 >>= zkZ wρ , the amplitude satisfies the scaling relation: 

                                                    )();( 2/ ξξε heZA iZ ≅− ,                                      (6.1) 

where the variable ξ  is defined by 

                                                               Ze 32

9

1 εξ ≡ .                                             (6.2) 

The fact that the right-hand side of Eq. (6.1) does not depend on ε and Z  independently, 

but only in the combination specified in Eq. (6.2), means that for large Z , a change in the 

initial value of the radiation field, ε , corresponds to a translation in Z .  It follows from 

Eq. (6.1) that the intensity is determined by 

                                               )()();(
22 ξξξε IhZA ≡≅ .                                      (6.3) 

We have expressed the function )(ξh in a Taylor series: 

                                                            ∑
∞

=

=
0

)()(
m

mmah ξξ ,                                       (6.4) 

having a finite radius of convergence.  In order to describe saturation, it is necessary to 

carry out an analytic continuation. We accomplished this using Pade approximates.  

Excellent agreement with the numerical solution of the nonlinear single-frequency 

equations was found well into saturation.    

     We also studied the perturbation expansion for SASE (Section III).  In this case, the 

perturbation parameter is 1/1 <<= cNε , where cN is the number of electrons in a 

cooperation length ρπλ 4/sc =� .  Motivated by the narrow bandwidth of the FEL gain, 

we approximated the expansion coefficients (Section IV) for 1>>Z , obtaining the 

simplified model for the SASE amplitude, 
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                                         ( )2

1
2

1 ),(),();,( τετεετ ZAhZAZA ≅ .                            (6.5) 

In this equation, ),(1 τε ZA  is the linear approximation to the SASE amplitude at position 

Z along the undulator, observed at dimensionless time τ in the output pulse.  The 

function )(ξh  is the same as that introduced in Eq. (6.1) for the single-frequency case. 

Whereas the scaling relation for amplification of a monochromatic wave, Eq. (6.1), is a 

precise asymptotic relation for large Z , the relation (6.5) for SASE relies on an 

additional approximation, of limited validity.  In particular, the simplified model cannot 

describe the sideband instability that may occur once saturation has been reached.  

Slippage is taken into account in the linear approximation ),(1 τε ZA , but not in the 

function )(ξh  describing saturation.   

     Some justification for using our model to describe the initial saturation process is as 

follows:  Suppose at position Z along the undulator, early in saturation, the SASE pulse 

is comprised of temporal spikes [27] having widths equal to a few cooperation lengths 

( ρπλ 4/s ).  The field amplitude at this point is still reasonably described by the linear 

approximation. As the electrons travel several more gain lengths down the undulator, the 

slippage is on the order of the coherence length, so the energy transfer between the 

electrons and field may take place in a manner similar to the steady state case discussed 

in Section II, and the model of Eq. (4.5) may provide a useful description.  But as the 

electrons continue further along the undulator, the slippage exceeds the original 

coherence length and the model can be expected to lose validity.  Eq. (4.5) cannot explain 

all of the features observed in computer simulations [22] based upon solution of the time-

dependent FEL equations.  In the model, the intensity of the spikes saturates at the 

“steady state” value given by the solution of the single-frequency equations.  Effects due 

to frequency chirping [28] in the spikes may make it possible for higher saturation values 

to be reached, and these effects are not included in the model.        

          Our approximation for the SASE intensity when 1>>Z  has the form: 

                                                ( )2

1
22

),();,( τεετ ZAIZA ≅  ,                                       (6.6) 

where )(ξI  was introduced in Eq. (6.3), during the discussion of the single-frequency 

case.  Using Eqs. (6.5) and (6.6), we have approximately determined the statistical 
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properties of SASE in the initial stage of  saturation (Section V) in terms of the known 

statistical properties of the linear approximation ),(1 τε ZA . 

     Overall our model gives a reasonable description of the nonlinear SASE statistics 

early in the saturation regime (out to about Z=14 in the example considered), providing a 

good approximation to the average intensity and coherence time, but underestimating the 

intensity fluctuation.  Simulations exhibit phenomena characterized by increased 

fluctuation and asymmetric spectral broadening that are not included in our 

approximation.   
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Appendix A:  Derivation of Eq. (5.15) 

In the linear regime, let us introduce the normalized field amplitude 

2

111 ),(/),(),( τττ ZAZAZa ≡  .  The joint probability 

),;,,,( babbaa Zyxyxp ττ − that the normalized amplitude has the values, 

ai
aaaa eQiyxZa φτ =+=),(1  and bi

bbbb eQiyxZa φτ =+=),(1 , at fixed position 

Z along the undulator, but at different times ba ττ , , is given by [29]: 
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                                                                                                                                  (A1) 

where 

                                  abi
abababba eivuZaZa ψβττ =+=),(*),( 11 .                     (A2) 

Using the approximate expression of Eq. (4.5) for the nonlinear field amplitude, 

                                ( )2

1
2

1 ),(),(),( τετετ ZAhZAZA ≅ ,                                         (A3) 

the correlation function can be written in the form 

 

( ) ( )bavaav

i

baavbabbaabbaa
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)(*)()(),;,,,(

),(*),(
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ττ

ττ
−

∫ −

=

 

                                                                                                                                  (A4) 

)(τavi was defined in Eq. (5.7).  We change the integration variables to baba QQ φφ ,,, , 

and carry out the integrations in (A4) over the phase angles to obtain Eq. (5.15):  

( ) ( ))(*)()()(),;,(

),(*),(

1 ZiQhZiQhZiQZiQZQQPdQdQe

ZAZA

avbavaavbavabababa
i

ba

ab ττ

ττ
ψ −

=

∫
     

                                                                                                                                  (A5)      

     where 1P  was defined in Eq. (5.13).  When abβ  is approximated by Eq. (5.14),  

      0=abψ .    


