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Abstract

We combined the measurements of several different experiments, taking into account the correlated
errors, to find B(B → Xsγ) = 3.34 ± 0.38 × 10−4.
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1 Introduction

Table 1 gives all the measurements made of B(B → Xsγ) made to date. In this note we attempt to
construct a world average. We neglect the first CLEO result since this is superceded by the later
result. The CLEO,BELLE and BABARmeasurements explicitly factor out the model dependence
which has been computed in each case using the model of Kagan and Neubert. The model depen-
dence occurs because it is only possible to experimentally measure the spectrum above a threshold
E > E0. It is then necessary to correct for the missing part of the spectrum which necessarily
involves making a theoretical assumption. In the model of Kagan and Neubert the spectrum is
parameterized by the b-quark mass and they recommend mb = 4.80± 0.15GeV with the spectrum
extrapolated down to E0 = 250MeV. The CLEO and BaBar experiment use mb = 4.80± 0.15GeV
while BELLE uses mb = 4.75 ± 0.10GeV. Ideally we would need to “normalize” the three results
to a common value of the b-quark mass and error. However for the present we assume that the
changes resulting from this normalization are small compared to the present errors and combine
the results as stated. BaBar,BELLE and CLEO extrapolate to E0 = 250MeV.

The ALEPH measurement includes the theory error in the systematic. However this error (the
Fermi momentum systematic) is quoted in their paper as being 0.028 × 10−4 compared to the
statistical and systematic errors of 0.80, 0.72×10−4 and so is negligible. However the measurement
is for b → sγ in Z → bb which is expected to have a different branching ratio than at the Υ (4S)
of the other measurements. For comparitive purposes we scale the ALEPH result by 0.934 which
is the ratio of the expectations for the Υ (4S) and Z → bb processes quoted in their paper, to get
2.95 ± 0.75± 0.67 × 10−4.

Experiment Reference B(B → Xsγ)× 10−4

CLEO 95 [1] 2.32± 0.57(stat) ± 0.35(sys)

ALEPH 98 [2] 3.11± 0.80(stat) ± 0.72(sys)

BELLE 01 [3] 3.36± 0.53(stat) ± 0.42(sys)+0.50
−0.54(th)

CLEO 01 [4] 3.21± 0.43(stat) ± 0.27(sys)+0.18
−0.10(th)

BaBar 02a [5] 4.3± 0.5(stat)± 0.80(sys) ± 1.3(th)

BaBar 02a [6] 3.88± 0.36(stat) ± 0.37(sys)+0.43
−0.23(th)

Table 1: Previously-measured values of B(B → Xsγ).

2 Combined Branching Ratios

2.1 General Formalism for combining errors

We illustrate analytically the technique for combining measurements with correlated systematics
by combining two measurements. To extend this to the combination of several measurements we
use a simple program that implements this numerically.

Consider that we make two measurements x1 and x2. If we combine these two measurements
in some way with a function f(x1, x2) then the error σf on the combined measurement is given by:

σ2
f = DTV D (1)
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where V is the covariance matrix

Vij = cov(xi, xj) =< xixj > − < xi >< xj >

and

D =

(
∂f
∂x1
∂f
∂x2

)

Each measurement has three types of errors, a statistical error σ, a systematic that is unique to
the particular measurement κ, and a systematic that is common to the two measurements S. The
measurement of x can be considered to be the sum of three terms xi = xσ

i + xκ
i + xS

i each with
independent errors σi,κi and Si respectively then

cov(x1, x1) = < x1x1 > − < x1 >< x1 >= σ2
1 + κ

2
1 + S

2
1

cov(x1, x2) = cov(xS
1 , x

S
2 ) = S1S2

where we have used the fact that the individual errors are independenet and so the covariance
between the different components vanishes e.g cov(xσ

i , x
κ
i ) = 0 and the common systematic is a

completely correlated error. The covariance matrix is then

V =

(
σ2

1 + κ
2
1 + S1

2 S1S2

S2S1 σ2
2 + κ

2
2 + S

2
2

)

3 Combining using a Weighted Average

The appropriate weighted averaging procedure is derived as follows. Consider the combination of
any two measurements x1, x2 with error matrix

V =

(
σ2

1 + κ
2
1 + S

2
1 S1S2

S1S2 σ2
2 + κ

2
2 + S

2
2

)

To find the best estimate for the quantity x we minimise the χ2 [7].

χ2 = �xTV −1�x (2)

where
�x = (x1 − x, x2 − x)

Inserting the form for V above (det V =|V |).

χ2 =
1
|V |

[
(x1 − x)2(σ2

2 + κ
2
2 + s

2
2) + (x2 − x)2(σ2

1 ++κ2
1 + s

2
1) +−2(x1 − x)(x2 − x)s1s2

]

1
2
|V |dχ

2

dx
= (x1 − x)(σ2

2 ++κ2
2s

2
2) + (x2 − x)2(σ2

1 + κ
2
1 + s

2
1)− (x1 − x)s1s2 − (x2 − x)s1s2 = 0

Solving for x

x =
w1x1 + w2x2

w1 + w2
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where
w1 =

1
σ2

1 + κ
2
1 + S

2
1 − S1S2

(3)

w2 =
1

σ2
2 + κ

2
2 + S

2
2 − S1S2

So to combine the measurements we use

Bcombined =
ΣiwiBi

Σiwi

where Bi is the branching fraction of the individual mode and wi is the weight. Note that it
is possible to have a negative weight in equation refeqn:weight. This can occur if one of the
measurements has a much larger correlated error. The error on the averaged branching ratio is
given by equation 1.

This has been computed analytically for the two variable case. In the case of N variables it
is easier to compute numerically. The minimization criteria for the χ2 results in a set of linear
equations which can be solved by matrix inversion.

4 Average of B(B → Xsγ) Measurements

We assume that the statistical and systematic errors are uncorrelated and that the theory error is
completely correlated. The two babar measurements have correlated systematic errors, for instance
in the photon efficiency, but these correlations are small and can be neglected. The CLEO, BELLE
and BaBar theory errors all come from the extropolation of the photon spectrum (or the dual
hadronic mass spectrum) into the unmeasured region using the same theoretical model and so the
assumption of complete correlation is reasonable. We average the five measurements given in the
table below. We symmetrize the errors where they are asymmetric by averaging the high and low
values.

Experiment Index Reference B(B → Xsγ)× 10−4 Weight

ALEPH 98 1 [2] 2.95± 0.75(stat) ± 0.67(sys) 0.99

BELLE 01 2 [3] 3.36± 0.53(stat) ± 0.42(sys)+0.50
−0.54(th) 0.93

CLEO 01 3 [4] 3.21± 0.43(stat) ± 0.27(sys)+0.18
−0.10(th) 3.28

BaBar 02a 4 [5] 4.3± 0.5(stat)± 0.80(sys) ± 1.3(th) -0.49

BaBar 02a 5 [6] 3.88± 0.36(stat) ± 0.37(sys)+0.43
−0.23(th) 2.39

Table 2: Previously-measured values of B(B → Xsγ).

The covariance matrix with row and column index as in table 2 is given by

V =




1.011 0 0 0 0
0 0.7277 0.0728 0.676 0.1716
0 0.0728 0.2774 0.182 0.0462
0 0.676 0.182 2.58 0.429
0 0.1716 0.0462 0.429 0.3754



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Figure 1: The Mimimal χ2

Figure 1 shows the behavior of the χ2 from equation 2 around the minima.
The resultant world average is:

B(B → Xsγ) = 3.34 ± 0.38 × 10−4
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