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Abstract

We take a detour from the main theme of this volume and present
a discussion of coherent synchrotron radiation (CSR) in the con-
text of storage rings rather than single-pass systems. Interest in
this topic has been revived by a series of measurements carried
out at several light source facilities. There is strong evidence
that the observed coherent signal is accompanied by a beam in-
stability, possibly driven by CSR itself. In this paper we review a
“self-consistent” model of longitudinal beam dynamics in which
CSR is the only agent of collective forces. The model yields nu-
merical solutions that appear to reproduce the main features of
the observations.
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1 Introduction

The realization of a possible role for coherent synchrotron radiation (CSR)
in cyclic electron machines is old, preceding the construction of the first
electron synchrotrons, and dates back at least to an unpublished paper by
Schwinger[1] in 1945. Schwinger’s work was motivated by concerns about
energy efficiency. When passing through bending magnets charged particles
radiate incoherently, with power proportional to the number of particles per
bunch N , and also coherently at longer wavelengths, with power proportional
to N2. However, Schwinger[1] and others[2, 3] pointed out that unless the
bunch length were exceedingly small, coherent radiation would be effectively
suppressed by shielding from the metallic vacuum chamber. In spite of its
more unfavorable scaling with N the coherent part of the radiation is typi-
cally a very small fraction of the overall dissipated power, and has little con-
sequence in machine operation. As a result, interest in CSR faded somewhat
after those early papers, but the subject was kept alive in several theoretical
studies through the 1960’s and 1970’s (see the bibliography in the first paper
of Ref. [4]). There was interest at Berkeley [5], Dubna [6], and elsewhere in
connection with the “smoke ring” acceleration concept. It was not until the
mid 1980’s that the first experimental indications[7, 8] of CSR were reported,
and 1989 that the first clear observation was made, by Nakazato et al. [9].
The latter involved a linac and a bending magnet, rather than a circular
machine. Only in recent years detection of CSR from storage rings has been
more conclusively established through a series of measurements carried out at
NIST[10] (Maryland), NSLS[11, 12, 13] (Brookhaven), MAX Laboratory[14]
(Lund, Sweden), BESSY[15] (Berlin), and ALS[16] (Berkeley). The renewed
attention to CSR stems in part from the prospect of exploiting the process
to create a new class of high-power light sources in the infrared region. A
first suggestion of the practical implications of CSR was contained in a paper
by Michel[18] in 1982. Later, a detailed proposal was made by Murphy and
Krinsky[19], and the design of a dedicated CSR source is currently being
explored at LBNL[17] (Berkeley).

As this volume well illustrates, CSR has been gaining increasing attention
because of its potential role as a mechanism for driving collective instabili-
ties. While at present not a factor limiting beam quality in storage rings (a
marked difference from the case of bunch compressors in FEL applications),
CSR instabilities are nonetheless important as they appear to be connected
with most of the above observations [10, 11, 12, 13, 14, 15, 16]. Two fea-
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tures in these measurements indicate a connection: the existence of a current
threshold for detecting a coherent signal and a radiation wavelength consider-
ably shorter than the nominal bunch length. In particular, the latter implies
that the bunches carry a modulation in the longitudinal distribution. This
is because, in general, coherent radiation at a wavelength λ can be emitted
only if the Fourier spectrum of the longitudinal charge density in the bunch
is significant at that λ (if λ is sufficiently small the shielding by the vacuum
chamber becomes ineffective and a coherent signal can be detected). The
required modulation could naturally be provided by a collective instability.
There is an on-going debate about whether the cause of such an instabil-
ity might be the machine geometric impedance or, as recently suggested by
Heifets and Stupakov[20], the CSR process itself. Perhaps the most convinc-
ing argument in favor of the latter hypothesis is the apparent generality of
coherent emissions, which have been detected over a number of very different
machines. In addition, there appears to be a substantial agreement so far
between predictions by the standard linear theory of collective instabilities
applied to CSR and observations.

In this paper we review some recent work[21, 22] that we have undertaken
to study the interplay between the coherent radiation process, the longitudi-
nal beam dynamics, and related instabilities. The goal is to go beyond linear
theory, hoping to explain aspects of the observations that cannot be cap-
tured otherwise. For example, in most of the current observations of CSR in
storage rings, a typical signal presents a bursting time structure. Radiation
appears in recurrent short peaks separated by relatively long intervals, some
fraction of the damping time. Details like the separation between the peaks
and the amount of radiation released at each burst depend on the beam cur-
rent. Smaller currents are typically associated with more regular patterns of
emission. A linear theory can explain the onset of the instability generating
the emission but not the time structure of the ensuing signal.

We proceed to a numerical solution of the fully nonlinear 1-D Vlasov-
Fokker-Planck (VFP) equation for the bunch distribution in phase space.
The model is “self-consistent”, as it includes the distribution-dependent col-
lective force associated with CSR. With the representation of the CSR-
induced collective force that will be discussed in the next Section, the result-
ing solutions appear to reproduce all the qualitative features of the coherent
signal found experimentally. Since the only collective force in the model is
from CSR, the result is an argument in favor of the idea that the machine ge-
ometric impedance plays at most a secondary role. Nevertheless, it will still
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be interesting in further work to assess the role of the geometric impedance,
which may vary from one machine to another.

2 The model

Our model is based on the usual one-dimensional longitudinal motion under
linear r.f. focusing, with radiation damping and quantum fluctuations from
incoherent emission of photons [24]. To this we add a “self-consistent” ac-
count of the nonlinear interplay of CSR and particle dynamics, based on the
Vlasov-Fokker-Planck (VFP) equation for the phase space distribution.

In the ultra-relativistic limit, which is of interest here, the Lorentz factor γ
is much larger than unity and α À 1/γ2, so that the momentum compaction
α is about the same as the slippage factor. It is convenient to work with the
dimensionless phase space variables, q = z/σz and p = −∆E/σE, where z is
the distance from the test particle to the synchronous particle (positive when
the test particle leads ), and ∆E = E−E0 is the deviation of energy from the
design energy. Normalization is by the low-current r.m.s. bunch length and
energy spread, which are related by the equation ωsσz/c = ασE/E0, where ωs

is the angular synchrotron frequency. In these coordinates the unperturbed
equations of motion are dq/dτ = p , dp/dτ = −q, with time variable τ = ωst.

The VFP equation for the phase-space distribution function f(q, p, τ) is

∂f

∂τ
+ p

∂f

∂q
− [q + IcF (q, f, τ)]

∂f

∂p
=

2

ωstd

∂

∂p

(
pf +

∂f

∂p

)
, (1)

where −IcF (q, f, τ) is the collective force due to CSR, in principle the longi-
tudinal electric field obtained from Maxwell’s equations with charge/current
densities derived from f itself. The nonlinear Vlasov operator on the left
side accounts for the complicated short term dynamics, while the Fokker-
Planck operator on the right side accounts for long-term effects of incoherent
radiation: damping, and diffusion due to quantum fluctuations. The longi-
tudinal damping time is td. We normalize F so that the current parameter is
Ic = e2N/(ωsT0σE), where N is the bunch population and T0 is the revolution
time.

Since it is difficult to solve the Maxwell equations with a realistic represen-
tation of particle orbits and vacuum chamber walls, we compute the collective
force as though it came from a simple model which is meant to express the
essential features. The vacuum chamber is represented by infinite parallel
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Figure 1: Real (solid line) and imaginary (dashed line) parts of Z(n)/n in
ohms. Parallel-plate model with h = 4.2 cm, R = 1.9 m, and E0 = 737 MeV.

plates, perfectly conducting, with vertical separation h. The particles move
on circular orbits of fixed radius R. In cylindrical coordinates (r, θ, y), with
y-axis normal to the plates and origin in the midplane, the charge density has
the form ρ(r, θ, y, t) = eNλ(θ− ω0t, t)H(y)δ(r−R)/R, where ω0 = β0c/R is
the revolution frequency of the circular model (not of the actual ring). The
vertical density H(y) is fixed; we choose H to be constant for |y| < δh/2,
and 0 otherwise. The longitudinal density in the beam frame evolves by VFP
dynamics through the relation λ(θ, t) = (R/σz)

∫
f(Rθ/σz, p, ωst)dp.

The radius R is identified as the radius of curvature in the bending mag-
nets, not the average geometrical radius, of the actual ring. Thus, we effec-
tively neglect transient effects as the particles enter and leave bends, hoping
that at least the total work done by the CSR force over a turn will be ap-
proximated by the model. The plate separation is taken to be the average
height of the actual vacuum chamber in the bends. The parameters entering
the unperturbed equations of motion will be those of the actual ring. Only
the CSR force is computed as though the trajectory were circular.

We define E(θ, t) =
∫

eθ(θ,R, y, t)H(y)dy to be the longitudinal electric
field averaged over the transverse distribution. The double Fourier transform
(FT) of the field is Ê(n, ω) = (2π)−2

∫
dθ

∫
dt exp(−inθ + iωt)E(θ, t), which

is related to the corresponding FT of the current I through the impedance:
−2πRÊ(n, ω) = Z(n, ω)Î(n, ω). The impedance is given by [4]
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Z(n, ω)

Z0

=
(πR)2

β0h

∑
p=1,3,···

Λp

[
ωβ0

c
J ′

n H(1)′
n + (

αp

γp
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JnH
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n

]
. (2)

Here H
(1)
n = Jn + iYn, where Jn and Yn are Bessel functions of the first

and second kinds, respectively, evaluated at γpR, with αp = πp/h, γ2
p =

(ω/c)2 − α2
p, Λp = 2(sin x/x)2 and x = αpδh/2. In MKS units Z0 = 120π Ω.

The sum over positive odd integers p arises from a Fourier expansion with
respect to y.

We suppose that during the i-th time step ti → ti+δt in integration of (1)
the bunch can be considered as rigid. Next, we assume that during that time
step the CSR force can be computed as though the bunch had its present
form for all time. In that case we get the field from the source Î(n, ω) =
eNω0λn(ti)δ(ω − nω0), where λn(ti) = (1/2π)

∫
dθ exp(−inθ)λ(θ, ti). Then

only the “diagonal” part of the impedance, Z(n) = Z(n, nω0), enters the pic-
ture. The inverse FT gives the collective force for (1) through F (q, f(τi)) =
−ω0

∑
n exp(inqσz/R)Z(n)λn(ti). The real part of Z(n)/n has a peak value

of about 132h/R Ω and is negligible for n < n0 = π(R/h)3/2. Fig. 1 shows
the real and imaginary parts of Z(n)/n for a choice of parameters meant to
model the NSLS VUV Storage Ring.

A more exact treatment of bunch deformation in the impedance picture,
accounting strictly for causality and retardation, involves off-diagonal con-
tributions of Z(n, ω). This matter will be discussed elsewhere [22], as will
our procedure for fast evaluation of the FT defining λn(ti).

3 A Case Study: the NSLS VUV Storage

Ring

In the following we show examples of solutions to Eq. (1) that are meant to
model the beam dynamics for some typical setting of the Brookhaven NSLS
VUV Storage Ring. We chose to refer to this machine mostly because of
the extensive measurements of CSR that have been carried out over the past
few years [11, 12, 13]. The VUV Ring has a double-bend achromat lattice
with a local radius of curvature R = 1.9 m and a vacuum chamber size
h = 4.2 cm. The list of other relevant parameters includes a synchrotron
frequency ωs/2π = 12 kHz; revolution frequency 1/T0 = 5.9 MHz; damping
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Figure 2: Far infrared detector output with emission bursts at the NLSL
VUV Ring. (Courtesy of G. Carr.)

time td = 10 ms; energy E0 = 737 MeV. The rms bunch length corresponding
to the natural energy spread of σE/E0 = 5 × 10−4 is σz = 5 cm.† During
CSR measurements the VUV ring was operated in a single-bunch mode. In
this regime the ring supports a current up to 400 mA, corresponding to
N = 4 × 1011 particles. The experimental current threshold for detection
of coherent signal for the particular setting under consideration here is 100
mA. This can be changed considerably through variations of the machine
momentum compaction[11].

Figure 2 shows an example of a coherent signal in the far infrared with a
characteristic bursting structure (from G. Carr et al.[11]). In this particular
instance the peaks are separated by a few msec and appear to have a fairly
regular spacing. The duration of the peaks is dominated by the thermal time
constant of the detector (about 200µs[11]).

4 Linear Theory

Linearization of Eq. (1) can be used to obtain useful information regarding
the conditions for the onset of the instability. As we neglect the effects of the
geometric machine impedance, a Gauss distribution f0 = e−(p2+q2)/2/(2π)

†For beam height δh, which is not a critical parameter, we take 0.1 mm.

7



in energy spread and spatial variable is a very good approximation to an
equilibrium. For bunched beams the linear equation obeyed by f1, a small
deviation about equilibrium, is still too complicated to have a solution in
closed analytical form. However, under the conditions that the instability be
fast and the wavelength of the unstable mode small compared to bunch size
one can use the linearized Vlasov equation for a coasting beam (i.e. neglect
the rf focusing term proportional to q) . The current carried by the coasting
beam should be the same as the peak current for the bunched beam (Boussard
criterion). The modified linear equation admits wave solutions with space-
time dependence exp[i(nqσz/R− ντ)] yielding the dispersion relation

Icω0R
2

√
2πσ2

z

Z(n)

n
=

i

D(νR/σzn)
, (3)

where D(z) = 1 + iz
√

π/2w(z/
√

2) and w(z) ≡ e−z2
erfc(−iz) is the error

function of complex argument[24]. Analysis of the dispersion relation is best
represented on a Keil-Schnell diagram by plotting the LHS part of Eq. 3 for
a given current Ic and all harmonic numbers n; see Fig. 3. If the current is
sufficiently large these curves cut through the stability boundary (dashed line
in Fig. 3) and unstable solutions (with Im ν > 0) emerge. From this analysis
one finds a current threshold Ic > I th

c = 6.2 pC/V, corresponding to a single-
bunch circulating current of 168 mA or N = 1.8 × 1011. Close to threshold
the wavelength of the most unstable mode is λ = 2πR/n = 6.8 mm with
n = 1764. These values are reasonably close to the observed wavelength
λ = 7 mm and critical current 100 mA for detection of a coherent signal
[11]. The linear theory also indicates that the instability is very fast: the
exponential growth-time of the most unstable mode is as low as one tenth of
synchrotron period even for a current only 5% above threshold – validating
the use of the Boussard criterion. This linear analysis is essentially the same
as the one worked out by Heifets and Stupakov[20]. The only difference is
that there the radiation impedance is relative to free space – implying that
the result is meaningful only when the calculated unstable wavelength is
below the shielding cutoff. A linear analysis for a bunched beam [23], with
the radiation impedance for a resitive toroidal vacuum chamber, indicated
some time ago that CSR alone could cause an instability at plausible current,
at least for parameters of a compact storage ring [19].
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5 Numerical Results

Above current threshold for instability, the numerical solutions of Eq. (1)
present a characteristic sawtooth behavior that sets in after a transient de-
pending on the initial condition. The pattern is evident from the plot of the
rms bunch length versus time shown in Fig. 4 (picture on the left). The cor-
responding solution was obtained for a value Ic = 10.5 pC/V of the current
parameter (equivalent to 3 × 1011 particles/bunch) starting from a slightly
perturbed gaussian distribution. The thickness of the curve is due to the fast
oscillation of the quadrupole mode.

The cycle of the sawtooth pattern follows a sequence: instability → sat-
uration → damping. Close inspection of the solutions shows that where the
envelope of the bunch length oscillation is minimum, a ripple (microbunch-
ing) appears on top of the charge distribution, see Fig. 5, right picture. This
is the point where the density of the distribution in phase space is the largest
and one may expect that the conditions for the collective instability are met.
As predicted by the linear theory, the amplitude of this modulation grows
rapidly. In the process the distribution function experiences a sudden en-
largement as reflected by jumps in the evolution of either the rms bunch
length (see picture) or energy spread. Next, as the density of the distribu-
tion in phase space decreases and reaches some critical value, saturation of
the instability follows. This is where the effect of radiation damping starts to
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Figure 4: On the left: rms bunch length (normalized coordinates) vs. number
of synchrotron periods. On the right: ratio of coherent radiation power to
incoherent power vs. number of synchrotron periods for a narrow band of
modes about a wavelength λ = 7 mm. In both cases Ic = 10.5.

become apparent. It causes the bunch distribution to slowly shrink until the
conditions for instability are met again so that the cycle can repeat itself.

Emission of coherent radiation takes place in correspondence to the ap-
pearance of microbunches, at the notches of the bunch length envelope. The
time structure of the signal follows naturally that of the sawtooth pattern.
The expected coherent radiation emitted at the n−th harmonic is given by

P coh
n (t) = 2(eNω0)

2ReZ(n)|λn(t)|2 (4)

where λn is the Fourier component of the (normalized) charge density (see
Section 2). By comparison the incoherent part of radiation is expressed by
P incoh

n = 2N(eω0)
2ReZ(n)/(2π)2. Plot of the coherent-to-incoherent-power

ratio for a narrow band of modes around the wavelength λ = 7 mm is reported
in Fig. 4 (picture to the right).

In qualitative agreement with the experimental observations the pattern
of bursts is fairly regular for moderate currents while for larger current more
stochastic features start to appear – both in the occurrence of the bursts as
well in their peak values. Moreover, we found a dependence of the average
separation between bursts on the current, again in qualitative agreement
with observations[25]. A plot of the average separation between bursts vs
the current parameter Ic is reported in Fig. 5 (picture to the right).

In solving Eq. (1) as a time-domain initial-value problem we used a variant
of the Perron-Frobenius method presented by R. Warnock and J. Ellison[26].
This involves a representation of the distribution function f on a cartesian
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Figure 5: On the left: snapshot of the charge distribution with microbunching
taken during a radiation burst (Ic = 12.5 pC/V). On the right: plot of average
burst separation vs. current parameter.

grid and propagation of the derivatives ∂qf and ∂pf along with f . A more
detailed description will be found a forthcoming publication[22].

6 Conclusions

CSR has become a very active subject of research over the past few years.
While most of the attention is presently devoted to CSR effects in single-
pass systems, we hope to have shown their relevance in storage rings as
well. The basic physics of the instability caused by CSR is identical in both
cases and its basic signature, i.e. the existence of microbunching, is also
the same. However, while CSR-driven microbunching has been observed in
bunch compressors both in simulations and in direct measurements, at this
time there is no direct experimental evidence of it in storage rings (e.g. from
streak camera measurements). The evidence is indirect through the detection
of a coherent signal.

Numerical integration of our dynamical model supports the notion that
the collective instability caused by CSR alone is sufficient to account for
microbunching. In addition, the model appears to reproduce at least qual-
itatively the main features of the observations: the existence of a current
threshold for detection of CSR, the wavelength at the peak of the coherent
radiation spectrum, and the time structure of the signal characterized by
short recurrent bursts separated by a substantial fraction of the damping
time.

It is in our plans for the future to explore extension of the VFP solver
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to include the horizontal degree of freedom. If successful, such an exten-
sion could provide an interesting alternative to the macroparticle methods
currently used to study beam propagation through bunch compressors.
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