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Abstract

We give a status report on inclusive rare B decays, highlighting recent de-
velopments and open problems. We focus on the decay modes B → Xs,dγ,
B → Xs�

+�− and B → Xsνν̄ and on their role in the search for new physics.
Most of the inclusive rare B decays are important modes of flavour physics

due to the small hadronic uncertainties. They can be regarded as laboratories
to search for new physics.

We collect the experimental data already available from CLEO and the B
factories BABAR and BELLE. We review the NLL and NNLL QCD calcu-
lations of the inclusive decay rates that were recently completed, and discuss
future prospects, especially the issue of the charm mass scheme ambiguity.
Finally, we analyse the phenomenological impact of these decay modes, in
particular on the CKM phenomenology and on the indirect search for super-
symmetry.

We also briefly discuss direct CP violation in inclusive rare B decays,
as well as the rare kaon decays K+ → π+νν̄ and KL → π0νν̄, which offer
complementary theoretically clean information.
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I. INTRODUCTION

The precise test of the flavour structure and the mechanism of CP violation of the stan-
dard model (SM) is at the centre of today’s research in high-energy physics. By definition,
flavour physics deals with that part of the SM that distinguishes between the three genera-
tions of fundamental fermions. It is still a mystery why there are exactly three generations.
Also the origin of the fermion masses and their mixing is unknown; in particular, the SM
does not explain the hierarchical pattern of these parameters. Flavour physics can be re-
garded as the least tested part of the SM. This is reflected in the rather large error bars of
several flavour parameters such as the mixing parameters at the 20% level [1].

However, the experimental situation concerning flavour physics is drastically changing.
Several B physics experiments are successfully running at the moment and, in the upcoming
years, new facilities will start to explore B physics with increasing sensitivity and within
various experimental settings: apart from the CLEO experiment (Cornell, USA), located
at the Cornell Electron–Positron Storage Ring (CESR) [2], two B factories, operating at
the Υ(4S) resonance in an asymmetric mode, are successfully obtaining data: the BABAR
experiment at SLAC (Stanford, USA) [3] and the BELLE experiment at KEK (Tsukuba,
Japan) [4]. Besides the hadronic B physics program at FERMILAB (Batavia, USA) [5]
there are B physics experiments planned at the hadronic colliders. Within the LHC project
at CERN in Geneva [6] all three experiments have strong B physics programs. Also at FER-
MILAB an independent B physics experiment, BTeV, is planned [7]. The main motivation
for a B physics program at hadron colliders is the huge b quark production cross section
with respect to the one at e+e− machines.

While the time of electroweak precision physics focusing on the gauge sector of the
SM, draws to a close with the completion of the LEP experiments at CERN and the SLC
experiment in Stanford, the era of precision flavour physics, focusing on the scalar sector of
the SM, has just begun with the start of the B factories.

The B system represents an ideal framework for the study of flavour physics. Since
the b quark mass is much larger than the typical scale of the strong interaction ΛQCD, long-
distance strong interactions are generally less important and are under better control than in
kaon physics, thanks to the expansion in that heavy mass. Moreover, GIM suppression is not
active in loop diagrams involving the top quarks, which leads to experimentally accessible
rare decays and to large CP violating effects within B physics. Thus, the CP violation in the
B system represents an important independent test of the SM description of CP violation
(see [8–10]). B meson decays also allow for a rich CKM phenomenology and stringent tests
of the unitarity.

The so-called rare decays are of particular interest. These processes represent flavour
changing neutral currents (FCNCs) and occur in the SM only at the loop level. They also
run under the name of ‘penguin decays’ (see fig. 1 [32]), first introduced in [11] as a result
of a bet.

In contrast to the exclusive rare B decay modes, the inclusive ones are theoretically
clean observables, because no specific model is needed to describe the hadronic final states.
For instance the decay width Γ(B → Xsγ) is well approximated by the partonic decay rate
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Γ(b → Xparton
s γ), which can be analysed within the framework of renormalization-group-

improved perturbation theory. Non-perturbative contributions play only a subdominant
role and can be calculated in a model-independent way by using the heavy-quark expansion.

The role of inclusive rare B decays is twofold: on the one hand they are relevant to the
determination of CKM matrix elements. On the other hand they are particularly sensitive to
new physics beyond the SM, since additional contributions to the decay rate, in which SM
particles are replaced by new particles, such as the supersymmetric charginos or gluinos,
are not suppressed by additional factors α/(4π) relative to the SM contribution. This
makes it possible to observe new physics indirectly - a strategy complementary to the direct
production of new (supersymmetric) particles. The latter production is reserved for the
planned hadronic machines such as the LHC at CERN, while the indirect search of the B
factories already implies significant restrictions for the parameter space of supersymmetric
models and, thus, lead to important clues for the direct search of supersymmetric particles.

It is even possible that these rare processes lead to the first evidence of new physics
outside the neutrino sector by a significant deviation from the SM prediction, for example
in the observables concerning direct CP violation within the ∆F = 1 sector; such a mea-
surement would definitely not be in conflict with the recent measurements of CP violation
in the Bd system, which confirms the SM predictions at the 10% level [8,9]. But also in the
long run, after new physics has already been discovered, inclusive rare B decays will play
an important role in analysing in greater detail the underlying new dynamics.

The expression inclusive rare B decay is loosely defined and calls for a precise definition.
Within the present paper it is understood as a FCNC process B → X Y , where B denotes
a B±, Bd or Bs meson. X is an inclusive hadronic state containing no charmed particles,
and Y is a state built out of leptons, neutrinos and photons. The possibilities for Y are for
example γ (one particle), �+�−, γ γ or νν̄ (two particles), etc. The most interesting ones are
B → Xs,dγ, B → Xs�

+�−, B → Xsνν̄, on which we will focus in this paper. Clearly, the
cases with X = Ø are regarded as exclusive decay modes. Nevertheless, for example the
rare decay Bs,d → �+�− is also theoretically rather clean, in contrast to other exclusive B
rare modes.

In 1993, the first evidence for a rareB meson decay was found by the CLEO collaboration.
At CESR, the exclusive electromagnetic penguin process B → K∗γ was measured [12].
Among inclusive rare B decays, the B → Xsγ mode is the most prominent, because it was
already measured by several independent experiments [36,38–41] and the stringent bounds
obtained from that mode on various non-standard scenarios (see e.g. [13–16]) are a clear
example of the importance of theoretically clean FCNC observables in discriminating new-
physics models. Also the inclusive B → Xs�

+�− transition is already accessible at B factories
[54]. It represents a new source of theoretically clean observables, complementary to theB →
Xsγ rate. In particular, kinematic observables such as the invariant dilepton mass spectrum
and the forward–backward (FB) asymmetry in B → Xs�

+�−, provide clean information on
short-distance couplings not accessible in B → Xsγ [18].

Although the general focus within flavour physics is at present on B systems, kaon
physics offers interesting complementary opportunities in the new physics search, such as the
exclusive rare decays K+ → π+νν̄ and KL → π0νν̄. They are specifically interesting in view
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FIG. 1. Penguin decays of B mesons.

of the current experiments at the Brookhaven National Laboratory (USA) and suggested
experiments at FERMILAB (USA) and at KEK (Japan). They are also theoretically clean
observables.

This present paper is meant as a status report to highlight recent developments and open
problems; for the technical tools the reader is often guided to excellent reviews that already
exist in the literature. The paper is organized as follows: in section II we briefly discuss the
role of the strong interaction within flavour physics. In section III the experimental status of
rare B decays is summarized. In section IV and V we focus on the perturbative calculations;
in section VI we discuss the non-perturbative corrections. Phenomenological implications
are discussed in section VII. In section VIII we explore the implications of these decays for
our search of physics beyond the SM. In section IX we discuss direct CP violation and in
section X the complementary role of rare kaon decays in precision flavour physics. In section
XI, we present our summary.
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II. STRONG INTERACTION IN B DECAYS

Flavour physics is governed by the interplay of strong and weak interactions. One of
the main difficulties in examining the observables in flavour physics is the influence of the
strong interaction. As is well known, for matrix elements dominated by long-distance strong
interactions, there is no adequate quantitative solution available in quantum field theory.
The resulting hadronic uncertainties restrict the opportunities in flavour physics significantly,
in particular within the indirect search for new physics.

The present discussion on the new g − 2 muon data [19] also reflects this issue (for a
recent review, see [20]): the hadronic self-energy contribution to the g − 2 observable can
be determined by experimental data, however, the results found from e+e−-based data and
from the τ -based data differ from each other. Furthermore the well-known light-by-light
scattering contribution can only be modelled at present. It is obvious that these hadronic
uncertainties make it difficult to deduce strict constraints on a new physics scenario from
this measurement.

There are several fundamental tools available, which are directly based on QCD. High
hopes for precise QCD predictions are placed on lattice gauge theoretical calculations. While
there are competitive predictions from lattice gauge theory for form factors of semi-leptonic
B decays, pure hadronic decays are less accessible to these methods [21].

Another approach is the method of factorization [22]. This method has recently been
systemized for non-leptonic decays in the heavy quark limit [23]. However, within this
approach, a quantitative method to estimate the 1/mb corrections to this limit is missing
[24]. A promising step in this direction was recently presented in [25].

Further well-known fundamental methods whose applications and precision are also some-
what restricted are chiral perturbation theory [26], heavy quark effective theory (HQET)
[28], QCD sum rules [27] and the 1/N expansion [29].

In view of this, the goal must be to minimize theoretical uncertainties with the help of
an optimized combination of different fundamental methods solely based on QCD. This can
only be done for a selected number of observables in flavour physics. It is also clear that an
active cooperation between theory and experiment is necessary in order to make progress
on this issue.

There are a few golden channels in which the hadronic physics can be disentangled
and clean tests of the SM are possible. Moreover, there are also observables, dominated
by perturbative contributions, which make precision flavour physics possible in the near
future. Among them inclusive rare B decays play the most important role. Inclusive decay
modes are theoretically clean and represent a theoretical laboratory of perturbative QCD.
In particular, the decay width Γ(B → Xsγ) is well approximated by the partonic decay rate
Γ(b → Xparton

s γ), which can be analysed in renormalization-group-improved perturbation
theory:

Γ(B → Xsγ) = Γ(b → Xparton
s γ) + ∆nonpert. (II.1)

Non-perturbative effects, ∆nonpert., play a subdominant role and are under control thanks to
the heavy mass expansion [30] and the assumption of quark–hadron duality [31].
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FIG. 2. QCD corrections to the decay B → Xsγ.

Thus, in general, inclusive decay modes should be preferred to exclusive ones from the
theoretical point of view. The inclusive modes B → Xs (d)γ and B → Xs (d)�

+�− can be
measured by the electron–positron experiments (B factories, CLEO) with their kinematic
constraints and their controlled background, while they are more difficult to measure at
hadronic machines. Exclusive decay modes, however, are more accessible to experiments,
in particular at hadronic machines. But in contrast to the inclusive modes, they have
in general large non-perturbative QCD contributions, which makes it difficult to deduce
valuable information on new physics from those decay modes. However, as mentioned in the
introduction, the exclusive decays Bd,s → µ+µ− are distinguished observables at hadronic
colliders.

Within inclusive B decay modes, short-distance QCD effects turn out to be very impor-
tant. For example, in the decay B → Xsγ they lead to a tremendous rate enhancement.
These effects are induced by hard–gluon exchange between the quark lines of the one-loop
electroweak diagrams (fig. 2).

The QCD radiative corrections bring in large logarithms of the form αns (mb)
logm(mb/M), where M = mt or M = mW and m ≤ n (with n = 0, 1, 2, ...). This is a
natural feature in any process where two different mass scales are present. In order to get a
reasonable result at all, one has to resum at least the leading-log (LL) series

αns (mb) log
n(mb/M), (LL) (II.2)

with the help of renormalization–group techniques. Working to next-to-leading-log (NLL)
precision means that one is also resumming all the terms of the form

αs(mb)α
n
s (mb) log

n(mb/M), (NLL). (II.3)

A suitable framework to achieve the necessary resummations of the large logs is an
effective low-energy theory with five quarks, obtained by integrating out the heavy particles,
which, in the SM, are the electroweak bosons and the top quark. The standard method of the
operator product expansion (OPE) allows for a separation of the meson decay amplitude
into two distinct parts, the long-distance contributions contained in the operator matrix
elements and the short-distance physics described by the so-called Wilson coefficients (see
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FIG. 3. Operator product expansion: full versus effective theory.

fig. 3). In the case of B decays, the W boson and the top quark with mass larger than the
factorization scale are integrated out, that is removed from the theory as dynamical fields.
The effective Hamiltonian can be written

Heff = −4GF√
2

∑
Ci(µ,Mheavy) Oi(µ), (II.4)

where Oi(µ) are the relevant operators and Ci(µ,Mheavy) are the corresponding Wilson
coefficients. As the heavy fields are integrated out, the complete top andW mass dependence
is contained in the Wilson coefficients. Working out a convenient set of quantities, both in the
effective (low-energy) theory and in the full (standard model) theory, and requiring equality
(matching) up to terms suppressed by higher powers of mW or mt, these coefficients can be
determined. At the high scale µW ≈ mW , mt, the matrix elements of the operators in the
effective theory lead to the same logarithms as the full theory calculation. Consequently,
the Wilson coefficients Ci(µW ) only pick up small QCD corrections, which can be calculated
in fixed-order perturbation theory.

Within this framework QCD corrections for the decay rates are twofold: the ingredients
are the order αs corrections to the matrix elements of the various operators and the order
αs corrections to the Wilson coefficients, of course both at the low-energy scale µb ≈ mb.
Only the sum of the two contributions is renormalization-scheme- and scale-independent; in
fact, from the µ-independence of the effective Hamiltonian, one can derive a renormalization
group equation (RGE) for the Wilson coefficients Ci(µ):

µ
d

dµ
Ci(µ) = γjiCj(µ) , (II.5)

where the matrix γ is the anomalous dimension matrix of the operators Oi, which describes
the anomalous scaling of the operators with respect to the one at the classical level. At
leading order, the solution is given by

C̃i(µ) =

[
αs(µW )

αs(µ)

] γ̃
(0)
ii

2β0

C̃i(µW ) =


 1

1 + β0
αs(µ)

4π
ln

µ2
W

µ2




γ̃
(0)
ii

2β0

C̃i(µW ) (II.6)
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with µd/dµαs = −2β0α
2
s/(4π); β0 and γ̃0

ii correpond to the leading anomalous dimension of
the coupling constant and the operators, respectively. The tilde indicates that the diago-
nalized anomalous dimension matrix is used. The formula (II.6) to LL precision makes the
renormalization-group improvement transparent. It represents a summation of the form of
the Eq. (II.2).

There are three principal calculational steps leading to the leading-log (next-to-leading-
log) result within the effective field theory approach (for a pedagogical review see [33]):

• Step 1: The full SM theory has to be matched with the effective theory at the scale
µ = µW , where µW denotes a scale of ordermW ormt. As mentioned above, the Wilson
coefficients Ci(µW ) only pick up small QCD corrections, which can be calculated in
fixed-order perturbation theory. In the LL (NLL) program, the matching has to be
worked out at the O(α0

s) (O(α1
s)) level.

• Step 2: Then the evolution of these Wilson coefficients from µ = µW down to µ = µW
has to be performed with the help of the renormalization group, where µb is of the
order of mb. As the matrix elements of the operators evaluated at the low scale µb
are free of large logarithms, the latter are contained in resummed form in the Wilson
coefficients. For a LL (NLL) calculation, this RGE step has to be done using the
anomalous–dimension matrix up to order α1

s (α
2
s).

• Step 3: To LL (NLL) precision, the corrections to the matrix elements of the operators
〈sγ|Oi(µ)|b〉 at the scale µ = µb have to be calculated to order α0

s (α
1
s) precision. This

includes also bremsstrahlung corrections.

Finally, we stress that the step from the leading (LL) to the next-to-leading (NLL) order
within the framework of the renormalization–group–improved perturbation theory is not
only a quantitative one, increasing the precision of the theoretical prediction, but also a
qualitative one, which tests the validity of the perturbative approach in the given problem.
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FIG. 4. e+e− → Υ(4S) → B+B−, B0B̄0.

III. EXPERIMENTAL STATUS

A. Experimental data on B → Xsγ

Among inclusive rare B decays, the B → Xsγ mode is the most prominent because it was
already measured by several independent e+e−–experiments, mostly at the Υ(4S) resonance,
fig. 4 [36,38–41] (see also [42–44]). In 1993, the first evidence for a penguin-induced B
meson decay was found by the CLEO collaboration. At CESR, they measured the exclusive
electromagnetic penguin process B → K∗γ [12]. The inclusive analogue B → Xsγ, which
is the quantity of theoretical interest, was also found by the CLEO collaboration through
the measurement of its characteristic photon energy spectrum in 1994. As this process is
dominated by the two-body decay b → sγ, its photon energy spectrum is expected to be a
smeared delta function centred at Eγ ≈ mb/2, where the smearing is due to perturbative
gluon bremsstrahlung and to the non-perturbative motion of the b quark within the B meson.

Only the high part of the B → Xsγ photon spectrum is observed. Some lower cut-off
in the photon energy was imposed in order to suppress the background from other B decay
processes. The BB̄ background mainly arises from the processes B → π0X and π0 → γ1γ2

or B → ηX and η → γ1γ2, where γ1 has high energy and γ2 either has energy too low to be
observed or is not in the geometric acceptance of the detector. Moreover, there is a small
component (∼ 5%) from the process B → n̄X or B → KLX, where the anti-neutron or the
neutral kaon interacts hadronically with the electromagnetic calorimeter, faking a photon.

Therefore only the ‘kinematic’ branching ratio for B → Xsγ in the range between Eγ =
2.2 GeV and the kinematic endpoint at Eγ = 2.7 GeV could be measured directly within
this first measurement. To obtain from this measurement the ‘total’ branching ratio, one
has to know the fraction R of the B → Xsγ events with Eγ ≥ 2.2 GeV. This was first done
in [34] where the motion of the b quark in the B meson was taken into account by using a
phenomenological model [35] and taking into account a large systematic error for this model
dependence. Using this theoretical input regarding the photon energy spectrum the value
R = 0.87± 0.06 was used by the CLEO collaboration, leading to the CLEO branching ratio
[36]
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FIG. 5. Levels of inclusive photons from various background processes at Υ(4S) and the ex-
pected signal from b → sγ: ISR, BB̄ and π0 backgrounds are shown (from the bottom to the top
at Eγ = 0.5), from [44].

B(B → Xsγ) = (2.32± 0.57stat ± 0.35syst)× 10−4. (III.1)

The first error is statistical and the second is systematic (including model dependence). This
measurement was based on a sample of 2.2× 106 BB̄ events.

Besides the high energy cut-off to suppress the background from other B decays, two
different techniques were used to suppress the continuum background in this first CLEO
measurement. In the first (semi-inclusive) technique all products were reconstructed as
in the exclusive measurement. The background in the measurement of exclusive modes is
naturally low, because of kinematical constraints and of the beam energy constraint. In
order to reduce the combinatoric background, only K(nπ)γ, with n ≤ 4 and at most one
π0, were chosen as final states in this analysis, which accounts for ∼ 50% of the inclusive
rate. In the second (fully inclusive) technique, only the photon was explicitly reconstructed.
As shown in fig. 5, there are very large backgrounds, both from the initial-state-radiation
(ISR) process e+e− → qq̄γ, where one of the beam electrons radiates a hard photon before
annihilation, and from inclusive π0/η production in which one of the photons from the decay
is not detected. Background suppression was therefore more difficult with this technique.
For this purpose, topological differences between the spherical BB̄ events and the two jets

11



Continuum Continuum +ISR Signal

FIG. 6. Examples of idealized event shapes. The straight lines indicate hadrons and the wavy
lines photons, from [43].

e+e− → qq̄ as shown in fig. 6 were used. While the signal events are spherical because the
B mesons are almost at rest at the Υ(4S) resonance, the continuum events have a jet-like
structure. With the help of a neural network, several event-shape variables were combined
into a single one, which tends towards +1 for b → sγ and towards −1 for the ISR and qq̄
processes; the signal was extracted from a one-parameter fit to that variable.

The signal efficiency (32%) was very high with respect to the first technique (9%). How-
ever the first technique has a better signal-to-noise ratio, so that the two methods had nearly
equal sensitivity. In the first CLEO measurement in 1994, they found B(B → Xsγ) =
(2.75± 0.67stat)× 10−4 with the first technique and B(B → Xsγ) = (1.88± 0.74stat)× 10−4

using the second technique. The branching ratio stated above (III.1) represents the average
of the two measurements, taking into account the correlation between the two techniques.

In 1999, CLEO had presented a preliminary improved measurement [37], which was
based on 53% more data (3.3 × 106 events). They also used the slightly wider Eγ window
starting at 2.1 GeV. The relative error dropped by a factor of almost

√
3 already. In 2002,

CLEO published a new measurement [38], based on three times more data (10×106 events).
The spectrum down to 2.0 GeV was used, which includes almost 90% of the B → Xsγ yield.
This also leads to a significant background from B decay processes other than B → Xsγ,
located within 2.0 – 2.2 GeV. This BB̄ background arises from two components. First the
inclusive π0/η decays which account for ∼ 90% of the background. This is estimated by
Monte Carlo in which the inclusive π0/η spectra have been tuned with independent processes
to replicate the data. Second, hadronic interactions of anti-neutrons and neutral kaons in the
electromagnetic calorimeter may fake a photon candidate. However, their lateral profile is
different from that of real photons, which allows a background subtraction. The continuum
background was suppressed with the same two approaches as in the first measurement,
but within a fully integrated analysis. What remained of the continuum background was
subtracted using off-resonance data.

In order to obtain the corrected branching ratio of B → Xsγ, two extrapolations were
necessary. What was directly measured was the branching fraction for B → Xsγ plus
B → Xdγ. The B → Xdγ part was subtracted by using the theory input that, according
to the SM expectation, the B → Xdγ and the B → Xsγ branching fractions are in the
ratio |Vtd/Vts|2. Therefore the branching ratio was corrected down by (4.0± 1.6)% of itself
- assuming the validity of the SM suppression factor |Vtd/Vts|2. Moreover, one has to know
again the fraction R of the B → Xsγ events with Eγ ≥ 2.0 GeV. In this measurement,
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the corresponding fraction was estimated to be R = 0.915+0.027
−0.055 using the model of Kagan

and Neubert (see also section IIIB), which allowed for the extrapolation of the measured
branching ratio to the ‘total’ B → Xsγ branching ratio (Eγ > 0.25 GeV). With these two
theoretical corrections, the present CLEO measurement for the B → Xsγ branching ratio is

B(B → Xsγ) = (3.21± 0.43stat ± 0.27syst
+0.18
−0.10mod

)× 10−4. (III.2)

The errors represent statistics, systematics, and the model dependence (due to the
extrapolation below Eγ = 2.0 GeV) respectively.

There are also data at the Z0 peak from the LEP experiments. The ALEPH collaboration
[39] has measured the inclusive branching ratio based on 0.8× 106 bb̄ pairs.

B(Hb → Xsγ) = (3.11± 0.80stat ± 0.72syst)× 10−4. (III.3)

The signal was isolated in lifetime-tagged bb̄ events by the presence of a hard photon associ-
ated with a system of high momentum and high rapidity hadrons. It should be noted that
the branching ratio in (III.3) involves a weighted average of the B mesons and Λb baryons
produced in Z0 decays (hence the symbol Hb) different from the corresponding one given
by CLEO, which has been measured at the Υ(4S) resonance. High luminosity is more dif-
ficult to obtain at higher e+e− collision energies. Thus, BB̄ samples obtained by the LEP
experiments are rather small. The rate measured by ALEPH is consistent with the CLEO
measurement, with an error twice as large as the present CLEO measurement.

BELLE has also presented a measurement [40] based on 6.07 × 10−6 BB̄ events at
the Υ(4S) resonance. A semi-inclusive analysis was used to reconstruct the B → Xsγ
decay from a primary photon, a kaon and multiple pions (no more than one π0). The
background reduction includes an effective Eγ > 2.24 GeV photon energy cut-off which
corresponds to a cut in the hadronic mass spectrum of MXs = 2.05 GeV as quoted in [40];
Eγ = (M2

B −M2
Xs
)/(2MB):

B(B → Xsγ) = (3.37± 0.53stat ± 0.42syst ± 0.54mod)× 10−4, (III.4)

which is consistent with previous measurements.

BABAR presented two preliminary analyses on the B → Xsγ branching ratio, a fully
inclusive and a semi-inclusive one [41]. The fully inclusive BABAR measurement has used
the largest number of B mesons, so far. It is based on almost 60 × 106 BB̄ events at the
Υ(4S) resonance. The method of extracting the signal from the data is similar to what was
done for previous measurements: the continuum background was subtracted with the help
of off-resonance data. The BB̄ contribution was deduced from Monte Carlo predictions.

Nevertheless, the high statistics available in this BABAR measurement allowed for ad-
ditional techniques: a lepton tag on a high-momentum electron or muon was also required
to suppress continuum backgrounds. For the B → Xsγ signal events, the lepton arises from
the semi-leptonic decay of the other B meson. Leptons also occur in the continuum back-
ground, most notably from the semi-leptonic decays of charm hadrons, but their production
is significantly less frequent and their momentum lower than those from a B decay. Because
a lepton tag is imposed on the other B meson, not on the signal B, one can reject the
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FIG. 7. B → Xsγ measurements versus theoretical predictions (see section VIIA), from [41].

continuum background without introducing any model dependence because one does not
impose any requirements on the signal decay. A ×1200 reduction of the background was
achieved by 5% efficiency of the lepton tag. This effective method to suppress the continuum
background was possible because of the high statistics of the new BABAR measurement.

The systematic precision was limited by the size of the BB̄ background control samples
scaling in proportion to the signal sample. The systematic precision limited the lower bound
to Eγ > 2.1 GeV (measured in the e+e− centre-of-mass system). The preliminary BABAR
measurement is

B(B → Xsγ) = (3.88± 0.36stat ± 0.37syst
+0.43
−0.23mod

)× 10−4. (III.5)

Besides this fully inclusive analysis, BABAR also presented a semi-inclusive analysis
where twelve exclusive b → sγ decays were fully reconstructed, which led to the following
measurement of the inclusive branching ratio:

B(B → Xsγ) = (4.4± 0.5stat ± 0.8syst ± 1.3mod)× 10−4. (III.6)

The error is much larger than the one of the previous semi-inclusive measurements, but
includes also less final states; only states including 1− 3 pions rather than 1− 4 pions were
reconstructed.

When much more statistics is available, the fully-inclusive strategy using the lepton tag
will get the priority in the future measurements of the B → Xsγ branching ratio because
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model dependence and systematic errors can be reduced significantly compared to the semi-
inclusive method.

As fig. 7 shows, all the measurements of the ‘total’ B → Xsγ branching ratio available
so far are consistent with each other and also consistent with the SM predictions (see section
VIIA). A weighted average of the available experimental measurements is problematic, be-
cause the model dependence errors (and also the systematic errors) are correlated and differ
within the various measurements. A recent analysis taking into account the correlations
leads to the following world average [49]:

B(B → Xsγ) = (3.34± 0.38)× 10−4. (III.7)

With the expected high luminosity of the B-factories, the systematic uncertainty in the
BB̄ background will be reduced along with statistical uncertainties. This reduction in the
systematic uncertainty will also allow for a lower photon energy cut-off, which will further
reduce the model dependence from the theory-based interpolation to the whole energy spec-
trum [41]. Thus, in the future the lower energy cut-off in a fully inclusive analysis has to
balance the systematic error due to the BB̄ background and the model dependence due to
the extrapolation. An experimental accuracy below 10% in the inclusive B → Xsγ mode is
possible in the near future.

B. Photon spectrum of B → Xsγ

The uncertainty regarding the fraction R of the B → Xsγ events above the chosen lower
photon energy cut-off Eγ GeV quoted in the experimental measurement, also cited as model
dependence, should be regarded as a purely theoretical uncertainty: in contrast to the ‘total’
branching ratio of B → Xsγ, the photon energy spectrum cannot be calculated directly
using the heavy mass expansion, because the operator product expansion breaks down in
the high-energy part of the spectrum, where Eγ ≈ mb/2. Therefore, the fraction R was
calculated in [34] using a phenomenological model [35], where the motion of the b quark in
the B meson is characterized by two parameters, the average momentum pF of the b quark
and the average mass mq of the spectator quark.

The error on the fraction R is essentially obtained by varying the model parameters pF
and mq in the range for which the model correctly describes the energy spectrum of the
charged lepton in the semi-leptonic decays B → Xc�ν and B → Xu�ν, measured by CLEO
and ARGUS. In [34] a first comparison between the calculated photon energy spectrum and
the one measured by the CLEO collaboration was presented. The (normalized) measured
photon energy spectrum and the theoretical one were in agreement for those values of pF
and mq that correctly describe the inclusive semi-leptonic CLEO data on B → Xc�ν and
B → Xu�ν.

Besides this phenomenological model, more fundamental theoretical methods are avail-
able today to implement the bound-state effects, namely by making use of operator product
expansion techniques in the framework of the heavy quark effective theory (HQET). An
analysis along these lines was presented in [45]. As mentioned above, the operator prod-
uct expansion breaks down near the endpoint of the photon energy spectrum; therefore, an
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FIG. 8. Photon energy spectrum measured by CLEO and spectrum from Monte Carlo simula-
tion of the spectator model with parameters m̂b = 4.690 GeV, pF = 410 MeV/c, a good fit to the
data, from [38].

infinite number of leading-twist corrections have to be resummed into a non-perturbative
universal shape function, which determines the light-cone momentum distribution of the b
quark in the B meson [46]. The physical decay distributions are then obtained from a con-
volution of parton model spectra with this shape function. At present this function cannot
be calculated, but there is at least some information on the moments of the shape function,
which are related to the forward matrix elements of local operators. Ansätze for the shape
function, constrained by the latter information, are used. In contrast to the older analysis
based on the phenomenological model proposed in [35], the analysis of Kagan and Neubert
[45] includes the full NLL information.

In the latest CLEO measurement [38], the phenomenological spectator model [35,34] was
used first. The momentum parameter pF and the b quark average mass m̂b were treated as
free parameters, which allowed the mean and the width of the photon energy spectrum to
be varied: see fig. 8. The Kagan–Neubert approach was also used by CLEO: the simple
two-parameter shape function was fitted to the measured photon spectrum and very similar
results to those obtained using the spectator model were obtained.

An important observation is that the shape of the photon spectrum is practically in-
sensitive to physics beyond the SM. As can be seen in fig. 9, all different contributions to
the spectrum (corresponding to the interference terms of the various operators involved, see
section IV) have a very similar shape besides the small 8–8 contribution. This implies that
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FIG. 9. Different components of the photon spectrum in the B → Xsγ decay, from [45].

we do not have to assume the correctness of the SM in the experimental analysis.

A precise measurement of the photon spectrum allows to determine the parameters of
the shape function. The latter information is an important input for the determination
of the CKM matrix element Vub. One takes advantage of the universality of the shape
function to lowest order in ΛQCD/mb. The same shape function occurs in the description
of nonperturbative effects in the endpoint region of the B → Xsγ photon spectrum and of
the B → Xu�ν charged-lepton spectrum up to higher 1/mb corrections [46]. Thus, from the
photon spectrum one can determine the shape function; with the help of the latter and of
the measurement of the charged-lepton spectrum of B → Xu�ν, one can extract a value for
Vub. This method represents one of the best ways to measure the CKM matrix element Vub.
Following this strategy, CLEO has presented the following measurement [47]:

Vub = (4.08± 0.56exp ± 0.29th). (III.8)

The impact of the higher-order corrections in 1/mb was quite recently investigated [48].
The future aim should be to determine the shape function by using the high-precision

measurements of the photon energy spectrum more precisely.
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Moreover, the first and the second moment of the photon spectrum can be determined
within the measurement of B → Xsγ. These results can be used to extract values for the
HQET parameters Λ̄ and λ1 (see [50]). CLEO has measured these moments and extracted
for example from the first moment Λ̄ = 0.35± 0.08± 0.10GeV , where the first error is from
the experimental error and the second error is from the theoretical expression, in particular
from neglected higher-order terms [38].

A lower experimental cut in the photon energy spectrum within the measurement of
B → Xsγ decreases the sensitivity to the parameters of the shape function and therefore
the model dependence. With respect to this, the ideal energy cut would be 1.6 GeV (see fig.
10). But in this case a better understanding of the ψ background would be mandatory. The
intermediate ψ background, namely B → ψXs followed by ψ → X ′γ, is more than 4× 10−4

in the ‘total’ branching ratio. With the present energy cut of 2.0 GeV, this contribution is
suppressed and estimated to be less than 1.5%; for 2.1 GeV it is 0.6% [59].

C. Experimental status of B → Xs�
+�− and B → Xdγ

The inclusive B → Xs�
+�− transition also starts to be accessible at the B factories.

BELLE and also BABAR have already established measurements of the exclusive mode
B → K�+�− [51,53]. The two measurements are compatible with each other.

Quite recently, BELLE has also announced the first measurement of the inclusive
B → Xs�

+�− mode based on a semi-inclusive analysis [54,55]. The hadronic system Xs

is reconstructed from a kaon with 0 to 4 pions (at most one π0). The used data sample
contains 65.4× 106 BB̄ pairs.
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The signal characteristics within this semi-inclusive analysis is determined by modelling
the invariant mass MXs spectrum using the phenomenological model first proposed in [35].
The reconstruction efficiencies of the signal are determined by the MC samples based on
this model, leading to a large part of the systematic uncertainty.

The non-peaking backgrounds are estimated by sideband subtraction. But there are
two peaking backgrounds: the first one is the process B → Xsπ

+π−, where the two pions
are misidentified as leptons. This background is estimated explicitly by reconstructing the
B → Xsπ

+π− and multiplying the yield by (fµπ )
2, where fµπ is the probability of a pion

faking a muon measured in an independent data set. The second source are the charmonium
decays B → ψ(→ �+�−)Xs and B → ψ′(→ �+�−)Xs. They are vetoed by excluding lepton
combinations whose invariant mass falls within a window around the nominal ψ and ψ′ mass.

The continuum background and the BB̄ background, however, can be suppressed by the
kinematical constraints. Further suppression is achieved with methods similar to those in
the B → Xsγ analysis.
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Moreover, there is a cut used in the Xs invariant mass spectrum at 2.1 GeV. This
removes a large part of the combinatorial background while a model calculation determines
that (93 ± 5)% of the signal is within this experimental window (leading to an additional
model dependence). Events with a dilepton mass M$+$− less than 0.2 GeV are also rejected
in order to suppress electron pairs from π0 → e+e−γ and γ → e+e− conversion.

A comparison of the histograms in fig. 11, (a) and (c), indicates that the efficiency within
this measurement is much higher in the high dilepton mass region.

The uncertainty of this first measurement of the inclusive decay is still at the 30% level
and in agreement with the SM expectations. One can expect much higher accuracy from
the B factories in the near future.

Also the inclusive decay B → Xdγ is within reach of the high-luminosity B factories.
Such a measurement will rely on high statistics and on powerful methods for the kaon–
pion–discrimination. At present only upper bounds on corresponding exclusive modes are
available from CLEO [56], BELLE [57] and also from BABAR [58].
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IV. PERTURBATIVE CALCULATIONS IN B → XS,D γ

The inclusive decay B → Xsγ is a laboratory for perturbative QCD. Non-perturbative
effects (see section VI) play a subdominant role and are well under control thanks to the
heavy quark expansion. The dominant short-distance QCD corrections enhance the par-
tonic decay rate Γ(b → Xparton

s γ) by a factor of more than 2. The corresponding large
logarithms of the form αns (mb) log

m(mb/M), where M = mt or M = mW and m ≤ n (with
n = 0, 1, 2, ...), have to be summed with the help of the renormalization-group-improved
perturbation theory, as presented in section II.

The effective Hamiltonian relevant to B → Xsγ in the SM reads

Heff(B → Xsγ) = −4GF√
2
λt

8∑
i=1

Ci(µ)Oi(µ) , (IV.9)

where Oi(µ) are the relevant operators, Ci(µ) are the corresponding Wilson coefficients,
which contain the complete top- and W -mass dependence (see fig. 12), and λq = VqbV

∗
qs

with Vij , the CKM matrix elements. The CKM dependence globally factorizes, if one works
in the approximation λu = 0 1. One neglects the operators with dimension > 6, which are
suppressed by higher powers of 1/mW .

Using the equations of motion for the operators, one arrives at the following basis of
dimension-6 operators:

O1 = (s̄γµT
aPLc) (c̄γ

µTaPLb) , O2 =(s̄γµPLc) (c̄γ
µPLb) ,

O3 = (s̄γµPLb)
∑
q(q̄γ

µq) , O4 =(s̄γµT
aPLb)

∑
q(q̄γ

µTaq) ,

O5 = (s̄γµγνγρPLb)
∑
q(q̄γ

µγνγρq) , O6 =(s̄γµγνγρT
aPLb)

∑
q(q̄γ

µγνγρTaq) ,

O7 = e
16π2 mb(µ) (s̄σ

µνPRb)Fµν , O8 = gs
16π2 mb(µ) (s̄σ

µνT aPRb)G
a
µν ,

(IV.10)

In the dipole-type operators O7 and O8, e and Fµν (gs and GAµν) denote the electromag-
netic (strong) coupling constant and field strength tensor, respectively. T a (a = 1, 8) denote
SU(3) colour generators and PR,L = (1± γ5)/2.

The error of the leading logarithmic (LL) result [60] was dominated by a large renor-
malization scale dependence at the ±25% level, which already indicated the importance of
the NLL series. By convention, the dependence on the renormalization scale µb is obtained
by the variation mb/2 < µb < 2mb. The former measurement of the CLEO collaboration
(see (III.1)) overlaps with the estimates based on LL calculations, and the experimental
and theoretical errors are comparable. In view of the expected increase in the experimental
precision, it became clear that a systematic inclusion of the NLL corrections was becoming
necessary. Moreover, such a NLL program was also important in order to ensure the valid-
ity of renormalization-group-improved perturbation theory in this specific phenomenological
application.

1This approximation is not used within the recent theoretical predictions.
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FIG. 12. Effective Hamiltonian in the case of B → Xs,dγ.

This ambitious NLL enterprise was completed some years ago. This was a joint effort
of many different groups ( [34], [62], [63], [64]). The theoretical error of the previous LL
result was substantially reduced, to ±10%, and the central value of the partonic decay rate
increased by about 20%.

All three steps to NLL precision listed below (II.5) involve rather difficult calculations.

• The most difficult part in Step 1 is the two-loop (or order αs) matching of the dipole
operators O7 and O8. It involves two-loop diagrams both in the full and in the effective
theory. It was first worked out by Adel and Yao [63]. As this is a crucial step in the NLL
program, Greub and Hurth confirmed their findings in a detailed recalculation using
a different method [68]. Two further complete [69,131] and one partial recalculations
[70] of this result were presented in the meanwhile, confirming the original results
in [63]. In order to match the dimension-6 operators O7 and O8, it is sufficient to

extract the terms of order
m2

b

M2 (M = mW , mt) from the SM matrix elements for b → sγ
and b → sg. Terms suppressed by additional powers of mb/M correspond to higher-
dimensional operators in the effective theory. In [68] the finite parts of the two-loop
diagrams in the SM were calculated by means of the well-known method of asymptotic
mass expansions, which naturally leads to a systematic expansion of Feynman diagrams
in inverse powers of M .

• The order α2
s anomalous dimension matrix (Step 2) has been worked out by Chetyrkin,

Misiak and Münz [64]. In particular, the calculation of the elements γi7 and γi8 (i =
1, ..., 6) in the O(α2

s) anomalous dimension matrix involves a huge number of three-
loop diagrams from which the pole parts (in the d−4 expansion) have to be extracted.
This extraction was simplified by a clever decomposition of the scalar propagator [65].
Moreover, the number of necessary evanescent operators was reduced by a new choice
of a basis of dimension-6 operators [66]. Using the matching result (Step 1), these
authors obtained the NLL correction to the Wilson coefficient C7(µb). Numerically,
the LL and NLL values for C7(µb) turn out to be rather similar; the NLL corrections
to the Wilson coefficient C7(µb) lead to a change of the B → Xsγ decay rate that does
not exceed 6% in the MS scheme [64].

It should be stressed that the result of Step 2, in particular the entries γi7 and γi8
(i = 1, ..., 6) of the anomalous dimension matrix to NLL precision, is the only part of
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the complete NLL enterprise that has not been confirmed by an independent group.
An independent check of this important part of the NLL program is already on the
way [67].

• Step 3 basically consists of bremsstrahlung corrections and virtual corrections. While
the bremsstrahlung corrections were worked out some time ago by Ali and Greub [34],
and were confirmed and extended by Pott [61], a complete analysis of the virtual two-
loop corrections (up to the contributions of the four-quark operators with very small
coefficients) was presented by Greub, Hurth and Wyler [62]. This calculation involves
two-loop diagrams, where the full charm dependence has to be taken into account.
By using Mellin–Barnes techniques in the Feynman parameter integrals, the result of
these two-loop diagrams was obtained in the form

c0 +
∑

n=0,1,2,...;m=0,1,2,3

cnm

(
m2
c

m2
b

)n
logm

m2
c

m2
b

, (IV.11)

where the quantities c0 and cnm are independent of mc. The convergence of the Mellin-
Barnes series was proved; the practical convergence of the series (IV.11) was also
checked explicitly. Moreover, a finite result is obtained in the limit mc → 0, as there is
no naked logarithm of m2

c/m
2
b . This observation is of some importance in the b → dγ

process, where the u-quark propagation in the loop is not CKM-suppressed (see below).
The main result of Step 3 consists in a drastic reduction of the renormalization scale
uncertainty from about ±25% to about ±6%. The central value was shifted by about
20%.

In [62] these results are presented also in the ’t Hooft–Veltman scheme, which may
be regarded as a first step towards a cross-check of the complete NLL calculation
prediction in a different renormalization scheme. Recently, the results of the O1,2

matrix elements in theMS scheme calculated in [62] were confirmed by an independent
group [71] with the help of the method of asymptotic expansions. Also two further
calculations with the help of a direct analytical [77] and of a numerical method [75]
confirmed these results. The direct analytical method also allowed control over the
matrix elements of the penguin operators O3−6. As expected from the smallness of the
corresponding Wilson coefficients, their effect on the branching ratio does not exceed
1%.

Combining the NLL calculations of the three steps, the first practically complete theo-
retical prediction to NLL precision for the branching ratio of B → Xsγ was presented in
[64] (see also [78]):

B(B → Xsγ) = (3.28± 0.33)× 10−4. (IV.12)

The theoretical error had two dominant sources, µ dependence, which was reduced to about
6%, and the mc/mb dependence. This first theoretical NLL prediction already included the
non-perturbative correction scaling with 1/m2

b , which are rather small (at the 1% level) (see
section VI). Surprisingly, these first NLL predictions, [64] and [78], are almost identical to
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the present predictions (VII.31) using the charm pole mass, in spite of so many important
additional refinements such as the electroweak two-loop corrections and the non-perturbative
corrections, which will be discussed below.

Detailed studies of the two-loop electroweak corrections in the decay B → Xsγ were
performed. In [98] part of the electroweak two-loop contributions, namely contributions
from fermion loops in gauge boson propagators (γ and W ) and from short-distance photonic
loop corrections, were calculated. Moreover, it was observed that the on-shell value of the
fine structure constant 1/αem = 137 is more appropriate for real photon emission than the
value 1/αem = (130.3± 2.3) used in previous analyses. The QED loop calculations in [98]
confirmed this expectation. This change in αem leads to a reduction of 5% in the perturbative
contribution . In [100] a calculation of the heavy top and the heavy Higgs corrections in the
gaugeless limit mW → 0 was presented. In [45] the QED analysis made in [98] was improved
by resumming the contributions of order αem log(µb/M)(αs log(µb/M)n to all orders (while
in [98] only the n = 0 contribution was included). This resummation decreases the QED
corrections. In [99] the same calculation was performed taking into account the complete
relevant set of operators. It was explicitly shown that the truncation of the operator basis
in [45] turns out to be a correct approximation and that these corrections lead to a 0.8%
correction only.

The first (practically) complete analysis of the electroweak contributions to order
αem(αs log(µ/M))n was performed in [102]. This includes a two-loop matching to order
αem, the QED–QCD running of the Wilson coefficients down to the b quark and one- and
two-loop QED matrix elements. While in [101] only the so-called purely electroweak contri-
butions were considered where terms vanishing in the limit sin θ → 0 were neglected if they
are not enhanced by powers of the top mass, in [102] the complete two-loop matching con-
ditions to order αem were presented. It was shown that the electroweak two-loop corrections
of order αem(αs log(µ/M)n lead, because of accidental cancellations, to a 1.6% reduction
of the branching ratio of B → Xsγ only. Thus, the electroweak corrections are well under
control and shown to play a subdominant role.

It is clear that many parts of the perturbative calculations at the partonic level in the
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case of B → Xsγ can be taken over to the cases B → Xdγ and B → Xs�
+�−; the latter case,

however, needs some modifications, in particular the operator basis gets enlarged as will be
discussed in the next subsection.

The perturbative QCD corrections in the decay b → dγ can be treated in complete
analogy to the ones in the decay b → sγ [79]: the effective Hamiltonian is the same in
the processes b → sγ and b → dγ up to the obvious replacement of the s-quark field by
the d-quark field. But as λu = VubV

∗
ud for b → dγ is not small with respect to λt = VtbV

∗
td

and λc = VcbV
∗
cd, one also has to take into account the operators proportional to λu. The

matching conditions Ci(mW ) and the solutions of the RG equations, yielding Ci(µb), coincide
with those needed for the process B → Xsγ.

The perturbative calculations at the partonic level of B → Xsγ can also be used for the
partonic process c → uγ. As FCNC process, it does not occur at the tree level in the SM
either. Moreover, it is strongly GIM-suppressed at one-loop. The leading QCD logarithms
are known to enhance the one-loop amplitude by more than one order of magnitude. It
was shown in [80] that the amplitude increases further by two orders of magnitude after
including the formally NLL QCD effects. So the c → uγ process is completely dominated by
a two-loop term. However, this is only of theoretical interest, because the ∆S = 0 radiative
decays of charmed hadrons remain dominated by the c → dd̄uγ and c → ss̄uγ subprocesses.
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FIG. 14. One-loop contributions to the decay B → Xs�
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V. PERTURBATIVE CALCULATIONS IN B → XS�
+�− AND B → XS ν̄ν

In comparison with the B → Xsγ decay, the inclusive B → Xs�
+�− decay presents a

complementary and also more complex test of the SM, since different contributions add to
the decay rate (fig. 14).

It is particularly attractive because of kinematic observables such as the invariant dilep-
ton mass spectrum and the forward–backward (FB) asymmetry. It is also dominated by
perturbative contributions, if one eliminates cc̄ resonances with the help of kinematic cuts
(see section VIID).

The effective Hamiltonian relevant to B → Xs�
+�− in the SM reads

Heff(B → Xs�
+�−) = −4GF√

2
λt

10∑
i=1

Ci(µ)Oi(µ) . (V.13)

Compared with the decay B → Xsγ (see (IV.9)), the effective Hamiltonian (V.13) con-
tains two additional operators O(αem) (see fig. 15):

O9 =
e2

16π2
(s̄γµPLb) (l̄γ

µl) ,

O10 =
e2

16π2
(s̄γµPLb) (l̄γ

µγ5l) .

(V.14)

It turns out that the first large logarithm of the form log(mb/M) (M = mW ) already
arises without gluons, because the operator O2 mixes into O9 at one loop via the diagram
given in fig. 16.

This possibility, which has no equivalent in the b → sγ case, leads to the following
ordering of contributions to the decay amplitude (which should be compared with (II.2) and
(II.3)):

[αem log(mb/M)] αns (mb) log
n(mb/M) [LL] ,

[αem log(mb/M)] αn+1
s (mb) log

n(mb/M) [NLL] , . . . (V.15)
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FIG. 16. Mixing of the operator O2 into O9 at one loop.

Technically, to perform the resummation, it is convenient to transform these series into
the standard form (II.2). This can be achieved by redefining magnetic, chromomagnetic and
lepton-pair operators as follows [83,84]:

Onew
i =

16π2

g2
s

Oold
i , Cnewi =

g2
s

(4π)2
Coldi , (i = 7, ..., 10). (V.16)

This redefinition enables one to proceed in the standard way, or as in b → sγ, in the
three calculational steps discussed at the end of section II. At the high scale, the new
Wilson coefficients can be computed at a given order in perturbation theory and expanded
in powers of αs:

Cnewi = C
(0)
i +

αs
(4π)

C
(1)
i +

α2
s

(4π)2
C

(2)
i + ... (V.17)

Obviously, the Wilson coefficients of the new operators O7−10 at the high scale start at order
αs only. Then the anomalous-dimension matrix has the canonical expansion in αs and starts
with a term proportional to αs:

γnew =
αs
4π

γ(0) +
α2
s

(4π)2
γ(1) +

α3
s

(4π)3
γ(2) + ... (V.18)

In particular, after the reshufflings in (V.16), the one-loop mixing of the operator O2 with
O9 formally appears at order αs.
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The last of the three steps, however, requires some care: among the new operators with
a non-vanishing tree-level matrix element, only O9 has a non-vanishing coefficient at the LL
level. Therefore, at this level, only the tree-level matrix element of this operator (〈O9〉) has
to be included. At NLL accuracy the QCD one-loop contributions to 〈O9〉, the tree-level
contributions to 〈O7〉 and 〈O10〉, and the electroweak one-loop matrix elements of the four-
quark operators have to be calculated. Finally, at NNLL precision, one should in principle
take into account the QCD two-loop corrections to 〈O9〉, the QCD one-loop corrections to
〈O7〉 and 〈O10〉, and the QCD corrections to the electroweak one-loop matrix elements of
the four-quark operators.

The present status of these perturbative contributions to decay rate and FB asymmetry
of B → Xs�

+�− is the following: the complete NLL contributions to the decay amplitude
have been found in [83,84]. Since the LL contribution to the rate turns out to be numerically
rather small, NLL terms represent an O(1) correction to this observable. On the other hand,
since a non-vanishing FB asymmetry is generated by the interference of vector (∼ O7,9) and
axial-vector (∼ O10) leptonic currents, the LL amplitude leads to a vanishing result and
NLL terms represent the lowest non-trivial contribution to this observable.

In view of the forthcoming precise measurements at the B factories, a computation of
NNLL terms in B → Xs�

+�− is needed if one aims at the same numerical accuracy as
achieved by the NLL analysis of B → Xsγ. Large parts of the latter can be taken over and
used in the NNLL calculation of B → Xs�

+�−. But this is not the full story.

• (Step 1) The full computation of initial conditions to NNLL precision was presented
in Ref. [81]. The authors did the two-loop matching for all the operators relevant to
b → s�+�− (including a confirmation of the b → sγ NLL matching results of [63,68]).
The inclusion of this NNLL contribution removes the large matching scale uncertainty
(around 16%) of the NLL calculation of the b → s�+�− decay rate.

• (Step 2) Thanks to the reshufflings of the LL series, most of the NNLL contributions
to the anomalous-dimension matrix can be derived from the NLL analysis of b → sγ.
In particular the three-loop mixing of the four-quark operators O1−6 into O7 and O8

can be taken over from Ref. [64], which allows an evaluation of the matrix element

U
(2)
72 (using the usual convention Ci(µb) = UijCj(µW )). The only missing piece for a

full NNLL analysis of the b → s�+�− decay rate is the matrix element U
(2)
92 (see fig.

18).

In [81] an estimate was made, which suggests that the numerical influence of U
(2)
92 on

the branching ratio of b → s�+�− is small. Interestingly, since the FB asymmetry has
no contributions proportional to |〈O9〉|2, this missing term is not needed for a NNLL
analysis of this observable.

• (Step 3) Within the B → Xsγ calculation at NLL, the two-loop matrix elements
of the four-quark operator O2 for an on-shell photon were calculated in [62], using
Mellin–Barnes techniques. This calculation was extended in [82] to the case of an
off-shell photon (see fig. 17) with the help of a double Mellin–Barnes representation
which corresponds to a NNLL contribution relevant to the decay B → Xs�

+�−. The
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FIG. 17. Typical diagrams (finite parts) contributing to the matrix element of the operator O2

at the NNLL level (Step 3).
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FIG. 18. Parts still missing in a complete canonical NNLL analysis of the dilepton mass spec-
trum. Left: typical diagram (infinite part) contributing to the NNLL mixing U (2)

92 , Step 2. Right:
typical diagram (finite piece) contributing to the NNLL matrix element of the operator O9, Step 3.

validity of these analytical results given in [82] is restricted to small dilepton masses
q2
$+$−/m

2
b < 0.25. An independent numerical check of these results has been performed

in [75]. Moreover, the NNLL calculation in [75] is also valid for high dilepton masses
for which the experimental methods have an efficiency much higher than the one at
low dilepton masses. Step 3 also includes the bremsstrahlung contributions which were
calculated for the dilepton mass spectrum (symmetric part) in [73,72] and for the FB
asymmetry in [72,74]. In the low dilepton spectrum, these matrix element calculations
reduce the error corresponding to the uncertainty of the low-scale dependence from
±13% down to ±6.5%.

In principle, a complete NNLL calculation of the B → Xs�
+�− rate would require also

the calculation of the renormalization-group-invariant two-loop matrix element of the
operator O9 (see fig. 18). But its impact to the dilepton mass spectrum is expected to
be small. Similarly to the missing piece of the anomalous-dimension matrix, also this
(scale-independent) contribution does not enter the FB asymmetry at NNLL accuracy.

As anticipated, the canonical LL expansion is numerically not well justified, since the
formally-leading O(1/αs) term in C9 is numerically close to the O(1) term. For this reason,
it has been proposed in Ref. [82] to use a different counting rule, where the O(1/αs) term
of C9 is treated as O(1). This approach, although it cannot be consistently extended at
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FIG. 19. One-loop contributions to the decay B → Xsνν̄.

higher orders, seems to be well justified at the present status of the calculation. Within this
approach, the two missing ingredients for a NNLL calculation of the dilepton mass spectrum
(see fig. 18) would be of higher order.

The decay B → Xs,dνν̄ is induced by Z0 penguin and box diagrams (see fig. 19). The
main difference to the semi-leptonic decay B → Xs,d�

+�̄− is the absence of a photon penguin
contribution. The latter implies only a logarithmic GIM suppression, while the former
contributions have a quadratic GIM suppression. As a consequence, the decay B → Xs,dνν̄
is completely dominated by the internal top contribution.

The effective Hamiltonian reads

Heff(B → Xsνν̄) = −4GF√
2

α

2π sin2 ΘW
VtbV

∗
ts C(m

2
t/m

2
W ) (s̄γµPLb)(ν̄γ

µPLν) + h.c. (V.19)

For the decay B → Xdνν̄ the obvious changes have to be made.
The hard (quadratic) GIM mechanism leads to C(m2

c/m
2
W )/C(m2

t/m
2
W ) ≈ O(10−3).

Moreover, the corresponding CKM factors in the top and the charm contribution are both
of order λ2. Therefore the charm contribution (and also the up quark contribution) can
safely be neglected.

The NLL QCD contributions to the partonic decay rate were presented in [85]. The
perturbative error, namely the one due to the renormalization scale, was reduced from
O(10%) at the LL level to O(1%) at the NLL level.

30



VI. NON-PERTURBATIVE CONTRIBUTIONS

A. Inclusive decay rates of B mesons

In contrast to the exclusive rare B decays, the inclusive ones are theoretically clean
observables and dominated by the partonic contributions. Bound-state effects of the final
states are eliminated by averaging over a specific sum of hadronic states. Moreover, also
long-distance effects of the inital state are accounted for, through the heavy mass expansion
in which the inclusive decay rate of a heavy B meson is calculated using an expansion in
inverse powers of the b quark mass [30].

This heavy-mass expansion is now a well-known method to calculate the inclusive decay
rates of a hadron containing a heavy quark, especially a b quark. The optical theorem relates
the inclusive decay rate of a hadron Hb to the imaginary part of certain forward scattering
amplitudes

Γ(Hb → X) =
1

2mHb

Im 〈Hb | T | Hb〉 , (VI.20)

where the transition operator T is given by T = i
∫
d4xT [Heff(x)Heff (0)]. The insertion of

a complete set of states, X〉〈X, leads to the standard formula for the decay rate:

Γ(Hb → X) =
1

2mHb

∑
X

(2π)4δ4(pi − pf ) | 〈X | Heff | Hb〉 |2 . (VI.21)

It is then possible to construct an operator product expansion (OPE) of the operator
T, which gets expressed as a series of local operators - suppressed by powers of the b quark
mass and written in terms of the b quark field:

T [HeffHeff ]
OPE
=

1

mb

(O0 +
1

mb

O1 +
1

m2
b

O2 + ...) . (VI.22)

This construction is based on the parton–hadron duality [31], using the facts that the sum
is done over all exclusive final states and that the energy release in the decay is large with
respect to the QCD scale, mb � ΛQCD.

With the help of the HQET, namely the new heavy-quark spin-flavour symmetries arising
in the heavy quark limit mb → ∞ [28], the hadronic matrix elements within the OPE,
〈Hb | Oi | Hb〉, can be further simplified.

The crucial observations within this well-defined procedure, which are important for the
application to the inclusive rare B decays, are the following: the free quark model turns
out to be the first term in the constructed expansion in powers of 1/mb and therefore the
dominant contribution. This contribution can be calculated in perturbative QCD. Second,
in the applications to inclusive rare B decays one finds no correction of order 1/mb to the
free quark model approximation, and the corrections to the partonic decay rate start with
1/m2

b only. The latter fact implies the rather small numerical impact of the non-perturbative
corrections to the decay rate of inclusive modes.
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FIG. 20. Relevant cut diagram for the (O7,O7) contribution.

B. Non-perturbative corrections to B → Xs,dγ and B → Xs�
+�−

These techniques can directly be used in the decay B → Xsγ, in order to single out
non-perturbative corrections to the branching ratio. They are also applicable to the case of
B → Xdγ and, with some modifications, to the case of B → Xs�

+�−.

If one neglects perturbative QCD corrections and assumes that the decay B → Xsγ is due
to the operator O7 only, then one has to consider the time-ordered product TO+

7 (x)O7(0).
Using the OPE for TO+

7 (x)O7(0) and heavy quark effective theory methods as discussed
above, the decay width Γ(B → Xsγ) reads [86,87] (modulo higher terms in the 1/mb expan-
sion):

Γ
(O7,O7)
B→Xsγ =

αG2
Fm

5
b

32π4
|VtbVts|2 C2

7(mb)

(
1 +

δNPrad
m2
b

)
,

δNPrad =
1

2
λ1 − 9

2
λ2 , (VI.23)

where λ1 and λ2 are the HQET parameters for the kinetic and the chromomagnetic energy.
Using λ1 = −0.5GeV2 and λ2 = 0.12GeV2, one gets δNPrad � −3%.

The B → Xsγ decay width is usually normalized by the semi-leptonic one. The semi-
leptonic decay width gets 1/m2

b corrections, which are also negative:

δNPsemilept =
1

2
λ1 − (

3

2
− 6(1− z)4

g(z)
)λ2, (VI.24)

where g(z) is a phase-space factor and z the ratio m2
c,pole/m

2
b,pole.

The non-perturbative corrections scaling with 1/m2
b tend to cancel in the branching ratio

B(B → Xsγ)/B(B → Xc�ν), and only about 1% remains: the HQET parameter λ1 cancels
out in the ratio and the HQET parameter λ2 is known from B∗ − B mass splitting,

λ2 =
1

4
(m2

B∗ −m2
B). (VI.25)

Voloshin [88] considered the non-perturbative effects that arise when including also the
operator O2. This effect is generated by the diagram in fig. 21a (and by the one, not shown,
where the gluon and the photon are interchanged); g is a soft gluon interacting with the
charm quarks in the loop. Up to a characteristic Lorentz structure, this loop is given by the
integral
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FIG. 21. a) Feynman diagram from which the operator Õ arises. b) Relevant cut diagram for
the (Õ,O7) interference.

∫ 1

0
dx

∫ 1−x

0
dy

xy

m2
c − k2

gx(1− x)− 2xykgkγ
. (VI.26)

As the gluon is soft, i.e. k2
g , kgkγ ≈ ΛQCDmb/2 � m2

c , the integral can be expanded in kg.

The (formally) leading operator, denoted by Õ, is

Õ =
GF√
2
VcbV

∗
csC2

eQc
48π2m2

c

s̄γµ(1− γ5)gsGνλb ε
µνρσ∂λFρσ . (VI.27)

Then working out the cut diagram shown in fig. 21b, one obtains the non-perturbative con-

tribution Γ
(Õ,O7)
B→Xsγ to the decay width, which is due to the (O2,O7) interference. Normalizing

this contribution by the LL partonic width, one obtains [91]

Γ
(Õ,O7)
B→Xsγ

ΓLLb→sγ
= −1

9

C2

C7

λ2

m2
c

� +0.03 . (VI.28)

As the expansion parameter is mbΛQCD/m
2
c ≈ 0.6 (rather than Λ2

QCD/m
2
c), it is not a

priori clear whether, formally, higher order terms in the 1/mc expansion are numerically
suppressed. More detailed investigations [89–91] have shown that higher order terms are
indeed suppressed, because the corresponding expansion coefficients are small.

The analogous 1/m2
c effect has been found independently in the exclusive mode B → K∗γ

in ref. [92]. Numerically, the effect there is also at the few percent level.

As was emphasized by Misiak [97], an analogous systematic analysis of terms like Γ
(O2,O2)
B→Xsγ

at first order in αs(mb) is still missing. Rigorous techniques such as OPEs do not seem to
be applicable in this case.

The analysis of the 1/m2
b and 1/m2

c effects was extended to the decay B → Xs�
+�− in

[86,87,91,93,95]. They can be calculated quite analogously to those in the decay B → Xsγ.
As was first noticed in [87], the relative Λ2

QCD/m
2
b correction diverges in the high-q$+$−

endpoint, which indicates the breakdown of the heavy mass expansion.
There are also on-shell cc̄ resonances, which have to be taken into account. While in

the decay B → Xsγ (on-shell photon) the intermediate ψ background for example, namely
B → ψXs followed by ψ → X ′γ, is suppressed for a high energy cut Eγ and can be subtracted
from the B → Xsγ decay rate (see section IIIA), the cc̄ resonances show up as large peaks
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in the dilepton invariant mass spectrum in the decay B → Xs�
+�− (off-shell photon). These

resonances can be removed by appropriate kinematic cuts in the invariant mass spectrum.

Also the non-perturbative contributions in the decay B → Xdγ can be treated in analogy
to the ones in the decay B → Xsγ. The power corrections in 1/m2

b and 1/m2
c (besides the

CKM factors) are the same for the two modes. But the long-distance contributions from
the intermediate u-quark in the penguin loops are different. These are suppressed in the
B → Xsγ mode by the unfavourable CKM matrix elements. In B → Xdγ, there is no CKM
suppression and one has to include the long-distance intermediate u-quark contributions.

Naively, one could expect that these contributions from up-quark loops scale with 1/m2
u.

However, following the approach of [91], one easily shows that the general vertex function
cannot in that case be expanded in the parameter t = k · q/m2

u (where k and q are the gluon
and photon momentum respectively). But the expansion in inverse powers of t is reasonable.
The leading term in this expansion scales like t−1 ∼ m2

u/kgkγ and therefore cancels the factor
1/m2

u in the prefactor (see the analogous 1/m2
c factor in (VI.27)) and one gets a suppression

factor (Λ2
QCD/m

2
u) · (m2

u/kgkγ). Thus, although the expansion in inverse powers in t induces
non-local operators, one explicitly finds that the leading term scales with ΛQCD/mb. This
indicates no large long-distance intermediate u-quark contributions.

Model calculations, based on vector meson dominance, also suggest this conclusion [113].
Furthermore, estimates of the long-distance constributions in exclusive decays B → ργ and
B → ωγ in the light-cone sum rule approach do not exceed 15% [115].

Finally, it must be stressed that there is no spurious enhancement of the form log(mu/µb)
in the perturbative contribution to the matrix elements of the four-quark operators, as shown
by the explicit calculation in [62] (see also [116]). In other words, the limit mu → 0 can be
taken.

All these observations exclude very large long-distance intermediate u-quark contribu-
tions in the decay B → Xdγ.
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VII. PHENOMENOLOGY

A. SM prediction of B → Xsγ

The theoretical prediction for the partonic b → Xparton
s γ decay rate is usually normalized

by the semi-leptonic decay rate in order to get rid of uncertainties related to the CKM matrix
elements and the fifth power of the b quark mass. Moreover, an explicit lower cut on the
photon energy in the bremsstrahlung correction has to be made:

Rquark(δ) =
Γ[b → sγ] + Γ[b → sγgluon]δ

Γ[b → Xceν̄e]
, (VII.29)

where the subscript δ means that only photons with energy Eγ > (1−δ)Emaxγ = (1−δ)mb

2
are

counted. The ratio Rquark is divergent in the limit δ → 1, owing to the soft photon divergence
in the subprocess b → sγgluon. In this limit only the sum of Γ[b → sγ], Γ[b → sgluon] and
Γ[b → sγgluon] is a reasonable physical quantity, in which all divergences cancel out. In
[45] it was shown that the theoretical result is rather sensitive to the unphysical soft-photon
divergence; the choice δ = 0.90 was suggested as the definition of the ‘total’ decay rate.

It is suggestive to give up the concept of a ‘total’ decay rate of b → sγ and compare
theory and experiment using the same energy cut. Then also the theoretical uncertainty
regarding the photon energy spectrum mentioned in section IIIB would occur naturally in
the theoretical prediction.

Using the measured semi-leptonic branching ratio Bslexp., the branching ratio B(B → Xsγ)
is given by

B(B → Xsγ) = Rquark × Bslexp.(1 + ∆nonpert), (VII.30)

where the non-perturbative corrections scaling with 1/m2
b and 1/m2

c , summed in ∆nonpert (see
section VI), have a numerical effect of +1% and +3%, respectively, on the branching ratio
only. For a comparison with the ALEPH measurement (III.3), the measured semi-leptonic
branching ratio B(Hb → Xc,u�ν) should be used consistently. This leads to a slightly larger
theoretical prediction for the LEP experiments.

Including only the resummed QED corrections and the non-perturbative corrections dis-
cussed in section VI, and using the on-shell value of αem and the charm pole mass, one ends
up with the following theoretical prediction for the B → Xsγ branching ratio [103]:

B(B → Xsγ) = (3.32± 0.30)× 10−4, (VII.31)

where the error has two sources, the uncertainty regarding the scale dependences and the
uncertainty due to the input parameters. In the latter the uncertainty due to the parameter
mc/mb is dominant. This prediction almost coincides with the prediction of Kagan and
Neubert [45].

In [108] two important observations were made. First it was shown that the charm-
loop contribution to the decay B → Xsγ is numerically dominant, and very stable under
logarithmic QCD corrections, and that the strong enhancement of the branching ratio by
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FIG. 22. The one-loop matrix element of the four-quark operators O1,2 vanishes (left), therefore
the charm dependence starts with the two-loop (NLL) contribution (right).

QCD logarithms is mainly due to the b-quark mass evolution in the top-quark sector. This
leads to a better control over the residual scale dependence at NLL.

Secondly, quark mass effects within the decay B → Xsγ were further analysed, in par-
ticular the definitions of the quark masses mc and mb in the two-loop matrix element of the
four-quark operators O1,2 (see fig. 22). Since the charm quark in the matrix element 〈O1,2〉
are dominantly off-shell, it is argued that the running charm mass should be chosen instead
of the pole mass. The latter choice was used in all previous analyses [62,64,69,45,103].

mpole
c /mpole

b ⇒ mMS
c (µ)/mpole

b , µ ∈ [mc, mb]. (VII.32)

Numerically, the shift frommpole
c /mpole

b = 0.29±0.02 tomMS
c (µ)/mpole

b = 0.22±0.04 is rather
important and leads to a +11% shift of the central value of the B → Xsγ branching ratio.
The error in the charm mass within the MS scheme, is due to the uncertainty resulting
from the scale variation and due to the uncertainty in mMS

c (mMS
c ). With their new choice

of the charm mass renormalization scheme and with δ = 0.9, their theoretical prediction for
the ‘total’ branching ratio is2

B(B → Xsγ) = (3.73± 0.30)× 10−4. (VII.33)

Since the matrix element starts at NLL order (see fig. 22) and, thus, the renormalization
scheme for mc is an NNLL issue, one should regard the choice of the MS scheme as an
educated guess of the NNLL corrections. Nevertheless, the new choice is guided by the
experience gained from many higher order calculations in perturbation theory. Moreover,
the MS mass of the charm quark is also a short-distance quantity which does not suffer
from non-perturbative ambiguities, in contrast to its pole mass. Therefore the central value
resulting within this scheme, VII.33, is definitely favoured and should be regarded as the
present theoretical prediction.

2Actually, the theoretical prediction in [108] is given for the energy cut Eγ = 1.6 GeV:
B(B → Xsγ)Eγ>1.6GeV = (3.60 ± 0.30) × 10−4. The theoretical error in (VII.33) might be larger
due to nonperturbative corrections (see section III).
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One should note that the scheme ambiguity regarding the b quark mass is under control.
Because the choice of the renormalization scheme for mc is a NNLL effect, one has to

emphasize that regarding the charm mass scheme the theoretical prediction (VII.31) using
the pole mass scheme is in principle as good as the new prediction (VII.33) using the MS
scheme; both predictions do not take into account the full impact of charm mass scheme
ambiguity. Thus, one has to argue for a larger theoretical uncertainty in mMS

c (µ)/mpole
b ,

which includes also the value of mpole
c . This leads to a more appropriate error above 10% in

VII.33.

One should emphasize that this present dominant uncertainty is due to a charm mass
scheme ambiguity at the NLL level, i.e. to the question if the MS or the pole mass is more
appropriate to estimate the unknown NNLL contributions. This uncertainty is of perturba-
tive origin. The second uncertainty is due to the numerical value of mc within the specific
choice of the charm mass scheme and is a parametrical uncertainty. The Particle Data Re-
view in its latest edition [1] gives the following range for the latter uncertainty within the

MS scheme: 1.0GeV ≤ mMS
c (mMS

c ) ≤ 1.4GeV and has therefore doubled the uncertainty
with respect to the one quoted previously [114]. Nevertheless, there are determinations using
the sum rule technique [109] and also one that use the lattice technique (in the quenched
approximation) [110] which indicate much smaller uncertainties.

The only way to resolve this charm mass scheme ambiguity within the present theoretical
NLL prediction and to reduce the uncertainty below 10%, would be a NNLL calculation,
which is not beyond the power of present technical tools in perturbation theory. Such an
ambitious programmakes sense only if one is sure that the associated non-perturbative effects
are under control. It was argued [111] that the numerical behaviour of the branching ratio of
B → Xsγ as a function of mc suggests that the dominant charm mass dependence originates
from distances much smaller than ΛQCD. In such a case, the associated non-perturbative
effects would be under control and negligible.

B. CKM phenomenology with B → Xs,dγ

Instead of making a theoretical prediction for the branching ratio B(B → Xsγ), one can
use the experimental data and theory in order to determine the combination |VtbV ∗

ts|/|Vcb|
of CKM matrix elements; in turn, one can determine |Vts| by making use of the relatively
well known CKM matrix elements Vcb and Vtb. But having used the unitarity constraint in
the theory prediction already, the B → Xsγ constraint on Vts does not add much to what
is already known from the unitarity fit [112,103]. If one does not use the CKM unitarity,
the sensitivity of B → Xsγ to Vts gets significantly reduced, because the charm quark
contribution is twice as large as the top quark contribution.

A future measurement of the B → Xdγ decay rate will help to reduce the currently
allowed region of the CKM Wolfenstein parameters ρ and η. It is also of specific interest
with respect to new physics, because its CKM suppression by the factor |Vtd|2/|Vts|2 in the
SM may not be true in extended models.

Most of the theoretical improvements carried out in the context of the decay B → Xsγ
can straightforwardly be adapted for the decay B → Xdγ and, thus, the NLL-improved and
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power-corrected decay rate for B → Xdγ has much reduced theoretical uncertainty, which
would allow an extraction of the CKM parameters from the measured branching ratio.

The predictions for the B → Xdγ decay given in [79] show that, for the central values of
the input parameters, the difference between the LL and NLL results is ∼ 10%, increasing
the branching ratio in the NLL case. Of particular theoretical interest is the ratio of the
branching ratios, defined as

R(dγ/sγ) ≡ B(B → Xdγ)

B(B → Xsγ)
, (VII.34)

in which a good part of the theoretical uncertainties cancels. This suggests that a future
measurement of R(dγ/sγ) will have a large impact on the CKM phenomenology: varying
the CKM Wolfenstein parameters ρ and η in the ranges −0.1 ≤ ρ ≤ 0.4 and 0.2 ≤ η ≤ 0.46
and taking into account other parametric dependences stated above, the results (without
electroweak corrections) are

6.0× 10−6 ≤ B(B → Xdγ) ≤ 2.6× 10−5 ,

0.017 ≤ R(dγ/sγ) ≤ 0.074 .

In these predictions [79] it is assumed that the long-distance intermediate u-quark contri-
butions play only a subdominant role (see the discussion at the end of section VI).

As mentioned in section IIIB, the photon spectrum of B → Xsγ plays an important role
in the determination of the CKM matrix element Vub.

C. Role of b → s gluon for B → Xno charm

Some remarks on the decay mode b → s gluon are in order. The effective Hamiltonian
in the decay mode b → s gluon coincides with the one in the decay b → sγ. By replacing
the photon by the gluon, the NLL QCD calculation of b → sγ can also be used. But
in the calculation of the matrix element of the operator O2, further diagrams with the
nonabelian three-gluon coupling had to be calculated [104]. The NLL calculation [104] leads
to B(b → s gluon) = (5.0 ± 1.0) × 10−3, which is a factor of more than 2 larger than the
former LL result B(b → s gluon) = (2.2±0.8)×10−3 [60]. The mode b → s gluon represents
one component of the inclusive charmless hadronic decays, B → Xnocharm, where Xnocharm

denotes any hadronic charmless final state. The corresponding branching ratio allows for the
extraction of the ratio |Vub/Vcb| [106]. At the quark level, there are decay modes with three-
body final states, b → q′q′q (q′ = u, d, s; q = d, s) and the modes b → qg, with two-body
final-state topology. The component b → sg of the charmless hadronic decays is expected to
manifest itself in kaons with high momenta (of order mb/2), owing to its two-body nature
[107]. The impact of the NLL corrections in b → sg on the inclusive charmless hadronic
decays, B → Xnocharm, turns out to be as big as the NLL corrections to the b quark decay
modes with three quarks [104].

There is still only marginal overlap between theory and experiment for the inclusive
semi-leptonic branching ratio and the charm multiplicity in B meson decays [105], if usual
scale variations are used in the theoretical predictions [104]. A possible reinforcement of the
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decay b → sg due to new physics through the chromomagnetic (O8) contribution would lead
to a natural explanation of these effects [107]. There is still room for such a scenario, which
would be also compatible with the present B → Xsγ constraint [16].

D. Phenomenology of B → Xs�
+�−

In comparison with the B → Xsγ, the inclusive B → Xs�
+�− decay presents a com-

plementary and also more complex test of the SM. As mentioned above, also this decay is
dominated by perturbative contributions if the cc̄ resonances that show up as large peaks in
the dilepton invariant mass spectrum (see fig. 23 [94]) are removed by appropriate kinematic
cuts. In the ’perturbative windows’, namely in the low-s region 0.05 < s = q2/m2

b < 0.25
and also in the high-s region with 0.65 < s < smax (for smax see section VI), theoretical
predictions for the invariant mass spectrum are dominated by the purely perturbative contri-
butions, and a theoretical precision comparable with the one reached in the decay B → Xsγ
is in principle possible. Regarding the choice of precise cuts in the dilepton mass spectrum,
it is important that one directly compares theory and experiment using the same energy
cuts and avoids any kind of extrapolation.

In the high-s region, one should encounter the breakdown of the heavy mass expansion
at the endpoint (see section VI). This fact leads to sizeable Λ2

QCD/m
2
b non-perturbative

corrections in this region. In [95] rather large Wilson coefficients to order Λ3
QCD/m

3
b were

found. The latter can be used to give an estimate of these corrections while the corresponding
matrix elements are unknown. Following an argument in [96], one can show that this
ΛQCD/mb expansion is effectively a ΛQCD/mc one in the high-s region.

The kinematic observables, the invariant dilepton mass spectrum and the forward–
backward (FB) asymmetry are usually normalized by the semi-leptonic decay rate in order
to reduce the uncertainties due to bottom quark mass and CKM angles. The normalized
dilepton invariant mass spectrum and the FB asymmetry are defined as

R(s) =
d

ds
Γ(B → Xs�

+�−)/Γ(B → Xceν̄), (VII.35)

AFB(s) =
1

Γ(B → Xceν̄)
×
∫ 1

−1
d cos θ$

d2Γ(B → Xs�
+�−)

ds d cos θ$
sgn(cos θ$), (VII.36)

where θ$ is the angle between �+ and B momenta in the dilepton centre-of-mass frame 3

It was shown in [87] that AFB(s) is equivalent to the energy asymmetry introduced in
[149]:

Aenergy =
N(E$− > E$+)−N(E$+ > E$−)

N(E$− > E$+) +N(E$+ > E$−)
(VII.37)

3The so-called ‘normalized’ FB asymmetry, which is also often used, is given by
AFB(s) =

∫ 1
−1 d cos θ$

d2Γ(B→Xs$+$−)
ds d cos θ�

sgn(cos θ$)/
∫ 1
−1 d cos θ$

d2Γ(B→Xs$+$−)
ds d cos θ�
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FIG. 23. Schematic dilepton mass spectrum of B → Xs�
+�−, the dashed line corresponds to

the perturbative contribution.

where N(E$− > E$+) denotes the number of lepton pairs whose negatively charged member
is more energetic in the B meson rest frame than its positive partner. From the experimen-
tal point of view, there is no significant difference either between measuring the inherent
asymmetry using the lepton energy distribution or using the three-momentum information.

For the low-s region the present partonic NNLL prediction is given in [73,75]:

∫ 0.25

0.05
dŝR$

+$−
quark(ŝ) = (1.28± 0.08scale ) × 10−5 (VII.38)

The error quoted in (VII.38) reflects only the renormalization scale uncertainty and is purely
perturbative. There is no additional problem due to the charm mass renormalization scheme
ambiguity within the decay B → Xs�

+�− because the charm dependence starts already at
one loop, in contrast to the case of the decay B → Xsγ (see fig. 16). The charm dependence
itself leads to an additional uncertainty of ∼ 7.6% within the partonic quantity (VII.38), if
the pole mass is varied, mpole

c /mpole
b = 0.29± 0.02.

As discussed in section V, the impact of the NNLL contributions is significant. The
large matching scale µW uncertainty of 16% of the NLL result was removed; the low-scale
uncertainty µb of 13% was cut in half; and also the central value of the integrated low
dilepton spectrum (VII.38) was significantly changed by ≈ −14% due to NNLL corrections.

These small uncertainties in the inclusive mode should be compared with the ones of the
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FIG. 24. Comparison of the different short-distance contributions to Rquark(ŝ) (NLL precision),
from [84].

corresponding exclusive mode B → K∗µ+µ− given in [117]; ∆BR = (+26
−17,±6,+6

−4 ,
−0.7
+0.4 ,±2)%.

The first dominant error represents the hadronic uncertainty due to the form factors.

Using the measured semi-leptonic branching ratio Bslexp., the prediction for the corre-
sponding branching ratio is given by

B(B → Xs�
+�−)Cut: ŝ∈[0.05,0.25] =

= Bslexp.
∫ 0.25

0.05
dŝ [R$

+$−
quark(ŝ) + δ1/m2

b
R(ŝ) + δ1/m2

c
R(ŝ)]

= 0.104 [(1.27± 0.08scale ) + 0.06− 0.02]× 10−5

= (1.36± 0.08scale )× 10−6. (VII.39)

δ1/m2
b
R(ŝ) and δ1/m2

b
R(ŝ) are the non-perturbative contributions discussed in section VI. The

recent first measurement of BELLE, with a rather large uncertainty [54], is compatible with
this SM prediction.

One could think that within the perturbative window at low ŝ ∈ [0.05, 0.25], one is
only sensitive to C7, which would be redundant information, since we already know it from
the decay B → Xsγ. But, as was explicitly shown in [83,84], one is also sensitive to
the new Wilson coefficients C9 and C10 and interference terms in the low ŝ regime with
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ŝ = m$+$−/m
2
b ∈ [0.05, 0.25] (see fig. 24 where the various perturbative contributions to

Rquark (with NLL precision) are plotted).

A phenomenological NNLL analysis including also the high dilepton mass region will
be presented in [76]. Clearly, the kinematical cuts should be adjusted to the experimental
choices.

The phenomenological impact of the NNLL contributions on the FB asymmetry is also
significant [72,74]. The position of the zero of the FB asymmetry, defined by AFB(s0) = 0, is
particularly interesting to determine relative sign and magnitude of the Wilson coefficients
C7 and C9 and it is therefore extremely sensitive to possible new physics effects.

Employing the counting rule proposed in [82], i.e. treating the formally O(1/αs) term of
C9 as O(1) (see discussion at the end of section V), the lowest-order value of s0 – formally
derived by the NLL expression of AFB – is determined by the solution of

s0C
eff
9 (s0) + 2Ceff7 = 0 , (VII.40)

where the effective coefficients Ceffi encode also all dominant matrix element corrections,
which leads to an explicit s dependence (see [72], (A.1)) One arrives at

sNLL0 = 0.14± 0.02 , (VII.41)

where the error is determined by the scale dependence. That NLL result is now modified
by the NNLL contributions to [72,74]

sNNLL0 = 0.162± 0.008 . (VII.42)

In this case the variation of the result induced by the scale dependence is accidentally very
small (about ±1%) and cannot be regarded as a good estimate of missing higher-order
effects. Taking into account the separate scale variation of both Wilson coefficients C9 and
C7, and the charm-mass dependence, one estimates a conservative overall error on s0 of
about 5% [72]. In this s region the non-perturbative 1/m2

b and 1/m2
c corrections to AFB(s)

are very small and also under control (see section VI).

An illustration of the shift of the central value and the reduced scale dependence between
NNL and NNLL expressions of AFB(s), in the low s region, is presented in fig. 25. The
complete effect of NNLL contributions to the FB asymmetry adds up to a 16% shift compared
with the NLL result, with a residual error due to higher-order terms reduced at the 5% level.
Thus, the zero of the FB asymmetry in the inclusive mode turns out to be one of the most
sensitive tests for new physics beyond the SM.

The B factories will soon provide statistics and resolution needed for the measurements of
B → Xs�

+�− kinematic distributions. Precise theoretical estimates of the SM expectations
are therefore needed in order to perform new significant tests of flavour physics. The recently
calculated new (NNLL) contributions [81,82,75,73,72,74,76] have significantly improved the
sensitivity of the inclusive B → Xs�

+�− decay in testing extensions of the SM in the sector
of flavour dynamics. Together with the decay B → Xsγ, the inclusive B → Xs�

+�− decay
will make precision flavour physics possible, if one can measure the kinematic variables in
the B → Xs�

+�− decay precisely.
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E. Golden mode B → Xsν̄ν

The decay B → Xsνν̄ is the theoretically cleanest rare B decay, but also the most
difficult experimentally.

As discussed in section V, the partonic decay is completely dominated by the internal top
contribution due to the hard GIM mechanism. The perturbative scale uncertainty is O(1%).
Moreover, the non-perturbative contributions scaling with 1/m2

b are under control and small
[86,87,93]. Because of the absence of the photon-penguin contribution, the non-perturbative
contributions scaling with 1/m2

c can be estimated to be at the level of 10−3 at most [91].

After normalizing to the semi-leptonic branching ratio and summing over the three neu-
trino flavours, the branching ratio of the decay B → Xsνν̄ is given by [85,33]:

B(B → Xsνν̄) = Bslexp.
12α2

π2 sin4 ΘW

|Vts|2
|Vcb|2

C(m2
t/m

2
W ) η̄

f(m2
c/m

2
b) κ(m

2
c/m

2
b)
. (VII.43)

Using the measured semi-leptonic branching ratio and the phase-space factor of the semi-
leptonic decay f , the corresponding QCD correction κ, the QCD correction of the matrix
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element of the decay B → Xsνν̄, namely η̄ = κ(0), and scanning the input parameters, one
ends up with the theoretical prediction [33]:

B(B → Xsνν̄) = (3.5± 0.7)× 10−5. (VII.44)

The replacement of Vts by Vtd in (VII.43) leads to the case of the decay B → Xdνν̄.
Obviously all uncertainties cancel out in the ratio of the two branching ratios of B → Xdνν̄
and B → Xsνν̄. Thus, it allows for the cleanest direct determination of the ratio of the two
corresponding CKM matrix elements.

The measurement of these decay modes is rather difficult. The neutrinos escape de-
tection; one, thus, has to search for the decays B → Xs,dνν̄ through large missing energy
associated with the two neutrinos. Clearly, background control is more than difficult in these
channels. Hopefully, the B factories, with their high statistics and their clean environment,
will be able to measure these decays in the future.

However, the lack of an excess of events with large missing energy in a sample of 0.5×106

bb̄ pairs at LEP already allowed ALEPH to establish an upper bound on the branching ratio
of B → Xsνν̄ [118,119] at 90% C.L.,

B(B → Xsνν̄) < 7.7× 10−4 . (VII.45)

This upper bound is still an order of magnitude above the SM prediction, but it already
leads to constraints on new physics models [119]. For this purpose, the QCD corrections to
the decays B → Xs,dνν̄ in supersymmetric theories (MSSM) have recently been presented
[120].
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VIII. INDIRECT SEARCH FOR SUPERSYMMETRY

A. Generalities

Today supersymmetric models are given priority in our search for new physics beyond
the SM. This is primarily suggested by theoretical arguments related to the well-known
hierarchy problem. Supersymmetry eliminates the sensitivity for the highest scale in the
theory and, thus, stabilizes the low energy theory. The precise mechanism of the necessary
supersymmetry breaking is unknown. A reasonable approach to this problem is the inclusion
of the most general soft breaking term consistent with the SM gauge symmetries in the so-
called unconstrained minimal supersymmetric standard model (MSSM). This leads to a
proliferation of free parameters in the theory.

In the MSSM there are new sources of FCNC transitions. Besides the CKM-induced
contributions, which are brought about by a charged Higgs or a chargino, there are generic
supersymmetric contributions that arise from flavour mixing in the squark mass matrices.
The structure of the MSSM does not explain the suppression of FCNC processes, which is
observed in experiments; the gauge symmetry within the supersymmetric framework does
not protect the observed strong suppression of the FCNC transitions. This is the crucial
point of the well-known supersymmetric flavour problem. Clearly, the origin of flavour
violation is highly model-dependent.

Within the framework of the MSSM there are at present three favoured supersymmet-
ric models that solve the supersymmetric flavour problem by a specific mechanism through
which the sector of supersymmetry breaking communicates with the sector accessible to
experiments: in the minimal supergravity model (mSUGRA) [122], supergravity is the
corresponding mediator; in the other two models, this is achieved by gauge interactions
(GMSB) [123] and by anomalies (AMSB) [124]. Furthermore, there are other classes of
models in which the flavour problem is solved by particular flavour symmetries [125].

The decay B → Xsγ is sensitive to the mechanism of supersymmetry breaking because,
in the limit of exact supersymmetry, the decay rate would be just zero:

B(B → Xsγ)Exact Susy = 0. (VIII.1)

This follows from an argument first given by Ferrara and Remiddi in 1974 [121]. In that
work the absence of the anomalous magnetic moment in a supersymmetric abelian gauge
theory was shown.

Flavour violation thus originates from the interplay between the dynamics of flavour
and the mechanism of supersymmetry breaking. FCNC processes therefore yield important
(indirect) information on the construction of supersymmetric extensions of the SM and can
contribute to the question of which mechanism ultimately breaks supersymmetry and will
thus yield important (indirect) information on the construction of supersymmetric extensions
of the SM. In this context it is important to analyse the correlations between the different
sets of information from rare B and K decays. Moreover, tight experimental bounds on
some flavour-diagonal transitions, such as the electric dipole moment of the electron and of
the neutron, as well as g−2, help constraining the soft terms that induce chirality violations.
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As was already emphasized in the introduction, inclusive rare decays, as loop-induced
processes, are particularly sensitive to new physics and theoretically clean. Neutral flavour
transitions involving third-generation quarks, typically in the B system, do not yet pose
serious threats to specific models. However, the rare decay B → Xsγ has already carved
out large regions in the space of free parameters of most of the models in the classes men-
tioned above. Once more precise data from the B factories are available, this decay will
undoubtedly gain even more efficiency in selecting the viable regions of the parameter space
in the various classes of models. This indirect search for new physics is a model-dependent
issue; especially in the MSSM with its 43 new CP-violating phases. Simplifying assump-
tions about the parameters often introduce model-dependent correlations between different
observables. Thus, flavour physics will also help in discriminating between the models that
will be proposed by then. In view of this, it is important to calculate the rate of the rare B
decays, with theoretical uncertainties as reduced as possible and general enough for generic
supersymmetric models.

In the analysis of FCNC processes within supersymmetry, the additional assumption
of minimal flavour violation (MFV) is often introduced. Minimal flavour violation is then
loosely defined as ’the flavour violation that is completely dictated by the CKM angles’. In
a top/bottom approach, one starts with a specific model of supersymmetry breaking and
then one can try to justify the simplifying assumption of MFV explicitly within the specific
model. In a bottom/top approach, the naive assumption of MFV is problematic, since it
is not stable, within the MSSM, under radiative corrections and calls for a more precise
concept. In [126], a consistent definition was presented, which essentially requires that all
flavour and CP-violating interactions be linked to the known structure of Yukawa couplings.
The constraint within an effective field approach is introduced with the help of a symmetry
concept and can be shown to be renormalization-group-invariant; it is also a valid concept
beyond supersymmetric models [126]. This consistent MFV assumption for example is valid
if the soft terms of the scalar mass are universal and the trilinear soft terms are proportional
to Yukawa couplings, at an arbitrary high scale. Then the physical squark massses are not
equal, but the induced flavour violation is described in terms of the usual CKM parameters.

Perhaps this MFV-based effective field theory approach is too pessimistic from the cur-
rent point of view. One of the key predictions of the MFV is the direct link between the
b → s, b → d and s → d transitions. This prediction within the ∆F = 1 sector is definitely
not well-tested at the moment.

In contrast to the scale of the electroweak symmetry breaking, there is no similarly strong
argument that new flavour structures have to appear at the electroweak scale.

B. Constraints from B → Xsγ

While in the SM, the rate for B → Xsγ is known up to NLL in QCD, the calculation
of this decay rate within supersymmetric models is still far from this level of sophistication.
There are several contributions to the decay amplitude: besides the W t-quark and the H t-
quark contributions, there are also the chargino, gluino and neutralino contributions. The
first systematic MSSM analysis of the decay B → Xsγ was presented in [127].
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FIG. 26. SM, charged Higgs and chargino contribution at the matching scale.

The phenomenological analyses of the decay B → Xsγ in the mSUGRA model
[128,129,170] already excluded large parts of the parameter space of this model. However,
within many analyses the non-standard contributions were often not investigated with NLL
precision as the SM contribution. Besides the large uncertainties in the LL predictions, the
step from the LL to the NLL precision is also necessary in order to check the validity of the
perturbative approach in the model under consideration. Moreover, it was already shown in
specific new-physics scenarios that bounds on the parameter space of non-standard models
are very sensitive to NLL contributions (see below).

Nevertheless, within supersymmetric models, partial NLL results are available. The
gluonic NLL two-loop matching contributions were presented some time ago [131]. A com-
plete NLL calculation of the B → Xsγ branching ratio in the simplest extension of the
SM, namely the two-Higgs-doublet model (2HDM), is already available [69,132,108]: in the
2HDM of Type II (which already represents a good approximation for gauge-mediated su-
persymmetric models with large tanβ, where the charged Higgs contribution dominates the
chargino contribution), the B → Xsγ is only sensitive to two parameters of this model,
the mass of the charged Higgs boson and tanβ. Thus, the experimental data of the decay
B → Xsγ allow for stringent bounds on these two parameters, which are much more restric-
tive than the lower bound on the charged Higgs mass found in the direct search at LEP (see
fig. 27).

One finds that these indirect bounds are very sensitive to NLL QCD corrections and
even to the two-loop electroweak contributions (see [69,132]). Using the latest theoretical
NLL prediction (VII.33) and the latest CLEO measurement (III.2), one finds the tan β
independent bound MH > 350 GeV [108]. But this bound gets weakened if the charm
mass renormalization scheme ambiguity of the present NLL prediction (see section VIIA)
is taken into account. For example, if the pole mass scheme is adapted as in the theoretical
prediction (VII.31), then the weaker bound MH > 280 GeV is found [108].

In [133] a specific supersymmetric scenario is presented, where in particular the possibility
of destructive interference of the chargino and the charged Higgs contribution is analysed.
The analysis has been done under two assumptions. First, that the only source of flavour
violation at the electroweak scale is that of the SM, encoded in the CKM matrix (MFV).
Therefore, the analysis applies to mSUGRA, GMSB and AMSB models (in which the same
features are assumed at the messenger scale) only when the sources of flavour violation,
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Type II as a function of tan β. The B → Xsγ bound is based on the latest CLEO measurement
(III.2), from [108].

generated radiatively between the supersymmetry-breaking scale and the electroweak scale,
can be neglected with respect to those induced by the CKM matrix. The second assumption
is that there exists a specific mass hierarchy, in particular the heavy gluino limit. Indeed,
the NLL calculation has been done in the limit

µg̃ ∼ O(mg̃, mq̄, mt̃1) � µW ∼ O(mW , mH+ , mt, mχ, mt̃2). (VIII.2)

The mass scale of the charginos (χ) and of the lighter stop (t̃2) is the ordinary electroweak
scale µW , while the scale µg is characteristic of all other strongly interacting supersymmetric
particles (squarks and gluinos) and is assumed to be of the order of 1 TeV. NLL QCD
corrections have been calculated up to first order in µW/µg̃, including the important non-
decoupling effects [133].

At the electroweak scale µW , the new contributions do not induce any new operators in
this scenario. Thus, the only step in the new NLL calculation beyond the one within the
SM is Step 1, the matching calculation at the scale µW , where we encounter the two new
CKM-induced contributions of the charged Higgs and the chargino (see fig. 26):

CNLL(µW ) = CSMNLL(µW ) + CH
+

NLL(µW ) + CχNLL(µW ). (VIII.3)

It was found [133] that, in this specific supersymmetric scenario, bounds on the parameter
space are rather sensitive to NLL contributions and they lead to a significant reduction of the
stop-chargino mass region, where the supersymmetric contribution has a large destructive
interference with the charged-Higgs boson contribution. In fig. 28 the upper bounds on
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(see text), from [133].

the lighter chargino and stop masses from B → Xsγ data in the scenario of (VIII.2) are
illustrated if a light charged Higgs mass of mH± = 100 GeV is assumed. The stop mixing is
set to |θt̃| < π/10, which corresponds to the assumption of a mainly right-handed light stop.
Moreover, |µ| < 500 GeV and all heavy masses are around 1 TeV. For tanβ = 2 and 4 the
results of the LL, ‘NLL running’ and NLL calculations are given. The result of neglecting
the new NLL supersymmetric contributions to the Wilson coefficients is labelled as ‘NLL
running’ and illustrates the importance of the NLL chargino contribution [133].

This specific MFV scenario was refined and extended to the large tan β regime by the
resummations of terms of the form αns tann+1 β [13,14]. Additional tanβ terms, which
have to be summed in the large tanβ regime were singled out in [126]. The stability of
the renormalization–group–improved perturbation theory was re-assured for this specific
scenario: the resummed NLL results in the large tanβ regime show constraints similar to
the LL results (see [134]). For example, it is a well-known feature in the mSUGRA model
that, depending on the sign of At · µ (where At denotes the stop mixing parameter) the
chargino contribution can interfere constructively (At · µ > 0) or destructively (At · µ < 0)
with the SM and the charged Higgs contribution. Therefore, the scenario At · µ > 0 within
this model requires very heavy superpartners in order to accommodate the B → Xsγ data.
But also the case At · µ < 0 is constrained in the large tanβ regime where the chargino
contribution is strongly enhanced [13,14,134] (see fig. 29).

However, all these NLL analyses are valid only in the heavy gluino regime. Thus, they
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FIG. 30. NLL gluino contributions to the decay B → Xsγ.

cannot be used in particular directions of the parameter space of the above-listed models
in which quantum effects induce a gluino contribution as large as the chargino or the SM
contributions. Nor can it be used as a model-discriminator tool, able to constrain the poten-
tially large sources of flavour violation typical of generic supersymmetric models. Therefore,
a complete NLL calculation, also within the MFV approach, should include contributions
where the gluon is replaced by its superpartner gluino (see fig. 30) [135].

The flavour non-diagonal gluino–quark–squark vertex induced by the flavour violating
scalar mass term and trilinear terms is particularly interesting. This vertex is generically
assumed to induce the dominant contribution to quark flavour transitions, as this vertex
is weighted by the strong coupling constant gs. Therefore, it is often taken as the only
contribution to these transitions and in particular to the B → Xsγ decay, when attempting
to obtain order-of-magnitude upper bounds on flavour violating terms in the scalar potential.
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Once the experimental constraints are imposed, however, the gluino contribution is reduced
to values such that the SM and the other supersymmetric contributions can no longer be
neglected. Any LL and NLL calculation of the B → Xsγ rate in generic supersymmetric
models, therefore, should then include all possible contributions.

The gluino contribution presents some peculiar features related to the implementation
of the QCD corrections. In ref. [15] this contribution to the decay B → Xsγ has been
investigated in great detail for supersymmetric models with generic soft terms. The gluino-
induced contributions to the decay amplitude for B → Xsγ are of the following form:

αs(mb) (αs(mb) log(mb/M))n (LL), (VIII.4)

α2
s(mb) (αs(mb) log(mb/M))n (NLL). (VIII.5)

The relevant operator basis of the SM effective Hamiltonian gets enlarged to contain mag-
netic and chromomagnetic operators with an extra factor of αs. Furthermore, one finds that
gluino–squark boxes induce new scalar and tensorial four-quark operators, which are shown
to mix into the magnetic operators without gluons already at one loop. On the other hand,
the vectorial four-quark operators mix only with an additional gluon into magnetic ones (fig.
31). Thus, they will contribute at NLL order only. But from the numerical point of view
the contributions of the vectorial operators (although NLL) are not necessarily suppressed
w.r.t. the new four-quark contributions; this is due to the expectation that the flavour-
violation parameters present in the Wilson coefficients of the new operators are expected to
be much smaller (or much more stringently constrained) than the corresponding ones in the
coefficients of the vectorial operators. This feature shows that a complete NLL calculation
is important.

To understand the sources of flavour violation that may be present in supersymmetric
models in addition to those enclosed in the CKM matrix, one has to consider the contribu-
tions to the squark mass matrices

M2
f ≡


m2

f, LL + Ff LL +Df LL

(
m2
f, LR

)
+ Ff LR(

m2
f, LR

)†
+ Ff RL m2

f, RR + Ff RR +Df RR


 , (VIII.6)
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where f stands for up- or down-type squarks. In the super-CKM basis, where the quark
mass matrices are diagonal and the squarks are rotated in parallel to their superpartners, the
F terms from the superpotential and the D terms turn out to be diagonal 3×3 submatrices
of the 6 × 6 mass matrices M2

f . This is in general not true for the additional terms m2
f ,

originating from the soft supersymmetric breaking potential. Because all neutral gaugino
couplings are flavour diagonal in the super CKM basis, the gluino contributions to the decay
b → sγ are induced by the off-diagonal elements of the soft terms m2

f,LL, m
2
f,RR, m

2
f,RL.

As a first step, it is convenient to select one possible source of flavour violation in the
squark sector at a time and assume that all the remaining ones are vanishing. Following
refs. [137,138], all diagonal entries in m2

d, LL, m
2
d, RR, and m2

u,RR are set to be equal and their
common value is denoted by m2

q̃ . The branching ratio can then be studied as a function of

δLL,ij =
(m2

d, LL)ij

m2
q̃

, δRR,ij =
(m2

d,RR)ij

m2
q̃

, δLR,ij =
(m2

d, LR)ij

m2
q̃

(i �= j). (VIII.7)

Phenomenological analyses in the so-called unconstrained MSSM [136,138,139] neglected
QCD corrections and only used the gluino contribution to saturate the experimental bounds.
Moreover, no correlations between different sources of flavour violation were taken into
account. In this way, one arrived at ‘order-of-magnitude bounds’ on the soft parame-
ters [138,139]. The B → Xsγ decay is mainly sensitive to the off-diagonal elements δLR,23
and δRL,23 and constrains them to values of order 10−2. In [15], the sensitivity of the bounds
on the down squark mass matrix to radiative QCD LL corrections was systematically anal-
ysed, including the SM and the gluino contributions. Some leading NLL contributions were
considered in [141] and the large impact of the NLL corrections for non-minimal models, in
particular for large tanβ was demonstrated.

A consistent analysis of the bounds on the sfermion mass matrix should also include inter-
ference effects between the various contributions. In [16], the interplay between the various
sources of flavour violation and the interference effects of SM, gluino, chargino, neutralino
and charged Higgs boson contributions is analysed. New bounds on simple combinations of
elements of the soft part of the squark mass matrices are found to be, in general, one order
of magnitude weaker than the bound on the single off-diagonal element δLR,23, which was
derived in previous work [138,140] by neglecting any kind of interference effects. Thus, it
turns out that — at least within the decay B → Xsγ — the flavour problem is less severe
than often stated.

The measurement of the photon polarization within the decay B → Xsγ allows for
another important SM test. Assuming that the decay is induced by the magnetic dipole
operator only, one starts with the effective Hamiltonian

H = −4GF√
2
λt (C7LO7L + C7RO7R) , (VIII.8)

where O7L,R ≡ e
16π2mbs̄σµν

1±γ5
2

b F µν . Then the photon polarization is defined by

λγ ≡ |C7R|2 − |C7L|2
|C7R|2 + |C7L|2 . (VIII.9)
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FIG. 32. 90% C.L. bounds in the [R7(µ), R8(µ)] plane following from the measurement of the
B → Xsγ branching ratio for µ = mW (left) and µ = 2.5 GeV (right), where R7,8 = Ctotal7,8 /CSM7,8 .
Theoretical uncertainties are taken into account. The solid and dashed lines correspond to the
mc = mpole

c andmc = mMS
c (µb) cases respectively. The scatter points correspond to the expectation

in MFV models; from [154].

In the SM, one has C7R/C7L = ms/mb ≈ −1 and therefore a mostly left-handed photon.
But in many supersymmetric scenarios, and also in left–right-symmetric models, the photon
may have a large right–handed component. In [142] the possibility of a strictly right-handed
photon within the framework of the MSSM was discussed. Clearly, only in non-minimal
models is such an extreme deviation from the SM prediction possible.

There are many suggestions for measuring λγ in the literature [143–147]. However, they
all rely on very high statistics or on new experimental settings and will not be possible in the
near future. Quite recently, a new method has been proposed, which can be realized with
the present statistics available at the B factories. The photon polarization can be measured
in radiative B decays to excited kaons, using angular correlations among the three-body
decay products of the excited kaons [148]. It is essential for a helicity measurement to
have a three-particle decay mode because λγ is a parity-odd variable and there is no odd-
momentum correlation in the two-body mode. In the decays B+ → (K+

1 (1400) → K0π+π0)γ
and B0 → (K0

1(1400) → K+π−π0)γ, however, the up–down asymmetry of the photon
momentum with respect to the Kππ decay plane in the frame of the excited kaon measures
the photon polarization rather efficiently. The up–down asymmetry can theoretically be
predicted to be A = (0.33 ± 0.05)× λγ in the case of the resonance K1(1400) [148]. Thus,
the method will definitely be sensitive for large deviations from the SM prediction already
with the present luminosity at the B factories.
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C. Constraints from B → Xs�
+�−

The inclusive B → Xs�
+�− decay is another important tool to understand the nature

of physics beyond the SM. In comparison to the decay B → Xsγ, it offers complementary
information. For example one is able to resolve the sign ambiguity of the Wilson coefficient
C7, which is not fixed by the B → Xsγ constraint. The FB asymmetry, however, has terms
proportional to Re(C10C

eff
9 ) and Re(C10C

eff
7 ). As was first advocated in [18], the invariant

dilepton mass spectrum, the forward–backward charge asymmetry and the decay rate of
B → Xsγ determine the magnitude and also the sign of the three Wilson coefficients C7, C9,
and C10, and allow for a model-independent analysis of rare B decays.

There are several mSUGRA models and also several model-independent analyses in the
literature [127,149–153]. It was always assumed that the operator basis is not enlarged
in comparison to the SM. All the analyses found strong correlations between the decays
B → Xsγ and B → Xs�

+�−

Within the mSUGRA model sizeable deviations from the SM values of the B → Xs�
+�−

decay are excluded through the severe constraints on C7 by the B → Xsγ measurement.
But it was also shown that in less restricted scenarios supersymmetric contributions could
potentially enhance the B → Xs�

+�− kinematic distributions, the dilepton mass spectrum
and the FB asymmetry, by more than 100% relative to the SM predictions. One of the
reasons of the enhancements is that the Wilson coefficient C7 can change the sign with
respect to the SM in some region of the parameter space. Within the mSUGRA model, the
experimental bounds have disfavoured the non-SM sign already (see fig. 32).

When the experimental uncertainties are reduced soon, this fact will allow to discriminate
between MFVmodels and non-minimal models and will lead either to evidence of new physics
or to very stringent constraints on the parameter space of such models.

Recently these analyses have been updated in [154] based on the new experimental data of
the semi-leptonic decays and on partial results in the NNLL theoretical predictions. Within
the analysis, the charm mass renormalization scheme ambiguity (see section VIIA) in the
decay B → Xsγ is taken into account. But also a too conservative error estimate regarding
the charm mass dependence within the decay B → Xs�

+�− is assumed, which leads to a
rather large error of 15% in the inclusive mode.

It was found [154] that with the present experimental knowledge the decay B → Xsγ
still leads to the most restrictive constraints. Especially, the MFV scenarios are already
highly constrained and only small deviations to the SM rates and distributions are possible;
therefore no useful additional bounds from the semi-leptonic modes beyond what are already
known from the B → Xsγ can be deduced for the MFV models at the moment. But in
non-mimial models, additional constraints from the semi-leptonic mode already emerge in
some parts of the supersymmetric parameter space, namely for the off-diagonal elements
within the squark mass matrix in the up-quark sector.

Within the model-independent analysis, the impact of the partial NNLL contributions
on the allowed ranges for the Wilson coefficients was already found to be significant. In this
analysis, however, only the integrated branching ratios were used to derive constraints. It
is clear that one needs measurements of the kinematic distributions of the B → Xs�

+�−,
the dilepton mass spectrum and the FB asymmetry in order to determine the exact values
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+�−. The four curves correspond to four sample points of the Wilson coefficients that are
compatible with the present measurements of the integrated branching ratios; from [154].

and signs of the Wilson coefficients. In fig. 33, the impact of these future measurements is
illustrated. It shows the shape of the FB asymmetry for the SM and three additional sample
points, which are all still allowed by the present measurements of the branching ratios; thus,
even rather rough measurements of the FB asymmetry will either rule out large parts of the
parameter space of extended models or show clear evidence for new physics beyond the SM.
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IX. DIRECT CP VIOLATION IN B → S TRANSITIONS

The B system provides us with an independent test of the CKM prescription of CP vio-
lation. Until recently, the neutral kaon system was the only environment where CP violation
had been observed. Those effects in the kaon system are often plagued by large theoretical
uncertainties due to long-range QCD. So it was difficult to decide if the CKM description
really accounts quantitatively for CP violation. In contrast, non-perturbative contributions
are under control in the B system thanks to the heavy mass expansion. Moreover, there are
gold-plated CP asymmetries like the one in the decay mode B → ψKS, which are theoreti-
cally very clean, because the direct decay amplitude is dominated by one single weak phase
and, thus, most of the hadronic uncertainties drop out in the CP asymmetry.

The CKM prescription of CP violation with one single phase — proposed in 1972 when
the second family was not confirmed experimentally [155] — is very predictive and has
now passed its first precision test in the golden B mode, Bd → ψKS, at the 10% level
[8,9]. Nevertheless, there is still room for non-standard CP phases, especially in the FCNC
∆F = 1 modes. Actually, detailed measurements of CP asymmetries in rare B decays will
be possible in the near future.

The direct normalized CP asymmetries of the inclusive decay modes is given by 4

αCP (B → Xs/d γ) =
Γ(B̄ → Xs/dγ)− Γ(B → Xs̄/d̄γ)

Γ(B̄ → Xs/dγ) + Γ(B → Xs̄/d̄γ)
(IX.1)

CLEO has already presented a measurement of the CP asymmetry in the inclusive decay
B → Xsγ, actually a measurement of a weighted sum, αCP = 0.965αCP (B → Xsγ) +
0.02αCP (B → Xdγ), yielding [166]

αCP = (−0.079± 0.108± 0.022)× (1.0± 0.030) . (IX.2)

The first error is statistical, the second and third errors additive and multiplicative sys-
tematic respectively. This measurement is based on 107 BB̄ events and implies that,
at 90% confidence level, αCP lies between −0.27 < αCP < +0.10; very large effects
are thus already excluded. The same conclusion can be deduced from the measure-
ments of the CP asymmetry in the exclusive mode B → K∗(892)γ of CLEO [168],
αCP = +0.08 ± 0.13stat ± 0.03syst, of BABAR [169], αCP = −0.044 ± 0.076 ± 0.082, and
of BELLE [167], αCP = −0.022± 0.048± 0.017. The preliminary measurement of BELLE
is the best by far, based on 65.4× 106 B meson pairs and implies that, at 90% confidence
level, αCP in the exclusive B → K∗γ lies between −0.106 < αCP < +0.062.

Theoretical NLL QCD predictions of the normalized CP asymmetries of the inclusive
channels (see [79,156]) within the SM can be expressed by the approximate formulae [163]

4There is a sign convention that is generally adopted in theory and experiment: on the partonic
level αCP (b → sγ) = (Γ(b → sγ) − Γ(b̄ → s̄γ))/(Γ(b → sγ) + Γ(b̄ → s̄γ)); analogously αCP ∼
(Γ(B̄0 → · · ·)− Γ(B0 → · · ·)) and αCP ∼ (Γ(B− → · · ·)− Γ(B+ → · · ·)).
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αCP (B → Xsγ) ≈ 0.334× Im[εs] ≈ +0.6% ,
αCP (B → Xdγ) ≈ 0.334× Im[εd] ≈ −16%

(IX.3)

where

εs =
V ∗
usVub
V ∗
tsVtb

� −λ2(ρ− iη), εd =
V ∗
udVub
V ∗
tdVtb

� ρ− iη

1− ρ+ iη
. (IX.4)

Numerically, the best-fit values of the CKM parameters are used [163]. The two CP asym-
metries are connected by the relative factor λ2 ((1 − ρ)2 + η2). Moreover, the small SM
prediction for the CP asymmetry in the decay B → Xsγ is a result of three suppression
factors. There is an αs factor needed in order to have a strong phase; moreover, there is a
CKM suppression of order λ2 and there is a GIM suppression of order (mc/mb)

2 reflecting
the fact that in the limit mc = mu any CP asymmetry in the SM would vanish.

An analysis for the leptonic counterparts is presented in [164]. The normalized CP
asymmetries may also be calculated for exclusive decays: a model calculation may be found
in [165]. Theoretical predictions based on the QCD facorization approach [160,159,158] are
also affected by large uncertainties. Only in the case of relatively large new physics effects
will one be able to disentangle these effects from the QCD uncertainties. But the available
experimental data do not support this scenario in the B → K∗γ mode [168,169,167].

Supersymmetric predictions for the CP asymmetries in B → Xs/dγ depend strongly
on what is assumed for the supersymmetry-breaking sector and are, thus, a rather model-
dependent issue. The minimal supergravity model cannot account for large CP asymmetries
beyond 2% because of the constraints coming from the electron and neutron electric dipole
moments [170]. This is generally true in models based on the MFV assumption (see also fig.
34). Non-minimal models with squark mixing or models with R-parity violation allow for
larger asymmetries, of the order of 10% or even larger [172,156]. In [156] it is argued that
the asymmetry in case of non-minimal models could be even larger than ±15% if the gluino
mass is significantly lighter than the squark masses. Recent studies of the B → Xdγ rate
asymmetry in specific models led to asymmetries between −40% and +40% [174] and −45%
and +21% [173]. In general, CP asymmetries may lead to clean evidence for new physics by
a significant deviation from the SM prediction.

From (IX.3), it is obvious that a large CP asymmetry in the B → Xsγ channel or a
positive CP asymmetry in the inclusive B → Xdγ channel would be a clear signal for new
physics.

The exclusive and inclusive decays of the form b → sγ and b → dγ, as well as their
leptonic counterparts, provide a stringent test, if the CKM matrix is indeed the only source
of CP violation. Using U-spin, which is the SU(2) subgroup of flavour SU(3) relating the
s and the d quark and which is already a well-known tool in the context of non-leptonic
decays [176,177], one derives relations between the CP asymmetries of the exclusive channels
B− → K∗−γ and B− → ρ−γ and of the inclusive channels B → Xsγ and B → Xdγ.

Any CP violation in the SM has to be proportional to

C = i J (mu −mc)(mu −mt)(mc −mt)(md −ms)(md −mb)(ms −mb) , (IX.5)
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where J = Im[VubV
∗
cbVcsV

∗
us] is the Jarlskog parameter. Therefore, one should make use

of the U-spin symmetry only with respect to the strong interactions. Defining the rate
asymmetries (not the normalized CP asymmetries) by

∆Γ(B− → V −γ) = Γ(B− → V −γ)− Γ(B+ → V +γ) (IX.6)

one arrives at the following relation [175]:

∆Γ(B− → K∗−γ) + ∆Γ(B− → ρ−γ) = bexc∆exc, (IX.7)

where the right-hand side is written as a product of a relative U-spin breaking bexc and a
typical size ∆exc of the CP violating rate difference. This is a direct consequence of the
unitarity of the CKM matrix and, thus, of the fact that the Jarlskog parameter is the only
fourth-order quantity that is invariant under rephasing of the quark fields within the SM.
The resulting relation between b → s and b → d rate asymmetries due to

J = Im(λ(s)
u λ(s)∗

c ) = −Im(λ(d)
u λ(d)∗

c ) (IX.8)

was first noticed in [157].

In [175] the SM prediction for the difference of branching ratios, based on model results
in [165] and on a sum rule calculation of the form factors [178], was derived:

|∆B(B− → K∗−γ) + ∆B(B− → ρ−γ)| ∼ 4× 10−8. (IX.9)

Note that the right-hand side is model-dependent. The U-spin-breaking effects were also
estimated in the QCD factorization approach [158]. Within this approach, it was shown
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that the U-spin-breaking effect essentially scales with the differences of the two form factors
(FK∗ − Fρ). Using the form factors from the QCD sum rule calculation in [161] and max-
imizing the CP asymmetries by a specific choice of the CKM angle γ, the authors of [158]
obtain

∆B(B− → K∗−γ) + ∆B(B− → ρ−γ) ∼ −3× 10−7, (IX.10)

while for the separate asymmetries they obtain, ∆B(B → K∗γ) = −7× 10−7 and ∆B(B →
ργ) = 4× 10−7 , which explicitly shows the limitations of the relation (IX.7) as a test of the
SM.

The issue is much more attractive in the inclusive modes. Because of the heavy mass
expansion for the inclusive process, the leading contribution is the free b-quark decay. In
particular, there is no sensitivity to the spectator quark and thus one arrives, within the par-
tonic contribution, at the following relation for the CP rate asymmetries as the consequence
of the CKM unitarity [157]:

∆Γ(B → Xsγ) + ∆Γ(B → Xdγ) = binc∆inc. (IX.11)

In this framework one relies on parton–hadron duality. So one can actually compute the
breaking of U-spin by keeping a non-vanishing strange quark mass. The typical size of binc
can be roughly estimated to be of the order of |binc| ∼ m2

s/m
2
b ∼ 5 × 10−4; |∆inc| is again

the average of the moduli of the two CP rate asymmetries. These have been calculated (for
vanishing strange quark mass), e.g. in [79], and one arrives at the following estimate within
the partonic contribution [175]:

|∆B(B → Xsγ) + ∆B(B → Xdγ)| ∼ 1× 10−9. (IX.12)

Going beyond the leading partonic contribution one has to check if the large suppression
factor from the U-spin breaking is still effective in addition to the natural suppression factors
already present in the corresponding branching ratios. This question was addressed in [162].
In the leading 1/m2

b corrections, the U-spin-breaking effects also induce an additional overall
factor m2

s/m
2
b . In the non-perturbative corrections from the charm quark loop, which scale

with 1/m2
c , one finds again the same overall suppression factor, because the operator Õ

(see VI.27) does not contain any information on the strange mass. The corresponding long-
distance contributions from up-quark loops, which scale with ΛQCD/mb (see section VI),
follow the same pattern [162]. Thus, in the inclusive mode, the right-hand side in (IX.12)
can be computed in a model-independent way with the help of the heavy mass expansion.

Therefore, the prediction (IX.12) provides a very clean SM test, whether generic new
CP phases are active or not. Any significant deviation from the estimate (IX.12) would be
a direct hint to non-CKM contributions to CP violation.

From the theoretical point of view the sum of the CP asymmetries in the inclusive b → s
and b → d transitions turns out to be the favourable observable. This might be true also
from the experimental point of view.
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X. FURTHER OPPORTUNITIES

Generally, exclusive decay modes have large uncertainties due to the hadronic form fac-
tors and it might thus be rather difficult to disentangle possible new physics contributions
from hadronic uncertainties in these modes — at least in the absence of very large new
effects. Therefore exclusive modes often can be used as QCD tests only. However, there are
exceptions to this rule. In specific ratios like CP asymmetries, hadronic uncertainties are
reduced and large new physics effects might be detectable. There are also exclusive modes
that are as clean as inclusive modes because the corresponding hadronic matrix elements can
be determined from experiment. The most important examples among them are the exclu-
sive B decay Bs → µ+µ− and the exclusive rare kaon decays KL → π0νν̄ and K+ → π+νν̄.
The hadronic matrix elements of these FCNC (rare) processes can be related to well-known
non-rare semi-leptonic decays.

As the inclusive decay B → Xsνν̄ (see section V), the exclusive decay Bs → µ+µ− is
completely dominated by the top-quark contribution due to the hard GIM mechanism. QCD
corrections within this exclusive mode are already calculated to NLL order. The remaining
perturbative uncertainty is not larger than ±1% [85]. The corresponding hadronic matrix
element leads to the decay constant of the Bs meson, fBs , which can be determined on
the lattice. The related uncertainty represents the largest part of the theoretical error:
fBs = (238 ± 31)MeV [21]. The SM prediction for the branching ratio of the decay Bs →
µ+µ− is of order 10−9. Thus, this decay will be accessible at LHC and also at BTeV.
However, the branching ratio can be much larger within specific extensions of the SM. For
example, the helicity-suppression of the SM contribution leads to an enhanced sensitivity to
the Higgs-mediated scalar FCNCs within the 2HDM and, especially within the MSSM. These
non-standard contributions lead to a drastic enhancement in the large tanβ-limit [179].
Therefore, this decay might be even detectable at FERMILAB before the LHC experiments
and the BTeV experiment start to take data (see [180] for further discussions).

The other two important examples of theoretically clean exclusive modes, KL → π0νν̄
and K+ → π+νν̄, are discussed in more detail in the following section.

A. KL → π0νν̄ and K+ → π+νν̄

The rare decays KL → π0νν̄ and K+ → π+νν̄ represent complementary opportunities
for precision flavour physics. They are also FCNC processes induced at the one-loop level
via Z0 penguin and box diagrams (see fig. 35) and are exceptionally clean processes.

As in the inclusive decay B → Xsνν̄ (see section V), the hard GIM mechanism is active:
the short-distance top- and charm-contributions dominate the long-distance up-quark contri-
bution within the charged mode K+ → π+νν̄. The CKM factors of the charm contribution
compensates the hard GIM suppression relative to the top contribution in this specific case.
The short-distance amplitude is then governed by one single semi-leptonic operator, namely
(s̄γµPLd)(ν̄γµPLν). Its hadronic matrix element can be determined experimentally by the
semi-leptonic kaon decay. In fact, the matrix element 〈π+ | s̄γµPLd | K+〉 can be related by
isospin symmetry to the matrix element

√
2 〈π0 | s̄γµPLu | K+〉 of the semi-leptonic decay
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FIG. 35. One-loop diagrams contributing to K → πνν̄.

K+ → π0e+ν. The corresponding Wilson coefficient is already calculated to NLL QCD [85]
and the scale dependence is reduced to 5% in the charged kaon mode.

The situation is even more favourable in the neutral mode, which is dominated by the
CP-violating part. There is no relative CKM enhancement of the charm contribution and,
thus, the amplitude is completely dominated by the top contribution as in the inclusive rare
B → Xsν̄ν decay. The NLL QCD calculation therefore leads to a 1% scale uncertainty only
[85].

The validity of the OPE and the renormalization-group-improved perturbation theory
in the charm contribution to the charged mode has been critically analysed: the separate
scale dependence within the charm contribution of 13% at NLL QCD is consistent with
partial NNLL results [189]. Moreover, subleading power corrections within the OPE of
order m2

K/m
2
c — which might lead to 15% correction — are estimated to be at the level of

5%. However, for a reliable determination of the latter corrections, a lattice calculation of
the corresponding hadronic matrix elements will be indispensable [190].

The latest numerical SM predictions are [200,188]

B(K+ → π+νν̄) = (7.2± 2.1)× 10−11

B(KL → π0νν̄) = (2.8± 1.1)× 10−11 (X.1)

The uncertainties of the present SM predictions are dominated by the current errors of
the CKM parameters, while the instrinsic error in the charged mode is about 6% (mainly
from the charm contribution) and in the neutral mode about 2% only. This implies the
important role of these decay modes for CKM phenomenology: they play a unique role
among K decays, as does the Bd → ψKS mode among B decays. The measurements of the
two kaon decay modes allow for a measurement of the angle β of the unitarity triangle to a
precision comparable to that obtained with the Bd → ψKS mode before the LHC era [182].
The only necessary theoretical input is the internal charm contribution to K+ → π+νν̄,
which introduces some theoretical uncertainty (see above).

The relation (sin 2β)πνν̄ = (sin 2β)ψKS
implies a very interesting connection between rare

K decays and B physics, which must be satisfied in the SM:

(sin 2β)πνν̄ = (sin 2β)ψKs = −ACP (ψKS)
1 + x2

d

xd
. (X.2)
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FIG. 36. Supersymmetric contributions to K → πνν̄.

ACP (ψKS) denotes the time-integrated CP-violating asymmetry in B0
d → ψKS and xd =

∆m/Γ gives the size of B0
d–B̄

0
d mixing. As was stressed in [182], besides the internal charm

contribution to the charged kaon mode, all quantities in (X.2) can be directly measured
experimentally, and their relation is almost independent of Vcb.

Besides their rich CKM phenomenology, the decays KL → π0νν̄ and K+ → π+νν̄ as
loop-induced processes are very sensitive to new physics beyond the SM. In addition, the
theoretical information is very clean and the measurement of these decays thus leads to very
accurate constraints on any new physics model. Moreover, there is the possibility that these
clean rare decay modes themselves lead to first evidence of new physics when the measured
decay rates are not compatible with the SM.

New physics contributions in KL → π0νν̄ and K+ → π+νν̄ can be parametrized
in a model-independent way by two parameters that quantify the violation of the rela-
tion (X.2) [183,184]. New effects in supersymmetric models can be induced through new
box- and penguin-diagram contributions which involve new particles such as charged Higgs
or charginos and stops (fig. 36) that replace the W boson and the up-type quark of the SM
(fig. 35).

Under the simplifying MFV assumption [200] (see section VIIIA), the relation (X.2)
is valid. Thus, the measurements of B(KL → π0νν̄) and B(K+ → π+νν̄) still directly
determine the angle β, and a significant violation of the relation (X.2) would rule out this
assumption.

For the present experimental status of supersymmetry, however, a model-independent
analysis that includes also a general flavour change through the squark mass matrices is
more suitable. If the new sources of flavour change are parametrized by the mass-insertion
approximation, an expansion of the squark mass matrices around their diagonal, it turns out
that SUSY contributions in this more general setting of the unconstrained MSSM allow for
a significant violation of the relation (X.2). An enhancement of the branching ratios by an
order of magnitude (in the case of K+ → π+νν̄ by a factor 3) with respect to the SM values
is possible, mostly thanks to the chargino-induced Z-penguin contribution [185]. Recent
analyses [185–187] within the uMSSM focused on the correlation of rare decays and ε′/ε,
and led to reasonable upper bounds for the branching ratios: B(KL → π0νν̄) ≤ 1.2× 10−10

and B(K+ → π+νν̄) ≤ 1.7×10−10, which should be compared with the latest numerical SM
predictions (X.1).
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FIG. 37. Allowed region in the ρ̄–η̄ plane with the inclusion of the latest K+ → π+νν̄ and
without Bs,d data. The two external contours denote 68% and 90% confidence intervals; the inner
one is the 68% confidence interval under the assumption that the experimental error in the present
measurement is reduced by a factor 2, from [200].

The rare decays K+ → π+νν̄ and KL → π0νν̄ are specifically interesting in view of the
suggested experiments at the Brookhaven National Laboratory (USA) ( [195], [198]) and at
FERMILAB ( [196]), and at KEK ( [197]) (see [199] for a review).

For the neutral KL → π0νν̄ mode, the experimental situation is not satisfactory yet;
there is only an upper bound available from KTeV [193]:

B(KL → π0νν̄) < 5.9× 10−7, (X.3)

which is four orders of magnitude above the SM expectation. An indirect upper bound on
B(KL → π0νν̄), using the current limit on B(K+ → π+νν̄) and isospin symmetry, can be
placed at 2.6 × 10−9 [194]. Future prospects are given by the E391a experiment at KEK
with a sensitivity of 3×10−10 (possible start 2003) [197] and the E926 experiment (KOPIO)
at Brookhaven which aims at a sensitivity of 10−13 [198].

For the charged K+ → π+νν̄ mode, the experimental situation is more favourable. The
current Brookhaven experiment E787 has, to date, observed two clean candidate events for
K+ → π+νν̄. The combined analysis including previous data [191] leads to the following
branching ratio [192]:
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B(K+ → π+νν̄) = (1.57+1.75
−0.82)× 10−10. (X.4)

The central value is more than twice the central value of the theoretical SM prediction,
but the present measurement is still compatible with it, in view of the large error bars
on the experimental side. Fig. 37 illustrates the possible future impact of more precise
measurements — to be expected from the Brookhaven experiment E949 with a sensitivity
of 10−11/event (started 2001) [195] and from the future high-precision CKM experiment at
FERMILAB with yet an order of magnitude higher sensitivity (starting 2007) [196]. If the
present central value is confirmed with a smaller error, this will clearly indicate a new-physics
contribution either in BB̄ mixing or in the K+ → π+νν̄ mode [200].
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XI. SUMMARY

In this paper we have reviewed the status of inclusive rare B decays, highlighting recent
developments. These decays give special insight into the CKM matrix; moreover, as FCNC
processes, they are loop-induced and therefore particularly sensitive to new physics.

Decay modes such as B → Xsγ, B → Xsνν̄ and B → Xs�
+�− (with specific kinematic

cuts) are dominated by the partonic (perturbative) contributions and are, thus, theoretically
very clean in contrast to the corresponding exclusive decay modes and represent laboratories
to search for new physics. Non-perturbative contributions play a subdominant role and they
are under control thanks to the heavy mass expansion. The inclusive rare B decays are or
will be accessible at the present e+e− machines (CLEO, BABAR, BELLE), with their low
background and their kinematic constraints, and will make precision flavour physics possible
in the near future.

Significant theoretical progress has been made during the last years. Calculations of
NLL (or even NNLL) QCD corrections to these decay modes have been performed. The
theoretical uncertainty has been significantly reduced. As was emphasized, the step from LL
to NLL precision within the framework of the renormalization-group-improved perturbation
theory is not only a quantitative, but also a qualitative one, which tests the validity of the
perturbative approach in a given problem.

Within the theoretical prediction of B → Xsγ, the charm mass renormalization scheme
ambiguity at NLL order represents the largest uncertainty. In view of the precise experi-
mental data coming up from the B factories in the near future, this uncertainty should be
removed.

Inclusive rare B decays allow for an indirect search for new physics, a strategy comple-
mentary to the direct production of new (supersymmetric) particles, which is reserved for
the planned hadronic machines such as the LHC at CERN. But the indirect search at the B
factories already implies significant restrictions for the parameter space of supersymmetric
models and, thus, leads to important theoretically clean information for the direct search of
supersymmetric particles.

It is even possible that these rare processes give first evidence of new physics outside
the neutrino sector by a significant deviation from the SM prediction. But also in the long
run, after new physics has already been discovered, inclusive rare B decays will play an
important role in analysing in greater detail the underlying new dynamics.

Within supersymmetric models, the QCD calculation of the inclusive rare B decays has
not reached the sophistication of the corresponding SM calculations. Nevertheless, NLL
analyses in specific scenarios already show that bounds on the parameter space of non-
standard models are rather sensitive to NLL QCD contributions.

Detailed measurements of CP asymmetries in rare B decays will also be possible in the
near future. They will allow for a stringent and clean test if the CKM matrix is indeed the
only source of CP violation. Moreover, a measurement of the photon polarization within the
rare B decays will be possible in order to check the SM prediction of a left-handed photon.

The rare kaon decays, K+ → π+νν̄ and KL → π0νν̄, offer complementary opportunities
for precision flavour physics. Besides the current Brookhaven experiment, several more are
planned or suggested to explore these theoretically clean decay modes.
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