
SLAC-PUB-9592
November 2002

Bringing COM Technology to Alignment Software *

Lothar Langer
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

Abstract

Software tools for alignment purposes should be versatile and flexible
handling data in various formats. Microsoft ‘s Component Object Model is
the base for an appopriate software architecture to be built upon. COM-
components comply with different programming environments like web
applications, C++, Visual Basic, and MATLAB. The benefits for the user
and the program developer are discussed.

Contributed to 7th International Workshop on Accelerator Alignment (IWAA2002)

Spring-8/JASRI, Sayo-gun, Hyogo, Japan, November 11-13, 2002

* Work supported by Department of Energy contract DE–AC03–76SF00515.

Bringing COM Technology to Alignment Software�
Lothar Langer

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

1 Introduction
The Component Object Model (COM) is an application programming interface (API) that
allows for creation of so called ‘objects’. These objects are software constructs to be
useful for the service they provide for a client. The client may be another piece of
software, a conventional application program or possibly another ‘object’. Objects are
packaged in ‘components’. Here ‘component’ means the (more physical) representation
of software – a data file on some storage medium.

If you boil it down to a level of software using software – what is special about COM
(except being originated by Microsoft) ? There are already successful concepts like
libraries, class libraries, dynamic link libraries and the like. To make these software
pieces work together you need ‘interfaces’ which are basically contracts about how to
give and how to take. Either side has to comply to these contracts. But - writing computer
programs comes with a bunch of different languages on different hardware and software
platforms. To link to a libraray is very dependent on language and platform. It is about
compatibility of data types and calling conventions. That is why libraries are reused
mostly inside the world defined by a computer language or a platform boundary.

But software still is “only” bits and bytes. Here contracts (interfaces) specified on a
binary level – that sounds like a cute way to go. COM is just a binary specification. It
doesn’t tell you how to build components. It tells you how to connect to a COM object.
That makes it language independent - and platform independent too (at least in theory).
There should be some software vendors offering COM on Unix.

COM has competition, in terms of technoloy. The Common Object Request Broker
Architecture (CORBA) answers the same questions as COM. But it has not reached the
same importance.

Around COM exists a bundle of higher-level technologies, heavily promoted by
Microsoft. Most famous perhaps is ActiveX that has been designed for use in web
applications and many other kinds of ‘containers’.

∗ Work supported by Department of Energy contract DE-AC03-76SF00515.

Bringing COM Technology to Alignment Software

3 of 16

2 The Component Object Model (COM) and ActiveX
Technology

Objects and Interfaces

COM objects are well encapsulated. You cannot gain access to the internal
implementation of the object. That means for example you have no way of knowing what
data structures the object might be using.

Objects ‘live’ through interfaces. An interface is the object’s point of contact to the
outside world. The outside world in terms of COM are various application programs.
They act as clients asking the server object for some kind of service. All what a client
gets from COM is a pointer to the interface.

ObjectInterface pointer

Interface

An interface is some data structure that sits between the client’s code and the object’s
implementation through which the client requests the object’s services. Actually the
interface pointer is a pointer to a pointer to an array of pointers to the functions in the
interface.

Figure 1 COM objects are ‘black boxes’ with interfaces as their only points of access.

Bringing COM Technology to Alignment Software

4 of 16

Interface pointer

Vtable pointer

Pointer to function1

Function1(…)
{
…
}

Pointer to function2

Function2(…)
{
…
}

Pointer to function3

Function3(…)
{
…
}

…

…

The binary standard for a COM interface means that an object creates a vtable (virtual
function table) that contains pointers to the implementations of the interface member
functions and allocates a structure in which the first 32 bits are a pointer to that vtable.
The client ’s pointer to the interface is a pointer to the pointer to the vtable.

Function tables can be created ‘manually’ in a C application or almost ‘automatically’
with C++ (and other object oriented languages that support COM).

Interface characteristics
In order to avoid name collisions interfaces are uniquely identified through a 16-Byte
value called a GUID (Globally Unique ID)1.

In binary terms, a GUID is a data structure defined as follows, where DWORD is 32-bits,
WORD is 16-bits, and BYTE is 8-bits:

1 “The term GUID … is completely synonymous and interchangeable with the term “UUID” as used by the
DCE RPC architecture …The GUID design allows for coexistence of several different allocation
technologies, but the one by far most commonly used incorporates a 48-bit machine unique identifier
together with the current UTC time and some persistent backing store to guard against retrograde clock
motion. It is in theory capable of allocating GUIDs at a rate of 10,000,000 per second per machine for the
next 3240 years, enough for most purposes.” See p. 69 [COM 95]

Figure 2 The calling mechanism referred to as the ‘binary standard’ makes language independence for
COM object implementation possible.

Bringing COM Technology to Alignment Software

5 of 16

typedef struct GUID {
 DWORD Data1;
 WORD Data2;
 WORD Data3;
 BYTE Data4[8];
} GUID;

One object can support multiple interfaces. You can have and in many cases will have
multiple interfaces on each type of object. As interfaces evolve over time changes in
definition or semantics of functions should result in a new identifier meaning a new,
additional interface on the object. Thus versioning problems are avoided.

Interfaces - kind of object oriented
When dealing with COM objects the client always handles interfaces of objects, never the
object itself. Yet there are some object oriented features to interfaces.

Inheritance is possible among hierarchicallly derived interfaces, but only for function
definitions, implementations have always to be provided.

Interfaces are polymorphic through the special interface IUnknown.

Pointer to function1

Pointer to function2

Pointer to function3

…

QueryInterface

AddRef

Release

QueryInterface

AddRef

Release

Function table to IUnknown
Function table to
another interface

A pointer to this
interface can also
be used as a
pointer to
IUnknown

Figure 3 The three basic functions of IUnknown are inherited to every COM interface.

Bringing COM Technology to Alignment Software

6 of 16

Base Interface IUnknown
“IUnknown is the label of the interface that represents the functionality of an object when
all else about that object is unknown.”2 IUnknown provides the most essential services
with only three functions.

• QueryInterface provides navigation through the interfaces of an object. Always a
pointer to IUnknown can at least be obtained.

• AddRef and Release provide lifecycle management for an object through reference
counting. That means an object is kept ‘alive’ in memory as long as there exists at
least one reference to one of its interfaces. When the last interface has been
released the object will go out of service. It will then be cleared from memory.

Clients and Servers
The concept of client/server interaction does not only mean a client program (EXE
module) using a server object (DLL module). Objects may exist inside executable
programs. And one object (DLL) can also be using another object (DLL or EXE).

COM ‘s idea of location transparency is that clients and servers never need to know how
far apart they actually are, that is, whether they are in the same process, different
processes, or different machines. COM provides transparent access to local and remote
servers through proxy and stub objects.

If the client and server are in the same process, the sharing of data between the two is
simple. However, when the server process is separate from the client process, as in a local
or remote server, COM must format and bundle the data in order to share it. This process
of preparing the data is called marshalling. Marshalling is accomplished through a
"proxy" object and a "stub" object that handle the cross-process communication details
for any particular interface (depicted in Figure 4). COM creates the "stub" in the object's
server process and has the stub manage the real interface pointer. COM then creates the
"proxy" in the client's process, and connects it to the stub. The proxy then supplies the
interface pointer to the client.

2 See p 65 [COM 95]

Bringing COM Technology to Alignment Software

7 of 16

In-Process
Object

Client
Application

Local
Object
Proxy

Remote
Object
Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local
Object

Local Server

Stub

COM

Local Server Process

Remote
Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

As mentioned in the introduction COM is an application programming interface (API)
providing vital services for the functioning of client/server interaction. But the presence
of the COM Runtime Library in memory is “only” needed for object creation and passing
the first interface pointer to the client. Pointers to other interfaces on the same object can
be obtained through the above mentioned QueryInterface function. By inheritance
through IUnknown every interface posseses such service.

Figure 4 Three different situations of location transparency. The client application does not have to
care about where the server object is actually running.

Bringing COM Technology to Alignment Software

8 of 16

Client
Application

COM

Server

Object

(1) “Create
Object” (2) Locate

implementation

(3) Get object
interface pointer,
return to Client

(4) Call interface
members

The COM Runtime Library uses a class identifier to provide ‘implementation locator’
services to clients. A client need only tell COM the class identifier it wants and the type
of server—in-process, local, or remote—that it allows COM to load or launch. COM, in
turn, locates the implementation of that class and establishes a connection between it and
the client.

COM classes
According to the paradigm of object orientation there also is a concept of classes of
objects. COM classes give all the information that is needed to create a COM object.
Because there are no details of implementation specified in COM the only thing COM
needs to know about the class of an object is where to find it. So there exist class
identifiers similar to the above mentioned interface identifiers. COM classes are globally
uniquely identified by GUIDs – and not by their names. So providers of COM objects can
use identical names for their object classes and interfaces. Still they can be kept apart by
COM. They will have different GUIDs because of the way these identifiers are generated.

How does COM know about all the object classes and interfaces?

The information about available object classes and interfaces on a given system is
centralized in the Windows registry in case of Win32 platforms. With help of this

Figure 5 The COM runtime library basically initializes the client / object communication and then
drops out of the scene to reduce the overhead.

Bringing COM Technology to Alignment Software

9 of 16

‘database’ for systemwide information COM can do the mapping from component name
to GUID and finally to the file where the implementation code resides.

ActiveX Technologies

ActiveX is Microsoft ‘s marketing name for a bundle of technologies that are built on
COM. Very popular are ActiveX controls. These are components which provide all kinds
of visual support and effects in a context of graphical user interfaces (GUI). They also
can be applied in HTML document through the <OBJECT> tag.3

ActiveX has the power to integrate technologies that are useful on the web. As a
consequence you can see more and more scripting languages offer COM support. Besides
Microsoft ‘s VBScript and JScript there is PERL, a very popular ‘web language’, that
offers ActiveX support.4

3 Building Tools for WinGEONET
WinGEONET is built using Microsoft Visual Basic (VB). It handles a number of file
formats in which data are stored during various steps of processing. Here the use of COM
objects brings a lot of simplification and enhancement.

Visual Basic environment

Visual Basic is particularly COM friendly. If you try to call a conventional DLL
(Dynamic Link Library) written in C or C++ from within Visual Basic you will know that
it is a job with very unsatisfying results when you pass parameters to a C/C++ function.
Everything is at ease when you build an ActiveX component in C/C++ and use it from
VB as the ActiveX client. One reason is VB ‘s support for using ActiveX objects.
Another reason is VB ‘s preference for the ActiveX friendly data type VARIANT. Also
building ActiveX components from Visual Basic has got a standard job for VB
programmers.

3 See Objects, Images, and Applets in [HTML4]
4 See [PERL]

Bringing COM Technology to Alignment Software

10 of 16

disk
files

LEGOServer

WinGEONET

DataHandler SIMS

Data Availability from different sources

WinGEONET collects and processes data from various sources in different formats. Raw
data may come out of ASCII files which are formatted in at least 3 different ways. Data
may have to be read from an Excel spreadsheet or a relational database. This kind of job
happens almost all the time. Various applications have to import data before they can
process it in some way. It is obvious that handling data storage and making data available
are tasks that can be centralized in one separate component. This component is called
‘DataHandler’. It has three kinds of objects.

The DataConnection object provides services needed to make geodetic data available out
of diverse structures and formats. It comes in a close relation to a second object, namely
DataItem.

The DataItem object is a container for raw data items. A DataItem object is basically a
hash table where the values are VARIANTs. The value can thus be another DataItem
object. DataItem objects are extendable and very flexible.

A third object, named DataItemViewer, provides just a basic view on the tree structure of
DataItem containers.

Figure 6 Component design promises numerous benefits concerning practicability and performance for
a toolbox like WinGEONET.

Bringing COM Technology to Alignment Software

11 of 16

IDataConnection

DataHandler

DataItem

IDataItem

Client
applications

(SIMS,
MatLab,
web pages)

IDataItemViewer

Mathematical Computations

Math routines is another issue for reuse from various clients.

For WinGEONET the math package LEGO is vital.The connection to LEGO has been a
difficulty because LEGO is written in C++. LEGO used to read an input file, do
computations on the data, and write results into an output file.

LegoServer is LEGO in a COM object. That is why it can accept data from a Visual
Basic client in WinGEONET and do calculations. The results can be collected by the
same or a different client, for instance SIMS. Thus the intermediate steps of creating
input and output files can be passed. If necessary for persistence purposes data in various
formats can be stored using DataHandler.

LegoServer knows a bunch of COM objects and their respective interfaces (ISta, ITar,
IMes, IResult). But they are not creatable from outside. The client can only create and use
them through an interface called IProject.

Figure 7 The DataHandler object makes data available in a container object called DataItem.

Bringing COM Technology to Alignment Software

12 of 16

LegoServer.dll

IResult

IProject

alloc(…)
Sta()
Tar()
AllDir()
AllDist()
AllDifH()
LegoL2(…)
Result()

ISta ITar IMes

Lego.dll

Project.dll

Feedback.dll

Graphical Presentation Tools

Sims has got ActiveX server capabilities. It is possible to call some document-related
services (open, close, and import of data into a document) from an ActiveX controller
like VB, for instance.

More integration with more COM

In the near future there will be more integration through the ‘Data Availability’ services
which will be extended by data persistence and shared containers.

4 SIMS & LegoServer
SIMS has originally been an application program for visualization and simulation of
geodetic data. Since it is integratied into WinGEONET it is on its way to a generalized
tool for graphical presentation. SIMS is able of displaying geodetic networks in different
views from a single set of data in a document file.

For displaying error ellipses in the different views it uses LegoServer (see Figure 8). In
order to get reasonable response behaviour in the viewing window the calculation step is
performed in a separate execution thread.

Figure 8 LEGOServer handles LEGO ‘s computational services through function calls into the three
‘traditional’ DLLs.

Bringing COM Technology to Alignment Software

13 of 16

L
egoServer

Thread

Calculate()

SimsDocument

SimsViews

ErrorEllipse

alloc()
Sta()…
Tar()…
AllDir()…
AllDist()…
AllDifH()…
LegoL2()
.
.
.
Result()

5 Reusing ActiveX components in MATLAB
MATLAB is a powerful language for ‘technical computing’. It is based on calculations
with matrices which are multidimensional arrays of numbers. MATLAB has an
elaborated graphical user interface (GUI). A variety of specialized ‘toolboxes’ can be
added to MATLAB.

MATLAB environment

The MATLAB language can be extended by user defined functions. Functions reside in
M-files with the function ‘s name. They can be called with a list of input arguments and
they can return a list of output arguments. A MATLAB function can call any other
MATLAB function that is in the search path.

Using MATLAB ‘s function concept powerful applications can be programmed involving
own GUIs.

ActiveX connection in MATLAB

MATLAB supports ActiveX among other external interfaces (to Java classes, C and
FORTRAN).

Figure 9 LEGOServer handles LEGO ‘s computational services through function calls into the three
‘traditional’ DLLs.

Bringing COM Technology to Alignment Software

14 of 16

There is ActiveX client support. MATLAB can create ActiveX controls or server objects
and handle there respective interfaces. Event handling is possible only for ActiveX
controls.

There is also ActiveX server support. MATLAB itself exposes interfaces for ActiveX
clients (MATLAB being the server). A client can invoke a dedicated MATLAB ActiveX
server, a MATLAB instance that only serves him. Or it can share a MATLAB ActiveX
server instance with other clients.

Example: MATLAB Utilities

MATLAB Utilities is a collection of applications combining services of MATLAB and
other COM objects.

MatLab DataHandler

MatlabServer
IUtilities Script:

…
transform …
…

Transform
.exe

disk
files

The ‘transform’ command is a service available through the IUtilities interface of a COM
object named ‘MatlabServer’. MatlabServer is a windowless server component (EXE
file) and had been created for the purpose of centralizing several services which are using
the MATLAB engine. Here MatlabServer uses DataHandler (see Fig 7) to get data out of
disk files and it uses the MATLAB engine to calculate the transformation.. Finally
MatlabServer lets DataHandler store the results in a different set of disk files.

In another utility a DataHandler object is used directly by MATLAB to retrieve data
from files in order to perform graphical evaluation.

Figure 10 An application involving MATLAB and COM objects.

Bringing COM Technology to Alignment Software

15 of 16

6 Example of a presentation on the Web

DataHandler

disk
files

MS
Word

VBA
script

HTML
documents

Web
Browser

Perl
CGI-
script

This application involves two steps because of performance reasons.

• A VBA (Visual Basic for Applications) script that runs inside MS Word retrieves
data out of disk files via a DataHandler object. Then it inserts the data into
predefined locations in a form document which is generated from a document
template. The resulting MS Word documents are stored as HTML files.

• For the presentation a CGI (Common Gateway Interface) script written in PERL
provides the web browser with the appropriate HTML.

7 Conclusions
A software toolbox gains flexibility by component design. Tools can be programmed to
be very versatile by centralizing often reused functions. For the WIN32 platform the
Component Object Model would be the concept of choice for component design.

When agreeing on the basic design and coordinating the definition of interfaces a small
team of developers can create software components in a relatively independent way.
They can use different implementation languages.

Figure 11 Example of a web presentation using the COM object DataHandler.

Bringing COM Technology to Alignment Software

16 of 16

8 Acknoledgements
The author feels indebted to Catherine LeCocq as the supervisor for the Alignment
Engineering Group for her essential support in the development process concerning
especially component design. Thank you also to all other members of the Alignment
Engineering Group at SLAC for their readiness to help.

9 Bibliography
[Brock 95] Brockschmidt, Kraig. Inside OLE, 2nd edition,

Microsoft Press, 1995

[COM 95] Microsoft Corporation. The Component Object Model
Specification, Version 0.9, October 24, 1995 [online].
Available WWW
<URL: http://www.microsoft.com/oledev /> (1995).

[HTML4] World Wide Web Consortium
HTML 4.01 Specification, 1999
Available WWW
<URL: http://www.w3.org/TR/REC-html40 />.

[PERL] O’Reilly Perl.Com
Downloading the Latest Version of Perl, 2002
Available WWW
<URL: http://www.perl.com/pub/a/language/info/software.html />.

