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Abstract

Several ideas have been proposed to ‘condition’ an electron beam prior to the undulator of a

Free-Electron Laser (FEL) by increasing each particle’s energy in proportion to the square of its

transverse betatron amplitude. This conditioning enhances FEL gain by reducing the axial velocity

spread within the electron bunch. We demonstrate that for symplectic beamlines, and independent

of the method, this conditioning is always accompanied by a large head-tail focusing variation

which, for short wavelength FELs, is so severe as to make conditioning completely impractical. We

furthermore find that any system added to correct the head-tail focusing variation will also remove

the conditioning. As an example, a new method for conditioning is presented and shown to result

in exactly the same head-tail focussing problem as that of reference [1].
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I. INTRODUCTION

The most demanding requirement for future Free-Electron Lasers (FELs) in the x-ray

regime [2, 3] is the reliable generation of a sufficiently small transverse electron emittance.

To mitigate this problem, several ideas have been proposed to ‘condition’ an electron beam

prior to the undulator by increasing each particle’s energy in proportion to the square of

its betatron amplitude [1, 4–6]. This conditioning enhances FEL gain by reducing the axial

velocity spread within the electron bunch generated over the undulator, due both to energy

spread and finite transverse emittance. A common proposal for generating the conditioning

correlation is to differentially accelerate off-axis particles with a series of TM210-like mode

transverse RF structures. But the conditioning can also be accomplished by delaying large

amplitude particles in a long, strong focussing channel and differentially accelerating the

delayed particles with off crest-phase acceleration [6]. In reference [1] an undesirable side-

effect is briefly mentioned, due to the transverse time-dependent magnetic field, which results

in a head-tail focusing variation along a bunch with finite length. A correction is also

suggested using RF-quadrupoles. Unfortunately, as we show in this paper, this side-effect

is a necessary outcome of conditioning, due to the symplecticity of the map describing the

beamline, and it can be prohibitively large. In the conditioner at the end of reference [6],

although not discussed there, the effect will appear as the chromaticity of a strong focusing

channel on a chirped beam. Furthermore, we find that any system added to correct this

head-tail focusing variation will necessarily remove the energy conditioning.

In this paper, we briefly review the requirements for FEL beam conditioning and, as an

example, present a new conditioning scheme using strong solenoid magnets, which at first

examination looks promising. But the head-tail focusing again appears and we quantify the

resulting ‘projected’ (i.e., bunch-length integrated) transverse emittance growth, relating it

directly to the FEL parameters. A numerical example is used to demonstrate the extreme

severity of the effect and the impracticality of conditioning a short-wavelength FEL. We

then present a general symplectic beam conditioner using generator functions and show

the unavoidable relation between conditioning and projected transverse emittance growth.
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Finally, we discuss the limitations, provide a more familiar analogy, and summarize our

results.

II. FEL BEAM CONDITIONING

Electron beam conditioning, as proposed in [1], increases each particle’s energy in propor-

tion to the square of its betatron amplitude. A particle with high energy travels a shorter

path in an undulator (increased mean axial velocity), while a large betatron amplitude

delays a particle by lengthening its path through the undulator [7]. The conditioning cor-

relation establishes a cancellation of these two effects, resulting in a significant reduction of

the axial velocity spread, enhancing the FEL gain, or perhaps allowing the FEL to operate

with a larger transverse emittance than required without conditioning. The relative energy

conditioning requirement, for natural undulator focusing, can be written as [1]

δu = δn +
1

4γu

εN
βu

λu

λr

r2 , (1)

where δn(� δu) is the non-conditioned component of the particle’s relative energy deviation,

γu is the electron energy in the undulator (in units of rest mass), εN(= γuε) is the normalized

rms transverse emittance (equal in x and y), βu(= βx = βy) is the constant beta-function in

the undulator, λu is the undulator period, λr is the FEL radiation wavelength, and r is the

invariant normalized 4D betatron amplitude of the particle,

r2 ≡ x2 + (βux
′)2 + y2 + (βuy

′)2

βuε
. (2)

The index ‘u’ above indicates the value of the respective quantity in the undulator. The

betatron amplitude, r, is expressed in terms of a particle’s transverse positions, x and y,

and angles, x′ and y′, with natural focusing where αx = αy = 0. A conditioner beamline is

designed to imprint this δu ∼ r2 correlation within the electron bunch, with coefficient given

in Eq. (1).

In a general case, the conditioning might be performed at low energy near the injector

where the bunch is still relatively long. For short wavelength FELs, the bunch is compressed

and accelerated after the injector, and both effects scale the conditioning, but in the absence
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of particle mixing, do not alter its correlation character. Acceleration from γ0 (‘energy’ at

injector) to γu (‘energy’ in undulator) reduces the conditioned relative energy spread, while

compression from an initial bunch-length, σz0 , to a shorter final bunch-length, σzf
, amplifies

the conditioning. The latter is true because the bunch is shortened after compression and

since the longitudinal emittance is preserved the energy spread must be increased propor-

tionally, independent of the imprinted r2-correlation. The relative energy deviation, δ, at

the location of the conditioner, before acceleration and compression, must then be scaled by

the acceleration and compression factors:

δ =
σzf

σz0

γu

γ0

(
δn +

1

4γu

εN
βu

λu

λr

r2

)
. (3)

This means that, depending on the level of bunch compression, the relative energy spread

immediately after a low-energy conditioner is not necessarily larger than that at the undu-

lator.

III. A ONE-PHASE SOLENOID CONDITIONER

As an example beam conditioner, and to show the ultimate limitations of conditioners,

we describe here a simplified system composed of a solenoid magnet and RF accelerating

sections. Its specific limitations, however, will be completely applicable to all conditioners

which are based on differential acceleration of off-axis particles. The limitations can be

described in terms of an effective transverse emittance growth and this growth will be related

only to the FEL conditioning requirements, and not to the specific method of conditioning.

The conditioner is shown in Fig. 1, and is composed of a solenoid magnet sandwiched

between two RF accelerating sections operated at opposing zero-crossing phases. (A similar

idea was proposed at the end of reference [6].) The first RF section ‘chirps’ the energy along

the bunch length, and the final section removes the chirp. The conditioning is generated

in the solenoid by the delay of particles with large amplitudes in x and y. The solenoid

strength is set to produce a +I linear transfer matrix in 6D with the relation |k|L = nπ

(n = 1, 2, 3, ...), where k ≡ 1
2
Bz/(Bρ), L is the solenoid length, Bz is its axial magnetic

field, and (Bρ) is the standard magnetic rigidity (= p0/e). The particle coordinates within
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FIG. 1: One-phase electron beam conditioner composed of solenoid magnet sandwiched

between RF accelerating sections operated at opposing zero-crossing phases.

the bunch at the entrance to the system are (x0, x
′
0, y0, y

′
0, z0, δ0), where δ0 ≡ ∆p/p0, and

we assume these variables are initially uncorrelated and have zero mean. For simplicity,

we use a cylindrically symmetric beam with initial Twiss parameters: βx = βy = β, and

αx = αy = 0. The Twiss parameters are unchanged, to 1st-order, across the solenoid and

across each ‘thin’ RF section. The electrons are also assumed to be ultra-relativistic.

The first RF section changes the relative energy deviation of a particle to: δ1 = δ0+h1z0,

where h1 is the linear RF-induced slope (h ≡ dδ/dz). For simplicity, the RF sections are

treated as thin elements which do not alter the transverse coordinates. After the solenoid,

the coordinates are unchanged to 1st-order, but a chromatic 2nd-order aberration is added to

the angles with ∆x′ = 2T216x0(δ0 + h1z0) and ∆y′ = 2T436y0(δ0 + h1z0). All other 2
nd-order

transverse aberrations are small in comparison for the case: |k|β � 1, |k|L = nπ [8].

The energy is not changed in the solenoid, but the longitudinal coordinate is delayed

by the helical trajectory according to z1 = z0 + T511x
2
0 + T533y

2
0 (bunch head at z > 0).

Similarly, all other 2nd-order longitudinal aberrations are small for the case |k|β � 1. The

2nd-order coefficients of a solenoid with |k|L = nπ are related to each other by: T511 =

T533 = −T216 = −T436 = −k2L/2 [8], which, as shown in section V, is an unavoidable

connection for symplectic systems. The final RF section, h2, changes the energy according

to δ = δ1 + h2z1 ≈ (h1 + h2)z0 − 1
2
k2Lh2(x

2
0 + y2

0). The second chirp is chosen equal and

opposite to the first, h1 = −h2 ≡ h, and the final coordinate map across the conditioner, to
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second order and for |δ0| � |hz0|, becomes

x = x0 ,

x′ = x′
0 + k2Lhz0x0 ,

z = z0 − 1

2
k2L(x2

0 + y2
0) ,

δ = δ0 +
1

2
k2Lh(x2

0 + y2
0) , (4)

with similar relations in y and y′. The final energy deviation, δ, is clearly conditioned (for

h > 0) in both planes but in only one betatron phase (i.e., x0, but not x′
0). This system

provides spatial (but not angular) conditioning described by

δ = δ0 +
1

2
k2Lhβε0r

2 , r2 ≡ x2
0 + y2

0

βε0
. (5)

Two solenoids can also be used, separated by a π/2-transformer to condition both betatron

phases, but here we simplify the description by considering only a one-phase conditioner.

The bunch-length coordinate, z, in Eqs. (4) also includes a non-linear distortion due

to the solenoid delay of large amplitude particles. This can easily be removed, without

changing the energy conditioning, by adding a four-dipole chicane, or similar section, with

R56 = 1/h > 0, after the final RF section, resulting in z = z0 + R56δ0 ≈ z0. The bunch is

then restored to its initial length with no significant change in distribution. This point is

not relevant here, so we ignore this correctable distortion and instead examine the energy

conditioning and the associated transverse aberrations.

IV. ENERGY CONDITIONING AND TRANSVERSE EMITTANCE GROWTH

The conditioning coefficient in Eq. (3) can be equated to that in Eq. (5) producing the

conditioning requirement for the solenoid system

k2Lhβσz0 =
1

2

λu

λr

σzf

βu

≡ a , (6)

where the solenoid-conditioner parameters are on the left side and the FEL parameters are

on the right, and here we define the dimensionless conditioning coefficient, a. In the typical
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case of a short wavelength FEL, the conditioning parameter a is large, a � 1, (see numerical

example below).

The chirp parameter, h, is more easily interpreted by relating it to the rms relative energy

spread in the solenoids: σδ1 ≈ |h|σz0 . This also makes it clear that the transverse aberrations

in Eqs. (4) are chromatic (δ1 ≈ hz0), and it is useful at this point to quantify the aberrations

in terms of an effective transverse emittance growth. The rms emittance after the solenoid

is calculated using the first two lines of Eqs. (4) and the first and second moments of the

particle ensemble:

ε2x = 〈(x− x)2〉〈(x′ − x′)2〉 − 〈(x− x)(x′ − x′)〉2 . (7)

The mean values, x = 〈x〉, and x′ = 〈x′〉 are zero since the initial coordinates are uncorrelated
and have zero mean. The correlation 〈xx′〉 is zero for the same reasons, so the x-emittance

after the solenoid is:

ε2x = 〈x2〉〈x′2〉

≈ 〈x2
0〉〈(x′

0 + k2Lhz0x0)
2〉

= ε2x0[1 + (k2Lhβσz0)
2] , (8)

where 〈x2
0〉 = βεx0, 〈x′2

0 〉 = εx0/β, and 〈z2
0〉 = σ2

z0
, with a similar form in y. The relative

emittance growth after the solenoid is

εx
εx0

≈ k2Lhβσz0 = a � 1 , (9)

which is identical to the conditioning relation in Eq. (6), providing a direct connection

between transverse emittance growth and FEL conditioning requirements.

For parameters of the LCLS [2] shown in Table I (using a beta function for natural

focusing, to be consistent with Eq. 1), the relative emittance growth is extremely large

at εx/εx0 ≈ 33. The parameters for the VISA FEL [9] are also included showing that

conditioning may still be possible at longer wavelengths.

This growth is actually an increase of the ‘projected’ transverse emittance integrated over

the bunch length. The second line of Eq. (4) shows that the bunch head (z0 > 0) is de-

focused (equating: k2Lhz0 = 1/f), while the bunch tail (z0 < 0) is focused. The significance
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TABLE I: FEL and conditioner parameters for the LCLS [2] and VISA [9].

parameter symbol LCLS VISA units

electron energy/mc2 in undulator γu 28000 140

undulator period λu 3 1.8 cm

radiation wavelength λr 1.5 8500 Å

und. beta-function (natural focusing) βu 72 0.6 m

final rms bunch length σzf
24 100 µm

conditioning coefficient a 33 1.8

of the focusing variation is evaluated by comparing the focal length, f , at z0 = ±σz0 , to β.

The ratio is β/f(±σz0) = ±k2Lβhσz0 = ±a, which is a very strong effect (β/|f | � 1) for

short wavelength FELs, and is precisely the conditioning coefficient given in Eqs. (6).

With a chirped energy spread, the chromatic effects of the solenoid are equivalent to the

effects of an RF-quadrupole (RFQ). It is interesting to compare this result with that of

reference [1], where a completely different conditioner beamline, employing transverse RF

cavities, produced an undesirable RFQ effect. In fact, as shown in the next section, FEL

beam conditioning in a symplectic beamline always produces an undesirable RFQ-effect,

which is extremely large for short wavelength FELs, as given in Eq. (??).

V. A GENERAL CONDITIONER

In this section we will show that the transverse emittance growth associated with condi-

tioning is not related to the specific design outlined in the previous section, but is a general

feature of any conditioner, and is due to the symplecticity of the map between the entrance

to and exit from the conditioner.

To simplify consideration, we assume that the conditioner does not introduce coupling

between the vertical and horizontal planes, and consider only the horizontal plane with the

initial values of coordinates (x0, x
′
0) at the entrance, and the final values (x, x

′) at the exit.

Consideration of the vertical coordinates y, y′ can be carried out analogously to x, x′. We
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will also assume that the initial and final values of the longitudinal coordinate are the same:

z = z0. Instead of using the variables x0, x
′
0 and x, x′, it is convenient and more general to

introduce new variables u0, v0, and u, v, such that


 u0

v0


 = Q0


 x0

x′
0


 ,


 u

v


 = Q


 x

x′


 , (10)

where the matrices Q0 and Q are

Q0 =
1√
β0


 1 0

α0 β0


 , Q =

1√
β


 1 0

α β


 , (11)

with β0, α0 and β, α the Twiss parameters at the entrance and exit of the conditioner,

respectively. Being symplectic linear transformations, Q and Q0 conserve the symplecticity

of the map from (u0, v0) to (u, v). Note, that in linear approximation this map has a form


 u

v


 = A


 u0

v0


 , (12)

where

A =


 cosψ sinψ

− sinψ cosψ


 , (13)

with ψ the betatron phase advance across the conditioner. Also note that the contribution

of the x-coordinate x2
0/(βε0) to the parameter r in Eq. (5) is equal to u2

0/ε0, and the

conditioning requirement Eq. (5) can be written as

δ = δ0 +
1

2
bu2

0 , (14)

where b = a/σz0 , and the conditioning constant a is given by Eq. (6).

To derive a general symplectic map which in linear approximation reduces to the linear

map Eq. (13) and also includes the conditioning given by Eq. (14), we will use a method

of generating functions [10]. We choose a generating function which depends on initial

coordinates u0 and z0 and final momenta v and δ, F (u0, z0, v, δ). The map is defined by the

relations

v0 =
∂F

∂u0

, δ0 =
∂F

∂z0

, u =
∂F

∂v
, z =

∂F

∂δ
. (15)
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In paraxial approximation all coordinates and momenta are considered small and we can

expand F in a Taylor series. The linear terms in this expansion vanish because zero initial

coordinates and momenta map to zero final ones. The expansion begins from the second

order terms

F ≈ F2 + F3 + . . . , (16)

where F2 is a quadratic, and F3 is a cubic function of the coordinates and momenta. The

function F2 should generate the linear map Eq. (13) for u and v with a unit transformation

for z and δ—a direct calculation shows that

F2 =
1

2
(u2

0 + v2) tanψ + u0v secψ + δz0 . (17)

The function F3 generates 2
nd-order abberations in the system, out of which we choose only

a term responsible for the conditioning:

F3 = −1
2
bz0u

2
0 . (18)

Indeed, using the second of Eqs. (15) with Eqs. (17) and (18) we find

δ0 = δ − 1

2
bu2

0 , (19)

in agreement with Eq. (14). At the same time the first and the third of Eqs. (15) yield

v0 = u0 tanψ + v secψ − bz0u0 , (20)

u = v tanψ + u0 secψ . (21)

These equations can be easily solved for u and v:

u = u0 cosψ + v0 sinψ + bz0u0 sinψ ,

v = −u0 sinψ + v0 cosψ + bz0u0 cosψ . (22)

We emphasize here that the same term in the symplectic map Eq. (18) that is responsible

for the conditioning of the beam also introduces in Eq. (22) the transverse deflection that

varies along the bunch. This also means that adding a system that ‘fixes’ this deflection

downstream of the conditioner would inevitably remove the conditioning itself.
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Finally, we will calculate the emittance increase of the beam due to the conditioning.

Using Eq. (7) for the emittance, with ū = v̄ = 0, we find

ε2x = 〈u2〉〈v2〉 − 〈uv〉2 . (23)

Substituting the map, Eqs. (22), into this yields

ε2x = ε2x0(1 + b2σ2
z0
) = ε2x0(1 + a2) , (24)

in agreement with Eq. (8), but now in a general case with arbitrary phase advance, ψ, and

non-zero initial alpha function, α0. For the specific conditioner described in Section III, we

have ψ = 2nπ, β0 = β, α0 = α = 0, and Eqs. (22) reproduce the first two of Eqs. (4).

VI. DISCUSSION

We have demonstrated for a general one-phase conditioner that a strong head-tail focusing

variation will always accompany the energy conditioning correlation, and that this focusing

variation is set solely by the FEL parameters, and not the conditioner. An analogous

situation can be described by considering the addition of a skew-quadrupole to an uncoupled

transport line. If the desired effect (the ‘conditioning’) is an 〈x′y〉 correlation, the skew-
quadrupole will suffice, but an accompanying 〈xy′〉 correlation will also result and may be
an extremely important side-effect, depending on the x-to-y emittance ratio. The two effects

are, of course, scaled by the same skew-quadrupole strength and are not independent. This

example is a linear one, while energy conditioning is 2nd-order. However, both cases are

based on symplectic transformations including coupling between two planes.

A two-phase conditioner is more complicated, but does not qualitatively change the ar-

guments presented here. If a second solenoid is added to Fig. 1, with a π/2-transformer

separating it from the first solenoid, a two-phase conditioner is formed. The chromatic aber-

rations, however, generated in the first solenoid will distort the beam in the second solenoid

and the energy conditioning will then include large terms higher than 2nd-order, which will

likely dominate and spoil the conditioning. A two-phase system will then only magnify the

projected emittance growth, and also degrade the character of the conditioning itself.
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The authors have studied various forms of two-phase conditioners and, while not pre-

senting a rigorous proof of it here, find the emittance growth much larger than a one-phase

system. An analytical calculation requires care in retaining the symplectic map to very high

order. Tracking the LCLS case through the two-phase solenoid system shows a projected

transverse emittance growth of εx/εx0 > 104. We believe this result will be the same for any

symplectic energy conditioner designed for the LCLS parameters.

Finally, conditioning is even less practical for an undulator with strong FODO-cell focus-

ing [7]. In this case, the path length increase with increased betatron amplitude [see Eq. (1)]

is nearly twice that of natural focusing, and the energy spread necessary for conditioning is

then twice larger. This effect, in conjunction with the reduced mean beta function, βu, in

a FODO-cell undulator, makes the conditioning coefficient, a, and therefore the projected

transverse emittance growth, even larger than for natural focusing.

For these reasons, we conclude that conditioning by adding an energy correlation with

the square of the betatron amplitude is impractical if not impossible in short wavelength

FELs.
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