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Abstract

Little Higgs models offer a new way to address the hierarchy problem, and give

rise to a weakly-coupled Higgs sector. These theories predict the existence of new

states which are necessary to cancel the quadratic divergences of the Standard Model.

The simplest version of these models, the Littlest Higgs, is based on an SU(5)/SO(5)

non-linear sigma model and predicts that four new gauge bosons, a weak isosinglet

quark, t′, with Q = 2/3, as well as an isotriplet scalar field exist at the TeV scale. We

consider the contributions of these new states to precision electroweak observables, and

examine their production at the Tevatron. We thoroughly explore the parameter space

of this model and find that small regions are allowed by the precision data where the

model parameters take on their natural values. These regions are, however, excluded

by the Tevatron data. Combined, the direct and indirect effects of these new states

constrain the ‘decay constant’ f >∼ 3.5 TeV and mt′ >∼ 10 TeV. These bounds imply

that significant fine-tuning be present in order for this model to resolve the hierarchy

problem.
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1 Introduction

The Standard Model (SM) of electroweak physics is a remarkable achievement. Precision

electroweak experiments have probed the SM at the level of quantum effects and have con-

firmed every feature of the theory. In particular, the set of precision electroweak (EW) data

has tested the SM beyond one-loop level and no significant deviations from SM predictions

have been observed. The symmetry breaking sector of the SM has been investigated through

its virtual effects and precision measurements strongly prefer the existence of a weakly cou-

pled Higgs boson by constraining its mass to be mH < 193 GeV at 95% CL [1]. This upper

bound may be relaxed if certain classes of new physics contributions beyond the SM are

present at the TeV scale and compensate for the indirect effects of a heavier scalar sector

[2]. However, because of decoupling, models with an elementary Higgs scalar typically yield

small contributions to the electroweak radiative corrections. Direct evidence for the elec-
troweak symmetry breaking dynamics has yet to be observed, and searches for Higgs boson

production have placed the compatible lower bound mH > 114.4 GeV.

The existence of a weakly coupled Higgs sector generates the hierarchy problem,

which is a long-standing puzzle in particle physics. Few candidates exist for the mecha-

nism which solves this problem. Supersymmetry naturally stabilizes the hierarchy, as the

quadratically divergent loop contributions to the Higgs mass cancel between the fermion and

boson contributions, provided the supersymmetry breaking scale is near a TeV [3]. Novel

theories with extra dimensions exploit the geometry of the higher dimensional spacetime to

resolve the hierarchy [4] and result in numerous phenomenological consequences at the TeV

scale [5]. Supersymmetry has the additional feature of remaining weakly coupled up to high

scales, whereas quantum gravity becomes strong at the TeV scale in these extra-dimensional

models. Experimental confirmation of either scenario has yet to occur.

Recently, another scenario has been developed which attacks the hierarchy problem

in a new way, while maintaining a weakly coupled scalar sector. This scenario is known

as the Little Higgs [6, 7] where the Higgs is effectively a pseudo-Goldstone boson. These

theories are realizations of earlier attempts [8] to stablize a Higgs which arises as a pseudo-

Goldstone boson resulting from a spontaneously broken non-linear approximate symmetry.

This approximate global symmetry protects the Higgs vev relative to the UV cut-off of the

theory, Λ, which appears at a higher scale. The recent progress was attained in models of

dimensional deconstruction [9], where the quadratically divergent corrections to the Higgs
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mass were shown to cancel with contributions from new fields in non-trivial descriptions of

theory space. The phenomenology of these models was examined in [10]. The recent Little

Higgs models have the advantage of not requiring a non-trivial theory space in order for the

quadratic divergences to be eliminated. The novel feature of these cancellations, is that the

divergent contributions from a particular particle are cancelled by a new particle of the same

spin. Hence, these theories predict the existence of new Q = +2/3 quarks, gauge bosons,

and scalars, all with masses at the TeV scale, in order to remove the relevant divergences.

In addition, a small mass for the Higgs boson, of order 100 GeV, is naturally obtained from

multi-loop corrections.

The most economical model of this type to date, known as the Littlest Higgs [6], is

based on an SU(5)/SO(5) nonlinear sigma model. The UV cut-off of this theory occurs

at Λ ∼ 4πf ∼ 10 TeV, where the nonlinear sigma model becomes strongly coupled. Here

f is the decay constant of the pseudo-Goldstone boson and is necessarily of order a TeV.

The SU(5) → SO(5) symmetry breaking is generated at the scale Λ by strong interactions

similar to technicolor which act only at the high scale Λ and have no remnants at a TeV. The

14 Goldstone bosons remaining after this symmetry breaking yield a physical doublet and

a complex triplet under SU(2); the remaining fields are eaten by a Higgs-like mechanism

when the intermediate symmetry is broken. The one-loop contributions to the quadratic

divergences from the electroweak gauge sector are removed by making use of the SU(5)

weakly gauged subgroup [SU(2) × U(1)]2. The divergent contributions must then involve

couplings of both groups and hence first appear at two-loop order. This combination of

gauge couplings breaks the global symmetries and generates a small mass of order 100 GeV

at the two-loop level for the scalar doublet field. At one-loop order, the Higgs mass is not

sensitive to the effective high scale Λ, and its mass is thus relatively stable assuming Λ ∼ 10

TeV. The scalar triplet acquires a mass at the TeV scale from one-loop gauge interactions. A

massive vector-like SU(2) singlet Q = +2/3 quark is responsible for canceling the one-loop

divergences originating from the SM top-quark.

The physical spectrum of this model below a TeV is thus simply that of the SM with

a single light Higgs. At the TeV scale four new gauge bosons Vi (an electroweak triplet and

singlet) appear, as well as the scalar triplet φ, and a single vector-like quark t
′
. For the

quadratically divergent corrections to cancel naturally, and not be fine-tuned, the mass of
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the new quark is constrained to be [6]

mt′ <∼ 2 TeV
[

mH
200 GeV

]2
, (1)

which in turn implies

f <∼ 1 TeV
[

mH
200 GeV

]2
. (2)

In addition, naturalness also implies

mVi
<∼ 6 TeV

[
mH

200 GeV

]2
, mφ <∼ 10 TeV . (3)

The Littlest Higgs, based on a SU(5)/SO(5) non-linear sigma model, is the simplest

scenario of this type in the sense that it introduces a minimal number of new fields. Other

models have been investigated [7] and are based on the cosets SU(k)/Sp(k), SU(k)2/SU(k),

and SU(k)n/SU(k)m, where k is the number of strongly interacting fermions at the scale Λ.

These cases differ from the Littlest Higgs in that they require the introduction of additional

scalars, gauge bosons, and vector-like quarks at the TeV scale, and sometimes extra light

scalar fields can arise at ∼ 100 GeV.

In this paper, we examine the effects of the components of the Little Higgs on precision

electroweak observables and in direct searches for new particles. We concentrate on the

minimal model here, the Littlest Higgs [6], as it contains all the essential ingredients and

provides a representative example of these types of theories. We would expect the more

complicated scenarios listed above to be even further constrained by experiment in the

absence of any fine-tuning due to the presence of the additional new particles at the TeV

scale. Consistency with the global precision electroweak data set is a tough barrier for any

new model to pass, and we find that the Littlest Higgs does not necessarily decouple quickly

enough for most of the parameter space. A thorough examination of the parameter space

reveals small regions where precision data, alone, allows for scales in the theory to take on

their natural values, i.e., f <∼ 2 TeV. However, we find that the most stringent constraint

arises from the direct search for new gauge bosons in Drell-Yan production at the Tevatron

[11] and that this excludes these regions. Together, the direct and indirect data samples

place the constraints f >∼ 3.5 − 4.0 TeV, and mt′ >∼ 10 TeV, indicating that significant

fine-tuning is required if this scenario is to work.
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The outline for the remainder of this paper is as follows: in the next section we

present the formalism for our analysis. We start with a description of the parameters in

this theory and then give a derivation of the shifts that occur in the precision electroweak

observables. In section 3, we present our numerical results. We first examine the bounds

obtained from direct searches for new gauge bosons at the Tevatron. We then study the case

where the new particles take on SM values for their coupling strengths and perform a fit

to the electroweak data set and obtain tight constraints on the model. We then vary these

couplings within natural ranges and demonstrate that there is a region of parameter space

where the precision data bounds are relaxed, but is still excluded by the Tevatron data. The

final section contains our conclusions.

2 Formalism

To begin our analysis, we follow the notation of Arkani-Hamed et al.[6] and generate the

masses of the [SU(2)×U(1)]2 gauge bosons through the leading two-derivative kinetic term

for the non-linear sigma model

L =
f 2

4
Tr|DµΣ|2 , (4)

where f ∼ 1 TeV and the Σ = exp(2iΠ/f)Σ0 represents the Goldstone boson fields. The

fourteen fields Π include the SM weak iso-doublet h, an isotriplet φ as well as the true

Goldstone bosons which are eaten in the breaking of the intermediate symmetry to the SM.

The triplet φ obtains a positive mass squared of order ∼ f 2 [6] and so does not develop a

vev, while a vev is generated for h as is required to break the SM. This means that φ plays

no role in any of the symmetry breaking and, due to its quantum numbers, is not important

in constraining the model from precision data. (We will return to this point below.) The

covariant derivative of Σ is given by

DΣ = ∂Σ − igkW
a
k (QakΣ + ΣQaTk ) − ig′kBk(YkΣ + ΣY Tk ) , (5)

where a sum over the index k = 1, 2 is understood and the ‘charge’ (Qa) and ‘hypercharge’

(Y ) matrices are given in Ref. [6]. To proceed further in the calculation of the gauge boson

masses it is useful to define the following combinations of the above [SU(2) × U(1)]k gauge
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couplings:

g =
g1g2√
g2
1 + g2

2

, g
′
=

g
′
1g

′
2√

g
′2
1 + g

′2
2

,

gt =
g2
1√

g2
1 + g2

2

, g
′
t =

g
′2
1√

g
′2
1 + g

′2
2

. (6)

Inverting these relations yields

g1 = (g2 + g2
t )

1/2 ,

g2 =
g

gt
(g2 + g2

t )
1/2 , (7)

and similarly for g′1,2. To zeroth-order in the Higgs vev, one linear combination of the gauge

bosons obtains a mass at the TeV scale when the intermediate symmetry is broken, while

the second set remains massless. The massive neutral fields and their corresponding masses

are given by

Bh =
g

′
1B1 − g

′
2B2√

g
′2
1 + g

′2
2

, m2
Bh

=
1

10

(
g

′2 + g
′2
t

)2

g
′2
t

f 2 ,

Zh =
g1W

3
1 − g2W

3
2√

g2
1 + g2

2

, m2
Zh

=
1

2

(g2 + g2
t )

2

g2
t

f 2 . (8)

The corresponding charged isospin partner of the Zh, W
±
h , obtains an identical mass:

W±
h =

g1W
±
1 − g2W

±
2√

g2
1 + g2

2

, m2
Wh

=
1

2

(g2 + g2
t )

2

g2
t

f 2 . (9)

The orthogonal linear combinations

B(0) =
g

′
2B1 + g

′
1B2√

g
′2
1 + g

′2
2

,

W 3(0) =
g2W

3
1 + g1W

3
2√

g2
1 + g2

2

, (10)
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together with the corresponding charged field, W±(0), remain massless at this order. They

will play the roles of the SM fields and acquire masses through the usual Higgs mechanism

which are proportional to the Higgs vev, ν.

In performing the comparison to precision electroweak and collider data, one must

include the shifts in the SM-like gauge boson masses due to mixing with the heavier states,

i.e., the Higgs vev induces a finite mixing between the states Bh, Zh,Wh and the correspond-

ing lighter fields. For the neutral fields, which form a 4 × 4 mass matrix, this mixing is

most easily examined via a power series expansion in the ratio of the Higgs vev relative to

f . For the charged fields, since the mass matrices are now only 2 × 2, exact eigenvalues in

a compact form can be easily found. The leading corrections to the masses of the lighter

SM-like fields are of relative order δ2 = (ν/f)2 ∼ 0.01 so that, numerically, δ4 corrections

can be safely neglected. When discussing the effects of the heavy gauge fields on precision

measurements, we will consistently keep all terms of relative order δ2. Turning now to the

light mass eigenstates, we define the zeroth-order weak mixing angle as follows:

c
(0)
W =

g√
g2 + g′2

, s
(0)
W =

g
′√

g2 + g′2
, (11)

so that the physical γ and Z bosons become (to O (δ2))

A = c
(0)
W B(0) − s

(0)
WW 3(0) ,

Z = c
(0)
W W 3(0) + s

(0)
W B(0) + δBh

Bh + δZh
Zh , (12)

where δBh
, δZh

are defined below in Eq. 15. For the physical W± bosons we obtain

W± =
g2√

g2
1 + g2

2

{
1 − g2

1 (g2
1 − g2

2)

4 (g2
1 + g2

2)
2 δ

2

}
W±

1 +
g1√

g2
1 + g2

2

{
1 +

g2
2 (g2

1 − g2
2)

4 (g2
1 + g2

2)
2 δ

2

}
W±

2 , (13)

which can easily be written in terms of the unmixed fields W±(0) and W±
h ,

W± = W±(0) − g1g2(g
2
1 − g2

2)

4(g2
1 + g2

2)2
δ2 W±

h . (14)

Note that the mixing between these states vanishes in the limit g1 = g2 or, more specifically,

when gt = g. The physical Z contains a small admixture of the heavy fields proportional to
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δBh
, δZh

. These parameters, which define the mixing between the light SM-like Z and the

heavy neutral gauge bosons, are given to order δ2 by:

δBh
= −5

4

g
′
t

(
g

′2
t − g

′2
)√

g2 + g′2(
g′2 + g

′2
t

)2 δ2 ,

δZh
= −1

4

gt (g
2
t − g2)

√
g2 + g′2

(g2 + g2
t )

2 δ2 . (15)

Again we note that these mixing terms vanish in the symmetric limit when gt = g and

g′t = g′. From this we see that all light-heavy gauge boson mixing vanishes in the symmetric

case. This will have important consequences below. The masses of the physical W± and Z

bosons are then given by (to O (δ2)):

M2
Z = m

2(0)
Z


1 − δ2

5 (g4
t + g4)

(
g

′4
t − g

′2g
′2
t + g

′4
)

+ 7g2g2
t

(
g

′2 + g
′2
t

)2 − 16g2g
′2g2
t g

′2
t

6 (g2 + g2
t )

2
(
g′2 + g

′2
t

)2


 ,

M2
W = m

2(0)
W

{
1 − δ2 5g4 − 2g2g2

t + 5g4
t

24 (g2 + g2
t )

2

}
, (16)

where

m
2(0)
Z =

1

4

(
g2 + g

′2
)
ν2 , m

2(0)
W =

1

4
g2ν2 (17)

are the usual gauge boson masses that satisfy the tree-level SM relations: m
(0)
Z c

(0)
W = m

(0)
W .

These shifts in the masses of the gauge fields contribute to the deviation of the ρ-

parameter from its SM value. These contributions alone yield

δρG =
δM2

W

m
2(0)
W

− δM2
Z

m
2(0)
Z

(18)

=
5

8

(
g

′2
t − g

′2

g
′2
t + g′2

)2

δ2 .

Note that as we might have anticipated the gauge contribution to δρ vanishes in the symmet-

ric limit, i.e., when g′t = g′. This is expected as in this limit the W and Z are just the usual

SM fields. As we will discuss below there is an additional new contribution to δρ beyond
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that arising from the tree level shifts of the gauge boson masses described here. This is due

to the mixing of the top quark with the new vectorlike isosinglet field, t
′
. This contribution,

which we denote by δρtop, arises from new t and t′ quark loops that do not appear in the

SM. As we will see, these contributions can be numerically significant in some regions of the

parameter space and must be included. The reason for their significance is that such terms

can be parametrically enhanced by powers of m2
t/M

2
W or m′2

t /M
2
W . Note that even though

the additional isosinglet quark is vector-like, since it mixes with the top quark it does not

fully decouple. Thus the complete new contribution to the shift in the ρ-parameter is the

sum of δρtop and δρG.

To proceed further with an analysis of precision data and collider constraints, we must

examine how the SM fermions transform under the group G1×G2 with Gk = [SU(2)×U(1)]k.

Here we take the fermions to transform non-trivially only under G1. This choice is not unique

and at least two other possibilities exist. The first alternative is when the fermions transform

identically under both G1 and G2. This possibility is excluded here since it would require

a doubling of the number of fermions. A second somewhat convoluted alternative would

have the fermions transform under, say, G1 as well as the U(1) piece of G2. In this case,

doubling of the number of fermions is not required, but such a possibility would allow for an

additional free parameter in the fermion couplings to the Z. It would seem that our choice

is more natural and economical and avoids the issue of fermion doubling. However, we will

make some particular notes in our numerical analysis below of the dependency of the choice

of fermion couplings to the heavy hypercharge gauge boson.

The t and t′ quarks contribute at one-loop to δρ as discussed above, as well as to

Rb, the ratio of the b-quark to total hadronic widths of the Z. In order to compute these

contributions we must examine the t − t′ mass matrix which can be obtained from the

Yukawa couplings provided in [6]. The diagonalization of this matrix requires a bi-unitary

transformation, which for real Yukawa couplings implies that two separate rotations on the t

and t′ fields, OL,R, must be performed. Here OL,R rotates the left(right)-handed components

of the quark fields. It is important to note that the rotation OR is actually unphysical since

both tR and t′R transform identically under G1. OL, however, is physical and leads to, e.g.,

flavor violating Ztt′ couplings. Since the mass matrix is a simple 2 × 2 rotation, the matrix

OL contains only a single parameter: a mixing angle θt. Writing the ratio of the Yukawa
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couplings as r = λ2
2/λ

2
1 and recalling δ = ν/f one finds

tan(2θt) =
δ

1 + r − δ2/4
, (19)

from which it follows that

r = δ/ tan(2θt) − 1 + δ2/4 . (20)

Since by definition r ≥ 0, this immediately provides a bound on θt. We find that

tan(θt) ≤ δ

2
. (21)

Since δ is relatively small this greatly restricts the range of θt. The eigenvalues of the t− t′

mass matrix are now easily obtained with the smaller one being identified with the physical

top quark. Given δ, θt and the fixed experimental value of mt = 174.3 ± 5.1 GeV [12], the

mass of the t′, mt′ , is now completely determined:

m2
t′

m2
t

=
1 + r + δ2/4 +

√
(1 + r + δ2/4)2 − rδ2

1 + r + δ2/4 −
√

(1 + r + δ2/4)2 − rδ2
. (22)

For a given set of values for the parameters (δ, θt), the contribution to the shift in the

rho-parameter from the fermion sector can now be fully calculated. (For simplicity we set

Vtb = 1 in what follows.) The couplings of the t and t′ to the W and Z fields are altered

by the presence of the mixing and are represented by the parameter θt, e.g., ordinarily

the isosinglet t′ would not couple to the W . We find Wt̄b ∼ ct while Wt̄′b ∼ st where

ct[st] = cos(θt)[sin(θt)]. Note that to this order in δ we can neglect the effects of gauge boson

mixing on the couplings of the W and Z. For the Z, the right-handed couplings of the t and

t′ are not modified but the left-handed couplings are now given by

gttL =

√√√√8GfM2
Z√

2

(
c2
t/2 − 2xw/3

)
,

gt
′
t
′

L =

√√√√8GfM2
Z√

2

(
s2
t/2 − 2xw/3

)
,

gtt
′

L = gt
′
t
L =

√√√√8GfM2
Z√

2
(ctst/2) ,

(23)
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where xw = sin2 θW can be taken to be the on-shell value to this order in δ. Note the presence

of the flavor-changing coupling that we alluded to above. There are now five graphs which

contribute to the vacuum polarization of the Z boson and two graphs for the W ; the usual

SM contribution must be subtracted from these new contributions to δρtop. To proceed let

us write the general couplings of a pair of fermions to a gauge boson as

L = f̄1γµ(v + aγ5)f2X
µ + h.c. (24)

In this language, we now find that

δρ =
3Gf

2
√

2π2
(δW − δZc

2
W ) , (25)

where cW = cos θW , which, again to this order, can be taken to be the on-shell SM value,

and

δX = 2[2m1m2(v2 − a2) − (m2
1 + m2

2)(v2 + a2)] log(m1m2/µ
2) − 2m1m2(v2 − a2) (26)

+ (m2
2 −m2

1)−1[2m1m2(m2
1 + m2

2)(v2 − a2) − (m4
1 + m4

2)(v2 + a2)] log(m2
2/m

2
1) ,

with m1,2 being the relevant fermion masses. Here, µ is an arbitrary renormalization scale

that cancels from the final expression after all the individual diagrams are summed over.

For the Z boson vacuum polarization diagrams, the intermediate states which contribute

are t̄t, t̄′t′, t̄t′, t̄′t and b̄b, while for the W they are t̄b and t̄′b, and their couplings are as given

above. Using this expression we can now sum the new contributions and subtract those of

the SM thus obtaining the contribution to the shift in the ρ-parameter from the fermion

sector of this model.

We now have the necessary ingredients to calculate the shifts in the precision elec-

troweak observables. We perform our calculations in the on-shell renormalization scheme

and begin by examining the effects related to the definition of Gf in this model. In the on-

shell renormalization scheme, the W± boson mass is defined through Gf , which is derived

from muon decay, and α, the fine structure constant. Note that in the on-shell scheme, Gf

is employed as an input parameter. Several effects now modify this relation: (1) there are

contributions from the exchange of the new gauge boson W±
h in µ-decay; (2) the coupling

of fermions to the physical W± are shifted from the expression in Eq. 6 due to mixing with

the W±
h as presented in Eq. 13:

gphysical ≡ gW = g (1 − ∆g) , ∆g =
1

4

g2
1 (g2

1 − g2
2)

(g2
1 + g2

2)
2 δ2 ; (27)
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(3) the expression for g in terms of α becomes g2 = 4πα/s
(0)2
W , where s

(0)
W is defined in Eq. 11;

this must be written in terms of the physical W± and Z masses. After implementing these

changes, we arrive at the following equation relating MW to Gf and α

Gf√
2

=
πα (1 − ∆g)2

2M2
W (1 −M2

W/M2
Z) (1 + c2

W δρ/s2
W )

+
g2
t

8m2
Wh

. (28)

Here δρ = δρG + δρtop. Solving this for MW to O (δ2), we find the following shift in the W±

mass from its predicted SM value,

δM2
W =

(M2
W )SMs2

W

1 − 2s2
W

{
c2
W

s2
W

δρ− 1

2

g2g2
t

(g2 + g2
t )

2 δ
2

}
. (29)

We define (MW )SM as the mass of the W boson given by the SM when the Higgs boson

mass, mH , as well as MZ , Gf , α(M2
Z), αs(M

2
Z) and mt are used as input, and when all of the

usual SM radiative corrections are incorporated, which we do here by using ZFITTER[13].

In evaluating this expression to order δ2, we let can let both cW and sW take their on-shell

values.

The on-shell expression for s2
W which enters the Z couplings is that defined in Eq. 11,

and can be written as

s
(0)2
W = 1 − m

2(0)
W

m
2(0)
Z

. (30)

In terms of the physical Z mass and the SM prediction for the W± mass, we find the following

shift in the on-shell definition of s2
W : s

(0)2
W → s2

W = s
(0)2
W + δs2

W where

δs2
W = c2

W δρ− δM2
W

M2
Z

. (31)

At this point we next examine the interactions of the Z with the various fermion

fields. The SM expressions for a fermion’s vector and axial-vector couplings to the Z are

gfv =

√√√√8GfM2
Z√

2

(
T f3
2

−Qfs2
W

)
, gfa =

√√√√8GfM2
Z√

2

(
−T f3

2

)
. (32)

These couplings are now modified in several ways: (i) the definition of Gf has been changed

as described above, (ii) the couplings of the lighter SM-like Z are shifted via the modification
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in s2
W , (iii) the physical Z now has additional components from the heavy gauge fields. When

these effects are combined the resulting shifts in gfv and gfa are given by

δgfv =

√√√√8GfM2
Z√

2

{(
1

2
δρ− 1

4

g2g2
t

(g2 + g2
t )

2 δ
2

)(
T f3
2

−Qfs2
W

)
−Qfδs2

W

}

+
T f3
2

(
gtδZh

+ g
′
tδBh

)
− g

′
tQ
fδBh

,

δgfa =

√√√√8GfM
2
Z√

2

{(
1

2
δρ− 1

4

g2g2
t

(g2 + g2
t )

2 δ
2

)(
−T f3

2

)}
− T f3

2

(
gtδZh

+ g
′
tδBh

)
. (33)

For b quarks, there is an additional shift arising from vertex corrections containing the extra

heavy isosinglet quark as well as those involving the top since its couplings have been modified

as discussed above. Expressing this as a shift in the left and right-handed couplings, with

gbv = (gbL + gbR)/2 and gba = (gbR − gbL)/2, and keeping only terms which are quadratically

enhanced by the top quark or heavy isosinglet quark masses, we find

δgbL =
Gf

4π2
√

2

[ ∑
i,j=t,t′

mimjxixj
{
gijL I1 (mi, mj) − gtRI2 (mi, mj)

−gz (s2
W − c2

W )

2
δijI3 (mi) +

gbL
2
δijI4 (mi)

}
−m2

t

{
gtLI1 (mt, mt)

−gtRI2 (mt, mt) − gz (s2
W − c2

W )

2
I3 (mt) +

gbL
2
I4 (mt)

} ]
, (34)

where gz =

√
8GfM

2
Z√

2
, and the functions Ik are defined in the Appendix. The xi denote the

mixing angles which arise when deriving the charged Goldstone coupling to the physical t

and t
′

states; we find xt = cos (θt), xt′ = −sin (θt). We have explicitly subtracted off the SM

contribution in Eq. 34. This shift requires no renormalization, and is therefore a prediction

of this model. We find that the right-handed coupling gbR receives no contributions which

are quadratically enhanced by the masses of the t or t
′
.

Since we have included the contributions from gauge boson mixing and the leading,

large m2
t,t′ loop contributions, one may worry that we have so far neglected the potential

contribution of the TeV scale degenerate triplet scalar, φ. Except for the possibility of

generating a Majorana mass term for neutrinos, this field does not directly interact with the

12



SM fermions. It is possible that it would be relevant in the W and Z self-energies. However,

since φ is not a chiral field it decouples rather rapidly yielding contributions to the gauge

boson self-energies of order ∼ α
4π

M2
W

m2
φ

. These will be very small, of the same order as the

two-loop SM contributions, if mφ is at or above the TeV scale. Thus we can safely ignore

this particle in our analysis.

Using the above expressions, we can derive the shifts in the precision EW observables.

We examine the following approximately uncorrelated set of of observables: MW , Γl, s
2,lep
W,eff ,

Nν , Rb, Ab, Rc, and Ac. Here Γl is the total leptonic width of the Z, s2,lep
W,eff is the effective

leptonic weak mixing angle on the Z pole, Nν is the ‘number of neutrinos’ (defined through

the invisible width of the Z), Rb and Rc are respectively the ratios of bottom and charm

quark widths over the total hadronic width, and Ab and Ac are respectively the polarization

asymmetries for b and c quarks. We will also dicuss the deviation induced in the NuTeV

measurement of the on-shell weak mixing angle [14]. Once the various coupling shifts are

determined, it is rather easy to obtain the contributions to these observables. We find:

δΓf = Nfc
MZ
6π2

(
gfv δg

f
v + gfaδg

f
a

)
,

δs2,lep
W,eff =

glaδg
l
v − glvδg

l
a

4gl2a
,

δNν = 3

{
2

(
gνvδg

ν
v + gνaδg

ν
a

gν2v + gν2a

)
− 1

}
,

δRq =
ΓhadδΓq − ΓqδΓhad

Γ2
had

,

δAq = 2
gq2v − gq2a(
gq2v + gq2a

)2 (gqvδg
q
a − gqaδg

q
v) . (35)

The NuTeV experiment measures the following ratio of neutral and charged current cross

sections for both neutrino and anti-neutrino beams scattering off an isoscalar target:

R− =
σνNC − σν̄NC
σνCC − σν̄CC

=
1

2
− s2

W , (36)

where in obtaining the second equality we have included the tree-level SM prediction for R−.

In the present model, the charged current contribution, which now includes the exchange of

13



both W± and W±
h , can be expressed entirely in terms of Gf . This is unchanged in this model

since Gf is taken as an input parameter in the electroweak fit. The neutral current piece is

modified by both the shifted Zf̄f couplings discussed above and the exchange of the new

heavy gauge bosons Bh and Zh. Given the masses and couplings of these gauge bosons, it is

straightforward to compute the required diagrams and find the shift in R−. The masses of

Bh and Zh are given in Eq. 8; writing the interaction between these states and the fermion

fields as (gf,Xv + gf,Xa γ5), we find

gf,Zv = gtT
f
3 /2 , gf,Za = −gtT

f
3 /2 ,

gf,Bv = g
′
t

(
T f3 − 2Qf

)
/2 , gf,Ba = −g

′
tT
f
3 /2 . (37)

The exact expression for R− is not very enlightening so we do not include it here. R− can be

generally written in the form ρ
(
1/2 − s2,os

W,N

)
; in our analysis we will set ρ = 1 and interpret

the deviation as a shift in the on-shell weak mixing angle s2,os
W,N .

From the discussion above it is clear that there are only four independent parameters

that we need to consider in our numerical fits: δ, sin θt and the ratios of couplings gt/g and

g′t/g
′. All of the shifts in the electroweak observables as well as the predicted masses for the

new gauge bosons can be written in terms of these few parameters.

3 Results

In this section we present our numerical analysis of the experimental constraints on the

Littlest Higgs, including those from both direct searches and precision measurements. We

attempt to identify throughout the features of our analysis that are independent of the

fermion couplings to the hypercharge bosons.

The six new TeV-scale states predicted in this model are the four new gauge bosons,

Bh, Zh, and W±
h , the isosinglet quark t

′
, and the isotriplet φ. Limits on the masses and

couplings of such particles have been set by direct searches at high-energy colliders such as

the Tevatron. The strongest constraints arise from the lack of observation for the production

of Bh. This can be understood from examining Eq. 8; the factor of 1/
√

10 in its mass, which

arises from the normalization of the hypercharge generator defined in [6], and the fact that

g
′ ≈ .3 < g in the SM, show that it is predicted to be quite light relative to the scale f . We

14



present the theoretical predictions for mBh
as a function of the coupling ratio x = g

′
t/g

′
in

Fig. 1 for several values of f ; mBh
can become as small as 400 GeV for f as large as 2 TeV

and x ≈ 1. The 95% CL bounds resulting from direct searches at the Tevatron are shown in

Fig. 2. As expected, the strongest constraints are for x ≈ 1, where mBh
reaches its minimum

value; in this region, the data bounds f >∼ 3.5 TeV. The constraints weaken when x �= 1.

However, as we will see later, x ≈ 1 is the parameter choice preferred by the precision EW

data; the combination of the direct and indirect constraints will require f >∼ 3.5 TeV for all

x. We summarize the constraints on f arising from searches for Bh, W
±
h , and Zh production

at the Tevatron Run I in Table 1; as claimed above, the most significant limits are obtained

from Bh production. We note that the constraints from W±
h and Zh production depend only

on the coupling of the fermions to the SU(2)1 gauge bosons, and not on their coupling to

the hypercharge bosons.

x f (Bh) f (W±
h ) f (Zh)

1 3.48 TeV .85 TeV .81 TeV

1/2 2.33 .50 .53

2 3.23 .65 .75

Table 1: 95% CL lower bounds on f for specific values of x arising from Tevatron limits on
Bh, W

±
h , and Zh production; for Bh, x = g

′
t/g

′
, while for W±

h and Zh, x = gt/g.

It is interesting to imagine how these constraints would evolve if the Tevatron Run II

fails to find a signal for new gauge boson production in Drell-Yan collisions. What ranges of

x would now be allowed as f is varied? The answer to this question can be found in Table 2.

We see that the sensitivity to f would be extended by about 30% in comparison to Run I

which would most likely exclude the possibility that f ≤ 5 TeV.

f 2 2.5 3 3.5 4 4.5 5 5.5

x ≤ 0.24 ≤ 0.26 ≤ 0.30 ≤ 0.43 ≤ 0.51 ≤ 0.61 0.74 − 1.68 all

Table 2: Estimated allowed ranges of x for different values of f in TeV following a null search
for new gauge bosons at the Tevatron Run II assuming an integrated luminosity of 10 fb−1.
For f = 5 TeV, the disallowed range is shown.
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Figure 1: The theoretical predictions for the mass of the gauge boson Bh as a function of
x = g

′
t/g

′
, the ratio of its coupling relative to the corresponding SM coupling, for several

values of the scale f .

We now analyze the constraints arising from EW precision data. The new parameters

introduced in this model are the scale f (or the ratio δ = ν/f), the couplings gt and ht, and

the top quark sector mixing angle θt, which enters both δρ and Z-pole b-quark observables

through the loop corrections discussed in the previous section. Rather than perform a

combined fit to all four quantities, we study a series of two-dimensional χ2 fits for various

combinations of parameters; this is sufficient to illustrate the essential physics. In deriving

our constraints we follow the analysis of [15]; we calibrate our fits by first varying the Higgs

boson mass until we find the χ2 value that reproduces the 95% CL upper bound on mH

presented in [1]. We then use this reference χ2 to determine whether a given set of model

parameters provides a good fit to the EW data. We say that a set of parameters is disallowed

if the resulting χ2 exceeds this reference value. We will first consider the observables mW ,

Γl, s2,lep
W,eff , Nν , Rb, Ab, Rc, and Ac, and later will include s2,os

W,N as determined from NuTeV.

The error correlation between these measurements is quite small [1], and will be neglected

in our analysis. We use ZFITTER [13] to derive the SM predictions for these quantities.

We first set gt = g and g
′
t = g

′
, and vary both sin (θt) and δ. The results of this fit for
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Figure 2: The expected number of Drell-Yan events from the production of the Bh boson
during Tevatron Run I (110 pb−1) as a function of x = g

′
t/g

′
, the ratio of its coupling relative

to the corresponding SM coupling, for several values of f . The horizontal line represents the
95% CL bound from CDF [11] for this mechanism; the parameter region above this line is
excluded.

both mH = 115 GeV and mH = 200 GeV are shown in Fig. 3; the shaded region is allowed

by the EW fit at the 95% CL, while the remainder is excluded. Although mH = 200 GeV

is allowed in this model, unlike in the SM where mH < 193 GeV at the 95% CL, only a

small sliver near the boundary δ/2 = tan (θt) satisfies the EW precision constraints. This

region persists but shrinks for larger values of mH . The tail along this boundary for large

values of δ is primarily due to the t and t
′

contributions to δρ. We see that the Tevatron

constraints are quite significant here, as they completely exclude this region. Included in

these figures are curves representing the predictions for several t
′

masses as functions of δ

and sin (θt) from Eq. 22. We see that the Tevatron limit requires that mt′ > 10 TeV, which

is significantly larger than the naturalness bound mt′ < 2 TeV. This is beyond the range for

direct discovery at the LHC.

We now study the case where the couplings gt and g
′
t are varied within natural ranges

away from their corresponding SM values. For this and all later discussions we assume

mH = 115 GeV. Shown in Fig. 4 are the results of the EW fits for the following four
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Figure 3: Fit to the EW precision data varying sin (θt) and δ, for mH = 115 GeV (upper)
and mH = 200 GeV (lower). The diagonal line indicates the bound δ/2 ≤ tan (θt), the
horizontal line denotes the 95% CL bound from Bh production at the Tevatron. The series
of curved lines indicates the t

′
mass mt′ as a function of δ and sin (θt); from top to bottom,

they represent mt′ = 5, 7.5, 10, 15, and 20 TeV. The shaded regions are allowed by the EW
fit. For the remainder of our discussion, we label g and g′ as gSM and g′SM , respectively, in
the figures.
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coupling choices: (1) gt = g and g
′
t = g

′
/2; (2) gt = g and g

′
t = 2g

′
; (3) gt = g/2 and

g
′
t = g

′
; (4) gt = g/4 and g

′
t = g

′
. We see from the top two figures that the EW constraints

are strongest in the case where the Tevatron constraints are weakened. As can be seen

from Fig. 2, the Tevatron limits are the most stringent when g
′
t/g

′ ≈ 1, and decrease away

from this region. This region is exactly where δρG vanishes, as can be seen from Eq. 19;

away from this point the contribution of δρ to the EW fit becomes more important. For

case (1), the EW precision constraints require f >∼ 3.5 TeV, while in case (2) this bound is

strengthened to f >∼ 7.2 TeV. These correspond to limits of mt′ > 10 TeV and mt′ > 20 TeV,

respectively. The strongest constraints for cases (3) and (4) arise from the Tevatron direct

searches; the EW precision constraints are relatively weak for these parameter choices. To

further demonstrate that bounds from EW data become strong in precisely those regions in

which the Tevatron constraints decrease, we present in Fig. 5 the results of fits where we

set f = 2 TeV and vary both sin (θt) and x. The three fits we perform use the following

definitions of x: (1) gt = xg and g
′
t = xg

′
; (2) gt = xg/2 and g

′
t = xg

′
; (3) gt = xg and

g
′
t = xg

′
/2. These variations in the couplings within natural ranges provide for a thorough

exploration of the model parameter space. In all three cases the parameter values allowed by

the EW fit are clustered very near g
′
t = g

′
, and are excluded by the Tevatron constraints. We

obtain identical results if we choose f = 3 TeV. Combining the results of these fits, we can

conclude that f >∼ 3.5 TeV throughout the full parameter space of the model. This implies

a minimum mass of mt′ = 10 TeV for the t
′

state, which is beyond the reach of the LHC.

Having established that f <∼ 3.5 is excluded by the data, we now set f = 4 TeV, which

is allowed by both EW precision constraints and Tevatron direct search limits. We study the

fit to the EW precision data as we vary both sin (θt) and x; we choose the same three cases

for the relations of the couplings as examined above. The results of these fits are presented

in Fig. 6. We see that a far larger region of the coupling space is consistent with the data

in this case, and that the EW data allows significant deviations from the g
′
t = g

′
limit. To

examine the contributions of the various observables to the fit, we present in Fig. 7 the ∆χ2

values for the various observables obtained in the gt = xg, g
′
t = xg

′
fit; ∆χ2 is the difference

between the χ2 values obtained in the Littlest Higgs model and in the SM. Included in these

figures are all values of x which satisfy the bounds imposed by the EW data. We have not

presented our results for the observables Rc, Ac, and Ab because their ∆χ2 values are very

nearly zero throughout the entire parameter space; i.e., they have no influence on the fit.
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Figure 4: Fit to the EW precision data varying sin (θt) and δ, for various choices of gt and
gt′ as indicated. The diagonal line represents the bound δ/2 ≤ tan (θt), the horizontal line
denotes the 95% CL bound from Bh production at the Tevatron, and the series of curved
lines corresponds to the t

′
mass mt′ as a function of δ and sin (θt); from top to bottom, they

represent mt′ = 5, 7.5, 10, 15, and 20 TeV. The shaded regions are allowed by the EW fit.
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Figure 5: Fit to the EW precision data varying both sin (θt) and x, for f = 2 TeV. The
shaded regions are allowed by the EW fit, while the areas above the horizontal lines are
forbidden by Tevatron direct search constraints. The rightmost boundary of the figure is
determined by the constraint δ/2 ≤ tan (θt).
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All of the ∆χ2 ranges exhibit a dip either upwards or downwards at the right edge of these

figures. These arise from the t and t
′

contributions to either δρ or, for Rb, the Zb̄b vertex.

Although mt′ becomes large as sin (θt) → δ/2, since the t
′

mixes with the top quark it does

not decouple as its mass becomes large. We see that MW is generally better predicted by

the Littlest Higgs model than the SM; this remains true for other parameter choices. The

shift in MW depends only on the coupling of the fermions to the SU(2)1 gauge bosons, and

not on their coupling to the hypercharge bosons; this will therefore remain true for other

choices of fermion transformation assignments. We also see that while Rb is not affected

until sin (θt) → δ/2, both Γl and s2,lep
W,eff are very sensitive to the deviations predicted by the

Littlest Higgs, and that the agreement between the predicted values for these observables

and the experimental measurements is always worse than in the SM.

Finally, we discuss the effect on the fit of the NuTeV measurement of the on-shell

value of the weak mixing angle s2,os
W,N . The NuTeV result currently disagrees with that derived

from Z-pole data by approximately 3 standard deviations [14]. Although this is possibly a

signal of new physics, several more mundane explanations, such as larger parton distribution

function uncertainties than those assumed by the NuTeV collaboration, asymmetric strange

and charm sea quark distributions, or nuclear effects, have been suggested [16]. With this

caveat in mind, we will assume both the central value and error determined by the NuTeV

collaboration, and repeat our analysis including the NuTeV result. To demonstrate that the

allowed range of f is unaffected by the inclusion of the NuTeV measurement, we display the

results of re-performing the following two analyses in Fig. 8: (1) varying δ and sin (θt) while

setting gt = g and g
′
t = g

′
, the analog of the fit presented in Fig. 3; (2) varying sin (θt) and

x with f = 2 TeV, and x defined by gt = xg and g
′
t = xg

′
, the analog of the result shown in

Fig. 5. Comparing these figures with those presented previously, we see that the constraint

on f is unchanged by the addition of the NuTeV data. Although the full EW data set

allows a slightly larger range of parameters here than before, the Tevatron constraint again

excludes these regions. For other coupling choices, the NuTeV measurement again either

very slightly increases or decreases the size of the allowed parameter space; no large swath

of new parameter values are allowed.

We next set f = 4 TeV, gt = xg and g
′
t = xg

′
, and vary both sin (θt) and x; the

results are presented in Fig. 9. We display the allowed region in the x− sin(θt) plane as well

as the values of ∆χ2 for s2,os
W,N . The Littlest Higgs model shifts s2,os

W,N in the direction preferred
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Figure 6: Fit to the EW precision data varying both sin (θt) and x, for f = 4 TeV. The shaded
regions are allowed by the EW fit. The rightmost boundary of the figure is determined by
the constraint δ/2 ≤ tan (θt).
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Figure 7: The ∆χ2 values for several observables as functions of sin (θt) for the case gt = xg
and g

′
t = xg

′
; included are all x values that satisfy the precision EW constraints as shown in

the previous figure.
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Figure 8: Fit to the EW precision data including the NuTeV measurement of the on-shell
weak mixing angle. The top figure studies the variation with δ and sin (θt), while the lower
figure shows the dependence on sin (θt) and x with f = 2 TeV.
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by the NuTeV measurement throughout most of the entire parameter space; this remains

true for other choices of the couplings. The size of the allowed region is smaller than in the

case where the NuTeV data is not included. The shifts induced by the Littlest Higgs model

(≈ 0.5 − 1.5 σ) cannot compensate for the large ≈ 3 σ deviation of the SM prediction from

the NuTeV results.

Before concluding we note that we have not discussed the possible influence of mea-

surements of Atomic Parity Violation (APV) on the fits. Until recently the experimental

value of the weak charge, QW , differed from the predictions of the SM by about 2σ [17]. After

a series of detailed theoretical calculations including various atomic effects it now seems that

experiment and theoretical predictions are in agreement [18]. However, since the theoretical

calculation of QW may still be in flux we do not include this observable in our fits. After

computing the corrections to QW in this model and scanning the allowed regions from our

previous fits, we find that either sign for the shift of QW can be generated.

4 Conclusions

Little Higgs models are a novel attempt to address the hierarchy problem. These theories

predict the existence of a host of new particles at the TeV scale, which are necessary to cancel

the quadratic divergences of the Standard Model. Here, we have examined the simplest

version of these models, the Littlest Higgs, which contains four new gauge bosons, a weak

isosinglet quark, t′, with Q = 2/3, as well as an isotriplet scalar field with their masses being

constrained by naturalness requirements. In this paper, we have considered the contributions

of these new states to precision electroweak observables, and have examined the additional

constraints provided by the direct searches for new particles at the Tevatron. We have

performed a thorough exploration of the parameter space of this model and have found that

there are small regions allowed by the precision data where the parameters take on their

natural values. When the additional limits provided by the Tevaton are included, these

regions are no longer permitted. By combining the direct and indirect effects of these new

states we have constrained the ‘decay constant’f to rather large values >∼ 3.5 TeV; similarly,

to satisfy both sets of data mt′ >∼ 10 TeV which is far beyond the reach of direct searches

at the LHC. These bounds imply that significant fine-tuning must be present in order for

this model to resolve the hierarchy. We thus find that the Littlest Higgs model is tightly

constrained by the combination of precision electroweak data and direct Tevatron searches.
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Figure 9: Fit to the EW precision data including the NuTeV measurement of the on-shell
weak mixing angle; we have set f = 4 TeV and gt = xg, g

′
t = xg

′
. The top figure shows

the fit to the EW data, while the lower figure illustrates the χ2 shift from the SM for those
values of x and sin (θt) which satisfy the EW constraints.
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Appendix

We define here the loop integrals in Eq. 34 which arise in the computation of the shift

in δgbL due to the vertex correction diagrams containing t and t
′

states:

I1 (mi, mj) =
∫ 1

0
dx
∫ 1−x

0
dy

mimj
(1 − x− y)M2

W − xyM2
Z + xm2

i + ym2
j

,

I2 (mi, mj) =
∫ 1

0
dx
∫ 1−x

0
dy ln

[
(1 − x− y)M2

W − xyM2
Z + xm2

i + ym2
j

µ2

]
,

I3 (mi) =
∫ 1

0
dx
∫ 1−x

0
dy ln

[
(1 − y)M2

W − x (1 − x− y)M2
Z + ym2

i

µ2

]
,

I4 (mi) =
∫ 1

0
dx x ln

[
xM2

W + (1 − x)m2
i

µ2

]
, (38)

where µ is an arbitrary renormalization scale that cancels from the final expression after all

the individual diagrams are summed over.
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[1] M. Grünewald, talk presented at 31st International Conference On High Energy

Physics, Amsterdam, Netherlands, July 2002; LEP/SLD Electroweak Working Group,

LEPEWWG/2002-01.

[2] M. E. Peskin and J. D. Wells, Phys. Rev. D 64, 093003 (2001) [arXiv:hep-ph/0101342].

[3] H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).

[4] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263 (1998)

[arXiv:hep-ph/9803315], and Phys. Rev. D 59, 086004 (1999) [arXiv:hep-ph/9807344];

28



I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436,

257 (1998) [arXiv:hep-ph/9804398]; L. Randall and R. Sundrum, Phys. Rev. Lett. 83,

3370 (1999) [arXiv:hep-ph/9905221], and Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-

th/9906064].

[5] For a review, see, J. Hewett and M. Spiropulu, arXiv:hep-ph/0205106.

[6] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207, 034 (2002)

[arXiv:hep-ph/0206021].

[7] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and J. G. Wacker,

JHEP 0208, 021 (2002) [arXiv:hep-ph/0206020]; T. Gregoire and J. G. Wacker, JHEP

0208, 019 (2002) [arXiv:hep-ph/0206023]; I. Low, W. Skiba and D. Smith, Phys. Rev.

D 66, 072001 (2002) [arXiv:hep-ph/0207243].

[8] H. Georgi and A. Pais, Phys. Rev. D 10, 539 (1974), and Phys. Rev. D 12, 508 (1975);

D. B. Kaplan and H. Georgi, Phys. Lett. B 136, 183 (1984); D. B. Kaplan, H. Georgi and

S. Dimopoulos, Phys. Lett. B 136, 187 (1984); H. Georgi, D. B. Kaplan and P. Galison,

Phys. Lett. B 143, 152 (1984); H. Georgi and D. B. Kaplan, Phys. Lett. B 145, 216

(1984); M. J. Dugan, H. Georgi and D. B. Kaplan, Nucl. Phys. B 254, 299 (1985).

[9] N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Rev. Lett. 86, 4757 (2001)

[arXiv:hep-th/0104005]; C. T. Hill, S. Pokorski and J. Wang, Phys. Rev. D 64, 105005

(2001) [arXiv:hep-th/0104035]; N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys.

Lett. B 513, 232 (2001) [arXiv:hep-ph/0105239]; H. C. Cheng, C. T. Hill and J. Wang,

Phys. Rev. D 64, 095003 (2001) [arXiv:hep-ph/0105323].

[10] N. Arkani-Hamed, A. G. Cohen, T. Gregoire and J. G. Wacker, JHEP 0208, 020

(2002) [arXiv:hep-ph/0202089]; K. Lane, Phys. Rev. D 65, 115001 (2002) [arXiv:hep-

ph/0202093]; R. S. Chivukula, N. Evans and E. H. Simmons, Phys. Rev. D 66, 035008

(2002) [arXiv:hep-ph/0204193].

[11] F. Abe et al., CDF Collaboration, Phys. Rev. Lett. 79, 2191 (1997).

[12] K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).

29



[13] D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann and

T. Riemann, in Comput. Phys. Commun. 133, 229 (2001) [arXiv:hep-ph/9908433].

[14] G. P. Zeller et al. [NuTeV Collaboration], Phys. Rev. Lett. 88, 091802 (2002) [arXiv:hep-

ex/0110059].

[15] T. G. Rizzo and J. D. Wells, Phys. Rev. D 61, 016007 (2000) [arXiv:hep-ph/9906234].

[16] For a discussion of these points, see: S. Davidson, S. Forte, P. Gambino, N. Rius and

A. Strumia, JHEP 0202, 037 (2002) [arXiv:hep-ph/0112302]; G. P. Zeller et al. [NuTeV

Collaboration], Phys. Rev. D 65, 111103 (2002) [arXiv:hep-ex/0203004]; P. Gambino,

arXiv:hep-ph/0211009.

[17] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484 (1999) [arXiv:hep-

ex/9903022].

[18] M. Y. Kuchiev and V. V. Flambaum, arXiv:hep-ph/0206124.

[19] C. Csaki, J. Hubisz, G. D. Kribs, P. Meade and J. Terning, arXiv:hep-ph/0211124.

30


