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Abstract

We study a nonlinear integral equation for the equilbrium
phase distribution of stored colliding electron beams. It is
analogous to the Haı̈ssinski equation, being derived from
Vlasov-Fokker-Planck theory, but is quite different in form.
We prove existence of a unique solution, thus the existence
of a unique equilibrium state, for sufficiently small current.
This is done for the Chao-Ruth model of the beam-beam in-
teraction in one degree of freedom. We expect no difficulty
in generalizing the argument to more realistic models.

1 INTRODUCTION

In the theory of stability of stored beams a primary step
should be the study of equilibrium states, expected at low
current. An equilibrium state should become unstable at
some threshold in current, but in order to compute the
threshold we must linearize the kinetic equation (Vlasov or
Vlasov-Fokker-Planck ) about the equilibrium phase space
distribution. Historically, investigators have often been
lazy about this point, linearizing the Vlasov equation about
some state that might be at best a rough approximation to an
equilibrium. This may be excused by the fact that determi-
nation of the equilibrium is a nonlinear problem, in general
rather difficult.

There is one case in which there is a widely known theory
of equilibrium that makes some contact with experiment;
namely, the case of longitudinal motion of a single stored
electron beam subject to a wake field [1, 2]. The theory
is based on a model in which the exact longitudinal wake
field is replaced by its average over one turn. The aver-
aged wake of course depends only on the distance between
source and test particles, not on the position in the ring.
With such a wake one may seek a time-independent, fac-
torized solution of the Vlasov-Fokker-Planck (VFP) equa-
tion; namely, a product of a Gaussian in the canonical mo-
mentump (proportional to the energy deviation) and the
charge densityρ(q), whereq is the canonical coordinate
(proportional to the distance from the synchronous parti-
cle). The equation is satisfied by such a factorized form,
provided that the charge density satisfies the Haı̈ssinski
equation [1], a nonlinear integral equation. If the wake
field satisfies a mild restriction, it is not difficult to prove
that the equation has a unique solution in a large func-
tion spaceS, at sufficiently small current. The correspond-
ing solution of the VFP equation is the unique, small-
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current solution satisfying the principle of detailed balance
( with ρ ∈ S).

There are many ways in which this prototype theory of
equilibrium might be extended. For instance, one might
include multi-bunch beams, long-range wakes from cavity
resonators or resistive walls, nonlinear r.f., proton beams
with non-Gaussian distributioninp, localized wakes not av-
eraged over azimuth. Here we are interested in two counter-
rotating beams in collision. In mathematical aspects the
problem has similarities to the case of a single beam with
localized wake contributions.

The beam-beam collision gives a large transverse force
that substantially modifies the beams at every collision.
Consequently, the equilibrium state, if any, cannot be time-
independent. Rather, it must be defined as a phase space
distribution that is periodic in azimuthal positions. As a
zeroth approximation, one could smear out the localized
beam-beam kick, distributing it over a full turn. This has
been done in linear stability studies [3]. Here we wish to
avoid such a step, accounting fully for the localization. It
then follows that we cannot deal with a factorized distri-
bution. We must expect the equilibrium equation to be an
integral equation for functions on phase space, not just on
coordinate space as in the Haı̈ssinski case. We derive and
analyze the simplest instance of such an equation, retaining
the full nonlinearity of the beam-beam force.

Some background to the present study is found in a recent
paper [4]. There we made an analytic study of equilibria by
linearizing the beam-beam force, but retaining the quadratic
nonlinearity of the Vlasov equation. We also carried out a
numerical integration of the nonlinear VFP system. Here
we adopt the notation and equations of motion as given in
Ref. [4].

2 FORMULATION OF THE PROBLEM

We treat vertical transverse motion with normalized
phase-space variables(q, p) defined in terms of the lattice
functionβ(s) and emittanceε as

q = y(βε)−1/2 , p = (βy′ − β′y/2)(βε)−1/2 , (1)

where y is the vertical displacement and the prime de-
notesd/ds. The Hamiltonian of motion unperturbed by the
beam-beam interaction isH = (p2+q2)/2and the indepen-
dent “time” variable of Hamilton’s equations is the phase
advanceθ =

∫ s

0 du/β(u). We distinguish the two beams
by superscripts(1), (2).

The Chao-Ruth model [5] is intended to represent flat
beams, with largex : y aspect ratio. The force on a particle
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in beam(1) is approximated as though it came from infinite
uniform planes of charge perpendicular to they-axis, dis-
tributed with a densityρ(2)(y). This force is concentrated
in time, however, at the instant of collision. The resulting
kernel function for the beam-beam force is proportional to
sgn(q − q′), wheresgn(x) is the signum function, equal to
1 for x > 0 and−1 for x < 0. For simplicity in nota-
tion we take the two beams to have equal properties (tune,
energy, bunch height and width,β∗, damping time). The
mathematical argument would be the essentially the same
with unequal beam properties. The formal Vlasov-Fokker-
Planck system is

∂f(1)

∂θ
+ p
∂f(1)

∂q
−

[
q + (2π)3/2ξ

∑
n

δ(θ − 2πνn)

·
∫ ∞

−∞
sgn(q − q′)

∫ ∞

−∞
f(2)(q′, p′, θ)dq′dp′

]
∂f(1)

∂p

= 2α
∂

∂p

[
pf(1) +

∂f(1)

∂p

]
, (and 1 ↔ 2) , (2)

where the distribution function for beam(i) is f (i)(q, p, θ),
the vertical betatron tune isν, and the beam-beam param-
eter isξ = Nβ∗re/((2π)1/2γσyLx). Hereβ∗ is the beta
function at the IP,re = e2/(4πε0mc2) is the classical elec-
tron radius,γ is the Lorentz factor,Lx is the bunch width,
andσy = (β∗ε)1/2 is the bunch height. The right hand side
of (2) is the Fokker-Planck contribution, with damping con-
stantα = 1/(2πνnd), wherend is the number of turns in a
damping time. Our phase space coordinates have been de-
fined so that the damping and diffusion constants are equal.

Equation (2) has only a formal significance, since the
θ- dependent factors multiplying the delta function actu-
ally change discontinuously at the IP where the delta func-
tion acts. Consequently, we cannot say how to evaluate
those factors without further analysis. Actually, the correct
change of the distribution function at the IP is easy to see.
Let f(1)(q, p, 0−) andf(1)(q, p, 0+) represent the distribu-
tions just before and just afterθ = 0 (mod 2πν). Then
by the usual argument from probabilityconservation [2] the
distribution is changed by the inverse of the kick map; i.e.,
by the Perron-Frobenius operator for that map:

f(1)(q, p, 0+) = f(1)(q, p− F (q, 0−), 0−) , (3)

where

F (q, 0−) = −(2π)3/2ξ

∫
sgn(q−q′)f(2)(q′, p′, 0−)dq′dp′ .

(4)
For propagation of the distribution function between

IP kicks, we have in (2) a linear Fokker-Planck equation
with harmonic force. The propagator or fundamental so-
lution of that equation is known [6], namely a function
Φ(z, z′, θ) , z = (z1, z2) = (q, p) such that for any initial
distributionf(z, 0) the solution at timeθ is

f(z, θ) =
∫

Φ(z, z′, θ)f(z′, 0)dz′ . (5)

There are several equivalent representations ofΦ. The
following form, which was derived from a probabilis-
tic argument, is especially convenient for our work:

Φ(z, z′, θ) =
1

2π(detΣ)1/2
exp

[
−

(
z − eAθz′

)T Σ−1
(
z − eAθz′

)
/2

]
,

Σ = I − eAθeA
T θ . (6)

HereT denotes transposition andeAθ is the transfer ma-
trix for the single-particle harmonic motion with damping.
With damping constantα we have

eAθ = e−αθ

(
a+ b
−b a−

)
,

a± = cos Ωθ ± (α/Ω) sinΩθ , b = (1/Ω) sinΩθ
Ω = (1 − α2)1/2 , det(eAθ) = e−2αθ . (7)

Let Φ denote the operator corresponding to the kernel
Φ(z, z′, θ) in (5). The action ofΦ has a simple expression
in Fourier space. Writinĝh for the Fourier transform ofh,
we have

Φ̂h(v) = exp
[
−vT eAθΣeA

T θv/2
]
ĥ(eA

T θv) . (8)

We can now set down a system of integral equations for
the equilibrium distribution. The equations are for the dis-
tributions evaluated justafter the IP,f (i)(z, 0+). Hence-
forth we suppress the time specification0+. Starting with
f = (f(1), f(2)), we propagate one turn by (5) withθ =
2πν, and then apply the beam-beam kicks according to (3).
For equilibrium (periodicity), the result must be the starting
f . To state this in equations we first define the linear oper-
atorL by

Lf(q) = (2π)3/2

∫ ∫
sgn(q−q′)K(z′|z′′)f(z′′)dz′dz′′ ,

(9)
whereK is the Fokker-Planck propagator for one turn,

K(z|z′) = Φ(z, z′, 2πν) . (10)

The integral equations take the form

f(i)(z) =
∫
K( q, p+ ξLf(j)(q) | z′ )f(i)(z′)dz′ ,

i �= j , i, j = 1, 2 , (11)

with ∫
f(i)(z)dz = 1 . (12)

It is essential that the normalization constraint (12) be
regarded as part of the definition of the mathematical sys-
tem; otherwise in Eqs.(11) there is nothing to set the scale of
the beam-beam force. We choose to build in the constraint
by redefining the integral equations, dividing the right hand
side of (11) by

∫
f(i)(z)dz. Then, since

∫
K(z|z′)dz = 1,



any solution of the modified equation will automatically
satisfy (12). Finally we multiply by

∫
f(i)(z)dz and rear-

range to state the pair of equations as

G(f, ξ) = 0 , (13)

whereG = (G(1), G(2)) with

G(i)(f, ξ)(z) = f(i)(z)
∫
f(i)(z′)dz′

−
∫
K( q, p+ ξLf(j)(q) | z′ )f(i)(z′)dz′ , i �= j .

(14)

We know the solution of (13) atξ = 0; it is the Gaussian
equilibrium in the absence of beam-beam force,

G(f0, 0) = 0 , f0 = (f(1)
0 , f

(2)
0 ) ,

f
(i)
0 =

1
2π

exp
(
−1

2
(q2 + p2)

)
. (15)

We apply the implicit function theorem to prove that this
solution can be continued in a unique way to a solutionf(ξ)
of (13) for smallξ �= 0. This requires an implicit function
theorem in an infinite-dimensional function space. Let us
first recall the intuitive basis of the theorem in finitely many
dimensions, so that (13) representsn real (generally nonlin-
ear) equations inn unknownsfj , j = 1, · · · , n. We wish
to solve for thefj as a function of the parameterξ, suppos-
ing that a solutionf0j for ξ = 0 is known. Supposing that
G is smooth, we can expand it by Taylor’s formula with re-
mainderR about the point(f0, 0):

G(f, ξ) = Gf (f0, 0)(f−f0)+Gξ(f0, 0)ξ+R(f, ξ) = 0 .
(16)

If the Jacobian matrixGf = {∂Gi/∂fj} is non-singular at
the expansion point, and the nonlinear remainderR is small,
an approximate solution of our problem is

f(ξ) ≈ f0 −Gf(f0, 0)−1Gξ(f0, 0)ξ . (17)

The implicit function theorem takes into account the non-
linear term, and assures us that for sufficiently smallξ there
will be a unique exact solution of (13) close to the approx-
imation (17). The Jacobian is required to be nonsingular
only at the single point(f0, 0).

In the infinite-dimensional case we must first decide on
the arena of the discussion: in what space of functions do
we seek a solution of (13)? Physicists are usually famil-
iar with Hilbert space, but here we can get by with a sim-
pler notion, a Banach space. Like the Hilbert space, it is
a complete linear space with a norm, but is not required to
have a scalar product. For instance, the set of all contin-
uous functionsf(x) on the unit interval[0, 1] is a Banach
space if the norm is defined as‖f‖ = max[0,1] |f(x)|. Sec-
ondly, we must give a meaning to the JacobianGf whenf
is a function rather than a finite-dimensional vector. A sim-
ple possibility is the Fréchet derivative, which for a function

G(f) on a Banach space is defined atf0 as a linear operator
Gf(f0) such that

lim
‖h‖→0

1
‖h‖‖G(f0 + h) −G(f0) −Gf(f0)h‖ = 0 . (18)

We are now ready to state the implicit function theorem
in Banach space, in a form sufficiently general for our pur-
poses (but hardly the most general).

Theorem: Let B be a Banach space, and sup-
pose thatG is a continuously differentiable map-
ping (operator) ofB × I into B, whereI =
(−∆ξ,∆ξ) is an open interval, the domain ofξ.
The continuous differentiability implies that the
partial (Fréchet) derivativesGf(f, ξ) , Gξ(f, ξ)
exist and are continuous inB × I. Let f0 ∈
B be a solution ofG(f0, 0) = 0, and suppose
thatGf(f0, 0) is a continuous linear map ofB
ontoB with a continuous inverse. Then there
exists a unique solutionf(ξ) of G(f, ξ) = 0
such thatf(0) = f0, for ξ in some interval
I0 = (−δξ , δξ) ⊂ I , δξ �= 0. More-
over, forξ ∈ I0 this solution has a continuous
derivative with respect toξ and(Gf(f(ξ), ξ))−1

exists. The derivative is given byf ′(ξ) =
−(Gf(f(ξ), ξ))−1Gξ(f(ξ), ξ) .

The theorem alone does not give us an estimate of the size
of the intervalI0 in which the solution exists. In specific
cases analytic estimates can be made, but they may be pes-
simistic. In our problem, we mainly seek assurance that an
equilibrium exists for sufficiently small current. We shall
have to rely on numerical calculations to determine a max-
imum interval of existence. Calling on experience with the
Haı̈ssinski equilibrium, we expect that as the current is in-
creased the equilibrium will become unstable long before it
ceases to exist.

To apply the implicit function theorem to (13), a crucial
matter is to find a suitable spaceB. As is usual in applica-
tions of functional analysis, this requires some experimen-
tation. The space has to be tailored to fit the properties of the
operator. A primary requirement is thatB × I be mapped
intoB, and that is relatively easy to check for some candi-
dates forB. Further requirements such as invertibility of
Gf(f0, 0) may be harder to verify, and lead us to refine the
choice, perhaps taking a subspace of an initial candidate for
B.

After various estimates of integrals we find that a suit-
ableB consists of all pairsf = (f(1), f(2)) of continuous
functions on the phase spaceR2 such that the following ex-
pression, identified as the norm, is finite:

‖f‖ = max
i

sup
z∈R2

| (1 + ‖z‖2a)f(i)(z) | , a > 2 , (19)

where‖z‖ = (z21 + z22)1/2 andsup (supremum) denotes
the least upper bound. This is a “big” space, in the sense
that it contains functions with slow, polynomial decrease at



infinity, whereas intuitionand the results of Ref.[4] indicate
that the actual decrease of the solution is close to Gaussian.
The advantage of a big space is that our assertion of unique-
ness of the solution means uniqueness in a bigger universe.
The disadvantage is that our resulting theorem will give no
close information on the actual fall-off of the solution, since
it merely asserts that the solution is inB. We did not suc-
ceed in finding a space with Gaussian fall-off, mapped into
itself byG.

3 SOME HIGHLIGHTS OF THE PROOF

Here we give a few main points of the proof, deferring
full details to a future report. We have to verify the three
main hypotheses of the implicit function theorem, namely

1. G : B × I → B

2. Gf , Gξ exist and are continuous inB × I

3. Gf(f0, 0)−1 exists and is continuous

Suppose thatf ∈ B. Then its Fourier transform̂f exists
and is bounded. By (8) one then sees that every derivative
of Kf(z) =

∫
K(z|y)f(y)dy exists and is bounded, be-

ing the Fourier transform of an absolutely integrable func-
tion. For estimates of the action ofK onf we can prove the
lemma ∣∣∣∣ ∂m+n

∂zm1 ∂z
n
2

∫
K(z|y)dy
1 + ‖y‖2a

∣∣∣∣ ≤ Mmn

1 + ‖z‖2a
, (20)

for anym ≥ 0, n ≥ 0, where the constantMmn depends
ona and the parameters definingK. Using these results one
verifies that hypothesis (1) holds.

To check (2) forGf , we compute the formal variational
derivative ofG, applied to a variationh ∈ B. That is a lin-
ear integral operatorL applied toh. Then some work with
the lemma and the mean-value theorem shows thatL is in-
deed the Fréchet derivative. In fact, the numerator under the
limit in (18) isO(‖h‖2) if Gf = L.

The hardest part of the proof is verifying item (3). In text-
book examples it is usual to suppose thatGf − 1 is a com-
pact operator, in which case one can apply Fredholm theory
to discuss existence ofG−1

f . In the present case this oper-
ator appears to be non-compact, and we have to resort to a
more subtle method. We get the inverse by proving uniform
convergence of an operator power series development, and
the convergence is at a slow rate determined by the damp-
ing constant. Thus, the proof fails for a proton system with
no damping, and it does not seem at all likely that one could
get a proof for zero damping by somehow taking a limit.

Since the power series method is interesting and novel,
we give a few details. We have to show that the equation

Gf(f0, 0)x = y (21)

has a unique solutionx ∈ B for anyy ∈ B. At zero current
Gf breaks into two identical and independent blocks for the

two beams. Then (21) for one block takes the form

x(z) + f0(z)
∫
x(z′)dz′ − Kx(z) = y(z) , (22)

where nowx andy are single functions, not pairs. We dis-
cuss (22) in the spaceB1, which is defined in the same
way asB, except that it consists of single functions; i.e.,
B = B1 ×B1. For anyx ∈ B1,∫

Kx(z)dz =
∫
x(z)dz , (23)

from which it follows that any solution of (22) must satisfy∫
x(z)dz =

∫
y(z)dz . (24)

Consequently, any solution of (22) must also be a solution
of

x(z) −Kx(z) = p(z) , (25)

p(z) = y(z) − f0(z)
∫
y(z′)dz′ ,

∫
p(z)dz = 0 .

We look for solutions of (22) among the solutionsof (25).
Iterating (25)n− 1 times we find

x = Knx+
n−1∑
m=1

Kmp+ p . (26)

Here the story is different from the familiar case of the Neu-
mann series, since the termKnx does not vanish in the
limit of large n. By the semigroup property of the linear
Fokker-Planck evolution, the kernel ofKn is given by (6)
with θ = 2πnν. If x ∈ B1 the integral definingKnx con-
verges uniformly inn, since the integrand is majorized by
|x(z′)| and

∫
|x(z)|dz < ∞. We may then take the limit

under the integral to obtain

lim
n→∞

Knx(z) = f0(z)
∫
x(z)dz . (27)

Thus, from (26) a solution of (25) inB1 is expected to have
the form

x = f0
∫
x(z′)dz′+

∞∑
m=1

Kmp+y−f0
∫
y(z′)dz′ . (28)

A candidate for a solution of (22) must satisfy (24), so that
from (28) the unique candidate is

x(z) =
∞∑

m=1

Kmp(z) + y(z) . (29)

We are now faced with a delicate step of the proof, to show
that for anyy ∈ B1 the series in (29) converges and rep-
resents an element ofB1. Once that it is done, it is easy to
check that (29) represents a solution of (22), unique inB1.

To estimate the Knp we formally subtract
exp(−zT z/2)

∫
p(z′)dz′, which is zero, and then do



some analysis with the mean value theorem to get the
following bound:

In =
∣∣∣∣2π(det Σn)1/2Knp(z)

∣∣∣∣
=

∣∣∣∣
∫ [

exp[−(z − enθAz′)T (z − enθAz′)/2]

− exp[−zT z/2]
]
p(z′)dz′

∣∣∣∣
≤ M(1 − exp(−zT z/2))

zT z
(1 + ‖z‖)e−nθα ,

θ = 2πν , (30)

whereα is the damping constant. (We writeM for a generic
constant in majorizations. In any statementM may have
a value larger than in any previous statement.) Now (30)
is enough to show uniform convergence (in the maximum
norm) of the series in (29) over any finite ball‖z‖ < r,
but not enough to show that the sum of the series belongs
to B1. To complete the job we get a bound by a different
method which fails at small‖z‖ but works for‖z‖ > r.
For that we break the integral in (30) into two parts, one for
‖ exp(nθA)z′‖ < b‖z‖ and the other for‖ exp(nθA)z′‖ >
b‖z‖, with 0 < b < 1. In the second region the coefficient
of p(z′) is not small, and we have to rely wholly on the fall-
off of p(z′). Using appropriate estimates for the two regions
(and supposingα < 1/2, which is more than safe for real
machines) we find

In ≤ M

1 + ‖z‖2a
e−nθα , ‖z‖ > r . (31)

Combining (30) and (31) we have for allz that

|Knp(z)| ≤ M

1 + ‖z‖2a
e−nθα , (32)

from which it follows thatx as given in (29) exists and be-
longs toB1. Furthermore, this function satisfies the original
equation (22):

∞∑
m=1

Kmp+ y + f0
∫ [ ∞∑

m=1

Kmp(z′) + y(z′)
]
dz′

−
∞∑

m=2

Kmp− Ky = y (33)

since we know thatKf0 = f0 and
∫ ∑∞

m=1 Kmp(z)dz =∑∞
m=1

∫
Kmp(z)dz =

∑∞
m=1

∫
p(z)dz = 0, the reversal

of sum and integral in the latter being justified by (32).
To prove that the solution is unique, suppose that there

were two solutionsx1 , x2 inB1. Thenx = x1−x2 satisfies
(22) withy = 0, from which it follows that

∫
x(z)dz = 0,

hencex − Kx = 0. Iterating the latter equation, we have
x = Knx = limn→∞ Knx = f0

∫
x(z)dz = 0. Finally,

the continuity ofGf(f0, 0)−1 is clear, since a small change
in y evidently produces a small change inx.

4 CONCLUSION

We have sketched the proof that there is a unique solu-
tion to the Vlasov-Fokker-Planck system for the Chao-Ruth
model of colliding electron beams at sufficiently small cur-
rent. The details of the various estimates involved will be
given in a longer report. We are fairly confident that the
proof will go through in almost the same way for other mod-
els in one degree of freedom [3] and for the model in two
degrees of freedom in which the force is obtained from the
two-dimensional Poisson equation. The case of protons,
without radiation damping, is an entirely different story.
One expects infinitely many approximate equilibria [4, 7],
but the question of exact equilibria is open.
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