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Abstract current solution satisfying the principle of detailed balance
. . . .. (withp € 8).
We study a nonlinear integral equation for the equnbnuns There are many ways in which this prototype theory of

phase distribution of"sto'red 'collldm.g e'eCtTO” be"’?ms- It I%quilibrium might be extended. For instance, one might
analogous to the Haissinski equation, being derived from

. o . include multi-bunch beams, long-range wakes from cavity
VIasov-Fokkgr-PIancktheo'ry, butis q.u'ted'ﬁerentmTorm'resonators or resistive walls, nonlinear r.f., proton beams
We prove existence of a unique solution, thus the emstengﬁth non-Gaussian distributionjn localized wakes not av-
of a unique equilibrium state, for sufficiently small current. . ) .
o ’ eraged over azimuth. Here we are interested in two counter-
This is done for the Chao-Ruth model of the beam-beam in- g

¢ ton i d ffreed We expect no diffi I,[rotating beams in collision. In mathematical aspects the
ieraction in one degree ot freedom. YVe expect no ditticu Eﬂroblem has similarities to the case of a single beam with
in generalizing the argument to more realistic models.

localized wake contributions.
The beam-beam collision gives a large transverse force
1 INTRODUCTION that substantially modifies the beams at every collision.

Consequently, the equilibrium state, if any, cannot be time-

In the theory of stability of stored beams a primary stef,qenendent. Rather, it must be defined as a phase space
should be the study of equilibrium states, expected at 1oy inytion that is periodic in azimuthal positien As a
current. An equilibrium state should become unstable g, approximation, one could smear out the localized
some threshold in current, but in order to compute thgeam_peam kick, distributing it over a full turn. This has
threshold we must linearize the klnetlclgqgatlon (Vlasov %een done in linear stability studies [3]. Here we wish to
Vlasov-Fokker-Planck ) about the equilibrium phase spacgqiq such a step, accounting fully for the localization. It

distribution. Historically, investigators have often beeny,q foliows that we cannot deal with a factorized distri-
lazy about this point, linearizing the Vlasov equation abo”ﬁution. We must expect the equilibrium equation to be an

some state that might be atbest a rough approximation to gfe 4| equation for functions on phase space, not just on
equilibrium. This may be excused by the fact that determis, o ginate space as in the Haissinski case. We derive and
nation of the equilibriumis a nonlinear problem, ingeneral 5,76 the simplest instance of such an equation, retaining
rather difficult. S S the full nonlinearity of the beam-beam force.

There is one case in which there is a widely known theory gome packground to the present study is found in a recent
of equilibrium that makes some contact with experimentyaner [4]. There we made an analytic study of equilibria by
namely, the case of longitudinal motion of a single storegnearizing the beam-beam force, butretaining the quadratic
electron beam subject to a wake field [1, 2]. The theonyonjinearity of the Vlasov equation. We also carried out a
is based on a model in which the exact longitudinal wak@merical integration of the nonlinear VFP system. Here

field is replaced by its average over one tum. The avefe 5dopt the notation and equations of motion as given in
aged wake of course depends only on the distance betwgggy. 4.

source and test particles, not on the position in the ring.

With such a wake one may seek a time-independent, fac

torized solution of the Vlasov-Fokker-Planck (VFP) equa- 2 FORMULATION OF THE PROBLEM

tion; namely, a product of a Gaussian in the canonical mo- We treat vertical transverse motion with normalized
mentump (proportional to the energy deviation) and thephase-space variablég p) defined in terms of the lattice
charge density(q), wheregq is the canonical coordinate functiong(s) and emittance as

(proportional to the distance from the synchronous parti- _1/o _1/2

cle). The equation is satisfied by such a factorized form, ¢ = ¥(5¢) 2Lop=0y —-8y/2B), (D)

provided that the charge density satisfies the Haissinsfghere 4 is the vertical displacement and the prime de-
equation [1], a nonlinear integral equation. If the wake,gtesi/ds. The Hamiltonian of motion unperturbed by the
field satisfies a mild restriction, it is not difficult to prove paam-peam interactionfg — (p*+¢2)/2and the indepen-

that the equation has a unique solution in a large fungyent “time” variable of Hamilton’s equations is the phase

tion spaceS, at sufficiently small current. The correspond-,qyance) — fs du/B(u). We distinguish the two beams
ing solution of the VFP equation is the unique, small-by superscript%l) (2)

*Work supported in part by Department of Energy contracts DE-FG03- 1N€ Ch_aO'RUth model [3] is _imended to represent' flat
99ER41104 and DE-AC03-76SF00515. beams, with large : y aspect ratio. The force on a particle
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in beam(1) is approximated as though it came from infiniteThere are several equivalent representation® of The
uniform planes of charge perpendicular to thaxis, dis- following form, which was derived from a probabilis-
tributed with a density(?) (y). This force is concentrated tic argument, is especially convenient for our work:
in time, however, at the instant of collision. The resulting

kernel function for the beam-beam force is proportional to

sgn(q — ¢'), wheresgn(z) is the signum function, equal to (2,2, 0) =

1forxz > 0and—1 for x < 0. For simplicity in nota- 1 (A0 NT—1(. A6

tion we take the two beams to have equal properties (tune, 27 (det X)1/2 exp|—(z = e4) 2T (e — 70 2]
energy, bunch height and widtf}, damping time). The S [ ABATE (©)

mathematical argument would be the essentially the same
with unequal beam properties. The formal Vlasov-Fokkelyare 77 denotes transposition and” is the transfer ma-

Planck system is trix for the single-particle harmonic motion with damping.

afm af With damping constant we have

a0 TPag [q+(2w)3/2525(9—2mn)

n Ae_e_ag( ay b )
OO‘ (¢—q) OOf(Q)(/ /G)d/d/af(l) —b a-
' _Oobgnq q - a,p,v)aqap op ar =cosQ0 + (a/Q)sinQf, b= (1/Q)sinQf
Q=(1-a?)¥?, det(et?)=e220, (7

Let & denote the operator corresponding to the kernel
where the distribution function for beafi) is £ (¢, p,0), ~2(%#¢)in (5). The action of has a simple expression
the vertical betatron tune is, and the beam-beam param-IN Fourier space. Writing for the Fourier transform of,
eter is¢ = NB*r./((27)"/?yo,L,). HereB* is the beta W€ have

function at the 1Py, = €?/(4megmc?) is the classical elec- = T oAb ATO je1i. AT

tron radius;y is the Lorentz factorL, is the bunch width, ®h(v) = exp[—v' T Tv/2fh(e™ Tu) . (8)

anda, = (53"¢)!/?is the bunch height. The righthand side \yg can now set down a system of integral equations for
of (2) is the Fokker-Planck contribution, with damping con-y,g equilibrium distribution. The equations are for the dis-

stanta = 1/(2mvnq), wheren, is the number of tumsina i tions evaluated justfter the IP, £)(z,0+). Hence-

damping time. Our phase space coordinates have been flgs, \ve suppress the time specification. Starting with
fined so that the damping and diffusion constants are equal. _ (f@, f@), we propagate one turn by (5) with=
Equation (2) has only a formal significance, since thg,, anq then apply the beam-beam kicks according to (3).

0- dependent factors multiplying the delta function acturq e quilibrium (periodicity), the result must be the starting
ally change discontinuously at the IP where the delta funCr 1, giate this in equations we first define the linear oper-
tion acts. Consequently, we cannot say how to evalualg, by

those factors without further analysis. Actually, the correct
change of the distribution function at the IP is easy to see.
Letf(gl)(q,p, 0—)andf™ (q, p, 04) represent the di.:{tribu- Lf(q) = (277)3/2//Sgn(q—q/)K(Z/|Z”)f(Z”)dZ/dZ”a
tions just before and just aftér= 0 (mod 27v). Then (9)
by the usual argument from probability conservation [2] thavhere K is the Fokker-Planck propagator for one turn,
distribution is changed by the inverse of the kick map; i.e.,
by the Perron-Frobenius operator for that map: K(z]2') = ®(2, 2, 27v) . (10)

Y, p,04) = fV(q,p— F(¢q,0-),0-), (3) The integral equations take the form

where f(“(z) _ /K( q, p+§Lf(j)(q) |2 )f(“(z’)dz’,
F(q,0-) = —(2m)*/%¢ / sen(q—q')f (¢, p',0-)dg'dp’ . i#j, 4j=1,2, (11)
4)
For propagation of the distribution function between @)
IP kicks, we have in (2) a linear Fokker-Planck equation /f (2)dz=1. (12)

with harmonic force. The propagator or fundamental so-
lution of that equation is known [6], namely a function
®(2,2/,0), z = (21, 22) = (g, p) such that for any initial
distributionf(z, 0) the solution at timé is

It is essential that the normalization constraint (12) be
regarded as part of the definition of the mathematical sys-
tem; otherwise in Egs.(11) there is nothingto set the scale of
the beam-beam force. We choose to build in the constraint
, , , by redefining the integral equations, dividing the right hand
f(z,0) = /‘I’(Zaz ,0)f(2,0)dz" . () side of (11) by[ ) (z)dz. Then, sincel K (z|2')dz = 1,



any solution of the modified equation will automaticallyG(f) on a Banach space is definedf@bs a linear operator
satisfy (12). Finally we multiply by[ () (z)dz and rear- G(f,) such that
range to state the pair of equations as )

lim —||G(fo+h)—G -G hl|l=0. (18
whereG = (G, G@) with We are now ready to state the implicit function theorem
in Banach space, in a form sufficiently general for our pur-
poses (but hardly the most general).

GOLOE) = 19) [ 10
Theorem: Let B be a Banach space, and sup-
—/K( ¢, p+ELfI(q) | 2 ) fD(Ndz, i#j. pose that7 is a continuously differentiable map-
ping (operator) ofB x I into B, wherel =
(—A¢, Ag) is an open interval, the domain &f
The continuous differentiability implies that the
partial (Fréchet) derivativeS ¢(f, &) , Ge(f,€)
exist and are continuous iB x I. Let fy €

(14)

We know the solution of (13) & = 0; it is the Gaussian
equilibriumin the absence of beam-beam force,

G0 0) =0, fo= (£V, £ B be a solution ofZ(fy,0) = 0, and suppose
0 0 Jo 0 Jo /o that G ¢(fo, 0) is a continuous linear map dé
foi) _ L exp(_l((f +p7). (15) onto B With' a contingous inverse. Then there
2m 2 exists a unique solutiori(¢) of G(f,&§) = 0
such thatf(0) = fo, for £ in some interval

We apply the implicit function theorem to prove that this
solution can be continued in a unique way to a solufic)
of (13) for small¢ # 0. This requires an implicit function T i -
theorem in an infinite-dimensional function space. Letus derivative with respect te_a”d_(Gf(f(f/)’ )~
first recall the intuitive basis of the theorem in finitelymany ~ €XiSts.  The d_elrlvauve is given by'(¢) =
dimensions, so that (13) represent®al (generally nonlin- —(G(f(£), €)™ Ge(f(£),€) -
ear) equations im unknownsf; , j = 1,---,n. We wish
to solve for thef; as a function of the parametrsuppos-  of the intervall, in which the solution exists. In specific
ing that a solutioryy; for £ = 0 is known. Supposing that ¢55es analytic estimates can be made, but they may be pes-
G is smooth, we can expand it by Taylor's formula with ré-<gimistic. In our problem, we mainly seek assurance that an
mainderR about the poing o, 0): equilibrium exists for sufficiently small current. We shall
have to rely on numerical calculations to determine a max-
G(f.8) = G(fo, 0)(f = fo) + Ge(fo,0)6 + B(£,€) = 0. jrpym interzl/al of existence. Calling on experience with the
. . . . (16) Haissinski equilibrium, we expect that as the current is in-
If the Jacobian matri:; = {0G:/0[;} is non-singularat . .oqeq the equilibrium will become unstable long before it
the expansion point, gnd the nonlinear remalrfﬁersmall, ceases 1o exist.
an approximate solution of our problem is To apply the implicit function theorem to (13), a crucial
matter is to find a suitable spaég As is usual in applica-
tions of functional analysis, this requires some experimen-
tation. The space has to be tailored to fit the properties of the

Iy, = (=6, 06) C I, 66 # 0. More-
over, for¢ € Iy this solution has a continuous

The theorem alone does not give us an estimate of the size

F(&) = fo— Gs(fo,0) " Ge(fo,0)¢ . (17)

The implicit function theorem takes into account the non i , ,
linear term, and assures us that for sufficiently smgiiere  OPerator. A primary requirement is th&tx 1 be mapped
will be a unique exact solution of (13) close to the approx'—”to B, and that is relatively easy to check for some candi-

imation (17). The Jacobian is required to be nonsingulrﬂates forB. Further requirements such as invertibility of
only at the single pointfo, 0). G#(fo,0) may be harder to verify, and lead us to refine the

In the infinite-dimensional case we must first decide oﬁhOice’ perhaps taking a subspace of an initial candidate for

the arena of the discussion: in what space of functions O%.Af , . f | find th :
we seek a solution of (13)? Physicists are usually famil- ter various estimates of integrals we find that a suit-

iar with Hilbert space, but here we can get by with a sim2P!e B consists of all pairy’ = (fD, @) of continuous
pler notion, a Banach space. Like the Hilbert space, it fsnctions on the phase spageé such that the following ex-
a complete linear space with a norm, but is not required #/€Ssion, identified as the norm, is finite:

have a scalar product. For instance, the set of all contin
uous functionsf(z) on the unit interval0, 1] is a Banach
space if the norm is defined 8g|| = max 1; | f(z)|. Sec-
ondly, we must give a meaning to the Jacobignwhenf  where||z| = (22 + 22)*/2 andsup (supremum) denotes

is a function rather than a finite-dimensional vector. A simthe least upper bound. This is a “big” space, in the sense
ple possibilityis the Fréchet derivative, which for a functionthat it contains functions with slow, polynomial decrease at

[I£]l = max sup L@+ 22 f D) |, a>2, (19)
2 Ze 2



infinity, whereas intuition and the results of Ref.[4] indicatetwo beams. Then (21) for one block takes the form

that the actual decrease of the solutionis close to Gaussian.

The advantage of a big space is that our assertion of unique-  z(z) 4 f;(2) / z(2)dy — Ka(z) =y(2) , (22)
ness of the solution means uniqueness in a bigger universe.

The disadvantage is that our resulting theorem will give nghere now: andy are single functions, not pairs. We dis-
close information on the actual fall-off of the solution, sinceg ;55 (22) in the spacB;, which is defined in the same

it merely asserts that the solution iskh We did not suc- \ay asB, except that it consists of single functions; i.e.,
ceed in finding a space with Gaussian fall-off, mapped intg — B, x B,. Foranyz € B;

itself by G.

/Kx(z)dz z/x(z)dz, (23)
3 SOMEHIGHLIGHTSOF THE PROOF

Here we give a few main points of the proof, deferrindrom which it follows that any solution of (22) must satisfy

full details to a future report. We have to verify the three
main hypotheses of the implicit function theorem, namely /x(z)dz = /y(z)dz (24)
1. G:BxI—B Consequently, any solution of (22) must also be a solution
2. Gy, G¢ exist and are continuous i x 1 of
z(2) — Kz(z) = p(2) , (25)

3. G#(fo,0)~! exists and is continuous

p(2) = (=) — fol2) / y()d / p(2)dz=0.

Suppose thaf € B. Then its Fourier transfornf exists

and is bounded. By (8) one then sees that every derlvatlveWe look for solutions of (22) among the solutions of (25).

of Kf(z) = [ K(zly)f(y)dy exists and is bounded, be- . s .
ing the Fourier transform of an absolutely integrable funcl_teratmg (25) — 1 times we find

tion. For estimates of the actionKf on f we can prove the n—1
lemma z=K"x + Z K"p+p. (26)
m=1
ot [ K(ely)dy | Mo 0) o ’ N
927025 | 1+ yl2e| = 1+ 22 Here the story is different from the familiar case of the Neu-

mann series, since the terK"x does not vanish in the
for anym > 0,n > 0, where the constarit/,,,,, depends limit of large n. By the semigroup property of the linear
ona and the parameters definiag Using these results one Fokker-Planck evolution, the kernel B" is given by (6)
verifies that hypothesis (1) holds. with 8 = 2mnv. If z € B, the integral defining™x con-
To check (2) forG s, we compute the formal variational verges uniformly ine, since the integrand is majorized by
derivative ofG, applied to a variatioh € B. Thatisalin- |z(z")| and [ |z(z)|dz < co. We may then take the limit
ear integral operatof applied toh. Then some work with under the integral to obtain
the lemma and the mean-value theorem showsZhain-
deed the Fréchet derivative. In fact, the numerator under the lim K"z(z) = fg(z)/x(z)dz. (27)
limitin (18) is O(||h||?) if G¢ = L. e
The hardest part ofthe proofis verifyingitem (3). Intext-Thus, from (26) a solution of (25) iB, is expected to have
book examples it is usual to suppose tfigt— 1 is a com-  the form
pact operator, in which calse one can apply Fredholm theory -
to discuss existence ¢t . In the present case this oper- = N m N
ator appears to be non-fcompact, and we have to resorttoa fo/x(z Jdz +Z K" pty=fo /y(z Jd=". (28)
more subtle method. We get the inverse by proving uniform
convergence of an operator power series development, ahgandidate for a solution of (22) must satisfy (24), so that
the convergence is at a slow rate determined by the danffem (28) the unique candidate is
ing constant. Thus, the proof fails for a proton system with o
no damping, and it does npt seem at all Ilkelythatong cpuld 2(2) = Z K™p(2) + y(2) . (29)
get a proof for zero damping by somehow taking a limit.
Since the power series method is interesting and novel,

we give a few details. We have to show that the equationVVe are now faced with a delicate step of the proof, to show
that for anyy € Bj the series in (29) converges and rep-

Gi(fo,0)r =y (21) resents an element &f;. Once thatitis done, itis easy to
check that (29) represents a solution of (22), uniquBin
has a unique solution € B foranyy € B. Atzero current To estimate the K"p we formally subtract
G breaks into two identical and independent blocks for thexp(—z7z/2) [ p(z')dz’, which is zero, and then do

m=1

m=1



4 CONCLUSION

We have sketched the proof that there is a unique solu-
tion to the Vlasov-Fokker-Planck system for the Chao-Ruth
model of colliding electron beams at sufficiently small cur-
rent. The details of the various estimates involved will be
given in a longer report. We are fairly confident that the
proof will go through in almost the same way for other mod-
els in one degree of freedom [3] and for the model in two
degrees of freedom in which the force is obtained from the
two-dimensional Poisson equation. The case of protons,
without radiation damping, is an entirely different story.
One expects infinitely many approximate equilibria [4, 7],

some analysis with the mean value theorem to get the
following bound:

I,

2 (det $,) /2K p(2)

‘ / [exp[—(z AT (5 _ 04 ) jo)

- exp[—sz/Z]]p(z’)dz’

M(1 —exp(—2T2/2))
2Tz

IN

(L + flzl)e o,

0 =2nv, (30)

but the question of exact equilibria is open.

wherea is the damping constant. (We writé for a generic
constant in majorizations. In any statem@édtmay have

a value larger than in any previous statement.) Now (33‘1]
is enough to show uniform convergence (in the maximu
norm) of the series in (29) over any finite bdH|| < r,
but not enough to show that the sum of the series belongs
to B;. To complete the job we get a bound by a different
method which fails at smal|z|| but works for||z|| > 7.

For that we break the integral in (30) into two parts, one fol]
|lexp(nfA)z’|| < b||z|| and the other folf exp(nfA)z’|| >

b||z]|, with 0 < b < 1. In the second region the coefficient[4]
of p(z’) is not small, and we have to rely wholly on the fall-
off of p(z’). Using appropriate estimates for the two regions
(and supposing: < 1/2, which is more than safe for real
machines) we find

[5]
I, < 76_7)90‘ s Zl|l>r. (31)
T+ [ I<l o
Combining (30) and (31) we have for althat
[71
M
K" < —nba , 32

from which it follows thatz as given in (29) exists and be-
longstoB;. Furthermore, this function satisfies the original
equation (22):

[e ) [e )

S K"yt fo [ K™0() + o))

m=1

o0
-Y K"p-Ky=y

m=2

m=1

(33)

since we know thaK fy = foand [ >~ K™p(z)dz =
Yooy JK™p(2)dz = Y°_, [p(2)dz = 0, the reversal
of sum and integral in the latter being justified by (32).

To prove that the solution is unique, suppose that there
were two solutions; , z2 in By. Thenz = x; —x- satisfies
(22) withy = 0, from which it follows that| z(z)dz = 0,
hencer — Kz = 0. Iterating the latter equation, we have
r =K'z = lim, ..« K"z = fo [2(2)dz = 0. Finally,
the continuity ofG ¢( fo,0) ! is clear, since a small change
in y evidently produces a small changezin
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