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Abstract

We present and compare the method of weighted macro
particle tracking and the Perron–Frobenius operator tech-
nique for simulating the time evolution of two beams cou-
pled via the collective beam–beam interaction in 2–D and
4–D (transverse) phase space. The coherent dipole modes,
with and without lattice nonlinearities and external excita-
tion, are studied by means of the Vlasov–Poisson system.

1 INTRODUCTION

Simulations of coherent effects in many particle sys-
tems traditionally employ Particle–in–Cell (PIC) methods
with an ensemble of macro–particles generated by the
Monte Carlo method. We have developed two alterna-
tive approaches, the discretized Perron–Frobenius method
(PF) and weighted macro–particle tracking (WMPT). We
have written several codes, a PF/Fokker–Planck code in
one degree of freedom (including diffusion and dissipa-
tion) and the hadron codesBBPFmD (Beam–Beam Perron–
Frobenius) andBBDeMomD (Beam–Beam Density and Mo-
ments, i.e. WMPT) withm = 1; 2 in m degrees of free-
dom. The PF/Fokker–Planck code is described in detail in
[1]. Here we will concentrate on the completely symplectic
hadron codes.

2 MODELS AND METHODS

2.1 The Ring Model

We assume a ring with one IP at� = 0 and two counter–
rotating bunches. We only treat head–on collisions here
and our reference point at which the distribution is studied
is directlybeforethe IP (� mod 2� = 0�). In what follows
we will always use the convention that if some parameter,
or dynamical variableX describes one beam, thenX � de-
scribes the other beam.

Let  n(~z) and �
n(~z) (~z := (q; p)T) denote the normal-

ized phase space densities of the beams at� = 0� + 2n�
(Here and in the following we use:= or =: if we want to
emphasize that the quantity on the left or right respectively
is being defined). Then the representations of the one turn
map for the unstarred beam from turnn to n + 1, imple-
mented inBBPFmD andBBDeMomD so far, are

~T [ �
n] =

~A Æ ~K[ �
n] (1)

where

~A =

8><
>:

~R : linear
~R

1

2 Æ ~Kp Æ ~R 1

2 : lin. & pert.
~R�
�
2

Æ ~Ks Æ ~R0 Æ ~Ks Æ ~R+
�
2

: lin. & IR-sxt.
:

(2)
The ~R’s represent the linear stable symplectic parts of the
lattice (~R(~z) = R~z). At the moment the two degree of
freedom versions of our simplified ring models have block
diagonal representations of the linear lattice, in other words
they do not contain linear coupling. The~K ’s are symplec-
tic kicks. In particular,~K[ �

n] is the collective beam–beam
kick on the unstarred beam due to the starred beam,~Kp is
an RF–dipole and/or a multipole kick (up to dodecapole)
and ~Ks is an IR–sextupole. In the case of a completely
linear lattice,R is parameterized by the tuneQ and the un-
perturbed Courant–Snyder parameters�0 and�0 at the IP.
In the second case, where a perturbation is included in the
center of the arc,R

1

2 each have a phase advance of�Q

so thatR = (R
1

2 )2. In the third case,R�
�
2

andR+
�
2

trans-
form the Courant–Snyder parameters at the IR–sextupoles
to those at the IP with a phase advance of�=2 andR0 is
parameterized by the phase advance2�(Q � 1=2) and the
Courant–Snyder parameters at the IR sextupoles. Note that
all three possible ring layouts are mirror symmetric around
the axis through the IP and the center of the arc. The dif-
ferent different ring layouts are shown in Figure 1. The
collective kick ~K[ ] is given by

~K[ ](q; p) =

�
q

p+K[ ](q)

�
; (3)

K[ ](q) = �

Z
Rm

g(q; q0)�(q0) dmq0 (4)

with a model dependent kernel functiong, a strength pa-
rameter� and the spatial density�(q) =

R
Rm

 (q; p) dmp.
The ring models described in Eq. (2) are illustrated in Fig.1,
where S.O.D.: : : refers to sextupole, octupole, decapole,
etc. and RFD refers to RF–dipole. For the codes in two de-
grees of freedom, we plan to implement theMAD–interpreter
and the map generators from the spin codeSPRINT [2] and
the higher order symplectic integrators described in [3].

The particle trajectories are propagated turn by turn via

~zn+1 = ~T [ �
n](~zn) ; ~z

�
n+1 =

~T �[ n](~z
�
n) (5)

and since the maps are measure preserving, the densities
evolve via

 n+1(~zn+1) =  n(~zn) ;  
�
n+1(~z

�
n+1) =  �

n(~z
�
n) : (6)
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Figure 1: Ring models.

Note that the ~T and ~T � are explicitly distinguished, al-
lowing for different parameter sets describing the starred
and the unstarred lattice. Equations (1–6) define a repre-
sentation of the beam–beam Vlasov–Poisson system using
maps.

In highly relativistic beams the beam–beam force for
head–on bunch crossings with zero crossing angle is essen-
tially transverse. In this approximation the collective kick
is determined by the solution of a 2–D Poisson problem,
��u = f . The Green function in two dimensions for open
boundary conditions is given by

G(x; y; x0; y0) = � 1

2�
log
�p

(x� x0)2 + (y � y0)2
�

:

(7)
We started our study by analyzing three different limits
of the beam-beam interaction giving one degree of free-
dom. Here we shall discuss only the limit studied by Chao
and Ruth (CR) [5], which is meant to model beams with
large horizontal-to-vertical aspect ratio, a case often found
in electron machines. The force on a particle in one beam
from the other beam is computed as though it came from
infinite planes of charge, perpendicular to the vertical (y)
axis, and distributed in y with some density. This force is
concentrated in time, however, at the instant of collision.
The motion is in the y-direction only. Although not quite
appropriate for hadron machines, the model is an attractive
starting point because it is the only case in one degree of
freedom for which a completely self-consistent calculation
can be done with an operation count O(N logN) in the
WMPT method. Similarly, it is particularly easy to imple-
ment in the PF method. The Green function of the corre-
sponding Poisson problem is equal to �jy � y 0j=2, while
its gradient �sgn (y � y0)=2 is proportional to the kernel
of Eq. (4). See [5, 6, 4] for more information on the three
limits giving one degree of freedom.

2.2 The Perron–Frobenius Method

The Perron–Frobenius method [1] and weighted macro-
particle tracking are both based on the evolution law (6)
for the phase space densities given a measure preserving
map. We can rewrite Eq. (6) in the form  n+1(~z) =

 n(~T
�1[ �

n](~z)) and an analogous equation for  �
n+1.

This defines the action of the Perron–Frobenius operator
associated with (1) on the densities. Now consider a rect-
angular mesh for m = 1: f~zijg, ~zij := (i�q ; j�p),
where �q and �p are the grid spacings in configuration
and momentum space respectively and the integers i and
j satisfy �nq

2 � i � nq
2 and �np

2 � j � np
2 . In the

case of a 2m dimensional phase space (m > 1), i and j
are m–dimensional multi–indices and �q , nq, etc. are m–
dimensional vectors and we have the obvious generaliza-
tion of the above rectangular grid. Given approximations
	ij(n) and 	�

ij(n) to  n(~zij) and  �
n(~zij) and an l-th or-

der local interpolation scheme (“stencil” ) S l[f ](~z) which
interpolates values of f at neighboring mesh points of ~z,
we can update 	(n) to 	(n+ 1) by

	ij(n+ 1) = Sl[	(n)]
�
~T�1[	�(n)](~zij)

�
: (8)

For example in the kick–lattice model of Eq. (1) we have
~T [ �

n] =
~R Æ ~K[ �

n] and ~T�1[ �
n] =

~K�1[ �
n] Æ ~R�1. To

compute this given the 	�
ij(n) we first sum over j to get an

approximation %�i (n) of the spatial density, ��n(qi), on the
spatial sub–mesh fqig and then we use %�(n) to determine
the kicks at the mesh points qi. Spatial interpolation then
gives the kicks at all q. Thus we obtain ~T�1[ �

n](~zij) �
~K�1[	�(n)](R�1~zij) where R is the matrix for the lin-
ear lattice. These points are not mesh points so we need
the interpolant of 	(n) in (8). Note that this procedure
uses two interpolations where in (8) we only emphasize
the latter. This is because the intermediate interpolation
is relatively cheap, being an interpolation in configuration
space rather than in phase space. The lattice–kick model,
~T [	�(n)] = ~K[	�((n+1)�)]Æ ~R where	�

ij((n+1)�) :=

Sl[	�(n)](R�1~zij), would be more expensive because it
would require two interpolations in phase spaceand phase
space interpolation is the most expensive part of this calcu-
lation.

We want to stress that since 	(n) is known, the corre-
sponding spatial density %(n) on the m–dimensional spa-
tial sub–mesh is given by simply summing 	(n) over the
second, momentum multi–index. If the mesh has N =:
n2mg mesh points in total, then in the worst casethe

p
N =

nmg different kicks on the spatial sub–mesh can be com-

puted by multiplying the
p
N vector %(n)with a

p
N�pN

matrix, the discretized kernel, giving a worst case opera-
tions count ofO(N) for computation of the collective kick.
Actually, even if (e.g. in the CR case) the collective kick
can be computed less expensively (O(

p
N logN)), the ap-

plication of the kick to the N mesh points is, although usu-
ally unproblematic, always O(N). In other words a N par-
ticle tracking routine with an operations count of less than
O(N) is impossible.

We have developed a Vlasov Fokker–Planck code[1] in
2–D phase space for leptons (not restricted to beam–beam
interaction) and two hadron codes (without the Fokker–
Planck step) in 2–D and 4–D phase space (BBPF1D and
BBPF2D). The order of the interpolation scheme can be cho-
sen, but at least in 2–D phase space quadratic or cubic inter-



polation seems sufficient. In Section 2.5 we will compare
PF and WMPT simulations in one degree of freedom and
see that with properly chosen mesh parameters the methods
are in good agreement, at least in principal aspects.

In 4–D phase space unfortunately the numbern g of mesh
points in eachdimension required to preserve probability
to a decent level has to be so large that the 4–D PF al-
gorithm in its serial (single CPU) version is possibly too
slow. In particular since the local 4–D interpolation be-
tween neighbors along the 4–D mesh axis is not local in
the linear memory of the computer, it requires accessing
array elements with potentially large stride and thus poten-
tially produces a large amount of cache misses (potentially
many more than one per updated mesh point). Note that al-
ready in a serial code, domain decomposition of the mesh
into blocks smaller but comparable with the cache size of
the computer would give some (unfortunately hardware de-
pendent, non–portable) relief.

2.3 Weighted Macro Particle Tracking

WMPT [4] is a method for computing time dependent
phase space averages of f

hfin :=

Z
R2m

f(~z) n(~z) d
2mz (9)

hfi�n :=

Z
R2m

f(~z) �
n(~z) d

2mz (10)

via

hfin =

Z
R2m

f(~z)  0

�
~M�1
n (~z)

�
d2mz

=

Z
R2m

f
�
~Mn(~z)

�
 0(~z) d

2mz (11)

where ~Mn := ~T [ �
n�1] Æ : : : Æ ~T [ �

0 ] is the symplectic n–
turn map containing successive collective kicks. Note that
the beam-beam kick function can be written as such an av-
erage over the beam–beam kernel with q fixed

K[ �
n](q) = � hg(q; �)i�n : (12)

Now starting with the initial densities  0 and  �
0 defined

on an initial meshf~zijg, a quadrature formula with weights
wij , and trajectories ~Mn(~zij), we can approximate hfin �P

ij f(
~Mn(~zij)) 0(~zij)wij . Of course if we approximate

the kicks in Eq. (12) by this method we will only have ap-
proximate trajectories ~�ij(n) � ~Mn(~zij). Thus our final
approximation is

hfin �
X
ij

f(~�ij(n)) 0(~zij)wij : (13)

Note that this procedure uses only forward tracking of par-
ticles with an additional pre–assigned and a constant “ total
weight” Wij :=  0(~zij)wij . Conservation of probabil-
ity is guaranteed by construction. Also note that the initial
mesh structure is lost after the first turn. Thus, in contrast

to methods with an explicit mesh (like PF), naive compu-
tation of the collective kick is an O(N 2) operation. In the
CR case, ordering the trajectories ~�ij(n) and ~��ij(n) with
respect to the spatial coordinate at the cost of O(N logN)
makes the remaining part of the computation of the collec-
tive kick O(N) (see [4]). In the two degree of freedom
case the hybrid fast multipole method (HFMM) [7] allows
efficient computation of the kicks (O(N) with a reason-
able order constant !) as long as the distributions of the
trajectories in configuration space are sufficiently regular.

2.4 An Implementation of HFMM for WMPT

HFMM [7] is a hybrid of the fast multipole method
(FMM) developed by Greengard and a PIC based reduc-
tion of the number of independent particles developed by
Jones for space charge and applied the first time to beam–
beam simulations by Herr, Zorzano and Jones. FMM is a
tree code that allows the computation of the collective force
of an ensemble of N charges on themselves to a given ac-
curacy Æ with an operations countO(N) given that the dis-
tribution of the ensemble in configuration space is not too
irregular. It employs the fact that the force on a test charge
due to a distant localized “clump” of charge is given by a
finite ordermultipole expansion up to precision Æ.

The FMM algorithm successively subdivides an outer
rectangle in configuration space occupied by the ensem-
ble until, on the finest level of subdivision, no more than a
fixed number (typically 40) of particles are in each box.
This leads to a tree structure of boxes containing boxes
containing boxes and so on, until the boxes on the finest
level finally contain a small number of particles. In the
non–adaptive version of the scheme all boxes on the same
level have the same number of child boxes (weighted tree).
We use the adaptive version, which means that a box only
branches into child boxes if the box itself still contains too
many particles. Then the algorithm computes the multipole
(long distance) expansions for all boxes on the finest level
explicitly. The next step is to generate multipole expan-
sions around the center of the parent boxes by translating
their children’s expansions to the center and adding them
up so that in the end every box, no matter which level of
mesh refinement it belongs to, has its own long distance ex-
pansion. Then the far fields inside each box due to all suf-
ficiently well separated boxes are converted to Taylor (lo-
cal) expansions on each level going down from the coarsest
possible level to the finest level. Finally, for each box on
the finestlevel, the forces due to charges in a close vicin-
ity have to be computed directly. The 2–D adaptive rou-
tines (DAPIF2), used in our simulations, were supplied by
Greengard. For more details see Greengard in [7].

Unfortunately, FMM needs about 16–18 times N
REAL*8 words of workspace and in addition the order con-
stant of this O(N) algorithm is large enough to be pro-
hibitive for the purpose of multi–turn tracking of many mil-
lions of particles.

The original HFMM (Jones) divided the configuration



space into core- and halo domains, superimposed a PIC
mesh on the core domain, deposited the core charges on the
PIC mesh and passed the joint set of the mesh points and
halo particles to FMM. The idea is that if the core is popu-
lated densely enough, then the approximation of a PIC type
charge collection strongly decreases the required computa-
tional resources while not strongly affecting the accuracy
of the force computation. On the other hand, the halo par-
ticles would not be very well represented on a PIC mesh
and in addition would need an unreasonably large mesh to
cover the halo.

Our implementation of HFMM in BBDeMo2D first deter-
mines an outer rectangle in configuration space around the
joint starred and unstarred particles. We then divide the
rectangle into two parts, a “core” region where the density
of particles is high and a “halo” region where the density of
particles is small. To do this we divide this rectangle into
ng � ng cells. The idea is (as pointed out above) to repre-
sent the core by depositing the weights of the particles on
the corners of the cells and to represent the halo particles by
themselves. In order to find the core and halo regions dy-
namically (adaptively) we proceed as follows. The popula-
tion of each cell is determined. Cells with less than a speci-
fied minimum number of particles are put into the halo and
the remaining cells are put into the core. This determines
the number of corners of the core cells, Nc, and the number
of halo particles,Np, and thenNc+Np is the number of en-
tries in the charge and coordinate lists for the FMM routine.
If Nc+Np is deemed too large, we decrease the minimum
number of particles required for a cell to be part of the core
and evaluate the cells anew. In general this increases Nc

but decreases Np significantly. Once we are satisfied with
the size of Nc +Np, the total weightsW�

ij of the trajecto-
ries of the starred beam are either assigned to the corners
of the finally chosen core cells by some PIC scheme (cur-
rently “cloud in cell” ) or, if the trajectories are inside halo
cells their weights are kept as single entries in the charge
list. In this step, the weightsWij of the unstarred beam are
not used but the unstarred trajectories inside halo cells are
passed to the coordinate list. Then the FMM routine com-
putes the forces due to the starred charges at all theNc+Np

coordinates. The kicks are either directly applied to the un-
starred trajectories in the halo cells or distributed among
the unstarred trajectories in the core cells by an interpola-
tion scheme related to the original PIC deposition scheme.
Finally, the process is repeated with the role of the starred
and the unstarred trajectories interchanged. Note that only
the charge list has to be reassigned. The coordinate lists
stay the same for both calls to DAPIF2.

This method performs the most time consuming step, the
FMM, in O(Nc + Np) operations and only needs 16–18
times (Nc+Np) REAL*8words of workspace. Thus ifNc+
Np � N , a significant decrease in computation time and
workspace is achieved. For example, in a typical BBDeMo2D
run with 454 � 4 � 106 macro-particles per beam, we use
a PIC mesh of size 150 � 150 = 22; 500. If we allow
Nc + Np � 5 � 22; 500, the reduction of entries in the

FMM lists is about 70. For a more extreme example with
614 � 14 � 106 particles per beam the reduction is actually
close to 250.

2.5 Comparison of PF and WMPT

Both the PF and WMPT methods, in their current imple-
mentation in BBPFmD and BBDeMomD, use a uniform (in
the case of WMPT initial ) mesh, but, in principle, both
methods allow more general non–uniform meshes. The
uniform (initial) mesh which covers a finite rectangular do-
main in phase space, typically �5 initial beam widths (�0)
for WMPT or �6–7�0 for PF, treats its inner (core) and
outer (“halo” ) regions equally. Thus in contrast to con-
ventional macro-particle methods, where the initial beam
distribution is typically represented by a Monte Carlo gen-
erated ensemble of particles of equal weight and concen-
trated around the core, the two methods used here are ex-
pected to simulate the evolution of the higher order beam
moments more accurately. A round–Gaussian ensemble in
2–D phase space with 40,000 particles has about 39,600
(99%) of its particles contained in the �3�0 square. A
WMPT or PF ensemble with 200�200 particles or mesh
points on a uniform square mesh of size �5�0 has only
120� 120 = 14; 400 (36%) of the particles/mesh points in
the �3�0 square and 25,600 particles outside. In the cur-
rent implementation, the BBPFmD codes use local interpo-
lation in the tensor–product space spanned by the quadratic
or cubic polynomials over the mesh axes. All 4 codes use
the simplest possible quadrature formula, namely the Gaus-
sian midpoint formula with wij =

Q2m
i=1�zi independent

of i and j.
In several one degree of freedom examples, we have

checked agreement between the BBPF1D and BBDeMo1D

codes. Here we study the the turn by turn evolution of the
centroids �q�;�n := hqin � hqi�n, as well as the evolution of

the beam emittance �n :=
q
C2;0
n C0;2

n � (C1;1
n )2, where

Ci;j
n := h(q � hqin)i(p� hpin)jin.
Let us summarize the approximations of the time depen-

dent phase space averages used in the two cases

hfin �
� P

ij f(~zij) 	ij(n) wij : PFP
ij f(~�ij(n))  0(~zij) wij : WMPT

:

(14)
Figure 2 shows excellent agreement between the � mode

frequencies and the spectra of the � modes obtained for
� = 0:003 and almost identical linear tunes Q0 =

p
5� 2

in the CR limit, giving some confidence in the methods.
The difference between the two � mode spectra needs
further study, but we will comment briefly on this later.
Both beams were initially round Gaussians in phase space
with the unstarred beam having an initial coherent beta-
tron amplitude of 0.1�0. The initial density was repre-
sented by a 201�201 square grid over �5�0 in both di-
rections for WMPT and the grid for the PF simulation
used 241�241 points over �6�0. Note that the initial
mesh used for WMPT only needs to cover the domain in
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Figure 2: (color) Comparison between PF and WMPT :
coherent dipole modes.

phase space where the initial density contributes signifi-
cantly to the phase space averages. If we want to follow
up to 4-th order centered moments of an initially round
Gaussian ensemble, then �5�0 around h~zi0 is a reason-
able choice, as that is the domain where the functions
(zk � hzki0)4e�(zk�hzki0)

2=(2�2
0
), k = 1; 2m are not neg-

ligibly small. Thus for example the computedinitial kurto-
sis C4;0

0 with the chosen cut off is close enough (typically
10�4) to its exact value 3�20 . PF on the other hand requires
a mesh that is large enough to take care of centroid oscilla-
tions and emittance blow up during the simulation. The
FFT was performed over data from 217 turns. The two
� mode spectra (peak on the right) are indistinguishable
and the two � mode spectra have nearly the same tune.
The Yokoya factor (Q��Q�)=� for the Chao–Ruth model
comes out higher (� 1:51), than in the round beam case
[4]. In [8] we have introduced an averaged Vlasov equa-
tion and linearization around a Gaussian equilibrium of the
averaged system yields exactly this value for the Yokoya
factor. We don’ t understand as yet why the agreement is
so good. The incoherent continuum due to the single par-
ticle motion is more pronounced in the WMPT spectrum,
because it keeps track of N actual trajectories, whereas PF
smoothes out the density in each interpolation step. This
needs further study. Figure 3 shows the initial emittance
growth due to filamentation in an example with a tune split
�Q0 = 2� = 0:006. The unstarred beam had an initial co-
herent betatron amplitude of 1�0. All other beam and sim-
ulation parameters were the same as in Fig. 2. Both simu-
lations agree up to the 1% level, but the general impression
is that the time evolutions obtained with WMPT are a lit-
tle more noisy (“wiggly” ) then those obtained with PF. We
conclude here that with properly chosen mesh sizes both
methods agree very well qualitatively and also, to a large
extent, quantitatively. Nevertheless, in situations where
there are neither large amplitude coherent oscillations nor
large emittance growths present the PF method in one de-
gree of freedom is slightly more efficient and stable than
WMPT.

Simulations in 4–D phase space (2 d.o.f.) are much more
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computationally expensive. In conventional macro-particle
simulations the phase space ensemble is generated by the
Monte Carlo method. There one is tempted to use a rel-
atively small number of macro-particles to gain computa-
tional speed, because the actual accuracy of the represen-
tation of the density in phase space is somewhat hidden at
first sight. But looking at the sampling from the point of
a uniform (initial) mesh, suggests that following the evolu-
tion of a phase space density over a large number of turns
in the presence of a collective force requires a large num-
ber of macro-particles or mesh points. Let us assume we
want a decent representation of the density on a rectan-
gular domain with �5�0 in 4–D phase space. Then even
with moderate beam–beam parameters around 3 �10�3, our
studies using WMPT with N = 114 to N = 614 have
shown that one should have at least 30–40 particles per
phase space dimensionand per bunch in order avoid in-
stabilities over 16,000 turns. It is clear that with this large
number of macro–particles / mesh points any method for
the computation of the collective kicks which has an op-
erations count of more than O(N) is prohibitive, but even
with an operations count of O(N) the restrictions imposed
by computation time and memory requirements are hard to
meet. In the case of BBDeMo2D, we employ HFMM as ex-
plained in Section 2.4, and a typical (serial) run with 454

macro–particles over 214 turns on a SUN ULTRA–80 dual
UltraSparc–II workstation with 450 MHz clock, 3GB RAM
and 4MB cache takes about 145h (6 days) CPU time.

In the PF case, the interpolation and not the calculation
of the collective force determines the performance. With a
local cubic 4–D interpolation, the updating of each mesh
point touches 256 neighboring mesh points in phase space.
As pointed out in Section 2.2, the 4–D structure of the mesh
leads to a large amount of cache misses and thus increases
the execution time even more. In addition, even with cubic
4–D interpolation and with N = 514 � 6:8 � 106 mesh
points the conservation of probability is relatively poor.
As an example, a BBPF2D run with N = 514 and using
cubic 4–D interpolation took over 300h (12 days) for 5000
turns on our ULTRA–80. During this run the density in



the outer mesh region degraded so badly that the computed
kurtosis actually became negative. Note that the code
had been completely inlined and pre–optimized by hand
which increased the performance (with the SUN compiler)
by a factor of 2. We are working on improved interpola-
tion schemes and other enhancements to speed up the code.

Last but not least, the memory needed to store the main
array (the mesh table (PF) or the particle table (WMPT))
for two bunches in m degrees of freedom and in REAL*8 is

Memory=bytes =

�
16 � n2mg � 2 : PF
16 � n2mg � (2m+ 1) : WMPT

:

(15)
Here ng is the number of mesh points/particles per dimen-
sion, the factor of 16 is 2 bunches times 8 bytes, the fac-
tor of 2 for PF is due to the fact that we have to store 2
instantiations of the mesh for the purpose of interpolation
(“old/new”) and the factor of 2m + 1 for WMPT comes
from 2m phase space coordinates plus the total weightW ij

of the trajectory.
We will discuss some of our first results with WMPT in

4–D phase space in Section 3.2.

3 SIMULATIONS

3.1 Some Results in One d.o.f.

We have studied extensively the dependence of the co-
herent dipole modes (�/� modes) on the split of the bare
machine tunes (�Q0) and on the ratio of the beam–beam
parameters in one degree of freedom. These studies were
reported in [4]. In [8] we report on the the existence of
quasi-equilibria for the Chao–Ruth limit. Here we only re-
port some new results based on the implementation of RF–
dipoles and higher order multipoles in the lattice and their
interaction with the beam–beam kick.
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Figure 4: (color) Maximum amplitudes with RF–dipole ex-
citation.

Figure 4 shows the response of the coherent modes to an
external excitation with an RF–dipole located at the center
of the arc. The simulations were performed with BBPF1D

and with a mesh of 241�241 points over�6�0. The beam–
beam parameter is 0.003 and the tune split is 5 � 10�6 with
Q0 � Q�

0 � 0:236 (as in Fig. 2) and the normalized kick
strength of the RF–dipole was 1 �10�3. Both beams had no
initial coherent betatron amplitude and the simulation was
performed over 217 turns. When the RF-dipole operates at
a constant modulation tune Qm := fdip:=f0 both modes
are excited and their amplitudes are modulated with a tune
comparable to jQm�Q�;�j. Figure 4 shows the maximum
amplitude of the � mode (red) and the � mode (green) in
the CR limit as a function Qm. The maximum amplitude
is given in units of �0. For both modes we find a resonance
excitation peak at the frequency predicted in Fig. 2.
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Figure 5: (color) Beam–beam with sextupole: emittance
growth.

Figures 5 to 7 show the emittance growth and the in-
stability of the centroid motion induced by the interaction
of a strong sextupole kick in the center of the arc and a
strong beam–beam interaction in the CR limit close to the
third–integer resonance. Both beams were initially round
in phase space and one had a 0:1�0 offset. The sextupole
alone (blue curve) (or with � up to 0.006) leads to hardly
any emittance growth. However, when the incoherent tune
spread reaches 1=3 (� = 0:009, green) the emittance is
significantly increased. Moreover, in the latter case the
� mode amplitude is enhanced from about 0:1�0 to about
1:5�0 whereas the � mode amplitude stays small (Fig. 6).
Finally when the 1=3 resonance is well inside the inco-
herent tune spread (� = 0:012, red), the emittance grows
strongly and the amplitudes of both modes are significantly
enhanced (Fig. 7). These observations seem to be consis-
tent with the 4–D PIC simulations presented by Shi and Jin
[9] at this workshop.

3.2 First Results in Two d.o.f.

We have simulated the coherent dipole modes in 4–D
phase space with BBDeMo2D using the HFMM representa-
tion of the collective kick and a linear lattice very close to
the difference resonance (Qx = Qy =: Q0, Q�

x = Q�
y =:

Q�
0) withQ0 =

p
5�2 and �Q0 = 5 �10�6 (Fig. 8, 9) and

�Q0 = 6 � 10�3 (Fig. 10, 11). The beam–beam tune shift
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Figure 7: (color) Same as Fig. 6 but with � = 0:012.

in both cases, given by the extent of the incoherent contin-
uum, is �x = �y = 0:0036. Figure 8 shows the spectra of
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Figure 8: (color) The � and � mode spectra without tune
split.

the �x and the �x mode, hxin�hxi�n obtained from an FFT
over 214 turns. Both beams were initially round Gaussians
in their four dimensional phase space and in each plane one
of them had an initial coherent betatron amplitude of 0:1� 0

whereas the other was at rest. Both modes can clearly be

resolved. The separation of the �x mode tune from the �x
mode tune is (1:28 � 0:02)�x with �x being the extent of
the incoherent continuum. The spectra of the dipole modes
for the vertical motion (not shown) are the same. Figure
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Figure 9: (color) The � and � modes in time domain with-
out tune split.

9 shows the turn by turn evolution of the dipole modes for
the above parameters. The � mode (red) has a completely
stationary amplitude. The � mode (green) amplitude drops
slightly to about 80% of its initial value but then stays al-
most constant. The weak but visible low–frequency modu-
lation of the � mode amplitude seems to be an artifact of the
discretization. It is reduced when the number of particles
is increased (not shown). The emittances (also not shown)
stay constant to the 1% level. This, in combination with
our earlier results in one degree of freedom [4, 8], indicates
that, for a linear lattice, moderate beam–beam parameters
and in the absence of external excitation, the dipole modes
are neutrally stable.
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Figure 10: (color) Filamentation of the � and � modes with
large tune split.

Figure 10 and 11 show an example with �Q0 = 0:006,
i.e. almost twice the beam–beam tune shift parameter so
that the coherent dipole modes should be Landau damped.
The initial coherent betatron amplitudes of the beams are
1�0, 0 for the horizontal and vertical planes respectively of
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the unstarred beam and 0, 1�0 for starred beam. Figure 10
shows the decay of the modes in the horizontal plane. Fig-
ure 11 shows the blow up of the emittances because of the
filamentation of the dipole modes. The mean (�x+�y)=2 is
printed for the unstarred and the starred beam. Both beams
stay round up to the 10% level. The unequal emittance
blow up of the two beams can most likely be explained
by their different tunes (Q0 � 0:236, Q�

0 � 0:230) and
thus different sensitivity to the nonlinear perturbation of the
beam–beam force.

4 SUMMARY AND OUTLOOK

We have developed two methods, PF and WMPT, for
the simulation of nonlinear collective effects in beams de-
scribed by Vlasov–Poisson systems. Both methods are
based on the symplecticity of the one turn map, but PF
easily allows extension to Vlasov Fokker–Planck systems
by means of operator splitting. We have written codes for
simulating the beam–beam interaction in the strong–strong
model. WMPT and PF show good agreement in the one de-
gree of freedom limits of the beam–beam and we have ex-
tended both methods to the more important two degree of
freedom case. At present WMPT is more efficient in higher
dimensions. We will try to improve on the efficiency of PF
in 4–D phase space and we have already started develop-
ing a parallel (distributed memory) version of the WMPT
code. Moreover, we will include a MAD–reader, higher order
maps for real beam line elements, and interpolated higher
order generating functions (see [3]) for composed IP–to–
IP maps. We will pursue the idea of speeding up of both
methods (PF and WMPT) by incorporating our results on
averaging [8].

In one degree of freedom, we have studied the dipole
modes and Landau damping [4]. In addition, we have
studied the response to external excitations (RF–dipole)
and have observed large emittance growth together with a
strong increase of the amplitudes of the centroid motion in
the presence of lattice nonlinearities (e.g. sextupole) com-
bined with a sufficiently large beam–beam parameter.

We have just begun analyzing the dynamics of the beam–
beam in 4–D phase space and have begun determining op-
timal parameter settings for the codes, e.g. ng , N , etc. as
functions of �, ��, the distance of the bare tunes to orbital
resonances, the total turn number, etc. First tests clearly re-
solve the dipole modes and their neutral stability in a linear
lattice and with moderate tune shift parameters. They also
indicate the possibility of introducing Landau damping via
a tune split.
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