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1 Panofsky-Wenzel and Planar Wake Theorems

1.1 Concept of Wakefields

To a large degree, accelerator physics and plasma physics are quite similar. Both
involve nonlinear dynamics (single-particle effects) and collective instabilities
(multi-particle effects). However, there is an important difference:

beam self fields > external applied fields (plasma)
beam self fields � external applied fields (accelerators)

This difference means perturbation techniques are applicable to accelerators
with

unperturbed motion = external fields,
perturbation = self fields, or “wakefields”

In fact, in accelerator physics, a first order perturbation often suffices.
It is important to appreciate the fact that our instability analysis in acceler-

ators is based on the validity of this perturbation technique. In particular, the
concept of wakefields is based on the validity of this perturbation technique as
applied to high energy accelerators – the words “high energy” are critical, as we
will explain.

Consider a beam with distribution ψ. The dynamics of the evolution of ψ is
described by the Vlasov equation,

∂ψ

∂t
+

�p

m
· ∂ψ
∂�q

+ �f · ∂ψ
∂�p

= 0

�f = e( �E +
�v

c
× �B) (1.1)

In case the beam is intense, the EM fields contain two contributions,

�E = �Eext + �Ewake

�B = �Bext + �Bwake (1.2)

The wakefields (N is beam intensity)

( �E, �B)wake ∝ N

( �E, �B)wake � ( �E, �B)ext (1.3)

are determined by the Maxwell equations where the source terms ρ and �j are
determined by the beam distribution ψ:

ρ =
∫

d3p ψ, �j =
∫

d3p �vψ (1.4)

We therefore have the situation when the beam distribution is described
by the Vlasov equation whose force terms are given by the electromagnetic
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fields, while the electromagnetic fields are described by the Maxwell equations
whose source terms are given by the beam distribution. It is clear that a full
treatment of the beam-wakefield system requires solving a coupled “Vlasov-
Maxwell equation”.

Most wakefields are generated by beam-structure interaction. Figure 1.1
shows no wakefields when the beam pipe is smooth and perfectly conducting,
while a structure causes wakefields to be generated.

Pipe with Structure
 Wakefields

6–97
8322A22

Smooth Pipe
    No Wakefields

Figure 1.1: Wakefields are generated when the beam pipe is not smooth.

Beam-structure interaction is a difficult problem in general. Its solution
often involves numerical solution using particle-in-cell (PIC) codes. Applying
PIC codes is reasonable for small devices such as electron guns and klystrons,
but becomes impractical for large accelerators.

So, can we simplify it for our purpose? The answer is yes. For high energy
accelerators, this complication can be avoided due to two simplifying approx-
imations. These simplifications lead to the concepts of “wake function” and
“impedance”.

Rigid beam approximation The first simplification is the rigid beam ap-
proximation. At high energies, beam motion is little affected during the passage
of a structure. This means one can calculate the wakefields assuming the beam
shape is rigid and its motion is ultrarelativistic with v = c. In fact, we only need
to calculate the wakefields generated by a “rigid cosmθ ring beam” as shown
in Fig.1.2, where m = 0 is monopole moment (net charge), m = 1 is dipole
moment, etc. Wakefield of a general beam can be obtained by superposition of
wakefields due to the ring beams with different m’s and different ring radii.

Impulse approximation The second simplification is the impulse approxi-
mation. First, let’s note that we don’t need to know the instantaneous �E or �B
separately. We need only to know �f . Second, for high energies, we don’t even
need the instantaneous �f . We only need the integrated impulse

∆�p =
∫ ∞

−∞
dt �f (1.5)
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a

ρ∝ cosmθ

ν=c

6–97
8322A19

Figure 1.2: An ultrarelativistic cosmθ ring beam going down the beam pipe in
the rigid-beam approximation.

where the integration over t is performed along the unperturbed trajectory of
the test charge e, holding D fixed. See Fig.1.3. The integration from −∞ to ∞
assumes the wakefield is localized to the neighborhood of the structure in the
beam pipe.

D

e ν=c

6–97
8322A20

ν=c

Figure 1.3: Configuration of a ring beam and a test charge that follows it.
The ring beam generates a wakefield. The test charge receives a wake-induced
impulse in the impulse approximation.

The instantaneous wakefields are complicated, but as we will soon see, ∆�p
is much simpler and it is ∆�p that we need! Mother nature has been very kind.
The quantity c∆�p is sometimes called the “wake potential”. Note that although
the beam is considered to be rigid during the passage, the impulse will affect
the subsequent beam motion after the passage.

Reasoning along this line turns out to be quite fruitful. In the following, I will
first derive a theorem (Panofsky-Wenzel), and then consider various applications
along similar lines, including the introduction of another theorem called the
planar wake theorem. The Panofsky-Wenzel theorem is the basis of all beam
instability analyses in high energy accelerators.
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1.2 Panofsky-Wenzel Theorem

We derive the theorem in this section. Details of the derivation are different
from the original paper. Maxwell equations read

∇ · �E = 4πρ

∇× �B − 1
c

∂ �E

∂t
= 4πβρẑ

∇ · �B = 0

∇× �E +
1
c

∂ �B

∂t
= 0 (1.6)

where we have made the important rigid beam approximation �j = ρ�v and �v =
βcẑ.

The Lorentz force, Eq.(1.1) is given by

�f = e( �E + βẑ × �B) (1.7)

which leads to

∇ · �f = e[4πρ + β∇ · (ẑ × �B)]

= e[4πρ− βẑ · ∇ × �B]

= e

[
4πρ− β

c
ẑ · ∂

�E

∂t
− 4πβ2ρ

]

= 4π
eρ

γ2
− eβ

c

∂Ez
∂t

(1.8)

∇× �f = e

[
−1
c

∂ �B

∂t
+ β∇× (ẑ × �B)

]

= −e

(
1
c

∂

∂t
+ β

∂

∂z

)
�B (1.9)

As mentioned, we are only interested in the impulse given by Eq.(1.5). To
be more specific, we want to calculate the net kick received by a test charge e
which has a transverse position (x, y) and longitudinal position D relative to
the moving beam (see Fig.1.3). Both the beam and the test charge move with
�v = βcẑ. Eq.(1.5) is then written more precisely as

∆�p(x, y,D) =
∫ ∞

−∞
dt �f(x, y,D + βct, t) (1.10)

Note that D < 0 if the test charge is trailing the beam.
So far, we have not assumed any detailed shape of the beam. Neither have

we assumed any information of the pipe boundary. We have kept β in the
derivation, postponing setting β = 1 until later.
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With Eq.(1.10), we have

∇× ∆�p =
∫ ∞

−∞
dt
[
∇′ × �f(x, y, z, t)

]
z=D+βct

= −e

∫ ∞

−∞
dt

[(
1
c

∂

∂t
+ β

∂

∂z

)
�B(x, y, z, t)

]
z=D+βct

= −e

c
�B(x, y,D + βct, t)

∣∣∣t=∞

t=−∞
(1.11)

In Eq.(1.11), ∇ refers to taking derivative with respect to coordinates (x, y,D),
while ∇′ refers to taking derivative with respect to coordinates (x, y, z). If the
wakefield �B vanishes far away from the region of interest, we have

∇× ∆�p = �0 (1.12)

which is the Panofsky-Wenzel theorem.
One might ask if the Panofsky-Wenzel theorem exhausts all the useful infor-

mation contained in the Maxwell equations regarding the wake impulse. The
answer to this question is no. Panofsky-Wenzel theorem, in this sense, is nec-
essary but not sufficient. In particular, one observes that the Panofsky-Wenzel
theorem (1.12) makes use of Eq.(1.9), but not Eq.(1.8). Also, Eq.(1.12) implies
that ∆�p can be written as the gradient of another quantity W , but it does not
say what W is. On the other hand, Maxwell equations allow expressions for W ,
as illustrated in Exercises 4 and 5.

We introduce W by

∆�p(x, y,D) = −e∇W (x, y,D) (1.13)

Equation (1.17) in Exercise 2 then requires the Laplace condition (when β = 1)

∇2
⊥W = 0 or

∂2W

∂x2
+

∂2W

∂y2
= 0 (1.14)

Exercise 1 Equation (1.12) is a vector equation. One can decompose
it into a component parallel to ẑ and a component perpendicular to
ẑ by taking ẑ· or ẑ× operations to it. Use these operations to show

∇ · (ẑ × ∆�p) = 0 (1.15)
∂

∂D
∆�p⊥ = ∇⊥∆pz (1.16)

Eq.(1.15) says something about the transverse components of ∆�p.
Eq.(1.16) says that the transverse gradient of the longitudinal wake
potential is equal to the longitudinal gradient of the transverse wake
potential.

Exercise 2 When β = 1, show that

∇⊥ · ∆�p⊥ = 0 (1.17)
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By setting β = 1, we have dropped the direct space-charge terms,
i.e. the 1-st term on the right-hand-side of Eq.(1.8).
Solution

∇ · ∆�p =
∫ ∞

−∞
dt
[
∇′ · �f(x, y, z, t)

]
z=D+ct

= −e

c

∫ ∞

−∞
dt

(
∂Ez
∂t

)
z=D+ct

= e

∫ ∞

−∞
dt

(
∂Ez
∂z

)
z=D+ct

=
∫ ∞

−∞
dt

(
∂fz
∂z

)
z=D+ct

=
∂∆pz
∂D

(1.18)

which proves (1.17).

Exercise 3 In Cartesian coordinates, Eq.(1.15) gives ∂∆px

∂y = ∂∆py

∂x ,

while Eq.(1.17) gives ∂∆px

∂x + ∂∆py

∂y = 0 when β = 1. Combining

these equations give ( ∂
2

∂x2 + ∂2

∂y2 )∆px,y = 0 if β = 1. It is clear that
Panofsky-Wenzel theorem imposes strong conditions on ∆�p.

Exercise 4 Use Maxwell equations and the Lorentz force equation
to show that

W =
∫ ∞

−∞
dt(φ−Az)

∣∣
x,y,D+ct,t

(1.19)

Solution With �E = −∇φ− 1
c
∂ �A
∂t and �B = ∇× �A, we have

d�p

dt
= e( �E + ẑ × �B) = −e∇φ− e

c

∂ �A

∂t
+ e∇⊥Az − e

∂ �A⊥
∂z

We then use d �A
dt = ∂ �A

∂t + (�v · ∇) �A = ∂ �A
∂t + c∂

�A
∂z , and integrate over t,

to obtain
∆�p = −e

∫ ∞

−∞
dt(∇φ−∇Az) (1.20)

Eq.(1.19) then follows.

Exercise 5 Show that one can cast the Panofsky-Wenzel theorem in
terms of relativity 4-vectors as

∆pα = −e
∂W

∂xα
where W =

1
c

∫ ∞

−∞
dτAβuβ (1.21)

where τ is the proper time.
Solution The 4-vectors are xα = (ct, x, y, z), uα = (γc, γ�v), Aα =
(φ, �A), pα = muα = (E/c, �p). Start with the 4-vector equation of
motion for a relativistic particle,

dpα

dτ
= m

duα

dτ
= −e

c

(
∂Aβ

∂xα
− ∂Aα

∂xβ

)
uβ

=⇒ ∆pα = m∆uα = −e

c

∫ ∞

−∞
dτ

∂Aβ

∂xα
uβ +

e

c

∫ ∞

−∞
dτ

∂Aα

∂xβ
uβ (1.22)
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The second term on the RHS can be written as, using the fact that
uβdτ = dxβ , − e

c

∫∞
−∞ dxβ

∂Aα

∂xβ
= − e

cA
α
∣∣∞
−∞ = 0. Eq.(1.21) then

follows. This result is consistent with Eq.(1.19).
It should be pointed out that Eqs.(1.19) and (1.21) are formal

expressions. Explicit expressions of W still requires solving Maxwell
equations for Aα, which is the difficult part. Indeed, the power
of Panofsky-Wenzel theorem lies in the fact that one can obtain so
much result without resorting to solving Maxwell equations in detail.

Exercise 6 As an illustration of decomposing a general beam dis-
tribution into a superposition of cosmθ-ring components, consider
a point charge q located at r = r0 and θ = θ0, moving with velocity
�v = cẑ. Perform the cosmθ-ring decomposition for this beam.

Exercise 7 Panofsky-Wenzel theorem applies when the impulse is
caused by a Lorentz force. Consider a particle with magnetic mo-
ment �µ, which experiences a Stern-Gerlach force instead of a Lorentz
force. Does the Panofsky-Wenzel theorem apply to its motion?

1.3 Cylindrically Symmetric Pipe

In cylindrical coordinates, Eq.(1.15) gives

∇ · [ẑ × (∆pr r̂ + ∆pθ θ̂)] = 0

=⇒ ∂

∂r
(r∆pθ) =

∂

∂θ
∆pr (1.23)

Eq.(1.16) gives

∂

∂D
(∆pr r̂ + ∆pθ θ̂) =

(
r̂
∂

∂r
+

θ̂

r

∂

∂θ

)
∆pz

=⇒
{

∂
∂D∆pr = ∂

∂r∆pz
∂
∂D∆pθ = 1

r
∂
∂θ∆pz

(1.24)

Eq.(1.17) gives

1
r

∂

∂r
(r∆pr) +

1
r

∂

∂θ
∆pθ = 0

=⇒ ∂

∂r
(r∆pr) = − ∂

∂θ
∆pθ (β = 1) (1.25)

Equations (1.23-1.25) are surprisingly simple. They do not contain any beam
source terms. Exact shape or distribution of the beam does not matter. Neither
do they depend on the boundary conditions. The boundary can be perfectly
conducting or resistive metal, or it can be dielectric. The boundary does not
have to be a sharply defined surface; it can for example be a gradually fading
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plasma surface. The boundary also does not have to consist of a single piece.
The only inputs needed for the Panofsky-Wenzel theorem are the Maxwell equa-
tions in free space and the rigid-beam and the impulse approximations.

We are now ready to consider a cosmθ ring beam with �v = cẑ as in Fig.1.3.
Eqs.(1.23-1.25) can be solved, and it follows that there exists a function Wm(D)
such that

c∆�p⊥ = −eImWm(D)mrm−1(r̂ cosmθ − θ̂ sinmθ)
c∆pz = −eImW ′

m(D)rm cosmθ (1.26)

where Im is the m-th multipole moment of the ring beam. The reader should
try to derive Eq.(1.26) from Eqs.(1.23-1.25). On the other hand, the derivation
can be recovered as a special case when we discuss Eqs.(1.28-1.33). Eq.(1.26)
can also be derived by solvng Eq.(1.14) to obtain

W = ImWm(D)rm cosmθ (1.27)

The solution (1.26) contains explicit dependences of r and θ. The depen-
dence on D is through the wake function Wm(D) which can be obtained only
if boundary conditions are introduced. The fact that we can go so far without
much details shows the power of this line of study.

When the beam pipe is cylindrically symmetric, each m-multipole compo-
nent of the beam excites a wake pattern according to (1.26). Different m’s do
not mix.

I assume the reader is familiar with the properties of the wake function and
its Fourier transform, known as the impedance. Suffice it to remind the reader
that the rigid-beam and the impulse approximations have led to a drastically
simpler Vlasov system (instead of a Vlasov-Maxwell system) to solve, and as
a result one obtains a large amount of analytical results without resorting to
PIC codes. Below we look for other applications along the line of the Panofsky-
Wenzel analysis.

1.4 Cylindrically Symmetric Pipe With a Central Con-
ductor

Consider now a cylindrically symmetric beam pipe except that this time there is
a perfect conductor at the center. The pipe therefore has a coaxial-like geometry,
as sketched in Fig.1.4. The beam has �v = cẑ and is necessarily ring shaped and
goes around the central conductor. The beam can again be decomposed into a
superposition of cosmθ ring beams. Other than being cylindrically symmetric,
the geometries of the pipe and the central conductor are arbitrary.

Everything from Maxwell equations (1.6) to the Panofsky-Wenzel theorem,
Eqs.(1.12-1.25) still hold. But Eq.(1.26) needs to be changed. In obtaining
Eq.(1.26) as solution to Eqs.(1.23-1.25), we have applied the condition that the
solution must be well-behaved at the pipe center r = 0. Indeed, when r → 0 in
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ν=c
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Conductor
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ρ∝ cosmθ

Figure 1.4: When there is a central conductor in the beam pipe.

Eq.(1.26), the wake potentials are well behaved.1

But with a central conductor, this condition does not have to hold and there
are new modes which can be excited by the beam. As we will see, the general
form of the wakefield will then be quite different from Eq.(1.26). This can be
of concern because one of the techniques often used to measure the wakefield
is to run a thin conducting wire down the pipe structure. The concern is then
whether the thin wire has profoundly perturbed the wakefield.

With a cosmθ beam, even with a central conductor, we can write

∆pr = ∆p̄r cosmθ, ∆pθ = ∆p̄θ sinmθ, ∆pz = ∆p̄z cosmθ (1.28)

where ∆p̄r, ∆p̄θ, ∆p̄z are functions of r and D. Substituting into Eqs.(1.23-
1.25), we find

∂

∂r
(r∆p̄θ) = −m∆p̄r,

∂

∂D
∆p̄r =

∂

∂r
∆p̄z

∂

∂D
∆p̄θ = −m

r
∆p̄z,

∂

∂r
(r∆p̄r) = −m∆p̄θ (1.29)

It follows that, by eliminating ∆p̄r and ∆p̄θ,

r
∂

∂r

(
r
∂∆p̄z
∂r

)
−m2∆p̄z = 0 (1.30)

1The only questionable case is when m = 0, the rm−1-dependence of ∆�p⊥ seems divergent.
But when m = 0, the entire ∆�p⊥ vanishes because ∆�p⊥ ∝ m.
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There are two solutions of Eq.(1.30) for ∆p̄z as far as its r-dependence is con-
cerned, namely

∆p̄z =
{
rm, r−m, if m 
= 0
constant in r, ln(r/b), if m = 0

(1.31)

where b is the pipe radius far away from the structure. This leads to the general
solution

∆p̄z =
{
rmW ′

m(D) + r−mU ′
m(D), if m 
= 0

W ′
0(D) + U ′

0(D) ln(r/b), if m = 0
(1.32)

where Wm(D) and W0(D) are the wake functions introduced before, while
Um(D) and U0(D) are a new set of modes excitable by the beam due to the pres-
ence of the central conductor. Had there be no central conductor, we re-obtain
our previous results.

Having obtained ∆p̄z, the other components are obtained from Eq.(1.29).
Together with Eq.(1.28), we find

∆pr = −eIm

{
m[rm−1Wm(D) − r−m−1Um(D)] cosmθ, if m 
= 0
1
rU0(D), if m = 0

∆pθ = −eIm

{
−m[rm−1Wm(D) + r−m−1Um(D)] sinmθ, if m 
= 0
0, if m = 0

∆pz = −eIm

{
[rmW ′

m(D) + r−mU ′
m(D)] cosmθ, if m 
= 0

W ′
0(D) + U ′

0(D) ln(r/b), if m = 0
(1.33)

We can apply our results to the case when the central conductor is a smooth,
perfectly conducting wire of radius a. For the mode m = 0, the condition that
Ez = 0 along the surface of the wire leads to the condition that

∆pz(r = a, θ,D) = 0

=⇒ U0(D) = −W0(D)
ln(a/b)

=⇒




∆pr = eI0
W0(D)
r ln(a/b)

∆pθ = 0
∆pz = −eI0W

′
0(D)

[
1 − ln(r/b)

ln(a/b)

] (1.34)

with I0 the total charge of the driving beam.
For modes m 
= 0, similarly, we obtain

Um(D) = −a2mWm(D)

=⇒




∆pr = −eImmWm(D)[rm−1 + a2mr−m−1] cosmθ
∆pθ = eImmWm(D)[rm−1 − a2mr−m−1] sinmθ
∆pz = −eImW ′

m(D)(rm − a2mr−m) cosmθ
(1.35)

Compared with Eq.(1.26), the central wire seems to perturb the wakefield
pattern profoundly. The effect of a central wire in some impedance measuring
devices is yet to be analyzed more carefully.
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Exercise 8 What if the central conductor looks like Fig.1.4(b)? Is
a divergence at r = 0 allowed in the analysis of wake potentials?

1.5 Planar Wake Theorem

Planar Structures In order to reach higher acceleration gradients in linear
accelerators, it is advantageous to use a higher accelerating RF frequency, which
in turn requires smaller accelerating structures. As the structure size becomes
smaller, rectangular structures become increasingly attractive because they are
easier to manufacture than cylindrically symmetric ones. One drawback of
small structures, however, is that the wakefields generated by the beam tend to
be strong. Recently, Rosenzweig suggested that one way of ameliorating this
problem is to use rectangular structures that are very flat and to use flat beams
[4].

In the limiting case of a very flat planar geometry, the problem resembles
a purely two-dimensional (2-D) problem as sketched in Fig.1.5. The beam is
considered to be infinitely long in the horizontal x-direction; it propagates with
v = c in the z-direction. The beam distribution in the y-z plane is arbitrary.
The environment consists of boundaries which are independent of x, but are
otherwise unrestricted. We do assume, however, that the beam trajectory is
entirely in free space and that it nowhere intersects the boundaries. A test
charge e in the beam (or trailing the beam) also moving in the z-direction with
v = c samples the force due to the wakefield generated by the beam.

Proof of Theorem Under these conditions, there is a “planar wake theorem”
which states that the transverse wake potential ∆�p⊥ received by the test charge
is independent of the y-positions of the beam and the test charge, and is also
independent of D, the longitudinal separation between the beam and the test
charge (see Fig.1.5). In addition, the theorem states that the longitudinal po-
tential ∆pz wake kick is also independent of y, though it does not say anything
about its D-dependence.

From the symmetry of the problem, we know that the only nonvanishing
EM field components are Ey, Ez and Bx, and all components depend only on y,
z and t (and are independent of x). We also have the condition �j = cρẑ (rigid
beam approximation). The Maxwell equations then become

∂Ey
∂y

+
∂Ez
∂z

= 4πρ

∂Bx
∂z

− 1
c

∂Ey
∂t

= 0

∂Bx
∂y

+
1
c

∂Ez
∂t

= −4πρ

∂Ez
∂y

− ∂Ey
∂z

+
1
c

∂Bx
∂t

= 0 (1.36)
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Figure 1.5: A planar beam-environment arrangement.

and the Lorentz force components are given by

fy(y, z, t) = eEy + eBx

fz(y, z, t) = eEz (1.37)

Combining Eqs.(1.36) and (1.37), we obtain

∂fy
∂y

= −e(
∂

∂z
+

1
c

∂

∂t
)Ez

∂fy
∂z

= e(
∂

∂z
+

1
c

∂

∂t
)Ey

∂fz
∂y

= e(
∂

∂z
+

1
c

∂

∂t
)(Ey −Bx) (1.38)

Note that the right hand sides of Eq.(1.38) all contain the operator ∂
∂z + 1

c
∂
∂t .

We are interested in the wake kick c∆�p,

c∆py,z(y,D) =
∫ ∞

−∞
fy,z(y,D + ct, t) dt (1.39)

Substituting Eqs.(1.38) into Eq.(1.39) we obtain integrals of the form∫ ∞

−∞
dt

[
(
∂

∂z
+

1
c

∂

∂t
)G(z, t)

]
z=D+ct

which in all cases equals zero, since the integrand is proportional to the total
derivative dG(D + ct, t)/dt and since G(D + ct, t) approaches zero as |t| → ∞.
It therefore follows that

∂∆py
∂y

=
∂∆py
∂D

=
∂∆pz
∂y

= 0 (1.40)
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which proves the planar wake theorem.
Note that the boundary properties never enter into our proof of the planar

wake theorem. Also note that for our problem, the wake kick is also independent
of the y position of the driving beam. This is because the wakefield is a response
to the primary field carried by the driving beam, and the primary field at
the boundaries is independent of the y-position of the beam in a 2-D planar
geometry.

Exercise 9 Repeat the proof of the planar wake theorem using Eqs.(1.15-
1.17) instead of starting from Maxwell equations.
Hint You may be able to show ∂∆py/∂y = 0 and ∂∆py/∂D =
∂∆pz/∂y, but not the complete theorem.

Two Soluble Problems There are two known 2-D planar geometries whose
wakefields are exactly soluble. The boundaries in both cases are wedge-shaped,
made of perfectly conducting metal, and are only on one side of the beam path
[see Fig.1.6]. By solving the Maxwell equations it was found that the transverse
wake kick received by the test charge due to the wakefield generated by a rod
beam (i.e. one that is infinitely long in x and a δ-function in the y- and z-
directions) of line charge density λ0 is given by

c∆py(y, y0, D < 0) =
{

2πeλ0 for Fig.1.6(a)
πeλ0 for Fig.1.6(b) (1.41)

where y0 is the y-offset of the rod beam. We note that the transverse wake kick
is independent of y, y0 and D, as the planar wake theorem states. It is also
interesting that the result, Eq.(1.41), does not depend on α, the wedge angle.2

Although Eq.(1.41) applies only to a rod beam, the wake kick for a more general
y-z beam distribution can be obtained by simple superposition.

The two examples in Fig.1.6 are not the only soluble cases with planar ar-
rangement. By applying conformal mapping technique, with Schwarz-Christoffel
transformation, there should be other soluble cases, including cases with metal
boundaries on both sides of the beam.

Two Corollaries The planar wake theorem has an interesting corollary when
the 2-D boundaries have the additional property of up-down symmetry, as is
sketched in Fig.1.7(a). In this case, the transverse wake kicks due to the upper
and the lower halves of the boundaries cancel each other and the net transverse
kick becomes zero. Note that the beam does not need to observe up-down
symmetry and that the cancellation applies even when it has a y off-set.

To prove this corollary, let us first consider a rod beam. Since the wake
kick does not depend on the y-positions of the beam and the test charge, we
can choose to locate both along the symmetry axis y = 0 without affecting the
result. But for such a configuration the transverse wake kick must vanish due to

2One would expect no wakefields when α = π, but this is a singular case.
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Figure 1.6: Two soluble planar problems.

the symmetry of the problem. Finally, we can extend this result to an arbitrary
y-z beam distribution by applying superposition, and the corollary follows.

Note that the corollary applies to the total integrated wake kick received by
the test charge. The instantaneous wake force is not necessarily zero. In case
the boundary has translational symmetry, i.e. is independent of the z-position,
the instantaneous transverse wake force would, of course, also vanish. Note also
that the up-down symmetry of the boundary is required for the corollary to
hold; the transverse wake kick is not zero due to the 2-D planar geometry alone.
Two nonvanishing examples were shown already in Eq.(1.41). It vanishes only
when the additional requirement of up-down symmetry is applied.

Another application of the planar wake theorem is when the boundary on one
side of the beam path is a perfectly conducting plate, as sketched in Fig.1.7(b).
In this case, one must have ∆pz ∝ δ(D). To demonstrate this, consider a test
charge that travels immediately next to the surface of the plate. For this test
charge, Fz necessarily vanishes and thus ∆pz = 0. An application of the planar
wake theorem then predicts ∆pz = 0 for a test charge with any vertical position
y. The only way this can happen is when ∆pz(D) ∝ δ(D). The reason the wake
kick is not identically zero is because there must be some net loss of energy by
the beam.

Questions not yet addressed It is conceivable to hope that, by using planar
beams and planar structures, one might be able to eliminate, or at least to min-
imize, the transverse wakefield effects (using the first corollary and Fig.1.7(a))
or the longitudinal wakefield effects (using the second corollary and Fig.1.7(b)).
Before these potential applications, however, we need to address a few questions.

1. A very flat 3-D structure is not the same as a 2-D planar structure. How
flat does a 3-D structure have to be before it becomes effectively 2-D planar?

2. Even in a purely 2-D structure it may turn out that an initial, slight

14
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un-evenness of the beam distribution in the x-direction, or a tilt of the beam
in the x-y plane, leads to unstable growth as the beam propagates down the
accelerator. This question requires a study of collective instabilities (see next
section).

3. Although the arrangement in Fig.1.7(a) potentially solves the transverse
wake problem and Fig.1.7(b) potentially solves the longitudinal wake problem,
there is not one arrangement that solves both problems.

1.6 Planar Pipe with Nonplanar Beam

As a first step in analyzing beam instabilities, consider a beam, or a perturbation
on the beam, with �v = cẑ and �j = cρẑ with

ρ(x, y, z) = ρ̄(y, z) cos kx (1.42)

When k → 0, we obtain the case of planar beam. It is conceivable that when
k ∼ the planar gap size b, the instability mechanism becomes as severe as a
cylindrically symmetric pipe with radius b, except for the fact that the beam
density is lower in the planar case because the beam is more spread out.

The EM field and Lorentz force components can be written as

(Ex, By, Bz, fx,∆px) = (Ēx, B̄y, B̄z, f̄x,∆p̄x) sin kx
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(Ey, Ez, Bx, fy, fz,∆py,∆pz) = (Ēx, B̄y, B̄z, f̄y, f̄z,∆p̄y,∆p̄z) cos kx

All barred quantities are independent of x. Substituting into Maxwell equations
and using

f̄x = e(Ēx − B̄y), f̄y = e(Ēy + B̄x), f̄z = eĒz (1.43)

we obtain

∂f̄x
∂y

= e(
∂

∂z
+

1
c

∂

∂t
)B̄z − kf̄y

∂f̄x
∂z

= −e(
∂

∂z
+

1
c

∂

∂t
)B̄y − kf̄z

∂f̄y
∂y

= −e(
∂

∂z
+

1
c

∂

∂t
)Ēz − kf̄x

∂f̄y
∂z

= e(
∂

∂z
+

1
c

∂

∂t
)Ēy + ekB̄z

∂f̄z
∂y

= e(
∂

∂z
+

1
c

∂

∂t
)(Ēy − B̄x) + ekB̄z (1.44)

which leads to the conditions for the wake kick,

∂∆p̄x
∂y

= −k∆p̄y

∂∆p̄x
∂D

= −k∆p̄z

∂∆p̄y
∂y

= −k∆p̄x

∂∆p̄y
∂D

=
∂∆p̄z
∂y

= ek

∫
dtB̄z (1.45)

One solution which avoids ∆pz → ∞ when k → 0 is

∆px = [(W0 + ka0(D)) cosh ky + (W1 + ka1(D)) sinh ky] sin kx

∆py = −[(W0 + ka0(D)) sinh ky + (W1 + ka1(D)) cosh ky] cos kx
∆pz = −[a′0(D) cosh ky + a′1(D) sinh ky] cos kx (1.46)

where W0,1 are some constants, and a0,1(D) are some functions of D (W0,1 and
a0,1(D) may depend on k). When k is small, we keep to first order in k to
obtain

∆px ≈ W0 sin kx

∆py ≈ −[W1 + ka1(D) + W0ky] cos kx
∆pz ≈ −[a′0(D) + a′1(D)ky] cos kx (1.47)

which satisfies the planar wake theorem that, when k = 0, ∆py is independent
of y and D, and ∆pz is independent of y. The quantities W0,1 and a0,1(D)
remain to be calculated by imposing proper boundary conditions.
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2 Echo Effect

This is a curious effect that can occur in a proton or heavy-ion storage ring.
Consider a beam which has been stored for a long time and is in a steady state.
At t = 0 we kick this beam by a one-turn dipole kicker. The beam’s centroid then
subsequently executes a betatron oscillation. Due to a spread in the betatron
frequencies in the beam, the centroid signal decoheres in a relatively short time,
say in 1 ms. Long after the kick, say 1 s later, the centroid signal is of course
dead zero. At this point, we give the beam a quadrupole kick. Such a kick does
not affect the beam centroid, and thus the beam centroid signal stays zero. The
curious thing is that if we wait approximately another 1 s after the quadrupole
kick, the beam centroid signal would give a sudden and pronounced blip. This
sudden blip is called the echo, and is a result of the correlation and interplay
between the two kicks and the detailed beam motion in the phase space.

The echo effect is well known in plasma physics (See Fig.2.1.), and was first
introduced to accelerator physics by Stupakov (1992) [2].

The echo can also be observed in the longitudinal direction in which case
an RF phase shift and an RF amplitude jump play the roles of the dipole and
quadrupole kicks, respectively. Experimentally, longitudinal echo has been ob-
served in the antiproton accumulator ring at FNAL and in the CERN SPS for
unbunched beams. Those experiments demonstrated that echo can be effectively
used for measuring an extremely weak diffusion inside the beam. Electron stor-
age rings do not exhibit the echo effect because radiation damping and quantum
excitation completely overwhelm any echo signal.

The echo effect is also influenced by the collective effects. The echo mea-
surements should yield useful information about the wakefield and impedance
of the accelerator. In the following, however, we ignore these collective effects.

6–97
8322A34

Plasma

x = x =  'x = 0

Exciter
Grids

λ1

ω1 ω2

λ2 λ3

Receiver
ω2 – ω1

Figure 2.1: Schematic of a plasma echo experiment [1].
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2.1 Transverse Decoherence

We describe the transverse dynamics using the action-angle variables J and φ,
with

x =
√

2Jβ cosφ, p = βx′ + αx = −
√

2Jβ sinφ

J =
x2 + p2

2β
, tanφ = − p

x
(2.1)

where β, α are the Courant-Snyder functions.
The beam receives a dipole kick at time t = 0. Let the kick be ∆p = βθ.

The action of the kick is

xout = xin, pout = pin + βθ (2.2)

The beam distribution immediately after the kick ψ1(x, p) is related to the
distribution immediately before the kick ψ0(x, p) by3

ψ1(x, p) = ψ0(x, p− βθ) (2.3)

Before the kick at t = 0, the beam has a steady-state transverse phase space
distribution. This means ψ0(x, p) = ψ0(J) depends only on J . Immediately
after the kick, the beam distribution is given by

ψ1(x, p) = ψ0

(
x2 + (p− βθ)2

2β

)

=⇒ ψ1(φ, J) = ψ0(J + θ
√

2Jβ sinφ +
1
2
βθ2) (2.4)

At time t > 0 after the kick, the motion of individual particles is described
by

Jout = Jin, φout = φin + ω(Jin)t (2.5)

where ω(J) is the betatron oscillation frequency of a particle whose action is J .
The dependence of ω on J is important. It gives rise to a spread in the betatron
frequencies and thus the decoherence after kick.

The distribution after the kick is given by

ψ2(φ, J, t) = ψ1(J, φ− ω(J)t)

= ψ0[J + θ
√

2Jβ sin(φ− ω(J)t) +
1
2
βθ2] (2.6)

The beam centroid signal is

〈x〉 =
∫ ∞

0

dJ

∫ 2π

0

dφ ψ2(φ, J)
√

2Jβ cosφ (2.7)

3Note it is p−βθ, not p+βθ, in the argument of ψ0. Similar comment applies to Eq.(2.6).
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We are interested in the case when the beam distribution before the kick is
gaussian,

ψ0(J) =
1

2πJ0
e−J/J0 (2.8)

and when the amplitude-dependent betatron frequency is given by

ω(J) = ω0 + ω′J (2.9)

where ω0 and ω′ are constants, independent of J .
Substituting Eqs.(2.6), (2.8) and (2.9) into Eq.(2.7) and changing variable

from J to a =
√

2Jβ, we obtain

〈x〉(t) =
1

βJ0

∫ ∞

0

a2da exp
(
− a2

2βJ0
− βθ2

2J0

)
sin
(
ω0t +

ω′t

2β
a2

)
I1

(
θa

J0

)
(2.10)

where we have integrated over φ using

1
2π

∫ 2π

0

dφ cosφ ex cosφ = I1(x) (2.11)

with I1(x) the Bessel function.
The integration over a can also be performed using∫ ∞

0

a2da e−Aa
2
I1(Ba) =

B

4A2
eB

2/4A (2.12)

We then obtain

〈x〉(t) = βθ Im
[

eiω0t

(1 − iΘ)2
exp

(
βθ2

2J0

iΘ
1 − iΘ

)]

=
βθ

1 + Θ2
exp

[
− βθ2Θ2

2J0(1 + Θ2)

]
sin
[
ω0t +

βθ2Θ
2J0(1 + Θ2)

+ 2 tan−1 Θ
]

Θ ≡ ω′J0t (2.13)

Equation (2.13) also gives the beam centroid oscillation amplitude

〈x〉ampl(t) =
βθ

1 + Θ2
exp

[
− βθ2Θ2

2J0(1 + Θ2)

]
(2.14)

and decoherence time

τdecoh ≈ min
[

1
ω′J0

,
1

ω′θ
√
βJ0

]
(2.15)

Figure 2.2 shows how the beam centroid signal decoheres. It shows 〈x〉/βθ
versus Θ for ω0 = 50ω′J0, and various values of

u ≡ βθ2/2J0
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Figure 2.2: Decoherence of the beam centroid signal after a kick, for various
values of the kick amplitude.

When u � 1, i.e. when the kick amplitude is much smaller than the unperturbed
beam size, Eq.(2.13) can be approximated as

〈x〉(t) ≈ βθ

1 + Θ2
sin(ω0t + 2 tan−1 Θ)

=
βθ

(1 + Θ2)2
[(1 − Θ2) sinω0t + 2Θ cosω0t]

〈x〉ampl(t) ≈ βθ

1 + Θ2
(2.16)

There are two curves in each subfigure of Fig.2.2; the curves with the larger
amplitudes are the first order approximation (2.16). When the kick amplitude
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is not small compared with the unperturbed beam size, Eq.(2.16) over-estimates
the beam centroid motion. When u � 1, the decoherence time is τdecoh ≈
1/ω′J0. When u >∼ 1, τdecoh ≈ 1

ω′J0

1√
2u

, according to Eq.(2.15).

Exercise 1 Find 〈p〉(t) as the counter part to Eq.(2.13).
Hint It is algebraically simpler to compute (〈x〉 + i〈p〉)(t).

Exercise 2 The kick we considered is when the beam is kicked in
angle. Does the decoherence behavior change if the kick is a sudden
displacement of the beam?

Exercise 3 (a) We have concentrated on the beam centroid signal
after a kick. Extend the calculation to find the time evolution of
the second moments 〈x2〉, 〈xp〉, 〈p2〉. Apply to the special case with
(2.8-2.9). (b) Repeat for the moment 〈xmpn〉.

2.2 Transverse Echo

We now let the beam decohere for a time much longer than τdecoh. The beam
centroid signal completely vanishes. At time t = τ with ω′J0τ 
 1, we give the
beam a second, one-turn, quadrupole kick,

xout = xin, pout = pin − qxin (2.17)

where q = β/f with f the focal length of the kicking quadrupole (f > 0 means
focusing quadrupole).

For simplicity, we consider the dipole and the quadrupole kicks to be weak.
When u = βθ2/2J0 � 1, let’s first re-derive Eq.(2.16) as follows.

ψ1 = ψ0(x, p− βθ) ≈ ψ0(J) − βθψ′
0(J)

∂J

∂p

= ψ0(J) + θψ′
0(J)

√
2Jβ sinφ

=⇒
ψ2 ≈ ψ0(J) + θψ′

0(J)
√

2Jβ sin(φ− ω(J)t) (2.18)

The first term ψ0(J) in Eq.(2.18) does not contribute to the beam centroid
signal. The second term contributes

〈x〉(t) ≈ θ

∫ ∞

0

dJ

∫ 2π

0

dφ
√

2Jβ cosφ ψ′
0(J)

√
2Jβ sin(φ− ω(J)t)

= −2πβθ
∫ ∞

0

JdJψ′
0(J) sin(ω(J)t) (2.19)

Equation (2.19) holds for arbitrary ψ0(J) and ω(J). If they are given by
Eqs.(2.8) and (2.9), we recover Eq.(2.16).

The decoherence time is given by τdecoh = 1/ω′J0. Physically, one might say
that the decoherence time is basically given by 1/∆ω, where ∆ω is the oscillation
frequency spread of the beam. However, this physical intuition should be applied
with care. See Exercise 4.
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Exercise 4 Apply Eq.(2.19) to a waterbag beam distribution ψ0(J) =
1

2πJ0
H(J0 − J). (a) Find 〈x〉(t) for a weak dipole kick. (b) Explain

why there is no decoherence. This exercise shows that the formula
τdecoh ≈ 1/∆ω is not always valid.

At time t = τ , the beam is given a weak quadrupole kick with q � 1 [see
Eq.(2.27) later]. We have immediately before the kick,

ψ3 = ψ0(J) + θψ′
0(J)

√
2Jβ sin(φ− ω(J)τ) (2.20)

Immediately after the kick, we have

ψ4(φ, J) ≈ ψ3(J, φ) + qx
∂ψ3

∂p

= ψ3(J, φ) + q
√

2Jβ cosφ
[
∂J

∂p

∂ψ3

∂J
+

∂φ

∂p

∂ψ3

∂φ

]

= ψ3(J, φ) − q
√

2Jβ cosφ

[√
2J
β

sinφ
∂ψ3

∂J
+

1√
2Jβ

cosφ
∂ψ3

∂φ

]
(2.21)

From Eq.(2.20), we have

∂ψ3

∂J
= ψ′

0(J) + θ
∂

∂J
[ψ′

0(J)
√

2Jβ] sin(φ− ω(J)τ)

− θω′(J)τψ′
0(J)

√
2Jβ cos(φ− ω(J)τ) (2.22)

∂ψ3

∂φ
= θψ′

0(J)
√

2Jβ cos(φ− ω(J)τ) (2.23)

The three terms in Eq.(2.22) have the relative magnitudes of the order of

1 :
√
u : (ω′J0τ)

√
u (2.24)

We have already assumed u � 1. We will consider the case when the third
term dominates the beam centroid signal. The first term, when substituted into
Eq.(2.21), does not contribute to the centroid signal. Therefore, the third term
dominates if

(ω′J0τ) 
 1 (2.25)

The quantity ω′J0τ is the betatron phase smear due to the frequency spread in
a time period of τ . Equation (2.25) means the decoherence effect must be large,
but that is just what we are interested in.

The term due to Eq.(2.23), in the scale as in Eq.(2.24), has a magnitude of√
u, so is also negligible. We have thus obtained, under condition (2.25),

ψ4 ≈ θqω′(J)τJψ′
0(J)

√
2Jβ sin 2φ cos(φ− ω(J)τ) (2.26)

Note that ψ4 ∝ θq, i.e. it is proportional to both the dipole and the quadrupole
kick amplitudes.
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If we go back to Eq.(2.21), the condition q � 1 really requires (ψ4 − ψ3) �
(ψ3 − ψ0), or

(ω′J0τ)q � 1 (2.27)

Combining all the conditions for the validity of our analysis, we have

1
q

 (ω′J0τ) 
 1,

1
θ

√
J0

β

 1 (2.28)

For t > τ , after the quadrupole kick, the beam distribution is

ψ5(J, φ, t) = ψ4(J, φ− ω(J)(t− τ)) (2.29)

The beam centroid is

〈x〉echo(t) =
∫ ∞

0

dJ

∫ 2π

0

dφ
√

2Jβ cosφ ψ5(φ, J, t)

≈ 2βθqτ
∫ ∞

0

J2dJω′(J)ψ′
0(J)

×
∫ 2π

0

dφ cosφ sin[2φ− 2ω(J)t + 2ω(J)τ ] cos[φ− ω(J)t] (2.30)

The integration over φ can be performed to yield

−π

2
sin[ω(J)(t− 2τ)] (2.31)

This integration over φ is the key to the echo phenomenon. Magically, the two
kicks, the frequency spread, and the particle evolution in phase space conspire
to produce a recoherence in the neighborhood of time t = 2τ ! (Although exactly
at t = 2τ , the echo signal is zero.) Furthermore, the recoherence, and the fact
that it occurs at t = 2τ , do not depend on the exact form of ψ0(J) or ω(J)!

Exercise 5 The integrand of the φ-integral in Eq.(2.30) contains four
sinusoidal factors

cosφ× sin[φ−ω(J)t+ω(J)τ ] × cos[φ−ω(J)t+ω(J)τ ] × cos[φ−ω(J)t]

Trace back to find out where each factor originates from. This would
give a feel for the intricate phase space dynamics we are dealing with.

After performing the φ-integral, we obtain

〈x〉echo(t) = −πβθqτ
∫ ∞

0

J2dJω′(J)ψ′
0(J) sin[ω(J)(t− 2τ)] (2.32)
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Equation (2.32) is our main result. If ω(J) and ψ0(J) are given by Eqs.(2.8-2.9),
the integration over J can be performed to yield

〈x〉echo(t) = βθqω′J0τ Im
[

eiΦ

(1 − iξ)3

]

= βθq
ω′J0τ

(1 + ξ2)3
[ξ(3 − ξ2) cos Φ + (1 − 3ξ2) sin Φ] (2.33)

ξ = ω′J0(t− 2τ)
Φ = ω0(t− 2τ)

The amplitude of the echo signal is

〈x〉echo ampl(t) = βθq
ω′J0τ

(1 + ξ2)2/3
(2.34)

The maximum echo amplitude occurs near t = 2τ , and is given by

〈x〉echo ampl max = βθqω′J0τ (2.35)

Away from the peak, the echo amplitude is proportional to ∼ |t − 2τ |−3. The
full width at half maximum time duration around t = 2τ of the echo is

∆TFWHM =
2

ω′J0

√
23/2 − 1 ≈ 1.53

ω′J0
(2.36)

This echo duration is comparable to the decoherence time τdecoh after the dipole
kick. One sees that both τdecoh and ∆TFWHM are much less than τ , while much
longer than the beam betatron period 1/ω0. Figure 2.3 shows a schematic of
the echo signal. Figure 2.4 shows the echo signal near time t = 2τ according to
Eq.(2.33), assumig ω0 = 50ω′J0.
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Figure 2.3: Schematic of a transverse echo experiment in a storage ring.

Exercise 6 Verify Eqs.(2.30-2.33). In passing, calculate 〈p〉echo(t).
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Figure 2.4: A close-in observation of the echo signal. The echo amplitude peaks
at t = 2τ , even though the exact value of 〈x〉 vanishes there.

Exercise 7 We showed there is an echo at t = 2τ . Are there multiple
echoes, for example at t = 4τ , etc.?

Exercise 8 We have analyzed the problem with a quadrupole kick
following a dipole kick. What happens if we reverse the order of
these two kicks?

Exercise 9 There can be an echo in a linac. Give the beam at s = 0
a nonlinear angular kick of ∆x′ = θ1 sin k1x. At s = D, kick the
beam again by ∆x′ = θ2 sin k2x. There is an echo if one observes
the beam at location s = k1

k2−k1 D.

Exercise 10 The φ-integral in Eq.(2.30) also yields a finite result if
we replace the cosφ in the integrand by cos 3φ. This means there
is also an echo if we measure the sextupole moment of the beam
instead of its centroid (dipole moment). Follow the procedure of the
text to derive the sextupolar echo signal. When does the sextupolar
echo appear? What is the magnitude of the signal?

Exercise 11 Echo signals can be superimposed.
(a) Consider two sets of kicks

(dipole kick θ1 at t = −2τ1, quadrupole kick q1 at t = −τ1)
(dipole kick θ2 at t = −2τ2, quadrupole kick q2 at t = −τ2)

Show that the two echo signals simply add coherently near t = 0
and the net amplitude is proportional to θ1q1τ1 + θ2q2τ2.
(b) Apply dipole kicks θ0 every other turn to the beam from t = −2T
to t = 0, and apply quadrupole kicks q0 every turn from t = −T to
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t = 0. There should be a very large echo signal at t = 0. Find this
echo response.
(c) Same as (b) but when the dipole kicks are applied every turn
from t = −2T to t = 0. The dipole and quadrupole kicks in this
case are therefore effectively simple step-functions.
(d) Apply dipole (−2T < t < 0) and quadrupole (−T < t < 0)
kicks every turn, but modulate the kick strength by θ = θ0 sinω1t
and q = q0 sin 2ω1t, where ω1 is some modulation frequency. Find
the echo response. Show that the echo amplitude is proportional to
θ0q0T

2/T0, where T0 is the revolution time.
This exercise indicates that one can apply very weak kicks –

almost at a subliminal level – for multiple number of turns and
obtain a sudden huge echo.

Exercise 12 The echo set-up can be generalized. If the two kicks are
m1-th and m2-th multipolar kicks (m2 > m1), we should observe an
(m2 −m1)-th multipolar signal at time t = m1

m2−m1
τ .

If we compare the maximum echo amplitude (2.35) to the initial kick am-
plitude of βθ, we see that the echo amplitude is weaker by a factor of qω′J0τ ,
which, according to Eq.(2.27), is much less than 1 in order for our analysis to
apply. One may want to push the parameters to see how to get as big an echo
signal as possible. This occurs when qω′J0τ is made to approach 1, when our
analysis begins to break down.

In our analysis, we have made approximations summarized by Eq.(2.28).
It is instructive to do a simulation and observe what happens in detail in the
phase space. Figure 2.5 shows some of the results obtained in Ref.[3]. A gaussian
beam receives a dipole kick at 0-th turn and a quadrupole kick at 20-th turn.
From 0-th turn to 20-th turn the beam decoheres. By about the 30-th turn,
several “clumps” develope in the beam distribution. These kinks come from an
interplay of the two kicks. Each of them occurs at a specific amplitude, which
are most conspiring in the sense that, with the amplitude-dependent betatron
frequency, they all cohere simultaneously at the 40-th turn as they migrate in
the phase space relative to one another.

Exercise 13 What determines the number of clumps in Fig.2.5?
Solution Examine how clumps form, and deduce that the number
of clumps is equal to 2 times the number of spirals at time t = τ .

Simulation also allows exploring parameters range beyond Eq.(2.28). For
example, Fig.2.6 shows what happens when q is varied. Cases 1 to 3 are for
small q, consistent with Eq.(2.28), and we obtain results similar to Eq.(2.34).
As q is increased further, cases 4 and 5, the echo signal develops a double hump
structure. The maximum echo amplitude is found to be about 40% of the initial
kick amplitude (near case 3).
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Figure 2.5: Simulation of a transverse echo [3].
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Figure 2.6: Echo amplitude signal obtained in a simulation. Curves 1 to 5
correspond to q = 0.02, 0.03, 0.08, 0.2, 0.3 respectively.

2.3 Transverse Echo with Diffusion

The echo mechanism involves a long term memory of the intricacies of the phase
space structure. One expects that the echo signal will be affected by diffusion
even when the diffusion is weak. This is turned around and becomes a great
way to measure weak diffusion in storage rings.

With diffusion, the beam distribution evolves according to the diffusion equa-
tion

∂ψ

∂t
+ ω(J)

∂ψ

∂φ
=

∂

∂J

(
D(J)J

∂ψ

∂J

)
(2.37)

where D(J) is the diffusion coefficient.

Exercise 14 To get a feel for Eq.(2.37), show that

ψ =
1

2π(J0 + D0t)
e−J/(J0+D0t) (2.38)

is a solution when D(J) + D0. Physically, this is simply a diffusing
gaussian, with an emittance growing with time according to 〈J〉 =
J0 + D0t.

Exercise 15 Check that ψ2(φ, J, t) = ψ1(φ−ω(J)t, J) satisfies Eq.(2.37)
without diffusion.

We will solve Eq.(2.37) in the limit of weak diffusion. Specifically, we assume
that the diffusion has a small effect on a time scale during which the beam
decoheres. The diffusion time is roughly equal to τdiff ≈ J/D. Requiring τdiff 

τdecoh, we get

D � ω′J2 (2.39)
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In the limit of very strong diffusion, when the inequality opposite to (2.39)
holds, the diffusion completely suppresses the echo effect.4

At time t = 0, the beam receives a small dipole kick. Immediately after the
kick, the beam distribution is given by ψ1 of Eq.(2.18). In the period 0 < t < τ ,
however, ψ2 is not given by Eq.(2.18) but has to be found by solving Eq.(2.37).
Change variable from φ to

v = φ− ω(J)t (2.40)

Eq.(2.37) gives

∂ψ2

∂t
= (

∂

∂J
− ω′(J)t

∂

∂v
)
[
D(J)J

(
∂ψ2

∂J
− ω′(J)t

∂ψ2

∂v

)]
(2.41)

When ω′Jt 
 1, Eq.(2.41) becomes

∂ψ2

∂t
≈ [ω′(J)t]2D(J)J

∂2ψ2

∂v2
(2.42)

With initial condition ψ2(J, v, t = 0) = ψ1(J, v), the solution of (2.42) for 0 <
t < τ is

ψ2(J, v, t) = θ
√

2Jβψ′
0(J) e−

1
3D(J)J(ω′(J))2t3 sin v (2.43)

where we have dropped the term ψ0(J) because it does not contribute to beam
centroid motion.

At t = τ , the beam receives a quadrupole kick, immediately before the kick,
we have

ψ3(φ, J) = θ
√

2Jβψ′
0(J) e−

1
3D(J)J(ω′(J))2τ3

sin(φ− ω(J)τ) (2.44)

Immediately after the kick, the perturbation ψ4 is

ψ4 ≈ θqω′(J)τJψ′
0(J)

√
2Jβ e−

1
3D(J)J(ω′(J))2τ3

sin 2φ cos(φ− ω(J)τ) (2.45)

Equations (2.43-2.45) are the same as (2.18), (2.20) and (2.26) except for the
extra exponential factors due to diffusion.

In the period t > τ , we make a change of variable from (J, φ, t) to (J, v1, t)
where

v1 = φ− ω(J)(t− τ) (2.46)

in Eq.(2.37) to obtain for ψ5

∂ψ5

∂t
=
(

∂

∂J
− ω′(J)(t− τ)

∂

∂v1

)[
D(J)J

(
∂ψ5

∂J
− ω′(J)(t− τ)

∂ψ5

∂v1

)]
(2.47)

When ω′J(t− τ) 
 1, we have

∂ψ5

∂t
≈ [ω′(J)(t− τ)]2D(J)J

∂2ψ5

∂v2
1

(2.48)

4Strong diffusion is typical for electron storage rings where diffusion is caused by quantum
excitations. This is why echo effect is not relevant to electron storage rings.
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The solution with the initial condition ψ5(J, v1 = φ, t = τ) = ψ4(φ, J),
keeping only the term ∝ sin(v1 + ω(J)τ), is

ψ5 =
1
2
θqω′(J)τJψ′

0(J)
√

2Jβ sin[φ− ω(J)t + 2ω(J)τ ]

× exp
[
−1

3
D(J)J(ω′(J))2((t− τ)3 + τ3)

]
(2.49)

Substituting (2.49) into (2.30) and performing the φ-integration gives for the
echo signal

〈x〉echo(t) = −πβθqτ
∫ ∞

0

J2dJ ω′(J)ψ′
0(J) sin[ω(J)(t− 2τ)]

× e−
1
3D(J)J(ω′(J))2(τ3+(t−τ)3) (2.50)

Note that the echo appears near t ≈ 2τ . Since we assume that diffusion is weak,
the exponent in Eq.(2.50) is a slow function of time, and we can put t = 2τ in
it, yielding

〈x〉echo(t) ≈ −πβθqτ
∫ ∞

0

J2dJ ω′(J)ψ′
0(J) sin[ω(J)(t− 2τ)]e−

2
3D(J)J(ω′(J))2τ3

(2.51)
which is a generalization of Eq.(2.32).

If we assume that ω(J) and ψ0(J) are given by Eqs.(2.8-2.9), and that the
diffusion coefficient is a constant, D(J) = D0, the integration in (2.51) can be
performed explicitly. The result is

〈x〉echo(t) = βθqω′J0τ Im
[

eiΦ

(α− iξ)3

]

=
βθqω′J0τ

(α2 + ξ2)3
[ξ(3α2 − ξ2) cos Φ + α(α2 − 3ξ2) sin Φ] (2.52)

where ξ and Φ were defined in Eq.(2.33), and

α ≡ 1 +
2
3
D0(ω′)2J0τ

3 (2.53)

When D0 = 0, this reduces to (2.33). It also follows that

〈x〉echo ampl(t) = βθq
ω′J0τ

(α2 + ξ2)3/2
(2.54)

Compared with Eq.(2.34), Eq.(2.54) is just to replace the quantity 1 + ξ2 by
α2 + ξ2 in the denominator. The difference between α and 1 can be written as

α− 1 =
2
3

(
D0τ

J0

)
(ω′J0τ)2 (2.55)

where the factor D0τ/J0 is just τ/τdiff , i.e. the ratio of the time between the
two kicks to the diffusion time. The factor ω′J0τ is the betatron phase smear
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due to the frequency spread, and is 
 1. We see that the difference between
α and 1 is typically large, thus allowing a good opportunity to measure the
diffusion strength. In fact, the measurement can in principle be so accurate
that it is conceivable that one can explore the diffusion coefficient as a function
of J using this method.

Figure 2.7 shows the echo amplitude as a function of ξ for various values of
α. When α = 1, the curve is just the envelope of Fig.2.4. When α �= 1, the
location of the echo is not changed, but the magnitude is reduced by a factor of
α3, indicating the sensitive dependence on diffusion.
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Figure 2.7: Reduction of echo amplitude when diffusion is included.

Given the diffusion coefficient D0, one may want to maximize the echo signal
by choosing τ . With

〈x〉echo ampl max =
βθqω′J0τ

α3
(2.56)

or, equivalently

〈x〉echo ampl max

βθq
=

Θ[
1 + 2

3

(
D0
ω′J2

0

)
Θ3
]3 (2.57)

where Θ = ω′J0τ � 1. The quantity D0/ω
′J2

0 in Eq.(2.57) is � 1 according
to condition (2.39). Fig.2.8 shows 〈x〉echo ampl max as a function of τ . With-
out diffusion, D0 = 0, the perturbation theory predicts a linear growth of the
echo signal with the delay time τ . When D0 �= 0, the maximum value of
〈x〉echo ampl max is achieved at

τmax =
[
16
3
D0(ω′)2J0

]−1/3

(2.58)
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In terms of decoherence and diffusion times, the maximum is achieved at τmax ∼
(τdiffτ

2
decoh)1/3. When τ = τmax, we have α = 9

8 and the maximum echo ampli-
tude is given by

maximum
( 〈x〉echo ampl max

βθq

)
=
(

8
9

)3(16
3

D0

ω′J2
0

)−1/3

(2.59)

The full width at half maximum time duration of the echo signal is [compare
Eq.(2.36)]

∆TFWHM =
2α
ω′J0

√
22/3 − 1 ≈ 1.53

α

ω′J0
(2.60)

For τ = τmax, we have ∆TFWHM = 1.72/ω′J0.
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Figure 2.8: Dependence of the maximum echo amplitude when the time between
the two kicks is varied. Three cases are for different strengths of the diffusion
effect.

Experimentally, both quantities ω′ and D0 can be found from the echo mea-
surements. Measurement of ∆TFWHM or the decoherence time τdecoh can yield
information on ω′J0. If the beam emittance J0 is known, this allows one to deter-
mine ω′. After that, D0 can be found by measuring τmax and using Eq.(2.58),
or by measuring the maximum echo amplitude and using Eq.(2.59). See the
following table:

Measurement → information
τdecoh → ω′J0

height of echo → ω′J0τ
α3

width of echo → ω′J0
α

τmax → D0ω
′2J0

height of echo at τ = τmax → D0
ω′J2

0

shape of echo amplitude with respect to τ → D as a function of J
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In some cases (e.g. with beam-beam interaction, or near a nonlinear reso-
nance), the diffusion coefficient may be a sensitive function of J , and it may
not be a good approximation to treat it as a constant. Experimentally, trans-
verse echo gives a possibility not only to measure an average diffusion coefficient
within the bunch, but also to obtain information on the dependence of diffusion
strength on betatron amplitude. With D = D(J), we resort to Eq.(2.51). For
example, we may model the diffusion coefficient as

D(J) = Dn

(
J

J0

)n
(2.61)

Equation (2.51) can be used to give

〈x〉echo ampl max = −πβθqτ
∫ ∞

0

J2dJ ω′(J)ψ′
0(J)e−

2
3D(J)J(ω′(J))2τ3

(2.62)

where we have inserted t = 2τ to obtain the maximum echo amplitude.
If we assume Eqs.(2.8-2.9) for ψ0(J) and ω(J), then

〈x〉echo ampl max

βθq
=

Θ
2

∫ ∞

0

x2dx exp
[
−x− 2

3

(
Dn

ω′J2
0

)
Θ3xn+1

]
(2.63)

where Θ = ω′J0τ . Figure 2.9 shows 〈x〉echo ampl max as a function of Θ for
various values of Dn/ω

′J2
0 ; (a, b, c, d) are for n = (−1, 1, 2, 3) respectively.

When n = 0, Fig.2.8 is reproduced.

Exercise 16 (a) Show that when n = 0, Eq.(2.62) reduces to (2.56).
(b) A special case occurs when n = −1, i.e. when the diffusion is
stronger for smaller J than for larger J . Show that, acccording to
Eqs.(2.8-2.9),5

〈x〉echo ampl max = βθqω′J0τ e−
2
3D−1(ω

′)2J0τ
3

(2.64)

Exercise 17 Find what happens to a waterbag model ψ0(J) = 1
2πJ0

H(J0−
J) with arbitrary ω(J) and D(J).

2.4 Longitudinal Decoherence and Echo

The above analysis applies to the transverse motion of a bunched beam. With
minor modifications, the same physics applies to the longitudinal motion of a
bunched beam. For an unbunched beam, however, the dynamics is sufficiently
different that we are going to treat it independently in the following sections.

5The fact that the n = −1 case is particularly simple can be traced to Eq.(2.37). Equation
(2.37) becomes particularly simple when D(J) ∝ J−1. In fact, the longitudinal echo with
diffusion has this same simplifying behavior when D(δ) = constant. See Eq.(2.91) later.
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Figure 2.9: Same as Fig.2.8, but the diffusion is now modeled as in Eq.(2.61).

To study the longitudinal echo effect for an unbunched beam, we also need
two kicks separated by a long time τ . Before the first kick, the beam has a
phase space distribution

ψ(z, δ) = ψ0(δ) (2.65)

which is uniform in z. The first kick at time t = 0 is to impose an rf voltage
energy kick

∆δ(z) =
eV1

E0
sin
(
h1

z

R
+ φ1

)
(2.66)

where E0 is the nominal beam energy, and h1 is the harmonic number. The
application of the voltage is considered to be instantaneous in the sense that it
is applied for a time much shorter than the decoherence time to be defined later
in Eq.(2.76).

After the first kick, the beam begins to bunch up with harmonic number
h1, but due to the energy spread of the beam, this bunching signal decoheres
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quickly. Long after the signal has decohered, at t = τ , a second kick is then
applied to the beam,

∆δ(z) =
eV2

E0
sin
(
h2

z

R
+ φ2

)
(2.67)

What we will show is that, at a much later time, one will observe a sudden echo
with harmonic number |h2| − |h1| if |h1| < |h2| and no echo if |h1| > |h2|.

Longitudinal Decoherence
We first consider the decoherence after the first kick. The single-particle

equations of motion are
ż = −ηcδ, δ̇ = 0 (2.68)

where η is the phase slippage factor. Immediately after the kick, the beam
distribution is

ψ1(z, δ) = ψ0

[
δ − eV1

E0
sin
(
h1

z

R
+ φ1

)]

≈ ψ0(δ) − ψ′
0(δ)

eV1

E0
sin
(
h1

z

R
+ φ1

)
(2.69)

where we have assumed the kick is weak.
After the kick, the particle coordinates are given by

z2 = z1 − ηctδ1, δ2 = δ1 (2.70)

The beam distribution is therefore

ψ2(z, δ, t) = ψ1(z + ηctδ, δ)

≈ ψ0(δ) − ψ′
0(δ)

eV1

E0
sin
(
h1

z + ηctδ

R
+ φ1

)
(2.71)

The beam current monitor measures

I2(z, t) =
∫ ∞

−∞
dδ ψ2(z, δ, t)

≈ I0 −
eV1

E0

∫ ∞

−∞
dδ ψ′

0(δ) sin
(
h1

z + ηctδ

R
+ φ1

)
(2.72)

where I0 =
∫∞
−∞ dδψ0(δ) is the unperturbed beam current. We are of course

interested only in the second term in Eq.(2.72). We shall simply drop the term
I0.

If we have a gaussian δ-distribution,

ψ0(δ) =
I0√
2πσδ

e−δ
2/2σ2

δ (2.73)
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Eq.(2.72) can be integrated to yield6

I2(z, t) ≈ I0
eV1h1ηct

E0R
cos
(
h1

z

R
+ φ1

)
exp

[
−1

2

(
h1ηctσδ

R

)2
]

(2.75)

At t = 0, the beam current signal is zero. This is because the beam takes
some time to become bunched after the kick. The signal will continue to grow
indefinitely if not due to the energy spread of the beam which causes a decoher-
ence. The decoherence time is when it takes a σδ-particle to move longitudinally
by a distance R/h1, i.e.

τdecoh =
R

h1ηcσδ
(2.76)

One obtains the amplitude of the signal by dropping the cosine factor in
Eq.(2.75),

Iampl
2 (t) ≈ I0

eV1

E0σδ

t

τdecoh
exp

(
− t2

2τ2
decoh

)
(2.77)

The maximum values of Iampl
2 occurs when t = τdecoh with

Iampl max
2 = I0

eV1

E0σδ
exp(−1

2
) (2.78)

At t = 0 and t → ∞, however, the beam current signal vanishes.

Longitudinal Echo
The evolution of the coordinates of a particle during the process is summa-

rized by

At t = 0+,

{
z1 = z0
δ1 = δ0 + eV1

E0
sin
(
h1

z0
R + φ1

)
At t = τ−,

{
z3 = z1 − ηcτδ1
δ3 = δ1

At t = τ+,

{
z4 = z3
δ4 = δ3 + eV2

E0
sin
(
h2

z3
R + φ2

)
At t > τ,

{
z5 = z4 − ηc(t− τ)δ4
δ5 = δ4

(2.79)

What we need to do is to solve (z0, δ0) in terms of (z5, δ5), and substitute
δ0(z5, δ5) into the initial distribution ψ0(δ0) to obtain the beam distribution at
time t > τ . Having obtained the beam distribution, the beam signal follows.

6Using ∫ ∞

−∞
δdδ e−δ2/2σ2

δ sin aδ =
√

2πaσ3
δe

−a2σ2
δ

/2 (2.74)
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But this is a tedious calculation, and in the following, we shall be content
with the perturbation approach again as we did in the transverse case. Thus,
keeping only the leading terms for the echo effect, we find

ψ3(z, δ) ≈ −ψ′
0(δ)

eV1

E0
sin
(
h1

z + ηcτδ

R
+ φ1

)
(2.80)

ψ4(z, δ) = ψ3

[
z, δ − eV2

E0
sin
(
h2

z

R
+ φ2

)]

≈ −eV2

E0
sin
(
h2

z

R
+ φ2

) ∂ψ3

∂δ

≈ eV1

E0

eV2

E0

h1ηcτ

R
ψ′

0(δ) sin
(
h2

z

R
+ φ2

)

× cos
(
h1

z + ηcτδ

R
+ φ1

)
(2.81)

ψ5(z, δ, t) = ψ4(z + ηc(t− τ)δ, δ)

≈ eV1

E0

eV2

E0

h1ηcτ

R
ψ′

0(δ) sin
(
h2

z + ηc(t− τ)δ
R

+ φ2

)

× cos
(
h1

z + ηctδ

R
+ φ1

)
(2.82)

Knowing ψ5, the echo beam current signal is given by

Iecho(z, t) =
∫ ∞

−∞
dδ ψ5(z, δ, t) (2.83)

Substituting Eq.(2.82) into Eq.(2.83), assuming an initial gaussian energy dis-
tribution (2.73), and performing the integration over δ, we obtain

Iecho(z, t) = −1
2
I0
eV1

E0

eV2

E0

h1η
2c2τ

R2

×
{

[(h1 + h2)t− h2τ ] cos
(
(h1 + h2)

z

R
+ φ1 + φ2

)

× exp
[
−η2c2σ2

δ

2R2
((h1 + h2)t− h2τ)2

]

−[(h1 − h2)t + h2τ ] cos
(
(h1 − h2)

z

R
+ φ1 − φ2

)
× exp

[
−η2c2σ2

δ

2R2
((h1 − h2)t + h2τ)2

]}
(2.84)

An inspection of Eq.(2.84) shows that the echo signal occurs potentially at
times techo = h2τ/(h1 + h2) and techo = −h2τ/(h1 − h2). However, we are
interested only when techo > τ . By evaluating the possible signs of h1 and
h2, one finds that an echo signal occurs only if |h2| > |h1|, and that the echo
contribution to Eq.(2.84) can be re-written as

Iecho(z, t) = −1
2
sgn(h2)I0

eV1

E0

eV2

E0

h1η
2c2τ

R2
[(|h2| − |h1|)t− |h2|τ ]
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× cos
(
(|h2| − |h1|)

z

R
− sgn(h1)φ1 + sgn(h2)φ2

)
× exp

[
−η2c2σ2

δ

2R2
((|h2| − |h1|)t− |h2|τ)2

]
(2.85)

Dropping the cosine factor in Eq.(2.85) gives

Iecho ampl(t) = −1
2
sgn(h2)I0

eV1

E0

eV2

E0

h1ηcτ

Rσδ
ξe−ξ

2/2

techo =
|h2|τ

|h2| − |h1|

ξ =
ηcσδ(|h2| − |h1|)

R
(t− techo) (2.86)

Equation (2.86) for the longitudinal echo is the equivalent of Eq.(2.34) for the
transverse echo.

One sees from Eqs.(2.85-2.86) that (a) the RF kick phases φ1,2 determine the
phase of the current signal, but otherwise does not have a prominent role, (b)
the echo signal has a harmonic number |h2| − |h1|, and (c) the echo amplitude
vanishes at t = techo. Observation (c) is in contrast to the transverse echo
amplitude, which reaches maximum at t = 2τ (even though the instantaneous
signal vanishes, the amplitude reaches a maximum).

The echo amplitude reaches maxima when ξ = ±1, or

t− techo = ± R

ηcσδ(|h2| − |h1|)
(2.87)

and the maximum value reached is

Iecho ampl max = ±1
2
I0
eV1

E0

eV2

E0

h1ηcτ

Rσδ
exp(−1

2
) (2.88)

Note that the beam current signal after the first kick has harmonic number
h1, while the echo signal has harmonic number h2 − h1. Inspite of this, how-
ever, one can compare the maximum echo amplitude (2.88) with the maximum
decoherence signal (2.78) and obtain

Iecho ampl max

Iampl max
2

=
1
2
eV2

E0

h1ηcτ

R
(2.89)

Equation (2.89) is to be compared with Eq.(2.35).
The analogies between transverse and longitudinal echoes are as follows:

eV1

E0
↔ βθ

eV2

E0
↔ q

h1 ↔ 1 (dipole kick)
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h2 ↔ 2 (quadrupole kick)
ηc

R
↔ ω′J0

t− techo ↔ t− 2τ (2.90)

Definition of ξ in Eq.(2.86) is analogous to the ξ defined in Eq.(2.33).

Exercise 18 Reference [4] contains beautiful data, reproduced as
Fig.2.10, of longitudinal echo for an unbunched beam in the An-
tiproton Accumulator Ring at Fermilab. Compare the data with
what is expected from Eqs.(2.86), (2.87) and (2.89). The parame-
ters: h1 = 9, h2 = 10, R = 70 m, τ = 0.075 s, η = 0.023, E0 = 8696
MeV, ∆E = 3.2 MeV. The two rf kicks are of the same magnitude
V1 = V2 = 1.5 MV (to be checked).
Solution The following quantities can be checked: tpeak = 10τ =
0.75 s, ∆tpeak = 2R/ηcσδ = 0.06 s, τdecoh = R/h1ηcσδ = 3 ms,
Iecho ampl max/Iampl max

2 = 0.4. Diffusion effect is not serious in this
experiment as can be checked against Fig.2.11 later.
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Figure 2.10: A longitudinal echo experiment at the AA ring [4]. There is a high
order echo at t = 10τ = 0.75 s.

2.5 Longitudinal Echo with Diffusion

We next consider what happens to the longitudinal echo when there is diffusion.
The analysis follows similar steps as in the transverse case. After the first kick,
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the beam distribution is still given by ψ1 of Eq.(2.69). The distribution ψ2,
however, is not given by Eq.(2.71), but is to be solved with the diffusion equation

∂ψ2

∂t
− ηcδ

∂ψ2

∂z
=

∂

∂δ

[
D(δ)

∂ψ2

∂δ

]
(2.91)

In Eq.(2.91) we have assumed that the diffusion originates from noise in δ. A
noise in z is not going to have a significant effect on the echo.

Exercise 19 To get a feel for Eq.(2.91), show that

ψ =
1√

2π(δ2
0 + D0t)

e−δ
2/(δ0+D0t) (2.92)

is a solution when D(δ) = D0. Physically this is simply a diffusing
gaussian distribution with energy spread 〈δ2〉 = δ2

0 +D0t. Compare
with Exercise 14 for similarities and differences.

Changing variable from z to

v = z + ηctδ (2.93)

and Let ψ2 = ψ2(v, δ, t), Eq.(2.91) becomes

∂ψ2

∂t
=
(

∂

∂δ
+ ηct

∂

∂v

)[
D(δ)

(
∂ψ2

∂δ
+ ηct

∂ψ2

∂v

)]
(2.94)

When ηctδ 
 1, Eq.(2.94) becomes

∂ψ2

∂t
≈ (ηct)2D(δ)

∂2ψ2

∂v2
(2.95)

The solution to Eq.(2.95), with the initial condition ψ2(v = z, δ, t = 0) =
ψ1(z, δ), is

ψ2(v, δ, t) ≈ −ψ′
0(δ)

eV1

E0
exp

[
−1

3

(
ηch1

R

)2

D(δ)t3
]

sin
(
h1

v

R
+ φ1

)
(2.96)

Having obtained ψ2, the beam distributions before and after the second RF kick
are found to be the same as Eqs.(2.80) and (2.81) when there was no diffusion,
except that now they both have acquired an extra exponential diffusion factor

exp

[
−1

3

(
ηch1

R

)2

D(δ)τ3

]

After the second kick, the diffusion equation for ψ5 is

∂ψ5

∂t
=
(

∂

∂δ
+ ηc(t− τ)

∂

∂v1

)[
D(δ)

(
∂ψ5

∂δ
+ ηc(t− τ)

∂ψ5

∂v1

)]
(2.97)
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where we have changed variables to ψ5(v1, δ, t) with

v1 = z + ηc(t− τ)δ (2.98)

If ηc(t− τ)δ 
 1, we have

∂ψ5

∂t
≈ η2c2(t− τ)2D(δ)

∂2ψ5

∂v2
1

(2.99)

With the initial condition ψ5(v1 = z, δ, t = τ) = ψ4(z, δ), the solution to
Eq.(2.99) is

ψ5(z, δ, t) ≈ 1
2
eV1

E0

eV2

E0

h1ηcτ

R
ψ′

0(δ)

× exp
[
−1

3
η2c2

R2
D(δ)

(
h2

1τ
3 + (h2 − h1)2(t− τ)3

)]

× sin
[
(h2 − h1)

z

R
+ φ2 − φ1 +

ηc

R
δ((h2 − h1)t− h2τ)

]
(2.100)

where we have assumed h2 > h1 > 0 and have kept only the echo contribution.
The exponential factor in Eq.(2.100) can be replaced by its value near t = τ echo

with τ echo given by Eq.(2.86) because it is a slow function of t, i.e.

exp
[
−1

3
η2c2

R2
D(δ)

(
h2

1τ
3 + (h2 − h1)2(t− τ)3

)]

≈ exp
[
−1

3
η2c2

R2
D(δ)

h2
1h2

h2 − h1
τ3

]
(2.101)

Given ψ5, the echo signal is given by Eq.(2.83). If we assume that the initial
beam distribution is given by Eq.(2.73) and that the diffusion coefficient is a
constant D(δ) = D0, we find that Iecho is given by the same expression (2.85)
without diffusion, multiplied by the exponential factor (2.101). It then follows
that

Iecho ampl =
1
2
I0
eV1

E0

eV2

E0

h1ηcτ

Rσδ
ξe−ξ

2/2 exp
[
−1

3
η2c2

R2
D0

h2
1h2

h2 − h1
τ3

]
(2.102)

where ξ was defined with Eq.(2.86).
The maxima of echo amplitude occur at ξ = ±1, with [compare Eq.(2.88)]

Iecho ampl max = ±1
2
I0
eV1

E0

eV2

E0

h1ηcτ

Rσδ
exp(−1

2
) exp

[
−1

3
η2c2

R2
D0

h2
1h2

h2 − h1
τ3

]
(2.103)

and

τmax =
[
(h2 − h1)R2

η2c2D0h2
1h2

]1/3
(2.104)
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Figure 2.11: Measured maximum echo amplitude as a function of techo in the
AA ring. Diffusion is playing an important role.

Exercise 20 Figure 2.11 reproduces the data in Ref.[4] when the
maximum echo amplitude is measured as τ is varied. (a) Fit the
data to Eq.(2.103) to find the value of D0. (b) Show that Eq.(2.91)
implies the rms energy spread diffuses according to d

dtσ
2
δ = D0.

(c) Use the result found in (a) to calculate how much time does
it take the diffusion to contribute to an energy spread of 10−3. This
diffusion is weak, and yet it can be measured in a rather pronounced
manner by the echo experiment.
Solution D0 = 1.3 × 10−10 s−1.

Exercise 21 Consider a bunched beam. First kick the beam by an
RF phase shift. Then kick it again by an RF amplitude jump. Ana-
lyze the echo response of this beam. This problem is more similar to
the transverse case than to the longitudinal unbunched beam case.

Exercise 22 Find an expression for the echo amplitude if D(δ) is
not a constant, but is D(δ) = Dn(δ/σδ)n. Is there any indication
from Fig.2.11 that D(δ) is not a constant?
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3 Crystalline Beams

When completed, crystalline beam research should be much more extensive than
what will be presented below. Basically we could be re-doing the entire solid
state physics – melting point, phonons, specific heat, heat conduction, quantum
effects, spin effects – just replacing molecular force by Coulomb force. It also
has the added complication that charges can radiate.

For accelerators, we ask (a) how to cool the beam sufficiently for it to crys-
talize (i.e. how does the beam make the phase transition from a gaseous state
to a solid state), and (b) what conditions must the accelerator fulfill so as not to
destroy the crystal once it is formed. For possible applications, we ask (c) what
if we collide two crystalline beams, or (d) how does a crystalline beam radiate
in an undulater, in a solid crystal, or in another crystalline beam.

We will first find several types of beam crystals (crystal hunting) and examine
some of their properties. The procedure is not systematic and does not provide
an exhaustive hunt. (A systematic hunt would use group theory.) We will then
make a preliminary examination of question (b) above. What we will talk about
can at best be a very small fraction of the research this topic eventually can
offer.

When sufficiently cooled, a crystalline beam should exhibit significant quan-
tum mechanical effects. We will not discuss these effects here.

Crystalization has been observed in ion traps. There has been hint of ob-
servation at Novosibirsk for a real crystalline beam in an accelerator. Crys-
talline beams have been observed in computer simulations. There are current
efforts – not an easy task – to design storage rings to observe crystalline beams.
Hopefully, as beam cooling technology advances, an exciting research field of
crystalline beams will open up in front of us.

3.1 1-D Infinite Crystal

The simplest crystal is a 1-D infinite line of equally-spaced charged particles.
Assume there is an infinitely strong transverse focusing so that the crystal is
1-D in z-direction. Let the spacing between charges be a.

This is a trivial lattice arrangement. But one can still ask what are the small-
amplitude normal modes of this crystal. Let the longitudinal location of the nth
particle be designated as zn = na+ ∆n, where ∆n is a small displacement from
its lattice site. Let each particle have mass M and charge Q. The equation of
motion of the nth particle is

Mz̈n +
∞∑
k=1

Q2

(zn − zn+k)2
−

∞∑
k=1

Q2

(zn − zn−k)2
= 0, for all n (3.1)

where the second and third terms on the LHS are Coulomb forces due to charges
on each side of the nth particle. For small deviations from the lattice sites, we
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linearize Eq.(3.1) to obtain

M∆̈n +
∞∑
k=1

2Q2

k3a3
(2∆n − ∆n+k − ∆n−k) = 0 for all n (3.2)

The eigenmode solution to Eq.(3.2) is found to be

eigenvalue λ ≡ Mω2a3

2Q2
= 4

∞∑
k=1

1
k3

sin2

(
kθ

2

)

eigenvector ∆n = cos(nθ + φ) e−iωt (3.3)

where ω is the eigenmode frequency. This eigenmode is characterized by the
continous variables θ and φ. All modes with different φ values are degenerate,
i.e. they all have the same eigenvalue. The mode index θ gives the snapshot
phase in the mode pattern ∆n between adjacent lattice sites. The modes with
θ = 0 have all charges moving in unison and the mode frequency is ω0 = 0 as
one would expect because there is no restoring force. The modes with θ = π
have charges moving with alternating displacements; they have the largest mode
frequency given by7

ωπ =

√
7ζ(3)

Q2

Ma3
(3.4)

where ζ(p) is the Riemann zeta-function (which occurs often in crystal beam
calculations),

ζ(p) =
∞∑
k=1

1
kp

, ζ(3) ≈ 1.20205 (3.5)

Figure 3.1 shows eigenvalue λ as a function of θ. When θ = π, we have
λ = 7ζ(3)/2 ≈ 4.207.

3.2 1-D Finite Crystal

Now consider a beam with a finite number N of particles in a crystalline state.
In the z-direction, there is linear focusing with spring constant kz. The first
question we ask is what are the lattice locations {zn, n = 1, 2, · · ·, N}. This
maybe useful when considering cold ions in a trap. The total potential eneregy

7We have used the fact that

∞∑
k=1,odd

1

kp
=

∞∑
k=1

1

kp
−

∞∑
k=1,even

1

kp
=

∞∑
k=1

1

kp
−

∞∑
k=1

1

(2k)p

= (1 − 1

2p
)

∞∑
k=1

1

kp
= (1 − 1

2p
)ζ(p)

In particular, this implies
∑∞

k=1,odd
= 7

8
ζ(3).
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Figure 3.1: Eigenvalue λ versus eigenmode index θ for a 1-D infinite crystal.

of the beam is

V (z1, z2, · · ·, zN ) =
kz
2

N∑
n=1

z2
n +

N∑
n=1

∑
j>n

Q2

|zn − zj |
(3.6)

The lattice locations are determined by the condition that all particles in
the beam are in equilibrium, or

∂V

∂zn
= 0 for all n (3.7)

Equivalently one can say that V reaches a local minimum as a function of all
coordinates {zn, n = 1, 2, · · ·, N}.

Deviation from the equilibrium state is described by the equations of motion

Mz̈n +
∂V

∂zn
= 0 for all n (3.8)

Eq.(3.8) can be used to find small amplitude normal mode frequencies of the
crystalline beam.

N = 1 When there is only one ion in the beam, the lattice is trivial. We have
V = kzz

2
1/2 and Eq.(3.7) gives z1 = 0. This charge is located at the origin. It

oscillates in a potential with frequency ωz =
√

kz/M .

N = 2 When there are two charges, Coulomb repulsion between them sepa-
rate them apart, while the external focusing keeps them together to reach an
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equilibrium lattice arrangement. In this case,

V =
kz
2

(z2
1 + z2

2) +
Q2

|z1 − z2|
(3.9)

and Eq.(3.7) gives two equations whose solution is

z1 = −z2 =
(

Q2

4kz

)1/3

(3.10)

One notes that the lattice size is characterized by the quantity

(Q2/kz)1/3 (3.11)

There are two normal modes, a + mode in which both particles oscillate in
phase, and a − mode in which the two particles oscillate out of phase. The
small amplitude mode frequencies are found to be

ωz+ =

√
kz
M

, ωz− =

√
3kz
M

(3.12)

N = 3 The lattice locations are

z1 = −z3 =
(

5Q2

4kz

)1/3

, z2 = 0 (3.13)

The small amplitude normal mode frequencies are determined by

Det



−Mω2

z

kz
+ 14

5 − 8
5 − 1

5

− 8
5 −Mω2

z

kz
+ 21

5 − 8
5

− 1
5 − 8

5 −Mω2
z

kz
+ 14

5


 = 0 (3.14)

=⇒

ωz =

√
kz
M

,

√
3kz
M

,

√
29kz
5M

(3.15)

The three normal modes respectively corresponds to (1) all three particles move
in phase with the same amplitue, (2) particle 1 and 3 move out of phase, while
particle 2 is stationary, and (3) particles 1 and 3 move in phase with same
amplitude, while particle 2 moves opposite to them with twice the amplitude.

N = 4 We find the lattice sites numerically,

z1 = −z4 ≈ 1.4368
(
Q2

kz

)1/3

z2 = −z3 ≈ 0.4544
(
Q2

kz

)1/3

(3.16)
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N = 5

z1 = −z5 ≈ 1.7429
(
Q2

kz

)1/3

z2 = −z4 ≈ 0.8221
(
Q2

kz

)1/3

z3 = 0 (3.17)

These lattices are shown in Fig.3.2 for N = 1 to 5.

Figure 3.2: 1-D lattices for N = 1 to 5.

Exercise 1 What are the mode frequencies for the cases of N = 4
and N = 5 discussed above?
Solution The mode frequency ω is determined by det[(−Mω2

ky
+1)I+

2Q2

kz
A] = 0, where matrix A has the elements

Anm =

{∑
j �=n

1
|zj−zn|3 if m = n

− 1
|zm−zn|3 if m 	= n

(3.18)

The fact that A is symmetric assures real eigenvalues.

Exercise 2 Show that the ratio of the two terms in the potential
energy Eq.(3.6) is 1:2.
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Solution

1
2

N∑
n=1

kzz
2
n =

1
2

N∑
n=1

zn(kzzn) =
1
2

N∑
n=1

zn(
∑
j �=n

Q2(zn − zj)
|zn − zj |3

) =
1
2

N∑
n �=j

zn
Q2(zn − zj)
|zn − zj |3

By switching j ↔ n,

1
2

N∑
n=1

kzz
2
n = −1

2

N∑
n �=j

zj
Q2(zn − zj)
|zn − zj |3

By adding the above and dividing by 2,

1
2

N∑
n=1

kzz
2
n =

1
4

N∑
n �=j

Q2(zn − zj)2

|zn − zj |3
=

1
4

N∑
n �=j

Q2

|zn − zj |
=

1
2

N∑
n<j

Q2

|zn − zj |

Q.E.D.8

Exercise 3 Show that as N → ∞, the 1-D finite lattice length ∝
(N2Q2/kz)1/3. Fitting to the N = 5 case, we find that the full
length of the lattice is

L ≈ 1.2
(
N2Q2

kz

)1/3

(3.19)

3.3 Planar Crystal

In this case, we consider an infinitely long crystal without z-focusing, but con-
fined transversely by a focusing in the y-direction with spring constant ky. Fo-
cusing in the x-direction is assumed to be infinite; the crystal is in the y-z
plane.

An important difference from the 1-D lattices is that now some lattice con-
figurations can be unstable. When the linear charge density (characterized by a,
the z-spacing between adjacent charges) is low, the transverse focusing is strong
enough to overcome the Coulomb repulsion and to confine the crystal to a 1-D
configuration, just like the 1-D infinite crystal studied earlier. As a becomes
shorter, the 1-D configuration can become unstable. To illustrate this, consider
a crystal with lattice sites zn = na but undergoing an oscillation with a pattern
of a zig-zag in which all particles at sites with (n = even) move in one direction
in y, while all particles with (n = odd) move in the opposite direction. The
unperturbed lattice is sketched in Fig.3.3(a).

Consider the y-motion of the charge located at n = 0. The equation of
motion is

Mÿ + y


ky − 4Q2

∞∑
k=1,odd

1
(4y2 + k2a2)3/2


 = 0 (3.20)

8Thank to Jeff Holmes for this nice proof.
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Figure 3.3: Various planar lattice configurations.

For small y, this becomes

Mÿ + y

[
ky −

7Q2

2a3
ζ(3)

]
= 0 (3.21)

The y-motion of the crystal would be unstable if

ky <
7ζ(3)

2
Q2

a3
or a <

(
7ζ(3)

2
Q2

ky

)1/3

(3.22)

i.e., when the focusing is overcome by the Coulomb repulsion.
One may ask if the crystal is necessarily stable when condition (3.22) is not

satisfied. The answer is we have not proved it. What we have proved is that
the crystal is stable against one type of perturbation – the type with a zig-zag
pattern. For the crystal to be stable, it must be stable against all possible
perturbations, and we have not done that. However, the zig-zag pattern (we
might call this the transverse π-mode) turns out to be the least stable pattern,
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so Eq.(3.22) is the necessary and sufficient condition for the 1-D lattice to be
stable.

What happens to the unstable crystal when Eq.(3.22) is satisfied? The
answer is that it can not stay 1-D. The crystal has a zig-zag pattern. Designate
this pattern by two layers of lattice sites

(y, z) =
{

(b, 2na)
(−b, (2n + 1)a) , n = −∞ to ∞ (3.23)

where 2b is the y-spacing between the two sets of sites, and is yet to be deter-
mined. This zig-zag pattern is shown as Fig.3.3(b).

To determine b, we apply the condition that the lattice is in equilibrium. The
forces have been computed in Eq.(3.20). The equilibrium condition is found to
be

kya
3

4Q2
=

∞∑
k=1,odd

1[
4( ba )2 + k2

]3/2 (3.24)

We need to solve it for b/a. There is a solution if and only if condition (3.22) is
satisfied. The solid curve in Fig.3.4 shows b/a as a function of kya

3/Q2.
Having a solution for b/a, however, does not guarantee the stability of the

zig-zag crystal. When a decreases further, the zig-zag crystal gives way to a
configuration with three lines of charges. Let the lattice sites be indexed as

(y, z) =




(b, (4n + 1)a)
(0, 2na)
(−b, (4n− 1)a)

, n = −∞ to ∞ (3.25)

54



This lattice is sketched in Fig.3.3(c). The equilibrium coniditon is found to be

4kya3

5Q2
=

∞∑
k=1,odd

1[
4( ba )2 + k2

]3/2 (3.26)

The dashed curve in Fig.3.4 shows the solution of b/a for the 3-layered planar
crystal.

We conclude that when (kya3/Q2) > (7ζ(3)/2) ≈ 4.207, the planar crystal
is 1-D. When (7ζ(3)/2) > (kya3/Q2) > (35ζ(3)/32), the crystal has the zig-zag
configuration. When (35ζ(3)/32) > (kya3/Q2), a 3-layered planar crystal takes
over. As a decreases more, of course, the crystal becomes increasingly complex,
etc.

Exercise 4 (a) Can you think of possible 2-layered arrangements
other than the zig-zag? For example, how about the arrangement

(y, z) =
{

(b, na)
(−b, na) , n = −∞ to ∞ (3.27)

as shown in Fig.3.3(d)? What is the value for b/a? Under what
conditions is this crystal stable? (b) Can you think of possible 3-
layered arrangements other than that considered in Fig.3.3(c)?
Solution (a) Unstable against sliding the top row relative to the
bottom row of particles.

3.4 3-D Infinite Cubic Crystal

Before we specialize to cubic crystal, let’s consider a 3-D crystal in general.9

Let the lattice site of the nth particle be )*n. Let the position of the nth particle
be slightly perturbed from the lattice site with

)rn = )*n + )∆n (3.28)

The Coulomb force seen by the nth particle is

)F = Q2
∑
j �=n

)rn − )rj
|)rn − )rj |3

(3.29)

The fact that )*n are lattice sites requires that the Coulomb force in equilibrium
must vanish, i.e., ∑

j �=n

)*n − )*j

|)*n − )*j |3
= )0 for all n (3.30)

9Strictly speaking, a 3-D infinite crystal beam cannot exist. Coulomb force from all other
charges makes lattice sites intrinsically unstable – the summation (3.29) diverges. But here
we study it as a curiosity.
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For small deviations )∆n, the linearized equation of motion (assumed to be
nonrelativistic) for the nth particle is

M )̈∆n = Q2
∑
j �=n

)*n + )∆n − )*j − )∆j

|)*n + )∆n − )*j − )∆j |3
(3.31)

≈ Q2
∑
j �=n

1

|)*n − )*j |3

[
)∆n − )∆j − 3()*n − )*j)

()*n − )*j) · ()∆n − )∆j)

|)*n − )*j |2

]

In a cubic crystal with lattice dimension a, we have )*i = )ia, and Eq.(3.31)
becomes

M )̈∆�n =
Q2

a3

∑
�k �=�0

1

|)k|3

[
)∆�n − )∆�n−�k − 3)k

)k · ()∆�n − )∆�n−�k)

|)k|2

]
(3.32)

=
Q2

2a3

∑
�k �=�0

1

|)k|3

[
2)∆�n − )∆�n−�k − )∆�n+�k − 3)k

)k · (2)∆�n − )∆�n−�k − )∆�n+�k)

|)k|2

]

An eigenmode has a plane wave pattern

)∆�n = )θ cos()n · )θ + φ)e−iωt (3.33)

where )θ and φ serve as mode indices. The mode frequency ω is determined by

Mω2a3

Q2
=
∑
�k �=�0

1

|)k|3
[1 − cos()k · )θ)]

(
3
()k · )θ)2

|)k|2|)θ|2
− 1

)
(3.34)

For example, when )θ = θẑ, or θŷ, or θx̂, we have

λ(θ) ≡ Mω2a3

2Q2
=

∞∑
kz=1

(1 − cos kzθ)F (kz)

F (kz) =
∞∑

kx=−∞

∞∑
ky=−∞

g(kx, ky)

g(kx, ky) =
2k2
z − k2

x − k2
y

(k2
x + k2

y + k2
z)5/2

(3.35)

The double summation in F (kz) is rather subtle because of the cancelation
among terms, and must be handled carefully.10 Figure 3.5 shows λ(θ). The
cubic lattice is stable (provided it can be formed in the first place – see the
previous footnote).

10We first rewrite Eq.(3.35) as

F (kz) =

∞∑
kx=0

∞∑
ky=0

[
g(kx, ky) + g(kx + 1, ky) + g(kx, ky + 1) + g(kx + 1, ky + 1)

]
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Figure 3.5: Eigenvalue λ versus eigenmode index )θ for a cubic crystal, when
)θ = θx̂, or θŷ, or θẑ.

Exercise 5 Verify that Eqs.(3.33-3.34) describe eigenmodes for the

=

∞∑
kx=0

∞∑
ky=0

[
g(kx, ky) + g(kx + 1, ky) + g(kx, ky + 1) + g(kx + 1, ky + 1)

−4

∫ kx+1

kx

dαx

∫ ky+1

ky

dαyg(αx, αy)

]
(3.36)

where in the second step we have added artificially a term which sums up to zero to help the
convergence,

−4

∞∑
kx=0

∞∑
ky=0

∫ kx+1

kx

dαx

∫ ky+1

ky

dαyg(αx, αy)

= −4

∫ ∞

0

dαx

∫ ∞

0

dαy

2k2
z − α2

x − α2
y

(α2
x + α2

y + k2
z)5/2

= 0 (3.37)

The integral in Eq.(3.36) can be performed and we have a summation which converges much
faster,

F (kz) =

∞∑
kx=0

∞∑
ky=0

[
g(kx, ky) + g(kx + 1, ky) + g(kx, ky + 1) + g(kx + 1, ky + 1)

−4{[h(kx, ky) − h(kx + 1, ky)] − [h(kx, ky + 1) − h(kx + 1, ky + 1)]}
]

h(kx, ky) =
kxky(k2

x + k2
y + 2k2

z)

(k2
x + k2

z)(k2
y + k2

z)(k2
x + k2

y + k2
z)1/2

(3.38)

It turns out that F (kz) decreases rapidly with increasing kz : F (1) = 0.3274645, F (2) =
5.5496 × 10−4, F (3) = 1.03 × 10−6, and all higher values of kz practically vanish.
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equation of motion (3.32).

Exercise 6 Following similar approach of the text, find the eigen-
mode pattern and eigenfrequencies for the 2-D infinite square crystal
with lattice sites (x, y) = (nxa, nya), nx,y = ±integers.
Solution

Mω2a3

2Q2
=

∞∑
kz=1

(1 − cos kzθ)
∞∑

ky=−∞

2k2
z − k2

y

(k2
y + k2

z)5/2
(3.39)

Exercise 7 We concluded that the cubic lattice is stable after ana-
lyzing the case )θ = θẑ. Does this conclusion hold when we consider
an arbitrary mode index )θ?

Exercise 8 Repeat the analysis for a rectangular crystal with )*n =
(nxb, nyb, nza), where a and b are the longitudinal and transverse
lattice periods. Is this crystal stable?

3.5 Planar Crystal With z Focusing

We next add back z-focusing to the planar crystal discussed earlier. The beam
now has a finite number of N particles. The crystal is still in the y-z plane. Let
ky and kz be the spring constants.

Consider the case with N = 2. At equilibrium, they are located at (y, z) =
(y1, z1) and (−y1,−z1) respectively, where

kyy1 =
Q2y1

4(y2
1 + z2

1)3/2
, kzz1 =

Q2z1

4(y2
1 + z2

1)3/2
(3.40)

There are two possible solutions,

(y1, z1) =




(
(
Q2

4ky

)1/3

, 0)

(0,
(
Q2

4kz

)1/3

)
(3.41)

We next analyze the stability around each of the possible solutions. Take
the first case first. Let the two ions have displacements

(y1 + ∆y1,∆z1) and (−y1 + ∆y2,∆z2) (3.42)

The y-motion of ion 1 is described by

M∆̈y1 + ky(y1 + ∆y1) −
Q2(2y1 + ∆y1 − ∆y2)

[(2y1 + ∆y1 − ∆y2)2 + (∆z1 − ∆z2)2]3/2
= 0 (3.43)
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By linearizing with respect to ∆-quantities, and extend the analysis to the y-
and z-motions of both ions, we find

M∆̈y1 + ky(2∆y1 − ∆y2) = 0

M∆̈y2 + ky(2∆y2 − ∆y1) = 0

M∆̈z1 + (kz −
ky
2

)∆z1 +
ky
2

∆z2 = 0

M∆̈z2 + (kz −
ky
2

)∆z2 +
ky
2

∆z1 = 0 (3.44)

Note that the y- and z-motions are decoupled from each other. The y-motion
has two eigenmodes,

ω =
{√

ky/M, 0 mode√
3ky/M, π mode

(3.45)

while for the z-motion,

ω =
{√

kz/M, 0 mode√
(kz − ky)/M, π mode

(3.46)

The z-motion is unstable if kz < ky. These four modes are shown in Fig.3.6.

Figure 3.6: There are 8 eigenmodes for a 2-particle planar crystal with z-
focusing. Four of them with the two particles on the y-axis are shown here.
(a) y-motion, 0 mode. (b) y-motion, π-mode. (c) z-motion, 0 mode. (d) z-
motion, π-mode. The sheering mode (d) is unstable if kz < ky. The remaining
four modes are with the two particles on the z-axis.

For the second set of equilibrium coordinates in (3.41), we find its y-motion
is unstable if ky < kz. We thus conclude that when ky > kz, the crystal is
oriented along the z-axis. When ky > kz, the crystal is oriented along the y-
axis. Ions tend to stay away from the strong focusing dimension in a crystalline
beam.
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There is also a degenerate case when ky = kz. The crystal can be oriented
along an arbitrary direction in the y-z plane, but it is barely stable. Any shearing
motion would not be focussed.

3.6 Helical Crystal

Consider the case without longitudinal focusing and the crystal is again infinitely
long in z-direction. Let there be transverse focusing with spring constants kx
and ky. We learned from Eq.(3.22) that if the longitudinal average particle
spacing a is sufficiently large, the crystal is 1-D. As the line density increases
(i.e. as a decreases), the 1-D crystal becomes unstable and more complicated
crystal structures result.

Figure 3.7 shows one simulation result of possible crystal structures when
kx = ky = k and no longitudinal focusing [3]. The structure depends on the
dimensionless linear particle density λ = 1

a (3Q2/2k)1/3. As λ increases, one sees
1-D, zig-zag, and helical, and multi-layered helical crystals, successively. If a
longitudinal focusing is introduced, one may contemplate a buckey ball crystal,
and crystals with multiple 3-D shells.

λ = 0.6

John P. Schiffer

λ = 1.4 λ = 2.0

λ = 3.0

λ = 18 λ = 27 λ = 40

λ = 60

λ = 4.0 λ = 6.0 λ = 12.0

λ = 1.0λ = 0.8

6–97
8322A14

Figure 3.7: Simulation results of lattice configurations as the linear particle
density λ is varied. For comparison, condition (3.22) for the instability of a 1-D
crystal gives λ > (3/7ζ(3))1/3, which is consistent with the results here.

3.7 Moving Crystal

On may pursue crystal hunting some more, perhaps using group theory to be
systematic. But below we will study the topic of crystal beam motion in an
accelerator. Let us consider a crystal moving in the z-direction with speed βc.
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To illustrate, we take a planar crystal which has a y-focusing spring constant
(in the laboratory frame) ky, while kx = ∞ and kz = 0.

First let us write down the electric field of a moving charge:

)E()r) =
γQ)r

(x2 + y2 + γ2z2)3/2
(3.47)

which can also be written as

Ex = −∂Φ
∂x

, Ey = −∂Φ
∂y

, Ez = − 1
γ2

∂Φ
∂z

Φ =
γQ

(x2 + y2 + γ2z2)1/2
(3.48)

Another charge moving with the same velocity along z-direction sees a Lorentz
force

)F = − Q

γ2
∇Φ (3.49)

where we have used the fact that the magnetic and electric contributions cancel
each other to introduce an extra factor of 1/γ2 to the transverse Lorentz force.

For sufficiently large a (a is in the laboratory frame), the equilibrium crystal
is 1-D. To see how large a must be in order for this moving 1-D crystal to be
stable, we follow what we did for the stationary planar crystal, and consider the
perturbation of a zig-zag pattern. The y-motion obeys [Cf. Eq.(3.20)]

Mγc2y′′ + y


ky − 4Q2

γ

∞∑
k=1,odd

1
(4y2 + γ2k2a2)3/2


 = 0 (3.50)

It follows that a 1-D crystal is stable only if

a >

(
7ζ(3)

2
Q2

γ4ky

)1/3

(3.51)

Similarly, we find the crystal has a zig-zag pattern if
(

7ζ(3)
2

Q2

γ4ky

)1/3

> a >

(
35ζ(3)

32
Q2

γ4ky

)1/3

(3.52)

Exercise 9 Show Eqs.(3.51-3.52) by Lorentz transformation from
the rest frame of the crystalline beam.
Solution In the beam rest frame, particle spacing is γa and spring
constant is γky.

Equations of Motion Equation (3.49) allows one to write down the equations
of motion for one of the particles in a circular accelerator,

x′′ + Kxx +
∂V

∂x
=

δ

ρ
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y′′ + Kyy +
∂V

∂y
= 0

z′ = −x

ρ
+

δ

γ2

δ′ = −∂V

∂z
(3.53)

where

V =
Q2

Mc2γ2

∑
k

1
[(x− xk)2 + (y − yk)2 + γ2(z − zk)2]1/2

(3.54)

with summation over all lattice sites k other than the site for the particle under
consideration. Quantities Kx,Ky and ρ are periodic functions of s with period
C = 2πR. Quantities Kx,y are related to the spring constants kx,y by Kx,y =
kx,y/Mγc2. We have considered an unbunched beam in an accelerator without
rf focusing. We have also ignored the curvature of the crystal beam conforming
to the circular closed orbit of the accelerator.

The Hamiltonian for the above equations of motion is

H =
1
2
(p2
x + p2

y) +
1

2γ2
δ2 − xδ

ρ
+

1
2
(Kxx

2 + Kyy
2) + V (3.55)

In a weak focusing synchrotron, we have

Kx =
1 − n

R2
, Ky =

n

R2
, ρ = R (3.56)

In a smooth approximation for an alternating gradient synchrotron, we may
take

Kx =
(νx
R

)2

, Ky =
(νy
R

)2

, ρ = R (3.57)

Lattice Sites Let the coordinates of the nth particle be designated as

xn = Xn + αn, yn = Yn + βn, zn = Zn + γn, δn = ∆n + σn (3.58)

where Xn, Yn, Zn,∆n are the lattice site coordinates, and αn, βn, γn, σn are small
deviations from the sites. Note that each lattice site is assigned not only three
space coordinates Xn, Yn, Zn, but also an energy deviation ∆n. We expand V
to quadratic terms in αn, βn, γn to obtain

V ≈ Q2

Mc2γ2

∑
k �=n

1
Rnk

×
{

1 − (αn−αk)(Xn−Xk) + (βn−βk)(Yn−Yk) + γ2(γn−γk)(Zn−Zk)
R2
nk

− (αn−αk)2 + (βn−βk)2 + γ2(γn−γk)2

2R2
nk
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+
3
2

[
(αn−αk)(Xn−Xk)+(βn−βk)(Yn−Yk)+γ2(γn−γk)(Zn−Zk)

R2
nk

]2}

Rnk ≡ [(Xn −Xk)2 + (Yn − Yk)2 + γ2(Zn − Zk)2]1/2 (3.59)

Equation (3.53) then yields the equations for the lattice sites,

X ′′
n + KxXn − Q2

Mc2γ2

∑
k �=n

Xn −Xk

R3
nk

=
∆n

ρ

Y ′′
n + KyYn − Q2

Mc2γ2

∑
k �=n

Yn − Yk
R3
nk

= 0

Z ′
n = −Xn

ρ
+

∆n

γ2

∆′
n =

Q2

Mc2

∑
k �=n

Zn − Zk
R3
nk

(3.60)

In order for the beam to crystalize, we must require the lattice site coordinates
to be periodic with period C.

In the smooth approximation, Kx,Ky, ρ as well as the lattice structure are
independent of s. The crystal rotates around the accelerator rigidly. All primed
terms on the LHS of Eq.(3.60) vanish. One must have

∆n =
γ2

ρ
Xn (3.61)

Equation (3.61) means that a particle with Xn 	= 0 must be associated with a
∆n in such a way that the extra path length due to Xn is exactly compensated
by the extra velocity of the particle due to ∆n. Equation (3.60) then becomes

(Kx −
γ2

ρ2
)Xn − Q2

Mc2γ2

∑
k �=n

Xn −Xk

R3
nk

= 0

KyYn − Q2

Mc2γ2

∑
k �=n

Yn − Yk
R3
nk

= 0

∑
k �=n

Zn − Zk
R3
nk

= 0 (3.62)

It is conceivable that a “liquid crystal” beam can be defined when a layer
of lattice slips with respect to other layers by exactly an integer multiple of
the unit dimension of the lattice when the beam completes one revolution. The
lattice is re-formed after each revolution. This possibility is not considered here.

1−D Lattice
A 1-D lattice trivially satisfies Eq.(3.62),

Xn = Yn = 0, ∆n = 0, Zn = na (3.63)
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Zig−zag Lattice in the y−z Plane
This lattice has Xn = 0 and ∆n = 0. Its (Y,Z) site coordinates are given

by Eq.(3.23), with [Cf. Eq.(3.24)]

KyMc2γ2a3

4Q2
=

∞∑
k=1,odd

1[
4
(
b
a

)2
+ γ2k2

]3/2 (3.64)

Eq.(3.64) has solution only if [Cf. Eqs.(3.22) and (3.51)]

a <

(
7
2
ζ(3)

Q2

KyMγ5c2

)1/3

(3.65)

Zig−zag Lattice in the x−z Plane
This zig-zag crystal is more complicated than the one in the y-z plane be-

cause x-deviations necessarily involve energy deviations. Let the crystal sites
have Yn = 0 and

(Xn, Zn,∆n) =
{

(b, 2na, γ2b/R)
(−b, (2n + 1)a,−γ2b/R)

(3.66)

Substituting into Eq.(3.62) yields the condition

Mc2γ2a3

4Q2

(
Kx −

γ2

ρ2

)
=

∞∑
k=1,odd

1[
4
(
b
a

)2
+ γ2k2

]3/2 (3.67)

Eq.(3.67) has solution only if

Kx >
γ2

ρ2
(3.68)

and

a <


7

2
ζ(3)

Q2(
Kx − γ2

ρ2

)
Mγ5c2




1/3

, or kx <
γ2

ρ2
+

7
2
ζ(3)

Q2

Mc2a3γ5
(3.69)

In the smooth approximation (3.57), Eq.(3.68) means

νx > γ (3.70)

We thus conclude that the accelerator must be operated below transition in
order for the crystalline beam to form. Physically this is so that the horizontal
focusing force must be greater than the centrifugal force, i.e.

KxX >
∆
ρ

(3.71)

When the particle line density is small enough that both Eqs.(3.65) and
(3.69) are not satisfied, the crystal is 1-D. Take for example the case of a proton
beam, and ρ = 10 m, γ = 5, νx = 10, Kx = ν2

x/ρ
2 = 1 m−2, Eq.(3.69) says that

the formation of 1-D crystal requires a > 1.4 µm, or the number of protons in
the accelerator is less than 2πρ/(1.4 µm) = 4.5× 107. To store more protons in
a 1-D crystal, one way is to increase γ.
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3.8 Perturbation from Lattice Sites

Assuming the lattice sites have been established, we next need to make sure the
crystal is stable against small deviations like Eq.(3.58). Linearizing Eq.(3.53)
around the lattice sites, the equations of motion become

α′′
n + Kxαn − Q2

Mc2γ2

∑
k �=n

{[
1

R3
nk

− 3(Xn −Xk)2

R5
nk

]
(αn−αk)

−3(Xn−Xk)(Yn−Yk)
R5
nk

(βn−βk) −
3γ2(Xn−Xk)(Zn−Zk)

R5
nk

(γn−γk)

}
=

σn
ρ

β′′
n + Kyβn − Q2

Mc2γ2

∑
k �=n

{[
1

R3
nk

− 3(Yn−Yk)2

R5
nk

]
(βn−βk)

−3(Xn−Xk)(Yn−Yk)
R5
nk

(αn−αk) −
3γ2(Yn−Yk)(Zn−Zk)

R5
nk

(γn−γk)

}
= 0

γ′
n = −αn

ρ
+

σn
γ2

σ′
n =

Q2

Mc2

∑
k �=n

{[
1

R3
nk

− 3γ2(Zn−Zk)2

R5
nk

]
(γn−γk)

−3(Xn−Xk)(Zn−Zk)
R5
nk

(αn−αk) −
3(Yn−Yk)(Zn−Zk)

R5
nk

(βn−βk)

}
(3.72)

Note that, in general, horizontal, vertical and longitudinal motions are coupled.
An oscillation in one dimension excites oscillations in the other dimensions.

1-D Lattice For the 1-D lattice (3.63), the y-motion is decoupled from the other
two dimensions, with

β′′
n + Kyβn − Q2

Mc2γ2

∑
k �=n

1
R3
nk

(βn − βk) = 0 (3.73)

where Rnk = aγ|n− k|, while the x- and z-motions are coupled,

α′′
n + Kxαn − Q2

Mc2γ2

∑
k �=n

1
R3
nk

(αn − αk) =
σn
ρ

γ′
n = −αn

ρ
+

σn
γ2

σ′
n = − 2Q2

Mc2

∑
k �=n

1
R3
nk

(γn − γk) (3.74)

Eigenmodes of y-motion are, according to Eq.(3.73), described by

βn = cos(nθ + φ)e−iωs/c, αn = 0, γn = 0, σn = 0 (3.75)
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where θ, φ are mode indices, and ω is the eigenmode frequency, [Cf. Eq.(3.3)](ω
c

)2

= Ky − ξ (3.76)

where

ξ ≡ 4Q2

Mc2a3γ5

∞∑
k=1

1
k3

sin2

(
kθ

2

)
(3.77)

The Coulomb force is defocusing for y-motion as seen by the fact that it shifts
the mode frequencies down-ward as ξ > 0.

In order for the 1-D crystal to be stable against small y-perturbations, all
modes in Eq.(3.76) must be stable. This means Ky must be larger than ξ for
all possible values of θ. This in turn requires exactly the opposite of condition
(3.65). When (3.65) is satisfied, 1-D crystal is unstable, and the next stable
crystal is of course the zig-zag crystal.

Eigenmodes in the x-z motion are described by

αn = cos(nθ + φ)e−iωs/c

γn = iG cos(nθ + φ)e−iωs/c

σn = S cos(nθ + φ)e−iωs/c (3.78)

Substituting Eq.(3.78) into Eq.(3.74) gives

Kx −
(ω
c

)2

− ξ =
S

ρ

G
ω

c
= −1

ρ
+

S

γ2

S
ω

c
= 2Gγ2ξ (3.79)

We need to solve Eq.(3.79) for S,G, ω. The solution is

S =
2γ2ξ 1

ρ

2ξ − ω2

c2

G =
ω
c

1
ρ

2ξ − ω2

c2

(3.80)

and the eigenfrequency ω satisfies(
ω2

c2
−Kx + ξ

)(
ω2

c2
− 2ξ

)
=

2γ2ξ

ρ2

=⇒
(ω
c

)2

=
Kx + ξ

2
± 1

2

√
(Kx − 3ξ)2 +

8ξγ2

ρ2
(3.81)

In order for the x-z motion to be stable, it is necessary that both solutions of
(ω/c)2 in Eq.(3.81) are real and positive. This requires

Kx >
γ2

ρ2
+ ξ (3.82)
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Since Eq.(3.82) must be satisfied for all θ, φ, the 1-D crystal is stable against
x-z motion only if

Kx >
γ2

ρ2
+

7
2
ζ(3)

Q2

Mc2a3γ5
(3.83)

which we recognize is just the opposite of Eq.(3.69), as it should.
Equation (3.80) indicates that the x-, z- and δ-amplitudes have relative

magnitudes of

Ax : Az : Aδ = ρ(2ξ − ω2

c2
) :

ω

c
: 2γ2ξ (3.84)

This relative amplitudes would be what one observes in an accelerator when an
1-D crystalline beam is executing an x-z mode oscillation.

Exercise 10 (a) Follow the text to derive the mode frequencies (3.76)
for y-motion and (3.81) for x-z motion. (b) Show Eq.(3.84). What
happens to the oscillation amplitudes when kx is barely above the
stability condition (3.83)? What happens when kx is much greater
than the threshold value?

Zig-zag Lattice One may proceed to analyze the stability of the zig-zag lattices
and the lattice in general in a similar fashion.
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4 Fast Ion Instability

The vacuum chamber of an accelerator is far from under vacuum. In addition
to the applied electromagnetic fields from RF or magnets, a vacuum chamber
is typically filled with all sorts of contaminants:

residual gases (H2, H2O, CO, etc.)
stray electrons (photodesorption, multipactoring, dark currents, etc.)
dust particles
photons (synchrotron radiation, thermal photons, etc.)
microwaves (wakefields, etc.)
ions (trapped, fast ion instability, etc.)

There are various ion effects in electron storage rings and synchrotrons.
Most of these are “conventional” effects which occur when ions are trapped by
a circulating electron beam for multiple revolutions. To avoid the conventional
ion trapping, a gap is introduced in the electron beam by missing bunches in a
train of bunches as shown in Fig.4.1. Another way to avoid trapped ions is to
introduce clearing electrodes. A conventional ion instability is likely to occur in
Fig.4.1(a) and is avoided in Fig.4.1(b). However, the beam in Fig.4.1(b) is not
free of instability. It can still suffer from the fast ion instability, which is the
topic of this chapter.

We are mainly interested in electron accelerators here because ions are pos-
itively charged. A positively charged beam typically will drive the ions to the
vacuum chamber walls before they can do significant damage to the beam.

In the fast ion instability, individual ions last only for a single passage of the
electron beam and are not trapped for multiple turns. The lifetime of individual
ions is therefore very short. Methods to avoid the conventional ion effects, such
as a gap in the bunch train, are not applicable. In a fast ion instability, although
the ions do not stay long in the accelerator, they still can cause an instability in
the electron beam. The growth time of the electron beam is much longer than
the lifetime of the ions.11 In Fig.4.1(a), the electron beam and the trapped
ions form an eigen-system. The motions of both the beam and the ions grow
exponentially with the same time constant. In Fig.4.1(b), the beam and the
ions do not form an eigen-system. The growth of the electron beam, as we will
see, is in fact not exponential.

Since ions are not trapped, the problem is conceptually the same whether
the accelerator is a storage ring or a very long linac. For conceptual convenience,
let us consider an electron beam traveling down a very long linac. Let the beam
have a total of N electrons, a transverse distribution of a uniform disc of radius
a, and a uniform longitudinal distribution of length �. Let the linac vacuum be
such that the residual gas has a volume density n. The gas might be CO. The
fast ion instability applies to synchrotrons or storage rings in which the electron
beam consists of a long train of bunches with a long gap. (The gap is long
enough so that all ions produced in one passage of the beam train are cleared
before the bunch train comes back again in the next revolution.) Examples of

11This is in spite of the fact that we call this effect the fast ion instability.
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Figure 4.1: Comparison between (a) the conventional ion trapping and (b) the
fast ion instability.

such accelerators include the factory-colliders and third generation synchrotron
radiation storage rings.

4.1 Ionization

Gas molecules are ionized by the passing electron beam. Let Σ be the ionization
cross-section. Each electron ionizes along its path Σn ions per unit length. By
the time the tail of the beam passes, the number of ions per unit length is

λ = ΣnN (4.1)

We take Σ = 2 Mbarns = 2 × 10−18 cm2.12

We want to relate n to the vacuum pressure P . This is done by

PNA = nRT, where



NA = Avogadro number = 6.023 × 1023

R = 82.056 cm3 atm ◦K−1

T = room temperature = 300◦K

=⇒ P [Torr] = 3.1 × 10−17 n[cm−3] (4.2)

where we have used 1 atm = 760 Torr. Using Eq.(4.2), Eq.(4.1) becomes

λ =
ΣNPNA
RT

≈ 6.4 m−1P [Torr]N (4.3)

12This is a very large cross-section. The barn unit was introduced by Fermi to denote large
cross-sections, “as big as a barn”, but that holds for nuclear interactions. Nowadays exploring
rare elementary particle events, we become used to units like nanobarns or picobarns. This
is because quarks are much smaller than nuclei. Here we use megabarn unit. This is because
we are dealing with atomic interactions here, and atoms are much bigger than nuclei.
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In a storage ring, we might have P = 10−9 Torr and N = 1011, then we have an
ion line density at the tail of the beam of λ = 6.4 ions per cm, or one ion per
1.5 mm. If the electron beam consists of a train of bunches, the ion density at
the end of the train will be correspondingly larger. Also, in a linac, we might
have P = 10−6 Torr and N = 1010, then we would have 100 times denser ions
for a single bunch beam.

We might compare this value of λ with the line density of the residual gas
as seen by the beam, which is given by λgas = πa2n. In this case we have
n = 3.2× 107 cm−3, and if a = 1 mm, we obtain λgas = 1.0× 106 molecules per
cm. About 10−5 of the molecules are ionized by the passing beam.

Figure 4.2 illustrates the situation. As the beam travels down the linac, a
fraction of the CO molecules get ionized. The CO+ ions accumulate linearly
as the electron beam passes by, until it reaches the level of Eq.(4.1) when the
beam tail passes. Figure 4.2 shows of course just the ionization process. The
interaction between ions and the beam is not illustrated, and is the subject of
this chapter.

Figure 4.2: Ionization process.

Statistical excitation of beam tail There is in principle a statistical exci-
tation of coherent motion of the tail of the electron beam due to the ions. To see
that, consider a beam which consists of two slices, each with N/2 electrons and
transverse radius a. The two slices are separated longitudinally by a distance
�. The slice centroids are free to move, but their shape is considered rigid. The
first beam slice produces on the average one ion every distance of 2/λ with λ
given by Eq.(4.1) or (4.3). These ions have random transverse position within
the uniform disc of radius a. Consider an ion at transverse location y. Ignoring
its ionization electron, this ion kicks the second beam slice centroid by an angle
∆y′ ≈ 2rey/γa2 where re = 2.82 × 10−13 cm is the classical electron radius.
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Since there is one such kick every distance of 2/λ, and the location y is random,
there is a statistical growth in the centroid of the beam tail according to

ε̇N = γε̇ ≈ γ cλ
2
βy〈∆y′2〉 ≈

cλr2e
8εN

(4.4)

where βy is the β-function, and we have used the facts that 〈y2〉 = a2/4 for a
uniform disc and that ε = a2/4βy.

The coherent growth of beam tail (or tail of a beam train), Eq.(4.4), is in
addition to the growths due to the incoherent beam-gas scattering or the fast
ion instability to be discussed later. Take the storage ring example with λ = 6.4
/cm, and εN = 10−7 m, we find ε̇ = 2 × 10−12 m/s. The effective emittance
doubling time is then about 15 hrs. Note that this emittance growth effect
applies regardless of the species of the beam particles. We will not pursue this
statistical excitation of beam tail in the following.

4.2 Ion Motion – Unperturbed Electrons

As a zeroth order description of the ion motion, let us first analyse the motion
of an ion once it is produced, assuming the electron beam is unperturbed by
the ions. We assume that the ion is produced at rest and that its motion is
nonrelativistic throughout.13 It is singly charged to +e. The electron beam is
considered relativistic.

Let y be the transverse displacement of the ion relative to the electron beam
centroid. The electric field due to the passing electron beam and seen by the
ion is −(2Ne/�a2)y. The ion motion is therefore

Mÿ +
2Ne2

�a2
y = 0 (4.5)

which is simple harmonic. All ions thus oscillate with the same frequency

ωI =

√
2Nrpc2

�a2A
(4.6)

where M = Amp and e2/(mpc
2) = rp = 1.54 × 10−16 cm is the proton classical

radius.
Take N = 1011, � = 1 cm, a = 1 mm, A = 14, we find ωI/2π = 70 MHz.

The ion oscillation is typically rather rapid!
What is the ion distribution under the focusing of the unperturbed electron

beam? Let ρ(r|z) be the radial distribution of the ions at longitudinal location
z, where z refers to the distance between the ion and the head of the electron
beam, with � > z > 0. Then (see Fig.4.3)

ρ(r|z) =
ΣnN
π�a2

∫ z

0,
(
| cos( ωI (z−z′)

c )|> r
a

) dz′ 1

cos2(ωI(z−z′)
c )

(4.7)

where the integration is over all z′-locations where ions can be produced.
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Figure 4.3: Ion distribution after being produced by the electron beam. For
each slice of ions produced at z′, the distribution at position z is a uniform disc
with radius a| cos(ωI(z − z′)/c)|.

Figure 4.4: Radial distribution of ions by the passing electron beam. The dashed
square is its uniform disc approximation.

Ignoring the initial transients (valid when ωIz/c� π), this gives

ρ(r|z) ≈ 2ΣnNz
π2�a2

√
a2 − r2
r

(4.8)

13The nonrelativistic condition is satisfied if ωIa� c, or equivalently, using Eq.(4.6) below,
when the electron line charge density N/�� A/rp. This is easily satisfied.
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Note that there is a divergence at r = 0 because the ions are sharply focussed to
a point at all the focal points in Fig.4.3. On the other hand, the total number
of ions at location z is ∫ a

0

2πrdr ρ(r|z) =
ΣnNz
�

(4.9)

as it should.
This ion distribution (4.8) has an rms radius

〈r2〉 =
�

ΣnNz

∫ a

0

2πr3dr ρ(r|z) =
a2

4
(4.10)

If we approximate this ion distribution by a uniform disc, the disc radius should
perhaps be taken as a/

√
2, which is somewhat smaller than the electron beam

cross-secion. Figure 4.4 shows the distribution (4.8). The dashed square in
Fig.4.4 is its uniform disc approximation.

Exercise 1 Derive Eqs.(4.7-4.12). Contemplate what physics have
we lost by approximating the ion distribution as a uniform disc.

4.3 Electron Motion – Unperturbed Ions

We have now a zeroth order description of ion motion in the presence of the
unperturbed electron beam. As the zeroth order description of the electron mo-
tion, we approximate the ion distribution as a rigid unmoving uniform cylinder
with radius a/

√
2, unperturbed by the electrons.14 The electron beam and the

ion distribution are sketched in Fig.4.5.
An electron at a longitudinal location z relative to the front of the beam

sees an electric field of 4(eΣnN/a2)(z/�)y.15 The equation of motion for this
electron is

ÿ +K
z

�
y = 0, where K ≡ 4

ΣnNc2re
γa2

(4.13)

The ion focusing for the electron depends on the longitudinal position z of the
electron. If λ = ΣnN = 6.4/cm, γ = 104, and a = 1 mm, we have K = 6.5×107

s−2. The electron at the end of the beam has an ion focusing frequency of√
K/2π = 1.3 kHz. This frequency is much smaller than ωI . The focusing of
14The statistical excitation of beam tail discussed earlier is ignored here.
15One could ask what is the electric field if we assume the distribution (4.8) instead of a

uniform cylinder. The answer is

Ey =
4eΣnNz

π�

1

|y|

[
sin−1(

y

a
) +

y

a

√
1 − y2

a2

]
(4.11)

To a rather good approximation, this gives

Ey ≈ 8eΣnNz

πa�
sgn(y) (4.12)

In spite of this, we shall approximate the electric field as being linear in y.
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Figure 4.5: The model we use to study the beam-ion interaction. Both the
electron beam and the ions have a uniform transverse distribution. The electron
beam radius is

√
2 larger than that of the ions. Longitudinally, the electron

beam has a uniform distribution, while the ion density is proportional to z, the
distance measured from the head of the electron bunch.

the electrons by the ions is much weaker than the focusing of the ions by the
electrons.

In addition to the focusing due to the ions, electrons see an additional ex-
ternal focusing from quadrupoles. With a β-function of 10 m, the betatron
frequency is ωβ/2π = 5 MHz, which is much stronger focusing than that due to
the ions although it is much slower than the ion oscillation frequency ωI . Note
that in our numerical example, we have ωI � ωβ �

√
K/2π.

Exercise 2 Repeat the calculation of electron motion with unper-
turbed ions for the case of a flat electron beam of height 2a, width
w � 2a, and length �. Approximate both the electron beam and the
ions by uniform ribbons of some finite thickness and length.
Solution

ω2
I =

2πNrpc2

w�a

ρ(y|z) =
ΣnNz
πw�a

ln

[
1 +
√

1 − (y/a)2

|y/a|

]

K =
√

3ΣnNc2re
2γwa

(4.14)

The ions has a ribbon distribution with height 2a/
√

3.

Exercise 3 (a) Consider the case of an electron beam bunch with
a = 100µm, � = 1 mm, N = 5 × 1010, and E = 1.2 GeV coasting
down a linac of length L = 3 km. Let the linac have an average
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β-function of β = 10 m, and a CO pressure of P = 10−6 Torr.
Estimate the difference in betatron phase between the head and the
tail of the electron bunch when it reaches the end of the linac. (b)
Repeat for an accelerated electron beam from 1.2 GeV to 50 GeV.
Solution (a) The bunch head has the equation of motion y′′ +
(1/β2)y = 0. The bunch tail has y′′ + (1/β2 +K/c2)y = 0.

4.4 Coupled Ion-Electron Equation of Motion

We have now studied the zeroth order cases (a) the ions are perturbed but the
electron beam is rigid, and (b) the electron beam is perturbed but the ions are
rigid. We next consider the case when the motions of the electron beam and
the ions are coupled and mutually perturbing. Both the electron beam and ion
distributions are considered to be uniform discs (electrons with radius a, ions
with radius a/

√
2) with centroid motion but no shape distortion.

Note that we ignore the self direct space charge effects, such as the effect of
the ion fields on the ions and the effect of electron beam field on the electrons.
We are interested mainly nly in the coupled motion of the ions and the electron
beam.

Designate the centroid motion of an electron slice by ye(s|z), where z is the
longitudinal position of the electron slice relative to the head of the electron
beam (� > z > 0), and s is the distance along the accelerator. If the head of
the beam passes position s = 0 at time t = 0, then the electron slice under
consideration would have s = ct− z.

The ion motion requires a more complicated description. Designate the ion
motion by yI(s, t|z′), where z′ indicates the ion was produced by an electron
which is located at z′ relative to the head of the electron beam. Since ions
do not move along s like the electrons, we need both s and t to describe their
motion. The quantity yI(s, t|z′) is defined only after the ion is born, i.e. when
s < ct− z′.

Figure 4.6 sketches the situation. As we will show later, yI is going to be
90◦ out of phase from ye, and the ions are going to oscillate with a much larger
amplitude than the electron beam. In Fig.4.6, the electron beam and the ions
are shown separately. In reality, of course, their distributions overlap and their
motions are coupled.

The equation of motion for the ions can be obtained by examining Eq.(4.5).
Except that now the electron beam is also moving and the focusing force must
refer relative to the electron beam centroid. This gives

∂2

∂t2
yI(s, t|z′) + ω2

I [yI(s, t|z′) − ye(s|ct− s)] = 0 (4.15)

The term ye(s|ct − s) occurs here because it is the electrons with z = ct − s
which are interacting with the ions at location s and time t. Eq.(4.15) assumes
the oscillation amplitudes are small, with |ye| � a and |yI | � a, so that the
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Figure 4.6: Coupled ion-beam oscillation. The snap-shot wavelength of both
beam and ion oscillations is given by (4.24).

equations can be linearized. This approximation rules out the study of satu-
ration effects when the oscillation amplitudes become comparable to the beam
size a.

Equation (4.15) requires the initial conditions

yI(s, s+z
′

c |z′) = ye(s|z′)[
∂
∂tyI(s, t|z′)

]
t= s+z′

c

= 0 (4.16)

The reason for (4.16) is that the ions at position s were produced at time t = (s+
z′)/c and when produced, they had the same distribution as the electrons which
produced them, and we assume that they were produced with zero velocity.

The equation of motion for the electrons is

c2
∂2

∂s2
ye(s|z) + ω2

βye(s|z) +
K

�

[
zye(s|z) −

∫ z

0

dz′ yI(s,
s+ z
c

|z′)
]

= 0 (4.17)

where the second term describes the external betatron focusing, and K was
defined in Eq.(4.13). The second term in the square bracket describes the center
of charge of all the ion slices integrated from z′ = 0 to z′ = z. The first term
in the square bracket gives rise to a betatron frequency shift for the electron
beam. We will see later that this first term is not important for the asymptotic
behavior and can be dropped for our purpose. Eqs.(4.15-4.17) are the coupled
ion-beam equations of motion.
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Exercise 4 What modifications in Eqs.(4.15-4.17) are needed if the
unperturbed beam cross-section is gaussian elliptical or flat ribbon
instead of round uniform disc?

Exercise 5 If the electron beam is in a FODO lattice and is not uni-
formly focussed as being assumed in Eq.(4.17), the ions see different
focussing frequency ωI depending on where in the FODO structure
they are produced. This leads to a spread of ωI . What modifica-
tions in Eqs.(4.15-4.17) are needed in this case? This introduces a
stabilizing effect on the fast ion instability.

4.5 Asymptotic Electron Motion

We need to solve Eqs.(4.15-4.17). We are interested only in an asymptotic
behavior applicable for a long electron beam bunch or a long train of many
electron bunches. Here, for simplicity, we assume a very long electron bunch.
The case of a long beam train is discussed in a later section.

Before we solve for the asymptotic behavior of Eqs.(4.15-4.17), we note that
there is a resonance between the ion motion and the electron motion. The
asymptotic behavior will be dominated by this resonance. To see this resonance,
consider an electron motion with

ye(s|z) ∼ e−iωβs/c+ikz (4.18)

for some k, and ask what does this say about the ions? To answer this question,
first note that ions execute simple harmonic motion,

yI(s, t|z′) ∼ yI(s, t0|z′)e±iωI(t−t0) (4.19)

where t0 = (s+ z′)/c is the time when the ions are produced. It turns out that
in Eq.(4.19) we should keep the + sign for the instability.16

At t = t0, the ions have the same displacement as the electrons that produce
them, i.e. we can use the initial condition (4.16) to obtain

yI(s, t|z′) ∼ ye(s|z′)eiωI(t−t0)

∼ e−iωβs/c+ikz
′
eiωIt−iωI(s+z′)/c (4.20)

Resonance occurs when yI(s, t|z′) and ye(s|z) have the same t-dependence
when observed at a fixed s. Observed at a fixed location s as a function of time
t, we insert z = ct− s in Eq.(4.18) and obtain

ye(s|z) ∼ e−iωβs/c+ikct−iks (4.21)

Comparing Eqs.(4.20) and (4.21), we see that resonance occurs when

kc = ωI (4.22)
16If we keep the − sign, we will obtain in Eq.(4.38) later a damped solution with J0 replacing

I0. Since we are concerned only with an instability, we will take the + sign only.
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Substituting (21) into (17) and (19) gives

ye(s|z) ∼ e−iωβs/c+iωIz/c

yI(s, t|z′) ∼ e−i(ωβ+ωI)s/c+iωIt (4.23)

One can make the following observations based on Eq.(4.23):

(i) At resonance, yI(s, t|z′) is independent of z′ — all ions at s
oscillate in unison regardless of when they were produced. When
observed at a fixed s, both the electrons and the ions have a time
dependence of eiωIt. When observed at a fixed t, they both have
the snapshot behavior of e−i(ωβ+ωI)s/c. The snapshot wavelength of
both the electron beam and the ion oscillations is

λ =
2πc

ωβ + ωI
(4.24)

The electron beam oscillation has a phase velocity

vph =
ωI

ωβ + ωI
c (4.25)

We see that instability occurs for a slow wave component with vph <
c.

(ii) In resonance, ye contains information on ωI [see Eq.(4.23)]. In
practice, this means if we observe the electron beam by a beam
position monitor, the signal will contain a frequency peak at the ion
frequency ωI [see Eq.(4.47) later]. This is how the ion frequency ωI
can be observed in the accelerator. It is much easier to observe the
electron beam than to look for the ions. Observation of a ωI signal
in the electron beam is one indirect evidence of fast ion instability
effect.

We are now ready to examine the asymptotic behavior of the beam-ion
coupled motion. We assume

ye(s|z) = ỹe(s|z)e−iωβs/c+iωIz/c

yI(s, t|z′) = ỹI(s, t|z′)e−i(ωβ+ωI)s/c+iωIt (4.26)

where ỹe(s|z) is slowly varying in s and ỹI(s, t|z′) is slowly varying in t.
Substituting Eq.(4.26) into Eqs.(4.15) and (4.17), and dropping small terms

∂2ỹI/∂t
2 and ∂2ỹe/∂s

2, we obtain

∂

∂t
ỹI(s, t|z′) +

iωI
2
ỹe(s|ct− s) = 0 (4.27)

∂

∂s
ỹe(s|z) +

iK

2ωβc�
zỹe(s|z) −

iK

2ωβc�

∫ z

0

dz′ ỹI(s,
s+z
c

|z′) = 0 (4.28)
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with the initial condition

ỹI(s,
s+ z′

c
|z′) = ỹe(s|z′) (4.29)

Equations (4.27) and (4.29) give

ỹI(s, t|z′) = ỹe(s|z′) −
iωI
2

∫ t

(s+z′)/c
dt′ ỹe(s|ct′ − s)

= ỹe(s|z′) −
iωI
2c

∫ ct−s

z′
dz′′ ỹe(s|z′′) (4.30)

Substituting Eq.(4.30) into (4.28) and using the identities∫ z

0

dz′
∫ z

z′
dz′′ ỹe(s|z′′) =

∫ z

0

dz′ z′ỹe(s|z′)

zỹe(s|z) −
∫ z

0

dz′ ỹe(s|z′) =
∫ z

0

dz′ z′
∂

∂z′
ỹe(s|z′) (4.31)

we find

∂

∂s
ỹe(s|z) +

iK

2ωβc�

∫ z

0

dz′ z′
[
∂

∂z′
ỹe(s|z′) +

iωI
2c
ỹe(s|z′)

]
= 0 (4.32)

Taking partial derivative with respect to z gives

∂2

∂s∂z
ỹe(s|z) +

iK

2ωβc�
z

[
∂

∂z
ỹe(s|z) +

iωI
2c
ỹe(s|z)

]
= 0 (4.33)

The first term in the square bracket is much smaller than the second term
because ỹe is slowly varying in z compared with the ion frequency ωI . We
shall drop the first term, and later will provide the validity condition (4.41) for
making this approximation. Dropping this term is equivalent to dropping the
initial condition of ion production.

Equation (4.33) now reads

∂2

∂s∂z
ỹe(s|z) −

KωI
4ωβc2�

zỹe(s|z) ≈ 0 (4.34)

It is remarkable that a complicated coupled system has yielded a simple
equation of motion, Eq.(4.34), at the end. It is even more remarkable that
Eq.(4.34) has a simple solution. The solution is that ỹe(s|z) depends on s and
z through a single dimensionless variable

η ≡ z
c

√
KωIs

2ωβ�
(4.35)

with
ηỹ′′e + ỹ′e − ηỹe = 0 (4.36)
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where ( )′ = d
dη ( ). If, for example, the beam has a displacement such that when

observed at s = 0 behaves in t as

ỹe(0|0) = y0 or equivalently ye(s = 0|z = ct) = y0eiωIt (4.37)

then the solution is
ỹe(s|z) = y0I0(η) (4.38)

where I0(x) is the Bessel function. In the asymptotic regime with η � 1, we
have

ỹe(s|z) ≈ y0
eη√
2πη

(4.39)

The growth in the electron beam oscillation is exponential in z but behaves
like ∼ e

√
s with s. (Recall that z refers to the length along the electron beam

bunch or beam train; while s/c is the time the beam has been stored in the
accelerator.) The observation that η ∝ z indicates that one way to fight the
fast ion instability is to introduce more gaps within the long bunch train.

In spite of the fact that the instability growth is not exponential in s, one
may still define a characteristic growth distance s0 for which the amplitude of
an electron at the tail of the bunch grows by a factor of e,

s0 =
2ωβc2

KωI�
(4.40)

Fig.4.7 shows ỹe/y0 versus s/s0 for various values of z/�.
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Figure 4.7: Asymptotic amplitude as a function of time, for various electrons
along the bunch.
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If we consider K = 6.5 × 107 s−2, ωβ = 5 MHz, ωI = 70 MHz, and � = 1
cm, we find s0 = 2 × 1010 m, or a growth time of about 1 min. This instability
is very weak for a single short electron beam bunch. However, as we shall see,
this is no longer the case for a long train of intense bunches.

We can check the validity of dropping the first term in Eq.(4.33) here. The
approximation was | ∂∂z ỹe| �

ωI

c |ỹe|. Together with η � 1, the validity criterion
for z = � (i.e. an electron at the end of the beam) is

ωI�

c
� η � 1 or

ωβωI�

K
� s� s0 (4.41)

This criterion can not be fulfilled unless �ωI/c � 1, i.e., there must be many
ion oscillations made in the length of the beam. It further says that in order for
Eq.(4.39) to be applicable, s has to be limited to the range given by Eq.(4.41).

Exercise 6 (a) Go through the derivation (4.18-4.23) to obtain a feel
for the beam-ion resonance process. (b) Go through (4.26-4.39) to
see how this type of equation of motion can be analyzed.

4.6 Asymptotic Ion Motion

One may obtain also the asymptotic behavior of the ions by substituting (4.39)
into (4.30),

ỹI(s, t|z′) ≈ −iy0
√
ωβωI�

2Ks
eη̄√
2πη̄

(4.42)

where

η̄ ≡ (t− s
c
)

√
KωIs

2ωβ�
(4.43)

Comparing the electron and ion oscillation amplitudes as they pass by each
other, we obtain

yI(s, s+zc |z′)
ye(s|z)

=
ỹI(s, s+zc |z′)
ỹe(s|z)

≈ −i
√
ωβωI�

2Ks
(4.44)

We note that the ions oscillate 90◦ out of phase relative to the electrons and,
using Eq.(4.41), that the ion oscillation amplitude is much larger than that of
the electron beam, at least in the regime before the ion amplitude reaches the
level comparable to the beam size a. These features were anticipated in Fig.4.6.

Exercise 7 Following the above discussion to show that the beam-
ion instability growth begins to saturate after the beam has traveled
for a distance s where

e
√
s/s0

(s/s0)3/4
=

2
√

2πc
ωI�

a

y0
(4.45)
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4.7 Spectrum From Electron Beam

One might be interested in knowing the spectrum of the electron beam as seen
by a beam position monitor. Let the monitor be located at s = 0. Consider the
bunch of length � circulating in a storage ring of circumference C = cT0. The
signal seen by the monitor is

signal(t) =
∞∑
k=0

ye(kC|ct− kC)
∣∣∣
0<ct−kC<�

(4.46)

where k sums over multiple turns. The spectrum is then the Fourier transform
of the signal,

spectrum(Ω) ∝
∫ ∞

0

dte−iΩt signal(t)

=
∞∑
k=0

∫ �/c

0

dt′e−iΩ(t′+kT0)ye(kC|ct′)

=
∞∑
k=0

e−i(Ω+ωβ)kT0

∫ �/c

0

dt′e−i(Ω−ωI)t′ ỹe(kC|ct′)

= y0

∞∑
k=0

e−i(Ω+ωβ)kT0

∫ �/c

0

dt′e−i(Ω−ωI)t′ eη
′

√
2πη′

(4.47)

In the last step, η′ = t′
√
KωIkC/2ωβ� (note it depends on both t′ and k).

The integral in Eq.(4.47) can be written as

I =
∫ �/c

0

dt′
e(B−iA)t′

√
2πBt′

=
1√
2πB

(−B + iA)−1/2γ

(
1
2
, (−B + iA)

�

c

)

where A = Ω − ωI and B =
√
KωIkC/2ωβ�, and γ(α, x) is the incomplete

Gamma function. When |x| � 1, we have γ(α, x) ≈ −xα−1e−x, and

I ≈
√
�/c

2πB
eB�/c

(
e−iA�/2c sin A�

2c

A�/2c

)

where we have made use of |A|�/c � B�/c � 1 which is a consequence of
Eq.(4.41). Substituting into Eq.(4.47) then leaves us a summation over the
revolutions k. This signal of course diverges as k → ∞ because the signal itself
diverges. However, if we measure the signal only in a relatively small window
around a large k = k̄, then the beam spectrum (4.47) gives

|spectrum(Ω)| ∝ y0
√
�/c

2πB̄
eB̄�/c

∣∣∣∣∣ sin (Ω−ωI)�
2c

(Ω − ωI)�/2c

∣∣∣∣∣
∞∑

p=−∞
δ(Ω + ωβ − pω0) (4.48)

where ω0 = 2π/T0 is the revolution angular frequency, and B̄ =
√
KωI k̄C/2ωβ�.
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Equation (4.48) says that the electron beam spectrum consists of δ-function
peaks located at Ω = pω0 −ωβ , i.e. at the lower betatron side-bands of all revo-
lution harmonics. In addition, it contains a broad envelope sin [(Ω−ωI)�/2c]

(Ω−ωI)�/2c which
peaks around the ion frequency Ω = ωI . The width around this broad envelope
peak is ∆Ω ≈ ±πc/�, where � is the length of the beam bunch (or the beam
bunch train). As the length of the bunch (or bunch train) increases, the width
of the envelope peak around Ω = ωI shrinks. The width shrinks to as narrow
as ±ω0 when the bunch train almost fills the accelerator circumference. Finally,
the entire spectrum grows with time k̄ according to the factor eB̄�/c/

√
2πB̄�/c.

Exercise 8 It is instructive to sketch the spectrum, Eq.(4.48), as
a function of Ω. Do that for (a) � � the circumference and (b) �
almost equal to the circumference. In both cases, assume ωI � ω0.

4.8 The Case of a Train of Bunches

So far we have been considering a beam of a single long electron bunch. The
same analysis also applies to a train of short electron bunches in some proper
limit. For a train of M bunches, we need to make these replacements:

ye(s|z) → ye(s|j), yI(s, t|z′) → yI(s, t|j′) (4.49)

where j and j′ refer to the j-th bunch, with j = 1 referring to the first bunch,
etc. Let SB be the bunch spacing and NB be the number of electrons per
bunch. Assume SBωI/c � 1, so that the bunch train can be approximated as
a continuous bunch. We redefine the ion frequency in Eq.(4.6), the parameter
K in Eq.(4.13), the η parameter in Eq.(4.35), and the instability characteristic
length in Eq.(4.40) as

ωI =

√
2NBrpc2

SBa2A

K =
4ΣnNBc2re

γa2

s0 =
2ωβc2

KωIMSB

η = j

√
s

Ms0
(4.50)

then in the asymptotic limit, Eq.(4.34) gives

ỹe(s|j + 1) ≈ ỹe(s|j) +
j

2Ms0

∫ s

0

ds′ỹe(s′|j) (4.51)

Equation (4.51) relates the motion of the (j+1)th bunch to its previous jth
bunch. By iteration, we find (However, see Exercises 10 and 11.)

ỹe(s|1) = y0
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ỹe(s|2) = y0

[
1 +

s

2Ms0

]

ỹe(s|3) = y0

[
1 +

3s
2Ms0

+ (
s

2Ms0
)2
]
, etc. (4.52)

Asymptotically, Eq.(4.52) gives the result of Eq.(4.39) with η given in Eq.(4.50).
Take a numerical example (damping ring for a possible linear collider): N =

1010, SB = 10 cm, γ = 104, n = 3.2 × 107 cm−3 (300◦K, P = 10−9 Torr),
Σ = 2 × 10−18 cm2, A = 14, a = 10 µm, rp = 1.54 × 10−16 cm, ωβ = 2 × 108

s−1, and M = 1000. Then we have K = 3.5 × 107 s−2, ωI = 4.4 × 109 s−1, and
s0 = 2.3 × 108 cm, or s0/c = 7.6 ms.

Exercise 9 Perform a self-consistency check by back substitution
that Eq.(4.39) does satisfy Eq.(4.51) when η � 1.

Exercise 10 Equation (4.52) is misleading because it was derived by
using (4.51), which describes only for the asymptotic behavior, and
thus does not apply to the first few bunches, although if the iteration
procedure is continued, Eq.(4.52) would apply to later bunches. On
the other hand, for the first few bunches, you can solve the problem
directly. Do this for the second bunch and compare your result with
Eq.(4.52).
Solution For the first bunch, ions have no effect, and we have

y1(t) = y0 sinωβt (t ≥ 0) (4.53)

The second bunch sees the ions left behind by the first bunch. Its
equation of motion is

ÿ2 + ω2
βy2 +K[y2(t) − y1(t− t0)] = 0 (4.54)

where t0 = SB/c is the bunch spacing in time. A time lag is intro-
duced in y1. Substituting (4.53) into (4.54), the solution is found to
be (t ≥ t0)

y2(t) = y0


sin [ωβ(t−t0)] −

ωβ√
ω2
β +K

sin
[√
ω2
β +K(t−t0)

]

(4.55)

We have assumed the second bunch started initially with y2 = 0.
Due to the driving by ions, however, it acquires a maximum ampli-
tude of ∼ 2y0 which occurs at time (t− t0) ∼ 2πωβ/K. Eq.(4.55) is
quite different from Eq.(4.52). In particular, ωI does not play a role
in Eq.(4.55).

If ωβt � 1, ω2
β � K, and (

√
ω2
β +K − ωβ)t ≈ Kt/2ωβ � 1,

Eq.(4.55) can be approximated as

y2(t) ≈ y0
K

2ωβ
(t− t0) cos[ωβ(t− t0)] (t ≥ t0) (4.56)
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where the fact that it contains a term ∝ (t−t0) indicates a resonance
effect.

Exercise 11 Proceed to calculate the exact expression for y3(t) and
compare with Eq.(4.52). The problem becomes more complicated
now because the ions produced by the first bunch and seen by the
third bunch has been affected by the second bunch and ωI begins to
play a role.
Solution The ions produced by the first bunch were produced with
amplitude y1(t− 2t0). When the second bunch comes by, they get a
kick with ∆y′ = −(2NBrp/Aa2)y1(t − 2t0). When the third bunch
arrives, these ions have a displacement(

1 − ω
2
IS

2
B

c2

)
y1(t− 2t0) (4.57)

The equation of motion for the third bunch is therefore

ÿ3(t) + ω2
βy3(t) +K

[
2y3(t)−y2(t− t0)−

(
1−ω

2
IS

2
B

c2

)
y1(t−2t0)

]
=0

(4.58)
where y1,2(t) are given by Eqs.(4.53) and (4.55).

Equation (4.58) can be solved to give

y3(t) = (t ≥ 2t0) (4.59)

When ωβt� 1 � Kt/2ωβ , we have

y3(t) ≈ (4.60)

Note the resonance factor (t − 2t0)2. Note also that ωI appears
explicitly.

4.9 External Damping

The above analysis applies when the beam or the beam train is injected with a
displacement which has a snapshot pattern ∼ e−i(ωβ+ωI)s/c. It also applies if,
at injection, there is a displacement at the head of the beam (or the first bunch
in the case of a beam train). This initial displacement excites the bunch tail
oscillation through ions by the resonance process.

When there is an external damping – radiation damping, for example – the
behavior of this instability would be quite different. What happens then is that
the entire growth, including the beam head and tail, would be damped by the
external damping. This is true even if the damping rate τ−1

d is much weaker
than the instability growth rate, i.e. even if τ−1

d � c/s0.
To see this, consider the case of a beam train. The first bunch does not see

any ions and executes a free betatron oscillation. The ions it produces excite
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the second bunch. However, with an external damping, even a very weak one,
the oscillation of the first bunch slowly decays in t ≈ τd. After the first bunch
oscillation damps out, the second bunch is no longer driven, and it starts to
damp. It will take another τd to damp after the first bunch has been damped;
thus its oscillation decays in t ≈ 2τd. With the first and the second bunches
stop oscillating, the third bunch, regardless of the fact that it has been driven
to a large amplitude during this time, begins to damp. Eventually, it is damped
out, etc. With an external damping, therefore, the fast ion instability is only
a transient effect. A small injection error would very quickly grow to a large
oscillation, especially towards the tail of the beam train. However, with time,
the oscillation of the entire train decays and, if not excited again, will stay quiet.

We see here one more peculiarity of the fast ion instability. To damp out
a conventional collective instability, one would need an external damping rate
larger than the instability growth rate. But this is not necessary here. The fast
ion instability is in this sense not a true instability; it is more a transient effect
which is particularly sluggish.

4.10 Feedback System

One might envision therefore that the best way to deal with the fast ion insta-
bility is to ignore it, and let radiation damping take care of it. Unfortunately,
the beam is constantly excited by various noise effects in an accelerator: power
supply ripples, collective instabilities, etc. In fact, we often turn on a strong
feedback system to fight just these effects.

A feedback system of course also damps the fast ion instability. However,
feedback systems also carry noise, which constantly excite the fast ion insta-
bility, and this feedback noise may dominate over all other noise sources. So
we now have a situation where the feedback system provides simultaneously
the excitation and the damping. The beam responds to it very similarly to a
single electron responding to quantum excitation and radiation damping. The
net result is that each bunch in a beam train will reach a certain rms oscillation
amplitude which is determined by an equilibrium between the feedback damping
and the feedback noise. In the following, we analyze this equilibrium.

Let the feedback damping time be τd, and its noise be characterized by
〈y2〉noise, which is the mean square amplitude due to the noise kicks delivered
by the feedback to each bunch per revolution. Consider the first bunch j = 1
first. Its motion is unaffected by ions. It sees noise excitation of 〈y2〉noise on one
hand and damping with τd on the other hand.17 A balance is reached when its
mean square oscillation amplitude is given by

〈y21〉 =
τd
4T0

〈y2〉noise (4.61)

Exercise 12 Derive Eq.(4.61).
17The following analysis applies even if 〈y2〉noise and τd do not come from a feedback system,

but it is conceptually convenient to assume so for our purpose.
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Solution

〈y21〉 = 〈y2〉noise
1
T0

∫ ∞

0

dt
(
sinωβt e−t/τd

)2

≈ 〈y2〉noise
1

2T0

∫ ∞

0

dt e−2t/τd =
τd
4T0

〈y2〉noise (4.62)

Now consider the trailing bunches in the asymptotic regime. We will go back
to approximating the bunch train as a long continuous bunch of total length �.
Let the feedback noise be characterized by a random force f(s, z) acting on the
beam. The equation for the amplitude of the electron oscillations is

∂ỹe(s|z)
∂s

+
1
cτd
ỹe(s|z) =

1
2s0�2

∫ z

0

dz′z′ỹ(s|z′) + f(s, z) (4.63)

Without the second term on the left hand side and with f = 0 we have the case
studied in Eqs.(4.32) and (4.34). The new terms take into account the damping
caused by the feedback system and the noise modeled by the force f(s, z).

The solution of Eq.(4.63) is

ỹe(s|z) =
∫ s

−∞
ds′f(s′, z)e

s′−s
cτd (4.64)

−
∫ z

0

dz′
∫ s

−∞
ds′f(s′, z′)e

s′−s
cτd

∂

∂z′
I0



√

(z2 − z′2)(s− s′)
s0�2




where I0 is the modified Bessel function. The first term in Eq.(4.64) is the direct
response of the beam to the noise kicks. The second term is the response due
to coupling to the ions. Our previous analysis is for the case f(s, z) ∝ δ(s),
yielding

ỹ(s, z) ∝ e−s/cτdI0(
√
z2s/s0�2) (4.65)

In case we have a constant source of random noise acting on the beam and
f(s, z) is a random function, a more adequate description of the beam motion
would be in terms of the average square of the amplitude of oscillations. To
calculate 〈ỹ2e(s|z)〉 we assume that the force f is a δ-correlated random noise

〈f(s, z)f(s′, z′)〉 = Fδ(s− s′)δ(z − z′) (4.66)

which is appropriate for a wide-band feedback system. The parameter F can
be related to the average square of amplitude of the betatron oscillations under
the influence of the noise without ions. In this case the amplitude ỹe is given
by the first term in Eq.(4.64)

ỹe(s|z) =
∫ s

−∞
ds′f(s′, z)e

s′−s
cτd (4.67)

and using Eq.(4.66) we have

〈ỹe(s|z)ỹe(s|z′)〉 =
cτd
2
Fδ(z − z′) (4.68)
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So far we have assumed a long continuous beam. In case the beam consists
of a train of discrete bunches, we will have to identify Eq.(4.68) with

〈ỹ21〉 =
cτd
2
F

1
SB

(4.69)

where SB is the bunch spacing, y1 is the oscillation amplitude of the first bunch,
and we have assumed that, in the absence of ions, the amplitudes of different
bunches are uncorrelated. Equation (4.61) then gives an expression for F ,

F =
2SB
cτd

〈ỹ21〉 =
SB
2cT0

〈y2〉noise (4.70)

Now, returning to the case with the ions, we will assume that the second
term in Eq.(4.64) dominates, and neglect the first term. Using Eq.(4.66), we
have

〈ỹ2e(s|z)〉 = F
∫ z

0

dz′
∫ ∞

0

ds e
− 2s

cτd


 ∂
∂z′
I0



√
s(z2 − z′2)
s0�2






2

(4.71)

Note that, being the statistical average, this 〈ỹ2e(s|z)〉 is independent of s. We
will therefore drop the s in 〈ỹ2e(s|z)〉 from here on.

Let us now consider the bunches in the asymptotic regime with

η̄ ≡ z
�

√
cτd
s0

� 1 (4.72)

Using the asymptotic representation I0(x) ≈ (ex/
√

2πx), Eq.(4.71) becomes

〈ỹ2e(z)〉 ≈ F

2π

∫ z

0

dz′
∫ ∞

0

ds
e−2s/cτd(
s
s0
z2−z′2
�2

)1/2

(
∂

∂z′
e
√
s(z2−z′2)/s0�2

)2

≈ F

2π

∫ z

0

dz′
∫ ∞

0

ds z′2
√
s

s0

e−2s/cτd+2
√
s(z2−z′2)/s0�2

(z2 − z′2)3/2
(4.73)

Introducing new variables η =
√
s(z2 − z′2)/s0�2 and η′ = (z′/�)

√
cτd/s0, we

have

〈ỹ2e(z)〉 ≈ F (cτd)3/2

πs
1/2
0 �

∫ η̄

0

η′2 dη′
∫ ∞

0

η2 dη

(η̄2 − η′2)3 exp
(
−2

η2

η̄2 − η′2 + 2η
)

≈ F (cτd)3/2

4
√

2πs1/20 �

∫ η̄

0

dη′
η′2

(η̄2 − η′2)1/2 exp
(
η̄2 − η′2

2

)

≈ F
(cτd)3/2

8s1/20 �

eη̄
2/2

η̄
(4.74)

Due to the factor eη̄
2/2, the dependence of 〈ỹ2e(z)〉 on η̄ for η̄ � 1 is very strong.
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Figure 4.8: Normalized asymptotic mean square amplitude g as a function of η̄.

We next consider the limit opposite to Eq.(4.72), i.e., when η̄ � 1. Using
Eq.(4.71), we obtain

〈ỹ2e(z)〉 ≈ F
z3c3τ3

d

48s20�4
= F

(cτd)3/2

48s1/20 �
η̄3 (η̄ � 1) (4.75)

Equations (4.74) and (4.75) are our main results. One may relate the average
square results Eqs.(4.74) and (4.75) to the average square of the first bunch by
using Eq.(4.70).

Figure 4.8 shows the behavior of the normalized mean square amplitude

g ≡ 〈ỹ2e(z)〉s
1/2
0 �

F (cτd)3/2
=

〈ỹ2e(z)〉
〈ỹ21〉

�

2SB

√
s0
cτd

(4.76)

versus η̄. The two curves correspond to the η̄ � 1 and η̄ � 1 behaviors
according to Eqs.(4.74) and (4.75) respectively. The solid portions of the curves
represent their respective region of applicability.

In order to avoid an enhancement of beam emittance due to fast ion insta-
bility, one should avoid the exponential regime when η̄ � 1. If one adopts that
as the operating condition, then one is led to require

1 <
√
s0
cτd

(4.77)

or equivalently
τinstability > τd (4.78)

where τinstability = s0/c. Indeed, when Eq.(4.77) [or (4.78)] is satisfied, it follows
that the last bunch in the bunch train (with z = �) has

〈ỹ2e(�)〉
〈y21〉

≈ �

24SB

(
cτd
s0

)2

� 1 (4.79)
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and the effective emittance growth is negligible. On the other hand, due to the
extremely rapid dependence of 〈ỹe(z)〉 on z when η̄ � 1, the tolerable value of
η̄ is not far from η̄ = 1.
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5 Lawson-Woodward Theorem and Laser Accel-
eration

Consider the plane laser wave propagating in the ẑ direction in free space, with

�E = E0 cos
(
ωt− ω

c
z + φ

)
x̂

�B = E0 cos
(
ωt− ω

c
z + φ

)
ŷ (5.1)

The average laser power per unit cross-sectional area is

〈P〉
A

=
c

8π
E2

0 (5.2)

Take a 10 TW laser18 and focus to a spot size of A = 10µm2, the electric field
at the focal point is E0 = 2.7× 104 GV/m. The question is how to harness this
huge electric field for the purpose of accelerating particles.

5.1 Lawson-Woodward Theorem

Unfortunately, this huge electric field is basically useless for particle acceleration
to high energies. The reason is summarized by the Lawson-Woodward theorem.
To illustrate this theorem, one first note that at high energies, the trajectory of
a particle, even when perturbed by the laser fields, is a straight line to a good
approximation.

Consider a particle whose velocity �v = βcv̂ is in the v̂ = ẑ direction. This
particle sees the huge electric field E0. However this field is useless because it
is transverse and does not accelerate the particle.

We then consider making an angle θ between �v and ẑ, as shown in Fig.5.1.
Now the electric field has a longitudinal component

dE
ds

= e �E(t) · v̂ = eE0 sin θ cos[ωt(1 − β cos θ) + φ] (5.3)

The particle is alternately accelerated and decelerated at a frequency of ω(1 −
β cos θ). With β necessarily < 1, the particle does not have a net acceleration.

How do we circumvent this problem? We may consider to slow down the
laser, or to wiggle the particle trajectory so that it is no longer a straight line, or
some other ways. Below, we illustrate various ways of using laser to accelerate.
As we shall see, in all cases, in one way or another, we are invariably introducing
a large reduction factor to the huge potential laser field. The fact that we can
never use the full extent of E0 is the Lawson-Woodward theorem. In other
words, we may state the Lawson-Woodward theorem as19

Eeffective = E0 × (reduction factor), where (reduction factor) � 1 (5.4)
18If the laser pulse length is 1 ps, it contains 10 Joules per pulse.
19This is just my own version of their otherwise scholarly theorem. The Lawson-Woodward

reduction factor is usually rather severe. If someone claims he can accelerate by a gradient of
E0 = 2.7 × 104 GeV/m using a laser, don’t believe him. If the claim is anything larger than
1% of E0, be skeptical.
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Figure 5.1: A relativistic particle in a plane laser wave.

Exactly which parameters enter the reduction factor depends on the conceived
acceleration scheme. Sometimes it is a small crossing angle, sometimes it is
the extent of the wiggling of particle trajectory introduced on purpose, and
sometimes it is the amount the laser phase velocity slowed down by an index of
refraction. Details of these discussions will be the subject of this chapter.

5.2 Slow Down the Laser in a Medium

Operating the acceleration in a medium of index of refraction n > 1, the phase
velocity of the laser wave slows down, Eq.(5.3) becomes

dE
ds

= eE0 sin θ cos[ωt(1 − nβ cos θ) + φ] (5.5)

Acceleration becomes possible if we choose parameters to fulfill

nβ cos θ = 1 (5.6)

As β → 1, we require

cos θ =
1
n

(5.7)

and the acceleration rate is (for φ = 0)

dE
ds

= eE0

√
1 − 1

n2
(5.8)

Exercise 1 To take into account of the effect of phase slippage as the
particle’s velocity is varied during acceleration, show that Eq.(5.8)
is modified to become

mc2
dγ

ds
= eE0

√
1 − 1

n2
cos
ωs(1 − β)
cβ

≈ eE0

√
1 − 1

n2
cos

ωs

2γ2c
(5.9)

One then solves for γ(s).
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In the medium, one will need to avoid multiple scatterings. This then re-
quires n to be only slightly larger than 1. Let n = 1 + ∆ with ∆ � 1, then

dE
ds

≈ eE0

√
2∆ (5.10)

For H2 at 0◦C and 1 atm, we have ∆ = 0.14 × 10−3. At 10−4 Torr, it follows
that ∆ = 0.14 × 10−3 × 10−4/760 = 1.8 × 10−11. With E0 = 2.7 × 104 GV/m,
we find dE/ds = 0.16 GeV/m, which is not bad, but much smaller than the full
E0.

5.3 Near the Surface of a Medium

Can one improve this by having the beam moving in free space, but immediately
next to a medium? The hope is that by doing so, multiple scattering is no
longer an issue; one can use a much higher value of n, and thus a much higher
acceleration gradient.

Consider the setup shown in Fig.5.2. An incident laser in a medium with
index of refraction n and making an angle θ relative to the medium boundary
surface has20

�Ein = E0(x̂ cos θ − ẑ sin θ) e−iωt+in(ω/c)(z cos θ+x sin θ)

�Bin = nE0ŷ e
−iωt+in(ω/c)(z cos θ+x sin θ) (5.11)

After total internal reflection, the reflected wave has

�Eref = E1(x̂ cos θ + ẑ sin θ) e−iωt+in(ω/c)(z cos θ−x sin θ)

�Bref = nE1ŷ e
−iωt+in(ω/c)(z cos θ−x sin θ) (5.12)

where E1 is yet to be determined. For total internal reflection, we require

n cos θ > 1 (5.13)

In the free space region, there is a transmitted wave

�Etr = B2(αx̂− i
√
α2 − 1ẑ) e−iωt+i(ω/c)αz−(ω/c)x

√
α2−1

�Btr = B2ŷ e
−iωt+i(ω/c)αz−(ω/c)x

√
α2−1 (5.14)

where B2 and α are yet to be determined.
Eq.(5.14) satisfies Maxwell equations in free space. The parameters yet to

be determined are to be found by imposing the boundary conditions: tangential
continuity of �E, �H, and normal continuity of �D, �B. If we assume µ = 1 and

20A side remark: note the magnetic field acquires a factor n in Eqs.(5.11-5.12). Since usually
n > 1, the magnetic field is stronger than the electric field in a medium. In fact it often seems
as if magnetic fields prefer the inside a material to the vacuum, while electric fields prefer the
opposite. The same tendency occurs inside a resistive metal.
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Figure 5.2: Acceleration of a particle using a laser with internal reflection.

ε =
√
n, then �B = �H and �D = n2 �E. To satisfy the boundary conditions at

x = 0, it is obvious that we must have

α = n cos θ (5.15)

In addition, we have

continuity of �B =⇒ B2 = n(E1 + E0)

continuity of Ez =⇒ −iB2

√
α2 − 1 = (E1 − E0) sin θ

continuity of n2Ex =⇒ B2α = n2(E1 + E0) cos θ (5.16)

Solution of Eq.(5.16) is

E1 = E0

(
i sin θ + n

√
n2 cos2 θ − 1

i sin θ − n
√
n2 cos2 θ − 1

)

B2 = E0

(
2n sin θ

sin θ + in
√
n2 cos2 θ − 1

)
(5.17)

The quantity we are interested in is the electric field in the free space region,

�Etr = E0

(
2n sin θ

sin θ + in
√
n2 cos2 θ − 1

)
(x̂n cos θ − iẑ

√
n2 cos2 θ − 1)

× e−iωt+i(ω/c)nz cos θ e−(ω/c)x
√
n2 cos2 θ−1 (5.18)

The last factor in (5.18) describes the exponential attenuation in the x-direction.
The phase velocity along the z-direction vph = c/(n cos θ) < c is slowed down
so that it can be matched to the velocity of a particle.

Having set up the device, we send a relativistic particle with a fixed distance
x = x0 from the surface, and with z = z0 + βct. The energy of this particle
changes according to

dE
ds

= e �Etr · ẑ = −ieE0

(
2n sin θ

√
n2 cos2 θ − 1

sin θ + in
√
n2 cos2 θ − 1

)

× e−iωt+i(ω/c)n(z0+βct) cos θ × e−(ω/c)x0
√
n2 cos2 θ−1 (5.19)
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In order for this particle to receive energy systematically from the laser accel-
eration, we must choose the condition (5.6).21

Substituting Eq.(5.6) into Eq.(5.19) gives

dE
ds

=


 −2ieE0

n
β

γ + in2√
n2β2−1


 e−ωx0/γβcei(ω/c)nz0 cos θ (5.20)

When β → 1 or γ = 1/
√

1 − β2 → ∞, we find

dE
ds

→ −2i
eE0n

γ
e−ωx0/γcei(ω/c)nz0 cos θ (5.21)

Only the real part of Eq.(5.21) is to be taken. By keeping the particle close to
the surface, we ignore the exponential factor in Eq.(5.21) and we do obtain an
accelerating field. Unfortunately, the field is small due to the factor 1/γ.

Both the laser accelerator designs in and near medium suffer from the fact
that the electric field seen by the particle is mainly transverse.

Exercise 2 The acceleration efficiency improves somewhat by con-
sidering having material on both sides of the particle’s path. Two
internally reflected lasers then provide the acceleration. Analyze
this set-up. Note that by having more material around the parti-
cle’s path, we are getting closer to the conventional acceleration of
rf structures in a linac, except that the rf microwave is replaced by
lasers.

5.4 Exact Solution in Plane Wave

So far we have looked at the relativistic case when the particle trajectory is
approximated by a straight line. It turns out that it is possible to solve exactly
the problem of particle motion in a plane EM field. Let the EM field be given by
Eq.(5.1). Let the particle being studied have the initial conditions that at t = 0,
its coodinates and momenta are given by x0, y0, z0, px0, py0, pz0. We define

ξ = ωt− ω
c
z + φ (5.22)

The initial value of ξ is φ0 = −(ω/c)z0 + φ.
The equation of motion is

d�p

dt
= eE0 cos ξ

(
x̂+

1
mcγ

�p× ŷ
)

=⇒
21It is interesting that the requirements for both designs have the same expression even

though the meaning of the symbols are unrelated.
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dpx
dt

= eE0(1 − pz
mcγ

) cos ξ (5.23)

dpy
dt

= 0 (5.24)

dpz
dt

= eE0
px
mcγ

cos ξ (5.25)

We also have
dγ

dt
=
e

mc
�β · �E =

eE0

m2c2γ
px cos ξ (5.26)

A constant of the motion follows from Eq.(5.24),

py = py0 (5.27)

Another constant of the motion follows from Eqs.(5.25) and (5.26),

γ − pz
mc

≡ Γ = γ0 −
pz0
mc
, γ0 =

√
(
�p0
mc

)2 + 1 (5.28)

The constancy of Γ means that the particle gains and loses γ and pz in a fully
correlated manner. The gain/loss of γ is due to pxEx, while the gain/loss of pz
is due to pxBy. The full correlation results because Ex and By are in phase in
a laser.

We next need the expression

dξ

dt
= ω − ω

c

dz

dt
= ω(1 − pz

mcγ
) = ω

Γ
γ

(5.29)

Eq.(5.23) then gives

dpx
dt

= eE0
Γ
γ

cos ξ =
eE0

ω
cos ξ

dξ

dt

=⇒ px = px0 +
eE0

ω
(sin ξ − sinφ0) (5.30)

Our strategy is to use Eq.(5.29) to solve all quantities in terms of ξ. After that,
we will find an expression of ξ in terms of time t.

Having obtained px, we use Eq.(5.26) to obtain γ,

dγ

dξ
=

eE0

m2c2ωΓ
cos ξ

(
px0 −

eE0

ω
sinφ0 +

eE0

ω
sin ξ

)

=⇒ γ = γ0+
eE0

m2c2ωΓ
px0(sin ξ−sinφ0) +

e2E2
0

2m2c2ω2Γ
(sin ξ−sinφ0)2 (5.31)

The second term on the RHS of (5.31) is what we calculated before, namely the
alternating energy gains and losses of the particle in the laser plane wave. The
third quadratic term is called the ponderomotive potential. It gives rise to an
effective force on the particle which is quadratic in E0. When rapidly oscillating
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forces are averaged out, this ponderomotive force becomes important. The origin
of this term is due to the wobbling (non-straight-line) trajectory of the particle.
The laser field has to first bend the particle trajectory, yielding one power of
E0, and secondly accelerate the particle, giving rise to another power of E0.

Having obtained γ, we obtain pz by Eq.(5.28). We thus have obtained
px, py, pz, γ in Eqs.(5.30), (5.27), and (5.31). Next we want to find x, y, z as
functions of ξ. This is done as follows:

dx

dt
=
px
mγ

=⇒ dx

dξ
=

px
mωΓ

=⇒ x = x0 +
1

mωΓ

[
(px0−

eE0

ω
sinφ0)(ξ−φ0) −

eE0

ω
(cos ξ−cosφ0)

]
(5.32)

dy

dt
=
py0
mγ

=⇒ dy

dξ
=
py0
mωΓ

=⇒ y = y0 +
py0
mωΓ

(ξ − φ0) (5.33)

dz

dt
=
pz
mγ

=
c

γ
(γ − Γ) =⇒ dz

dξ
=
c

ωΓ
(γ − Γ)

=⇒ z = z0 +
c

ωΓ

∫ ξ

φ0

dξ′(γ(ξ′) − Γ)

=z0+
c

ωΓ

{
pz0
mc

(ξ−φ0)−
eE0px0
m2c2ωΓ

[cos ξ − cosφ0 + (ξ−φ0) sinφ0]

+
e2E2

0

2m2c2ω2Γ

[
(
1
2

+sin2 φ0)(ξ−φ0)−
1
4

sin 2ξ+2 sinφ0 cos ξ− 3
4

sin 2φ0

]}
(5.34)

We still have to relate ξ to t. This is done using Eq.(5.29), which gives

ωΓt =
∫ ξ

φ0

dξ′γ(ξ′)

= γ0(ξ − φ0) +
eE0px0
m2c2ωΓ

[− cos ξ + cosφ0 − (ξ − φ0) sinφ0] (5.35)

+
e2E2

0

2m2c2ω2Γ

[
(
1
2

+sin2 φ0)(ξ−φ0)−
1
4

sin 2ξ+2 sinφ0 cos ξ− 3
4

sin 2φ0

]

Exercise 3 It may be instructive to fill in the details of the derivation
from Eq.(5.23) to (5.35). To build some confidence in these results,
at least show that the solution satisfies γ2 = 1 + (�p/mc)2.

Particle at rest
Consider a particle which at t = 0 has x0 = y0 = z0 = 0, px0 = py0 = pz0 =

0, γ0 = Γ = 1 and φ0 = 0. It has

x =
eE0

mω2
(1 − cos ξ)
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y = 0

z =
e2E2

0

4m2cω3
(ξ − 1

2
sin 2ξ)

γ = 1 +
e2E2

0

2m2c2ω2
sin2 ξ

t =
ξ

ω
+
z

c

=
ξ

ω
+

e2E2
0

4m2c2ω3
(ξ − 1

2
sin 2ξ) (5.36)

We note that the leading order of x-motion is linear in E0 while z-motion is
quadratic, as one would expect. The particle energy is indeed accelerated in an
oscillatory manner with energy gain proportional to E2

0 . Figure 5.3 shows (a)
the trajectory x versus z as the particle moves in the physical space; (b) γ as
a function of z; and (c) t − z/c as a function of z. In Fig.5.3, we have shown
results for various values of λ = eE0/mωc. If caught at the right moments, the
particle has a maximum energy of γmax = 1+λ2/2. The particle on the average
moves with the wave. If we take E0 = 2.7×104 GV/m and a laser wavelength of
1 µm, one can have a pretty large value of λ = 8, yielding γmax = 33. However,
acceleration at this level is no comparison with the raw laser field of 2.7 × 104

GV/m.

Exercise 4 Show that the particle has an average speed in the z-
direction given by 〈vz〉/c = λ2/(4 + λ2). This average motion is
relativistic if λ� 1.

Exercise 5 Repeat for a stationary particle seeing a different laser
phase φ0 = π/2.

Relativistic Particle
We may consider a particle with initial conditions x0 = y0 = z0 = 0, φ0 = 0,

py0 = 0, px0 = p0 sin θ, pz0 = p0 cos θ, and with γ0 � 1 and p0 � eE0/ω. We
then find

Γ ≈ γ0

(
1 − cos θ +

1
2γ2

0

)

px ≈ p0 sin θ +
eE0

ω
sin ξ

pz ≈ p0 cos θ +
eE0

ω

sin θ
1 − cos θ + 1

2γ2
0

sin ξ

γ ≈ p0
mc

+
eE0

mcω

sin θ
1 − cos θ + 1

2γ2
0

sin ξ

ξ ≈ ωt(1 − cos θ) (5.37)

The maximum energy gain is obtained by choosing θ ≈ 1/γ0, with ∆γ ≈ γ0(1+
eE0
mcω sin ξ), which is � γ0. These expressions are consistent with what we did
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Figure 5.3: Motion of a particle in a plane wave laser. The particle is stationary
initially.

before. In particular, if we integrate Eq.(5.3), we obtain the γ expression in
(5.37). There is no net energy gain to first order in E0.

Exercise 6 Find the ponderomotive E2
0 corrections to Eq.(5.37).

5.5 Auto-resonance Acceleration

We now do a neat trick by adding a static magnetic field to the laser plane wave,

�E = E0x̂ cos ξ
�B = E0ŷ cos ξ +Bsẑ (5.38)

with ξ given by Eq.(5.22).
Equations (5.25) and (5.26) still apply. It follows that γ − pz

mc = Γ is still a
constant of the motion, and Eq.(5.29) still holds.

One consequence of γ − pz

mc = γ(1 − vz

c ) being a constant of the motion is
that, if through some mechanism the energy of the particle is increased γ → ∞,
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it follows that vz → c, i.e. the particle motion is necessarily primarily in the
z-direction. This observation would be useful for our discussion later.

There is another much more intriguing observation to be made as follows.22

As the laser plane wave passes by the moving particle, its frequency seen by the
particle (in the laboratory frame) is ω(1 − vz

c ). The fact that this frequency is
nonzero – as pointed out before – is the reason why the particle sees alternating
acceleration and deceleration. But now we have also a static magnetic field Bs.
In the presence of Bs, the particle executes an additional cyclotron motion with
cyclotron frequency eBs/mγc. If these two frequencies are made to coincide, one
expects some resonance effect to occur in the particle motion. Exactly what will
occur is yet to be analyzed, but one sees already now that once the resonance
condition is fulfilled at time t = 0, it will be fulfilled at all times t �= 0. This is
because the resonance condition reads

ω(1 − vz
c

) =
eBs
mγc

=⇒ γ − pz
mc

=
eBs
mcω

(5.39)

The LHS of Eq.(5.39) is exactly the constant of the motion Γ! Once the res-
onance is fulfilled at t = 0 (e.g. by choosing the right Bs), the resonance is
automatic at all other times, thus the term “auto-resonance”.

Exercise 7 If the plane wave laser is in a medium with index of
refraction n, and a static magnetic field Bsẑ is applied. (a) How is
the constant of the motion Γ modified? (b) What is the condition
for the cyclotron motion to resonate with the laser field? (c) Is the
resonance still an auto-resonance?
Solution (a) Γ = γ(1 − vz

nc ). (b) γ(1 − nvz

c ) = eBs

mcω .

Exercise 8 It is instructive to ray trace a particle under (5.38) and
observe what the resonance does to the particle’s motion.

Exercise 9 What if the laser is circularly polarized? Does it make
a difference if the laser is right-hand or left-hand polarized?

We now solve the equation of motion. The analysis follows closely the previ-
ous section. In particular, we will first try to use ξ as the independent variable.
Equations (5.23) and (5.24) now read, using Eq.(5.29),

dpx
dξ

=
eE0

ω
cos ξ +

eBs
mcωΓ

py (5.40)

dpy
dξ

= − eBs
mcωΓ

px (5.41)

which can be combined into one single complex equation,

dq⊥
dξ

=
eE0

ω
eiαξ cos ξ (5.42)

22This phenomenon is well known in plasma physics and is known as cyclotron heating.
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where we have defined

q⊥ = (px + ipy)eiαξ, and α =
eBs
mcωΓ

(5.43)

The meaning of q⊥ is that we are observing the motion in a frame rotating with
the cyclotron frequency. Note that both the real and imaginary parts of q⊥ have
physical meanings. The auto-resonance condition (5.39) occurs when α = 1.

The solution to Eq.(5.42) is

q⊥(ξ) =
eE0

ω(1 − α2)
(sin ξ + iα cos ξ)eiαξ + C (5.44)

with C some constant to be determined by the initial condition that at time
t = 0, the particle has x0, y0, z0, px0, py0, pz0, and ξ(0) = −(ω/c)z0 + φ = φ0.
This gives

C =
[
px0 + ipy0 −

eE0

ω(1 − α2)
(sinφ0 + iα cosφ0)

]
eiαφ0 (5.45)

It then follows, by substituting (5.45) into (5.44) and separating out the real
and the imaginary parts, that

px = px0 cos(αξ − αφ0) + py0 sin(αξ − αφ0) (5.46)

+
eE0

ω(1 − α2)
[sin ξ − sinφ0 cos(αξ − αφ0) − α cosφ0 sin(αξ − αφ0)]

py = py0 cos(αξ − αφ0) − px0 sin(αξ − αφ0) (5.47)

+
eE0

ω(1 − α2)
[α cos ξ + sinφ0 sin(αξ − αφ0) − α cosφ0 cos(αξ − αφ0)]

Having obtained px and py, we obtain pz and γ by

pz =
mc

2Γ

(
1 − Γ2 +

p2x + p2y
m2c2

)
(5.48)

γ =
1
2Γ

(
1 + Γ2 +

p2x + p2y
m2c2

)
(5.49)

which can also be written as

γ − γ0 =
1
mc

(pz − pz0) =
p2x + p2y − p2x0 − p2y0

2Γm2c2
(5.50)

Substituting (5.46-5.47) into (5.50), we obtain

2Γm2c2(γ − γ0) = 2Γmc(pz − pz0) = p2x + p2y − p2x0 − p2y0

=
2eE0

ω(α2−1)

[
αpy0 cosφ0−αpy0 cos ξ cos(αξ−αφ0)+αpx0 cos ξ sin(αξ−αφ0)
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−py0 sin ξ sin(αξ − αφ0) − px0 sin ξ cos(αξ − αφ0) + px0 sinφ0

]

+
(

eE0

ω(α2−1)

)2 [
α2
(

cos2 ξ + cos2 φ0 − 2 cosφ0 cos ξ cos(αξ−αφ0)
)

−2α sin(ξ − φ0) sin(αξ − αφ0)

+ sin2 φ0 + sin2 ξ − 2 sinφ0 sin ξ cos(αξ − αφ0)
]

(5.51)

Exercise 10 Prove Eqs.(5.48-5.50).
Solution Use the definition of Γ and the property |�p|2 = (γ2 −
1)m2c2.

We still need to find ξ in terms of t. This is obtained by

ωΓt =
∫ ξ

φ0

dξ′γ(ξ′) (5.52)

with γ given by Eq.(5.51). The resulting expression is lengthy and is omitted
here.

Case 1 A trivial case is when E0 = 0. The particle moves in a pure solenoidal
field. We find

px = px0 cos(αξ − αφ0) + py0 sin(αξ − αφ0)
py = py0 cos(αξ − αφ0) − px0 sin(αξ − αφ0)
γ = γ0

pz = pz0

ξ = φ0 + ωt(1 − vz0
c

) (5.53)

Case 2 Another special case is when Bs = 0. The particle moves in a pure plane
laser wave, and indeed we recover what we did in the previous section.

Case 3 A particle starting at rest and with φ0 = 0 has

px =
eE0

ω(1 − α2)
[sin ξ − α sin(αξ)]

py =
eE0α

ω(1 − α2)
[cos ξ − cos(αξ)]

γ − 1 =
pz
mc

=
1
2Γ

(
eE0

ωmc(1 − α2)

)2 [
sin2 ξ − 2α sin ξ sin(αξ)

+α2(2 − 2 cos ξ cos(αξ) − sin2 ξ)
]

(5.54)

So far the results look similar to the case studied before when Bs = 0.
For example, the particle energy given by Eq.(5.51) contains a term linear in
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E0 which oscillates in time, and a term quadratic in E0 which has some non-
zero average value representing the ponderomotive potential. However, an alert
reader would note that this is not the case when the auto-resonance condition
α = 1 is fulfilled. Setting α = 1 in the above expressions yields23

px = px0 cos(ξ − φ0) + py0 sin(ξ − φ0)

+
eE0

2ω

[
(ξ − φ0) cos ξ +

1
2

sin(ξ − 2φ0) +
1
2

sin ξ
]

py = py0 cos(ξ − φ0) − px0 sin(ξ − φ0)

−eE0

2ω

[
(ξ − φ0) sin ξ − 1

2
cos(ξ − 2φ0) +

1
2

cos ξ
]

γ = γ0 +
eE0

2ωΓm2c2

[
(ξ − φ0)(px0 cosφ0 − py0 sinφ0)

+
1
2
(py0 cosφ0 − px0 sinφ0) −

1
2
(py0 cos(2ξ − φ0) − px0 sin(2ξ − φ0))

]

+
1
2Γ

(
eE0

2ωmc

)2[1
2

+(ξ−φ0)2−
1
2

cos(2ξ−2φ0)+(ξ−φ0)(sin 2ξ−sin 2φ0)
]

ωt =
γ0
Γ

(ξ − φ0) +
eE0

48ωΓ2m2c2

{
12(ξ − φ0)2(px0 cosφ0 − py0 sinφ0)

+12(ξ − φ0)(py0 cosφ0 − px0 sinφ0)
+6
[
px0 cosφ0 + py0 sinφ0 − px0 cos(2ξ − φ0) − py0 sin(2ξ − φ0)

]
+
eE0

ω
(ξ − φ0)

[
3 + 2(ξ − φ0)2

]
−3eE0

ω

[
(ξ − φ0)2 sin 2φ0 + (ξ − φ0) cos 2ξ + 2 sin ξ sinφ0 sin(ξ − φ0)

]}
(5.55)

We now see terms linear in ξ indicating a resonant response.24 To be more
specific, and to simplify the discussion, we consider a particle which is at rest
at t = 0 with φ0 = 0. In this case, Eq.(5.55) becomes

px =
eE0

2ω
(ξ cos ξ + sin ξ)

py = −eE0

2ω
ξ sin ξ

γ = 1 +
1
2

(
eE0

2ωmc

)2

(ξ2 + sin2 ξ + ξ sin 2ξ)

ωt = ξ +
ξ

6

(
eE0

2ωmc

)2

(ξ2 − 3 sin2 ξ) (5.56)

23The apparent divergences with (1 − α2) in the denominators are not real divergences.
24Resonance shows up as a term ∝ ξ, not ∝ t. A moment’s reflection says this is the right

indication of a resonance, recalling that ξ is the oscillation phase seen by a particle.
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What is the asymptotic motion of this particle? For t→ ∞,25 we have

ξ ≈
(

24ωt
λ2

)1/3

px ≈ eE0

2ω
ξ cos ξ

py ≈ −eE0

2ω
ξ sin ξ

γ ≈ 1
8
λ2ξ2 ≈ 1

8
(24λωt)2/3 (5.57)

where λ = eE0/ωmc is that same parameter defined in Fig.5.3. Equation (5.57)
says that the particle energy increases with time as t2/3. The fact that ξ �= con-
stant means the particle sees an alternating laser field; however, the resonance
is such that these alternating contributions still add up to a net acceleration.

This acceleration does not violate the Lawson-Woodward theorem. The
acceleration results from forcing the particle to move away from a straight line
motion due to the solenoidal field Bs. One can show using Eq.(5.57) that the
Lawson-Woodward reduction factor is given by

Eeffective

E0
= (3λωt)−1/3 (5.58)

A similar mechanism is used in an inverse free-electron-laser acceleration, except
that here we have one extra feature of auto-resonance.

The transverse cyclotron radius of the particle is

ρ =
p⊥
eBs

≈ mc2

2eBs
(24λωt)1/3 (5.59)

As mentioned before, the existence of Γ as a constant of the motion implies the
direction of motion is primarily in the z-direction. Indeed, pz = mc(γ − 1) goes
like t2/3, while p⊥ goes like t1/3 according to Eq.(5.59).

Exercise 11 Estimate the “transverse emittance” of the auto-resonace
accelerated beam. Show that it is independent of time t. It is also
independent of the laser parameters.
Solution Transverse emittance ∼ ρp⊥/pz.

Exercise 12 Repeat Eqs.(5.56-5.58) for φ0 = π/2. Is the initial
phasing of the laser of importance?
Solution

px =
eE0

2ω
(ξ − π

2
) cos ξ

py = −eE0

2ω
[cos ξ + (ξ − π

2
) sin ξ]

25More quantitatively, we need ξ � 1, or ωt� λ2/24.
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γ = 1 +
1
2

(
eE0

2ωmc

)2 [
(ξ − π

2
)2 + cos2 ξ + (ξ − π

2
) sin 2ξ

]

ωt = ξ − π
2

+
1
6
(ξ − π

2
)
(
eE0

2ωmc

)2

[3 sin2 ξ + (ξ − π
2

)2] (5.60)

Eq.(5.57) still holds asymptotically.

Exercise 13 Work out the counterpart of Eq.(5.37) for a relativistic
particle with initial condition px0 = p0 sin θ, py0 = 0, pz0 = p0 cos θ
and p0 � eE0/ω. Is a spread of initial momentum important?

Exercise 14 Instead of working out special cases one by one, it
maybe useful to have a numerical or analytical code which contains
Eqs.(5.46), (5.47) and (5.50). One can then study the special cases,
the dependences on initial conditions, or if the auto-resonance con-
dition is not exactly satisfied.

Exercise 15 Try to design an auto-resonance laser accelerator. Pay
attention to the following considerations: (a) To have a large E0,
we need to focus the laser to a small spot w0, but w0 should not be
chosen too small. A small w0 means the laser has a short Rayleigh
length (see Eq.(5.69))

ZR =
ωw2

0

2c
=
πw2

0

λ0
(5.61)

where λ0 is the laser wavelength, thus a short length to interact with
the particle, (b) Making Bs large helps. (c) Fulfill the resonance con-
dition α = 1. (d) Operate in the asymptotic regime (5.57). (e) The
cyclotron radius must stay inside the laser throughout acceleration.

5.6 Focussed laser

So far we have dealt with plane wave laser. One may also consider acceleration
with a focussed laser. In free space, the wave equation for the laser is

∇2( �E, �B) + k2( �E, �B) = �0 (5.62)

where k = ω/c. All field components are assumed to behave as e−iωt.
Let u be any component of �E or �B. Let

u = ψ(x, y, z)eikz (5.63)

where ψ is a slowly varying function in z. Substituting into the wave equation
(5.62), and dropping second derivative on z, we obtain

∂2ψ

∂x2
+
∂2ψ

∂y2
+ 2ik

∂ψ

∂z
≈ 0 (5.64)
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This is called the paraxial ray approximation.26

Equation (5.64) has the solution

ψmn(x, y, z) = Hm

(√
2
x

w(z)

)
Hn

(√
2
y

w(z)

)
w0

w(z)

× exp
[
−i(m+ n+ 1) tan−1 2z

kw2
0

]

× exp
[
ik

2R(z)
(x2 + y2) − x

2 + y2

w2(z)

]
(5.65)

where m and n are mode numbers of the solution, Hm,n(x) are the Hermite
polynomials, and

R(z) = z

[
1 +
(
kw2

0

2z

)2
]

w2(z) = w2
0

[
1 +
(

2z
kw2

0

)2
]

(5.66)

Exercise 16 Show by direct back-substitution that Eqs.(5.65-5.66)
satisfies Eq.(5.64).
Reminder Hermite polynomials satisfy

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0 (5.67)

We will mostly be interested in the fundamental mode m = n = 0 and the
mode m = 1, n = 0. Note that the higher modes are related to the fundamental
mode by

ψmn(x, y, z) = ψ00(x, y, z) ×Hm
(√

2
x

w(z)

)
Hn

(√
2
y

w(z)

)

× exp
[
−i(m+ n) tan−1 2z

kw2
0

]
(5.68)

One sees that most of the z-dependence is the same for all modes. The quantity
R(z) is the radius of curvature of the laser wavefront at z. If the laser mode
is to be established in a resonator consisting of two perfectly reflecting mirrors,
then the laser resonator mirror at location z will need to conform to R(z). At
the focus z = 0, we have R = ∞, indicating the wavefront is a plane, and if one
chooses to located one of the mirrors there, this mirror will have to be planar.
The quantity w(z) is the transverse laser beam size at location z, while w0 is
the waist size of the beam at the focus.

26If we replace z by t, Eq.(5.64) is almost identical to the 2-D Schrödinger equation.
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The Rayleigh length ZR is the distance from the focal point when the laser
beam size is equal to

√
2w0. The diffraction angle θd is the subtending angle

made by w(z) toward the focal point, as illustrated in Fig.5.4, and

ZR =
kw2

0

2
, θd =

w0

ZR
=

2
kw0

(5.69)

Note that 2/kw0 is also the characteristic angle of the diffraction pattern formed
by an opague screen with a round aperture of size ∼ w0.

Figure 5.4: Pattern of the envelope of a laser mode.

Validity of the paraxial ray approximation, Eq.(5.64), relies on the assump-
tion that ψmn does not vary much along z-direction in a distance 1/k = λ/2π.
An inspection of Eqs.(5.65) and (5.66) indicates that ψmn varies in a charac-
teristic distance of ZR. Validity of the paraxial ray approximation therefore
requires

ZR � 1
k
, or RZ � wavelength λ (5.70)

which in turn requires

kw0 � 1, or w0 � wavelength λ, or θd � 1 (5.71)

For what follows, we will consider a linearly polarized mode with

Ex = Ex0 ψmn eikz−iωt, Ey = 0 (5.72)

Maxwell equation ∇ · �E = 0 then relates the longitudinal component Ez to the
transverse components,

Ez ≈
i

k
∇⊥ · �E⊥ =

i

k

∂Ex
∂x

(5.73)
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Once �E is obtained, �B can be obtained using �B = − i
ω∇× �E. This yields

Bx = − i
ω

∂Ez
∂y

By = − i
ω

(
∂Ex
∂z

− ∂Ez
∂x

)
≈ Ex
c

+
i

ω

∂Ez
∂x

Bz =
i

ω

∂Ex
∂y

(5.74)

Exercise 17 Show that Bz = i
k∇⊥ · �B⊥ (a consequence of ∇· �B = 0)

is satisfied by Eq.(5.74).

With ψmn given by Eq.(5.65), we have, using Eqs.(5.72-5.74),


Ex
Ey
Ez
cBx
cBy
cBz




= Ex0 e
ikz−iωt w0

w(z)
exp
[
−i(m+n+1) tan−1 2z

kw2
0

+ i
kQ

2
(x2+y2)

]

×




HmHn
0

i
√

2
kwH

′
mHn −QxHmHn

2
k2w2H

′
mH

′
n + i

√
2Q
kw (xHmH ′

n + yH ′
mHn) − xyQ2HmHn

− 2
k2w2H

′′
mHn − 2

√
2iQ
kw xH ′

mHn + (Q2x2 − iQ
k + 1)HmHn

i
√

2
kw HmH

′
n −QyHmHn




(5.75)

where
Q =

1
R

+
2i
kw2

=
2

2z − ikw2
0

(5.76)

and all the Hm and the Hn functions are taken at
√

2x/w(z) and
√

2y/w(z)
respectively.

Exercise 18 It maybe instructive to compute the energy flux P car-
ried by the laser. Form the Poynting vector Sz = c

8πExBy on the
plane z = 0. Integrate Sz(z = 0) over x- and y-plane.
Solution Using kw0 � 1, one finds

P =
c

8π
E2
x0

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−2(x2+y2)/w2

0H2
m(

√
2x
w0

)H2
n(

√
2y
w0

)

=
c

16
E2
x0w

2
0

{
1, fundamental mode
2, m = 1, n = 0 mode (5.77)
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The Hermite polynomials are H0(x) = 1, H1(x) = 2x,H2(x) = 4x2 − 2.
Equation (5.75) have the special cases:
m = 0, n = 0




Ex
Ey
Ez
cBx
cBy
cBz




=Ex0eikz−iωt
(

1
1+i 2z

kw2
0

)
exp
[
i
kQ

2
(x2+y2)

]



1
0

−Qx
−xyQ2

Q2x2− iQ
k +1

−Qy




(5.78)

m = 1, n = 0




Ex
Ey
Ez
cBx
cBy
cBz




= Ex0 e
ikz−iωt

(
1 − i 2z

kw2
0

1 + i 2z
kw2

0

)
exp
[
ikQ2 (x2 + y2)

]
√

1 +
(

2z
kw2

0

)2

×




2
√

2
w x
0

i2
√

2
kw − 2

√
2Q
w x2

i 2
√

2Q
kw y − 2

√
2Q2

w x2y

− 4
√

2iQ
kw x+ (Q2x2 − iQ

k + 1) 2
√

2
w x

− 2
√

2Q
w xy




(5.79)

From Eqs.(5.78) anmd (5.79), one notes that the transverse component of
the laser electric field is larger than the longitudinal component by a factor kw0,
which is typically � 1.

Let us consider a laser mode established in free space with mirrors at z =
±∞. Consider an electron with charge e and moving in the z-direction with a
rigid path x = x0, y = y0, z = z0 + vt. The energy gain by this electron due to
the laser field is given by

∆E =
∫ ∞

−∞
dz eEz(x = x0, y = y0, z, t = (z − z0)/v) (5.80)

For the fundamental mode, Eq.(5.78) then gives

∆E = −eEx0
2ix0

kw2
0

eikz0c/v
∫ ∞

−∞
dz eikz(1−

c
v ) 1(

1+i 2z
kw2

0

)2 exp


− x2

0+y20
w2

0

(
1+i 2z

kw2
0

)



= −ieEx0x0e
ikz0c/v

∫ ∞

−∞
dξ

eiAξ

(1 + iξ)2
exp
(
− B

1 + iξ

)
(5.81)
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where we have made a change of variables from z to ξ = 2z/kw2
0, and defined

A = (1 − c

v
)
k2w2

0

2
, B =

x2
0 + y20
w2

0

(5.82)

Physically, ξ = z/ZR, which is natural because z is conveniently measured in
units of ZR.

We need to evaluate the last integral in Eq.(5.81). In particular, we are
interested in the acceleration of a relativistic particle by setting v = c, i.e.
A = 0. One first notes that the Lawson-Woodward theorem asserts that the
integral vanishes when v = c. Indeed when A = 0, the integral in Eq.(5.81) can
be easily shown to vanish. To first order in laser field, there is no net energy gain
for a relativistic particle traversing a laser field in free space. This is regardless
of the value of B, i.e. regardless of where the electron is injected.

To accelerate a relativistic particle, one way is to use the fundamental mode
but only in the region z > 0. This can be provided by a laser resonator estab-
lished between a planar mirror at z = 0 and another mirror at z = ∞. The
existence of the planar mirror means it is no longer acceleration in free space.
In particular, one has to worry about the break down limit at the mirror. See
Fig.5.5 for an illustration of the arrangement. The integration (5.81) would then
be replaced by an integration from ξ = 0 to ξ = ∞, yielding, when A = 0,

∆E = −eEx0 x0 e
ikz0

1
B

(1 − e−B) (5.83)

Figure 5.5: An acceleration scheme using a laser resonator.

At this point, we will choose the injection location x0 and y0 to maximize
the energy gain in Eq.(5.83). We write ∆E ∝ F (x0/w0, y0/w0), where F (x, y) =
x(1 − e−x2−y2

)/(x2 + y2) is shown in Fig.5.6. Maximum of F (x, y) occurs at
x = x0/w0 = 1.12, y = y0/w0 = 0, and the maximum value is Fmax = 0.64. The
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Figure 5.6: Function F (x, y) versus x for y = 0, 1, 2, 3.

energy gain of the electron therefore has a magnitude of ∆Emax = 0.64 eEx0w0,
and it oscillates with the injection phase relative to the laser.27

This acceleration scheme, however, is limited by the breakdown of the mirror
at z = 0. The maximum electric field at the mirror occurs at x = y = 0, and is
given by Ex = Ex0. This means Ex0 must not exceed the breakdown voltage,
which is much smaller than the available laser field. In this sense, Lawson-
Woodward theorem applies again.

Exercise 19 Choose the injection location x0, y0 and the mirror lo-
cations z1, z2 to maximize the energy gain. This maybe done first
with a fixed Ex0. It is then to be repeated by fixing the breakdown
voltage of the mirror.
Solution Use the result

∆E = ieEx0 x0 e
ikz0

1
B

[
exp
(
− B

1+iξ2

)
−exp

(
− B

1+iξ1

)]
(5.84)

where ξ1,2 = 2z1,2/kw2
0.

Exercise 20 One may try to accelerate using the x-component of
the electric field in a laser fundamental mode. Consider an electron
moving in the x-direction following the path x = x0 + ct, y = y0, z =
z0. Find the energy gain by this electron traversing the laser from
x = −∞ to ∞.

27One might be tempted to focus the laser weakly to increase w0 in order to increase ∆Emax.
This however lowers Ex0 for a given laser power. In fact, for a given laser power, ∆Emax is
basically independent of the setup of the laser focus. See the discussion at the end of section
7.
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Solution

∆E =
√
πeEx0w0√
1 + iξ0

exp
[
ik(x0 +

z0
2

) − k
2w2

0

4
− (y0/w0)2

1 + iξ0

]
(5.85)

where ξ0 = 2z0/kw2
0. This energy gain is nonzero, but is reduced

from eEx0w0 by a factor � 1. For example, with z0 = y0 = 0, this
reduction factor is

√
2e−k

2w2
0/4 =

√
2e−1/θ2d .

Exercise 21 One may try to accelerate using the m = 1, n = 0
mode. Find an expression of energy gain using Eqs.(5.79) and (5.80).
Assume the two mirrors are at z1, z2 and v = c.
Solution

∆E = i
√

2eEx0w0e
ikz0

∫ ξ2

ξ1

dξ
exp
(
− B

1+iξ

)
(1+iξ)2

[
1− 2x2

0

w2
0(1+iξ)

]

=
√

2eEx0w0e
ikz0

×
{

1
B

(
y20 − x2

0

y20 + x2
0

)[
exp
(
− B

1 + iξ2

)
− exp

(
− B

1 + iξ1

)]

− 2x2
0

y20 + x2
0


exp

(
− B

1+iξ2

)
1 + iξ2

−
exp
(
− B

1+iξ1

)
1 + iξ1




 (5.86)

This energy gain vanishes if the mirrors are located at z = ±∞, as
dictated by the Lawson-Woodward theorem. When z1 = 0, z2 = ∞,
it reduces to

∆E =
√

2eEx0w0e
ikz0

{
e−B+

x2
0−y20
x2

0+y20

[
e−B− 1

B
(1−e−B)

]}
(5.87)

One then may optimize the energy gain by choosing x0 and y0.
Maximum value of the expression in the curly brackets is 1, which
occurs at x0 = y0 = 0.

5.7 Two crossing lasers

Equation (5.80) assumes the accelerated electron follows a rigid path in the z
direction. One might ask what happens if the particle moves at an angle to
the z-axis so that one can take advantage of the larger transverse electric field
component.

Instead of analyzing this problem, however, a somewhat better arrangement
is to use two lasers, crossing at their focal points an angles ±θ in the x-z plane.
Let both lasers be in the fundamentalm = 0, n = 0 mode, and let them have the
complex amplitudes Ex1 and Ex2. The electron to be accelerated is considered
to follow the rigid path along the z-axis, namely x = y = 0, z = z0 + vt. The
geometry is illustrated in Fig.5.7.
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Figure 5.7: Two crossing lasers as an acceleration scheme. Two qualitatively
different cases are shown.

Depending on whether θ > θd or θ < θd, one would have the two cases shown
in Fig.5.7, where θd is the diffraction angle given by Eq.(5.69). When θ > θd,
the two lasers are separated quickly and the region of electron-laser interaction
is limited. When θ < θd, the region of interaction will be long.

Consider Laser 1 in Fig.5.7. Its x- and z-components of �E are given by
Ex = Ex′ cos θ+Ez′ sin θ and Ez = −Ex′ sin θ+Ez′ cos θ, where Ex′ and Ez′ are
given by Eq.(5.79) with the substitutions Ex0 → Ex1, x→ x cos θ − z sin θ, z →
x sin θ + z cos θ. Similarly for Laser 2, we have Ex = Ex′ cos θ − Ez′ sin θ and
Ez = Ex′ sin θ + Ez′ cos θ, where Ex′ and Ez′ are given by Eq.(5.79) with the
substitutions Ex0 → Ex2, x→ x cos θ + z sin θ, z → −x sin θ + z cos θ.

These two laser fields are to be added by superposition to give the total field.
For an electron on the z-axis, we set x = y = 0. It sees a total electric field

[
Ex
Ez

]
= eikz cos θ−iωt

exp
(
ikQ2 z

2 sin2 θ
)

1 + i 2z cos θ
kw2

0

{
Ex1

[
cos θ sin θ
− sin θ cos θ

] [
1

Qz sin θ

]

+Ex2

[
cos θ − sin θ
sin θ cos θ

] [
1

−Qz sin θ

]}
(5.88)

115



where Q = 2/(2z cos θ − ikw2
0), w = w0

√
1 +
(

2z cos θ
kw2

0

)2

. If we now choose

Ex2 = −Ex1, i.e. the two lasers have the same amplitude and are exactly out
of phase, then the x-components of the two lasers cancel each other along the
z-axis, while their z-components add, yielding

[
Ex
Ez

]
=2Ex1eikz cos θ−iωt

exp
(
ikQ2 z

2 sin2 θ
)

1 + i 2z cos θ
kw2

0

[
0

− sin θ+Qz sin θ cos θ

]
(5.89)

Seen by an ultrarelativistic electron with z = z0 + ct, the accelerating field,
written in terms of the familiar variables ξ = 2z/kw2

0 and θd = 2/kw0, is

Ez = −2Ex1 sin θ eikz0
exp
[
−i(1−cos θ)(2−iξ+iξ cos θ)ξ

θ2
d
(1+iξ cos θ)

]
(1 + iξ cos θ)2

≈ −2Ex1θ eikz0
exp
[
−i θ2ξ

θ2
d
(1+iξ)

]
(1 + iξ)2

(5.90)

where the last step is taking θ � 1.
The accelerating electric field seen by the electron is plotted in Fig.5.8 for

three values of θ/θd. For each value of θ/θd, the plot contains the electric
fields seen by four electrons with kz0 = 0, π/2, π, and 3π/2. For each electron,
one observes the oscillatory nature of the accelerating field, yielding no total
net acceleration if integrated from −∞ to ∞. One also observes that as θ/θd
increases, the range of particle-laser interaction shrinks, as illustrated in Fig.5.7,
while the peak acceleration rate increases. There is of course no acceleration
when θ/θd = 0.

Energy gain of the electron from z1 to z2 is obtained by integrating Eq.(5.90),

∆E =
kw2

0

2

∫ ξ2

ξ1

eEz dξ = −2ieEx1w0e
ikz0

(
θd
θ

)[
e

−iθ2ξ2
θ2

d
(1+iξ2) − e

−iθ2ξ1
θ2

d
(1+iξ1)

]

(5.91)
When z1,2 = ±∞, we find ∆E = 0. When z1 = 0, z2 = ∞, we have ∆E =
−2ieEx1w0e

ikz0F (θ/θd, 0), where F (x, y) is the function shown in Fig.5.6. Its
maximum occurs at θ/θd = 1.12 with the maximal value of 0.64.

Exercise 22 repeat the analysis for two crossing lasers of mode m =
1, n = 0.
Solution

[
Ex
Ez

]
= eikz cos θ−iωt

(
1 − i 2z cos θ

kw2
0

1 + i 2z cos θ
kw2

0

)
exp
(
ikQ2 z

2 sin2 θ
)

√
1 +
(

2z cos θ
kw2

0

)2
(5.92)

×
{
Ex1

[
cos θ sin θ
− sin θ cos θ

][
− 2

√
2

w z sin θ
i2

√
2

kw − 2
√

2Q
w z2 sin2 θ

]
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Figure 5.8: Accelerating electric field seen by an electron with various values of
θ/θd and kz0. The accelerating field has been normalized by 2Ex1θd.

+Ex2

[
cos θ − sin θ
sin θ cos θ

][
2
√

2
w z sin θ

i2
√

2
kw − 2

√
2Q
w z2 sin2 θ

]}

Choose Ex2 = Ex1, then the x-components of the two lasers cancel
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each other along the z-axis, while their z-components add. Seen by
an ultrarelativistic electron with z = z0 + ct, the accelerating field is

Ez ≈ i
4
√

2Ex1
kw0

eikz0
exp
[
−i θ2ξ

θ2
d
(1+iξ)

]
(1 + iξ)2

(5.93)

This magnitude is smaller than that with two lasers in the funda-
mental mode by a factor of 2

√
2/kw0.

The following table summarizes the various accelerator configurations using
focussed lasers discussed so far.

configuration Max. energy gain Optimization
fundamental mode, 0.64 eEx0w0 x0 = 1.12w0, y0 = 0,
from z = 0 to ∞ Ex0 < breakdown
m = 1, n = 0 mode,

√
2 eEx0w0 x0 = y0 = 0

from z = 0 to ∞
fundamental mode,
transversely traversing

√
2e−1/θ2d eEx0w0 y0 = z0 = 0

the focal point
two crossing lasers, 1.28 eEx1w0 θ = 1.12 θd,
fundamental mode Ex1 = −Ex2
two crossing lasers,

√
2θd × 1.28 eEx1w0 θ = 1.12 θd,

m = 1, n = 0 mode Ex1 = Ex2

In all cases, the best one can do is an energy gain ∼ eEx0w0. This quan-
tity can then be related to the laser power P using Eq.(5.77), and one gets
eEx0w0[MeV] ≈ 22

√
P [TW] for the fundamental mode and 16

√
P [TW] for

the m = 1, n = 0 mode. For a 10 TW laser, the energy gain is ∼70 MeV for the
fundamental mode and ∼50 MeV for the m = 1, n = 0 mode.

Lawson-Woodward theorem applies to these cases. The length over which
the laser acts on the particle ∼ ZR. The energy gain ∼ eE0w0. Therefore the
acceleration gradient ∼ eE0w0/ZR = eE0θd � eE0.
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6 Spin Dynamics and Siberian Snakes

The motion of spin in an accelerator is of special interest for beam dynamics.
The spin can be considered the fourth dimension of the phase space. In addition
to the 6 orbital variables (x, x′, y, y′, z, δ), we then add two more variables for
the spin. The only difference is that the dynamics of the spin variables depend
sensitively on the orbital variables, but the orbital variables do not depend (to
first order in h̄) on the spin variables.

6.1 Thomas-BMT Equation

Spin of a particle interacts with an EM field through the magnetic moment
associated with the spin. Let �S be the spin represented as a 3-D vector. The
associated magnetic moment is

�µ =
ge

2mc
h̄�S (6.1)

where g is the gyromagnetic ratio. For a Dirac particle, g is nominally equal to
2. The deviation of g from 2, attributed to an “anomolous” magnetic moment
of the particle, is specified by the parameter

a =
g − 2

2
(6.2)

For electrons and muons, the value of a is approximately equal to the fine
structure constant 1/137 divided by 2π. More accurately,

a =

{ 0.001160, electron
0.001166, muon
1.7928, proton

(6.3)

As we shall see, the fact that g is not exactly equal to 2, i.e. the fact that a �= 0,
gives rise to all the complications of spin dynamics. Had a = 0 been true, the
spin will often rotate rigidly with the coordinate system, and spin dynamics
would have been much simpler (but much more boring).

Consider a particle at rest in a magnetic field �B. The precession equation
of motion for the spin is

d�S

dt
= �Ω × �S (6.4)

with the precession angular velocity

�Ω = − ge

2mc
�B (6.5)

Equations (6.4-6.5) describe the precession for a stationary particle, but we
need an equation for a relativistic particle moving in an EM field �E and �B in an
accelerator. Let c�β be the instantaneous velocity of the particle; it is obvious
that we need to make a Lorentz transformation to the particle’s rest frame.
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When doing so, the form of the spin precession equation remains to be (6.4);
only �Ω needs to be transformed. Note that we are not Lorentz transforming �S,
so in the final equation, �S will be a quantity in the particle’s rest frame, while
all other quantities, t, �E, �B, �β refer to the laboratory frame. This is one of the
peculiarities of the Thomas-BMT equation. It is not formally Lorentz covariant.
A covariant description of spin motion of course does exist, but we don’t need
it here.

The magnetic field in the rest frame is given by a Lorentz transformation
from the laboratory frame,

�BR = γ �B⊥ + �B‖ − γ�β × �E (6.6)

with �B⊥ and �B‖ the components of �B perpendicular and parallel to �β respec-
tively. The angular velocity �Ω in the laboratory frame consists of two terms.
The first term is

− 1
γ

ge

2mc
�BR (6.7)

where �BR is given by Eq.(6.6), and we have included a factor of 1/γ to take
care of the time dilation. The second term is more subtle; it is due to Thomas
precession which contributes an additional term to angular velocity when the
particle is accelerated sideways,

−γ − 1
β2

�β × �̇β = − eγ

mc(γ + 1)
(�β × �E − β2 �B⊥) (6.8)

The origin of Thomas precession is relativistic kinematics. Two successive
Lorentz transformations along �β1 and �β2 can be combined into one single Lorentz
transformation only if �β1 ‖ �β2. Otherwise, they can be combined into a Lorentz
transformation plus a rotation. This additional rotation needed here is the
origin of the Thomas precesson.

Adding the two contributions (6.7) and (6.8), we obtain

�Ω = − e

mc

[(
a +

1
γ

)
�B − aγ

γ + 1
�β(�β · �B) −

(
a +

1
γ + 1

)
�β × �E

]
(6.9)

which, when substituted into (6.4), is called the Thomas-BMT equation, where
BMT stands for Bargman, Michel, and Telegdi (1959).

6.2 Spin Dynamics

To describe the spin motion in a circular accelerator, it is more convenient to
change the time variable t to the distance variable s = βct. In an accelerator, the
electric and magnetic fields seen by a particle depend on the particle’s orbital
coordinates (x, y, z). A particle on the ideal design orbit, however, sees only
the bending magnetic field and the accelerating electric field. The accelerating
electric field does not contribute to spin precession according to (6.9) because
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it is parallel to the velocity �β. The bending magnetic field �B = B0(s)ŷ with
B0(s + 2πR) = B0(s), on the other hand, does give rise to a precession,

d�S

ds
= −eB0(s)

mc2

(
a +

1
γ

)
ŷ × �S (6.10)

With the precession axis along ŷ, the y-component of the spin Sy is preserved.
The spin rotation going through a single bending magnet is sketched in Fig.6.1.

Figure 6.1: Spin rotation going through a single bending magnet.

If we adopt the coordinate system (x̂, ŷ, ẑ) that rotates with the trajectory
of the ideal particle, then relative to this rotating frame, the spin components
Sx and Sz rotate with the angular speed aγeB0/E which is aγ times the speed
at which the coordinate system rotates. As the particle completes one turn,
the coordinate system rotates by 2π and the spin of the ideal particle precesses
around ŷ by an angle aγ2π relative to the coordinate system. In analogy to the
definition of orbital tunes νx, νy, νs, we define a spin tune

νspin = aγ =




E/(0.44065 GeV), electron
E/(90.62 GeV), muon
E/(0.5242 GeV), proton

(6.11)

We next consider a non-ideal particle executing some betatron motion. It
sees a magnetic field

�B = G(s)(xŷ + yx̂) + B0(s)ŷ (6.12)

where G(s) is the quadrupole field. We ignore the electric fields in the following
because their contribution is small. Substituting into Eq.(6.9) yields

�Ω ≈ − e

mc

[
(a +

1
γ

)B0(s)ŷ + (a +
1
γ

)G(s)(yx̂ + xŷ) − aγ

γ + 1
y′B0(s)ẑ

]
(6.13)

where we have used �β ≈ ẑ + x′x̂+ y′ŷ and kept terms only up to linear order in
x and y.
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Equations (6.4) and (6.13) describe the spin motion. We rewrite them as

d

dθ
�S = �h× �S (6.14)

where the “time” variable is

θ ≡
∫ s

0

ds′

ρ(s′)
= accumulated bending angle (6.15)

and the “angular velocity vector” is

�h = hxx̂ + hy ŷ + hz ẑ

hx =
ρΩx

c
= − e

mc2
(a +

1
γ

)ρGy

hy = (
ρΩy

c
+ 1) = −aγ +

e

mc2
(a +

1
γ

)ρGx

hz =
ρΩz

c
=

aγ2

γ + 1
y′ (6.16)

Among all the terms in hx,y,z, the leading term is the −aγ term in hy. It
is the spin precession seen by the ideal particle. All other terms contain x or
y, and are seen only by particles deviating from the ideal trajectory. The fact
that the reference frame is rotating explains the extra term 1 in 1 + ρΩy

c in the
definition of hy,

dx̂

ds
=

1
ρ
ẑ,

dŷ

ds
= 0,

dẑ

ds
= −1

ρ
x̂ (6.17)

Exercise 1 We have been ignoring �E because most likely �E is in the
longitudinal direction, and is approximately parallel to �β, which in
turn means it does not contribute much to spin precession according
to Eq.(6.9). However, if we use a transverse �E, e.g. electrostatic
beam separators, or electrostatic lenses, then we must take into ac-
count of its effect. 9a) Show that the reference frame rotation in this
case is given by

�Ω = − e

mc

(
�B

γ
− γ

γ2 − 1
�β × �E

)

(b) Show that there is a magic energy given by

γ =

√
1 +

1
a

when even a transverse �E does not contribute to spin precession.
For muons, this magic energy is 3.1 GeV. One can use electrostatic
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lenses instead of quadrupole magnets for such a muon storage ring.
It allows precise measurement of the muon g−2 value.

Exercise 2 We assumed there were no solenoids. Show that the spin
precession going through a solenoid �B = Bsẑ is a rotation around ẑ
by an angle

− eBs 

mc2γ
(1 + a) = − Bs 

(Bρ)
(1 + a)

Exercise 3 It may be useful to have a device which rotates the spin
without affecting the particle trajectory. One such device is solenoid
�B = Bsẑ. Another consists of transverse �E and �B with �E = −βẑ ×
�B, where we have assumed the nominal direction of beam motion
is along ẑ. Show that the beam trajectory is unperturbed, while its
spin precession is given by

�Ω = − eg

2mcγ2
�B

6.3 Spinor Algebra

To study spin dynamics, one can use Eq.(6.14) to describe the evolution of the
three vector components Sx,y,z. Alternatively, one can also use a spinor algebra
language borrowed from quantum mechanics. One first introduces the Pauli
matrices,28

σx =
[

0 −i
i 0

]
, σy =

[
1 0
0 −1

]
, σz =

[
0 1
1 0

]
(6.18)

It is straightforward to show that

σ†
i = σi, i.e. σi is Hermitian

σ†
iσi = σ2

i = I, i.e. σi is unitary
�σ† · �σ = 3I

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy

σiσj = δijI + i
∑
k

εijkσk

�σ × �σ = 2i�σ
det(σi) = −1

det(�σ · �a) = −|�a|2

(�σ · �a)2 = |�a|2I
(�σ · �a)(�σ ·�b) = (�a ·�b)I + i�σ · (�a×�b)

28We made a cyclic permutation of the usual convention. This permutated definition is
more natural for us because we have ŷ, instead of the conventional ẑ, as the rotation axis, at
least for the ideal particle.
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(�σ · �a) and (�σ ·�b)
{

commute, if �a ‖ �b

anticommute, if �a⊥�b

tr(σi) = 0
tr(�σ(�σ · �a)) = tr((�σ · �a)�σ) = 2�a

�σ(�σ · �a) = �a− i�σ × �a

(�σ · �a)�σ − �σ(�σ · �a) = 2i�σ × �a

(�σ · �a)(�σ ·�b) − (�σ ·�b)(�σ · �a) = 2i�σ · (�a×�b) (6.19)

In addition, in preparation for the next section, we mention an elegant for-
mula,

e−
i
2�σ·�φ = I cos

φ

2
− i(�σ · φ̂) sin

φ

2
(6.20)

The LHS of Eq.(6.20), as we will see, is a spinor representation (a map) of
a rotation around φ̂ with an angle φ. This map can be expanded by using
Eq.(6.20).

Sometimes one has obtained the spinor map M of a rotation in its complex
2×2 form, and wants to find the rotation angle and rotation axis. The question
is then what is �φ so that we can express M in the form e−i�σ·

�φ/2. Equation
(6.20) can be inverted for that purpose, and the answer is

cos
φ

2
=

1
2
tr(M)

φ̂ =
i

2 sin φ
2

tr(M�σ) (6.21)

Exercise 4 Show Eq.(6.19) as a good entry practice.

Exercise 5 (a) Prove Eqs.(6.20-6.21). (b) Show that

cos(�σ · �φ) = I cosφ, sin(�σ · �φ) = (�σ · φ̂) sinφ

Solution (a) Taylor expand e−
i
2�σ·�φ =

∑∞
k=0

1
k! (− i

2�σ · �φ)k and then
apply Eq.(6.19) to the terms in the expansion. (b) Use cos(�σ · �φ) =
[ei�σ·�φ + e−i�σ·

�φ]/2 and sin(�σ · �φ) = [ei�σ·�φ − e−i�σ·
�φ]/2i

Exercise 6 Show that

e−
i
2�σ·�φ(�σ · �a) = (�σ · �a⊥)e

i
2�σ·�φ + (�σ · �a‖)e−

i
2�σ·�φ

(�σ · �a)e−
i
2�σ·�φ = e

i
2�σ·�φ(�σ · �a⊥) + e−

i
2�σ·�φ(�σ · �a‖) (6.22)

where �a = �a‖ + �a⊥ with �a‖ = (�a · φ̂)φ̂ and �a⊥ = (φ̂× �a) × φ̂.
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6.4 Spin Dynamics Using Spinor Algebra

In the spinor algebra language, the spin is represented by a complex 2-component
vector ψ, with

�S = ψ†�σψ (6.23)

Spin dynamics is then described by the time evolution of ψ,

dψ

dθ
= − i

2
(�h · �σ)ψ (6.24)

Indeed, one can show using the properties (6.19) that Eq.(6.14) follows from
Eqs.(6.23-6.24).

Exercise 7 (a) Show that Eq.(6.14) follows from Eqs.(6.23-6.24). (b)
Show that the scalar quantity ψ†ψ is conserved. (c) Use Eqs.(6.23-
6.24) to show that the magnitude of �S is conserved.

Exercise 8 Consider a particle that enters a region with dipole mag-
netic field �B = B0ŷ with an initial spin �S(0). Compute the spin at
the exit of the magnet �S(L) using spinor algebra.

Exercise 9 Repeat Exercise 8 for a quadrupole magnet with �B =
Gxx̂. Consider the case when the particle enters the quadrupole
with x0 (Let y0 = 0, x′

0 = y′0 = 0).

If �h is a constant, i.e. independent of θ, Eq.(6.24) has the solution

ψ(θ) = e−
i
2�σ·�hθψ(0) (6.25)

Since �h is the angular velocity, the map in Eq.(6.25) is the spinor representation
of a spin rotation by an angle of �φ = �hθ.

It might be curious to note that when φ = 2π, meaning a rotation for a
full turn, the rotation map is not equal to I, but equal to −I, as can be seen
by Eq.(6.20). This is not a problem because the spin, given by Eq.(6.23), is
quadratic in ψ.

In general, �h is not a constant but depends on θ. To study the spin dynamics
in this general case, we need to examine the quantity

�h · �σ =
[

hy hz − ihx
hz + ihx −hy

]

=

[
−aγ + e

mc2 (a + 1
γ )ρGx aγ2

γ+1y
′ + i e

mc2 (a + 1
γ )ρGy

aγ2

γ+1y
′ − i e

mc2 (a + 1
γ )ρGy aγ − e

mc2 (a + 1
γ )ρGx

]
(6.26)

which appears prominently in Eq.(6.24). We note that the leading terms are
the ±aγ terms in the diagonal elements. These are constants, independent of θ.
The dominating spin motion is therefore a constant precession around ŷ with
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spin tune of aγ (see Exercise 10). The remaining terms depend linearly on x
and y. This means they have a θ dependence of{

e±iνx,yθ+iKθ, for x, y due to betatron oscillations
eiKθ, for x, y due to closed orbit distortions

(6.27)

where K is any integer. These terms contribute to perturbations to the spin
motion, and the perturbation tunes are K±νx,y and K. One expects a resonance
to occur when one of these perturbation tunes hit the unperturbed tune, i.e.
when

aγ =
{

K ± νx,y, for x, y due to betatron oscillations
K, for x, y due to closed orbit distortions (6.28)

Exercise 10 In the absence of perturbation, solve the spinor equa-
tion

dψ

dθ
=
[
−aγ 0

0 aγ

]
ψ

Show that it describes a spin motion uniformly precessing around ŷ
with spin tune aγ.

Why do we care about these resonances? When a beam is injected into an
accelerator, we align its spin along ŷ. The ideal particle, whose spin motion
is simple precession around ŷ, would keep its spin aligned to ŷ. The hope is
that the spins of the non-ideal particles would not deviate far from ŷ so that
the net polarization of the whole beam does not suffer. In general, this is not
a problem because the perturbations are small. However, when a resonance
occurs, these small perturbations cause large deviations of spin from ŷ and the
beam polarization would be lost. For this reason, resonances (6.28) are called
depolarization resonances. They do not affect particle’s orbital motions.29

A closer examination shows that the perturbation due to x-motion is not
important. An x-motion contributes only to diagonal elements of (6.26) and
thus perturbs only rotations around ŷ. Such perturbations do not worry us; we
only worry about rotations perpendicular to ŷ. This means we can drop the
x-perturbations from Eq.(6.26).

Next we make an approximation that there is one and only one resonance
causing depolarization. Let the depolarization condition (6.28) be written as
aγ = κ. Then one can approximate the off-diagonal elements of (6.26) by
filtering out their κ-th Fourier components.

After making these approximations, we obtain

�h · �σ ≈
[

−aγ εeiκθ

ε∗e−iκθ aγ

]
(6.29)

29Except when Stern-Gerlach effects are included. These however are small effects propor-
tional to h̄, and will be ignored here.
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where

ε =
1
2π

∫ 2π

0

dθ e−iκθ(hz − ihx)

=
1
2π

∫ 2π

0

dθ e−iκθ
[

aγ2

γ + 1
y′ + i

e

mc2
(a +

1
γ

)ρGy

]
(6.30)

where y and y′ refer to the betatron contribution if κ = K ± νy, and refer to
the closed orbit contribution if κ = K. The integrand of Eq.(6.30) is periodic
in θ with period 2π. The important quantity ε is independent of θ, and is the
complex depolarization resonance strength.

How does the spin move near the resonance aγ = κ? Let δ = aγ − κ, and
observe the spin motion in a rotating frame as

ψ1 = e−
i
2κθσyψ (6.31)

Then the evolution of ψ1 involves only a constant map,

dψ1

dθ
= − i

2

[
−δ ε
ε∗ δ

]
ψ1 (6.32)

where use has been made of Eq.(6.22).
The solution to Eq.(6.32) can be decomposed into two eigen-modes,

ψ± = e±iλθ/2


 ε

|ε|

√
λ±δ
2λ

∓
√

λ∓δ
2λ


 , λ =

√
δ2 + |ε|2 (6.33)

The spin of a particle can be decomposed as

ψ1(θ) = C+ψ+ + C−ψ−, |C+|2 + |C−|2 = 1 (6.34)

The spin projection onto the y-axis is

Sy = ψ†σyψ = ψ†
1σyψ1

=
δ

λ
(|C+|2 − |C−|2) +

2|ε|
λ

Re[C+C∗
−eiλθ] (6.35)

If we consider a particle which initially is fully polarized along ŷ, with

ψ(θ = 0) =
[

1
0

]
(6.36)

then we have

C+ =
|ε|
ε

√
λ + δ

2λ
, C− =

|ε|
ε

√
λ− δ

2λ
(6.37)

Substituting into Eq.(6.35) yields the time evolution of the spin of the particle.
In particular, one finds that Sy oscillates between 1 and (δ2 − |ε|2)/(δ2 + |ε|2),

Sy =
δ2 + |ε|2 cosλθ

δ2 + |ε|2 (6.38)
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Figure 6.2: Time evolution of spin (a) exactly on resonance δ/|ε| = 0, (b) near
resonance δ/|ε| = 1, (c) away from resonance δ/|ε| = 3.

Figure 6.2 shows the time evolution of Sy.
If we ask what is the time averaged polarization of this particle, projected

to the ŷ-axis, we obtain

〈Sy〉 =
δ2

δ2 + |ε|2 (6.39)

which is reduced from the initial polarization of Sy = 1.
Away from the resonance, δ → ±∞, we find 〈Sy〉 = 1. The particle is

fully polarized. Close to the resonance, the polarization decreases. Right on
the resonance, we have 〈Sy〉 = 0. The width of the resonance is given by
|aγ − κ| = |ε|. For this reason, |ε| has the meaning of resonance width in tune
units.

The aγ = K resonances are called imperfection resonances. They come from
y-orbit distortion which results from imperfections. By a good (and strategic
– sometimes called harmonic spin matching) orbit correction, these resonances
can be reduced. The aγ = K ± νy resonances are called intrinsic resonances.
They come from betatron amplitudes of the particles. Since the beam intrinsi-
cally has a finite emittance, these resonances can not be avoided by some error
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correction scheme. Note that all particles have the same strength of imperfec-
tion resonances, while the strengths of their intrinsic resonances differ according
to their vertical betatron amplitudes.

6.5 Froissart-Stora Equation

We have assumed the particle energy is fixed in the above analysis. In a syn-
chrotron, the beam energy is being changed during acceleration. As a result,
the spin tune aγ increases with time, and we must consider crossing depolariza-
tion resonances. Let us again consider one and only one resonance, and we are
crossing it with

aγ = κ + αθ (6.40)

The resonance is crossed at time θ = 0, and α is the crossing speed.
We make a transformation

ψ1 = e−
i
2 (κθ+ 1

2αθ
2)σyψ (6.41)

Then the evolution of ψ1 is described by

dψ1

dθ
= − i

2

[
0 εe−

i
2αθ

2

ε∗e
i
2αθ

2
0

]
ψ1 (6.42)

where use has been made of Eq.(6.22).
To solve Eq.(6.42), let

ψ1(θ) =
[
f(θ)
g(θ)

]
, with |f |2 + |g|2 = 1, and |f(∞)| = 1, g(0) = 0 (6.43)

it follows that
d2f

dθ2
+ iαθ

df

dθ
+

|ε|2
4

f = 0 (6.44)

Define x =
√
αθ, and make a transformation

f = e−
i
4x

2
F (6.45)

then
d2F

dx2
+
(

x2

4
− a

)
F = 0, with a =

i

2
− |ε|2

4α
(6.46)

The solutions to Eq.(6.46) are the parabolic cylindrical functions E(a, x) and
E∗(a, x) [5]. With the initial condition |f(−∞)| = 1, the relevant solution is
E(a, x). We are interested in the asymptotic behavior of the function E(a, x),

lim
x→∞

E(a, x) =

√
2
x

exp
(

i

4
x2 − ia lnx + iΦ

)

lim
x→−∞

E(a, x) =

√
2
|x| exp

(
i

4
x2 − ia ln |x| − aπ + iΦ

)

Φ =
π

4
+

1
2
arg Γ(

1
2

+ ia) (6.47)
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Substituting a from Eq.(6.46) into Eq.(6.47), we obtain

f(θ) =
1√
2
e−π|ε|

2/4αE(
i

2
− |ε|2

4α
,
√
αθ) (6.48)

The polarization is given by Sy = |f |2 − |g|2 = 2|f |2 − 1. For θ → −∞, we
have Sy = 1. As the beam is accelerated across the resonance, the polarization
is reduced to

Sy(∞) = 2|f(∞)|2 − 1 = 2e−π|ε|
2/2α − 1 (6.49)

Equation (6.49) was first derived by Froissart and Stora (1960). It says that
if a resonance is weak and/or it is crossed quickly (|ε|2/α � 1), there is no loss
of polarization. When it is strong and/or it is crossed slowly (|ε|2/α � 1), the
polarization is flipped, and there is, somewhat surprisingly, also no loss of po-
larization. Loss of polarization occurs when the crossing speed α is comparable
to |ε|2, and that is to be avoided. Figure 6.3 shows the dependence of Sy(∞)
on |ε|/√α.

Figure 6.3: Froissart-Stora equation.

Exercise 11 It is instructive to ray trace the spin and observe its
behavior as it passes through a resonance. Pay attention to the
behavior when the spin tune is far away from the resonance, and
then when it is close to the resonance.
Hint Be careful with the x2/4 term in Eq.(6.46) or the iαθdf/dθ
term in Eq.(6.44) if one chooses to apply these equations. They give
troubles at |x| → ∞ or |θ| → ∞. In fact, these are the subtleties of
the parabolic cylindrical functions.

Exercise 12 Equation (6.40) assumes the resonance is crossed lin-
early in θ. Generalize it to other ways of crossing. Find the gener-
alization for Eq.(6.44). Subsequent application to specific cases will
most likely involve numerical solution.
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6.6 Siberian Snakes

It takes some effort and some loss of polarization to cross a depolarization
resonance. For a high energy synchrotron, there may be many resonances to
cross. From Eqs.(6.11) and (6.28), we see that there are at least three resonances
to cross for each 0.52 GeV of acceleration (for proton beam). A 1 TeV proton
synchrotron therefore requires crossing about 6000 depolarization resonances.

An ingenious invention to avoid all this was made by Derbenev and Kon-
dratenko (1976), and is dubbed the name “Siberian snake” by Courant.

The idea is to somehow make the spin tune independent of energy. Then
there is no resonance crossing during acceleration. This fixed spin tune is best
chosen to be as far away from the resonances as possible. The best choice is
νspin = K + 1

2 . Siberian snake is a device to do just that.

Siberian snake of type 1
This is a magnet or a set of magnets whose net effect on the spin of a particle

is to rotate the spin by π around the z-axis as it passes through the device.30

The rotation in the rest of the accelerator is a rotation by an angle 2πaγ around
ŷ. The total spin rotation for one turn observed at the entrance of the snake is
therefore

Mtot = e−
i
2�σ·2πaγŷe−

i
2�σ·πẑ = [I cos(πaγ) − iσy sin(πaγ)](−iσz)

= −i[σz cos(πaγ) + σx sin(πaγ)] (6.50)

Equation (6.21) is then used to obtain the net spin precession angle. This
angle by definition is 2πνspin. Thus

cos(πνspin) =
1
2
tr(Mtot) = 0

=⇒ νspin = K +
1
2

(6.51)

The spin tune is thus made energy independent by this simple device!
One can also calculate the spin rotation axis by using Eq.(6.21). It is found

to be
n̂ =

i

2
tr(M�σ) = ẑ cos(πaγ) − x̂ sin(πaγ) (6.52)

The rotation axis depends on the location of observation. The axis n̂ in Eq.(6.52)
refers to the entrance of the snake where M was calculated.

Figure 6.4 shows the spin dynamics of a Siberian snake of type 1. It demon-
strates why the spin tune is 1/2. The spin direction shown in Fig.6.4(c) is also

30There is another device called a spin rotator, which is not to be confused with Siberian
snakes. A Siberian snake rotates the spins of all particles by a specific angle around a specific
axis. The rotation applies to all particles, including those whose spins deviate from the
nominal polarization direction. A spin rotator rotates the nominal polarization from one
specific incoming direction to a specific outgoing direction. This rotation is important only
for the nominal polarization direction. In a spin rotator, how does a deviation from the
nominal direction rotate by the action of the device does not matter. A Siberian snake is thus
a much more intricate device than a spin rotator.
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the spin precession direction n̂ at any location in the accelerator.31 In par-
ticular, it shows that n̂ at the location exactly opposite to the snake must be
longitudinal, n̂ = ẑ. At the entrance to the snake, Fig.6.4 shows n̂ is indeed
given by Eq.(6.52). Note that n̂ has the meaning that if the stored beam has a
net polarization, it must be along ±n̂ because any initial polarization perpen-
dicular to n̂ will smear out to zero as particles precess around n̂ independently
of one another. Note also that the spin tune is independent of the choice of
observation point in the accelerator.

The simplest type 1 snake is a solenoid. The required strength is Bs /(Bρ) =
π/(1−a). This means Bs increases as beam energy increases. A solenoid snake
therefore works only for low energy beams. For protons higher than several GeV,
solenoid snakes become unpractical.

Another type of snake is to use multiple dipole magnets, whose fields are
either along x̂ or along ŷ, in such a way that their net effect is a rotation
around ẑ by an angle π. Compared with solenoid snakes, these snakes have the
disadvantage that they distort the closed orbit of the beam. The advantage,
however, is that their strengths do not increase with beam energy. There are
many practical designs of this type of snakes. We will only mention a couple of
designs later. Suffice it to say here that this snake design works at high energies
because the needed strengths B are independent of beam energy. On the other
hand, they do not work at low energies because the orbit distortion associated
with these transverse bending magnets becomes excessive.

Siberian snake of type 2
If the device rotates the spin by an angle π around the x̂-axis, this is called

Siberian snake of type 2. The total spin rotation observed at the entrance of
the snake is

Mtot = e−
i
2�σ·2πaγŷe−

i
2�σ·πx̂ = −i[σx cos(πaγ) − σz sin(πaγ)] (6.53)

Again one finds νspin = K + 1
2 . The rotation direction at the point exactly

opposite to the snake is n̂ = x̂.

General Siberian snake
Consider a device that rotates the spin by π around any axis φ̂. The total

spin rotation can be found to be

Mtot = −i[(�σ · φ̂) cos(πaγ) − i(ŷ · φ̂)I sin(πaγ) + �σ · (ŷ × φ̂) sin(πaγ)] (6.54)

This device constitutes a Siberian snake (i.e. νspin = K + 1
2 ) if and only if φ̂⊥ŷ,

in which case the middle term on the right hand side of Eq.(6.54) vanishes.

Exercise 13 Find the net polarization direction around the acceler-
ator for the general snake. What is n̂ at the point exactly opposite
to the snake?

31The reason we know Fig.6.4(c) has this distinction, and Figs.6.4(a) and (b) do not, is that
the spin in Fig.6.4(c) repeats itself turn after turn.
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Figure 6.4: Spin motion in a storage ring with Siberian snake of type-1 [2]. (a),
(b) are motion of spin perpendicular to the equilibrium direction, demonstrating
the spin tune is 1/2. (c) shows the equilibrium spin direction. The angle φ =
aγ/2 lies in the x-z plane.
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Solution

n̂(θ) = φ̂ cos[aγ(θ − π)] + ŷ × φ̂ sin[aγ(θ − π)]

where θ = π exactly opposite to the snake.

Exercise 14 A special type of snake design utilizes twisted helical
dipole magnets. Consider a helical dipole with

�B(s) = B0(sin
2πs
λ

, 0, cos
2πs
λ

)

with 0 < s < λ. This magnet constitutes a full twist helical magnet.
Show that the spin map for this magnet is

M = cos
φ

2
− i(σ2 + ξσ3) sin

φ

2
(6.55)

where ξ = (a + 1
γ ) eB0λ

2π and φ = 2π(
√

1 + ξ2 − 1).

Double Siberian snake
With a single Siberian snake in the accelerator, the equilibrium beam polar-

ization is perpendicular to ŷ and executes rapid precession going through the
arcs. This is an undesirable arrangement. For one reason, the polarization is
going to be sensitive to the energy spread of the beam. It is possible to avoid
this by installing two snakes at opposite locations in the accelerator. For exam-
ple, if we have one type-1 snake and one type-2 snake, we have Fig.6.5, and the
equilibrium polarization direction is ŷ in one half of the accelerator and −ŷ in
the other half. The spin rotation of this accelerator is

Mtot = e−
i
2�σ·πaγŷe−

i
2�σ·πẑe−

i
2�σ·πaγŷe−

i
2�σ·πx̂ = −iσy (6.56)

The spin tune is still K + 1
2 .32

Exercise 15 Find the spin tune when the type-1 and the type-2
snakes are not located exactly opposite to each other, but by an arc
with 2πα bending and another arc with 2π(1 − α) bending.

Exercise 16 What if both snakes in the double snake design are of
type-1?

6.7 Partial Siberian Snakes

Sometimes there may not be sufficient space (or budget) to install a full Siberian
snake. In this case, one may consider a partial snake. It rotates the spin by an

32Incidentally, Fig.6.5 serves as an illustration of the difference between a Siberian snake
and a spin rotator. The two snakes in Fig.6.5 are distinctly different as far as Siberain snakes
go, but as spin rotators, they are the same.

134



Snake
Type–1

6–97
8322A30

Snake
Type–2

Figure 6.5: A storage ring with double Siberian snakes.

angle φ where φ < π. Let the rotation axis be φ̂ and consider a single snake in
the accelerator. The spin tune is determined by

cosπνspin = cos(πaγ) cos
φ

2
− (ŷ · φ̂) sin(πaγ) sin

φ

2
(6.57)

If the snake rotation axis φ̂⊥ŷ, we have

cosπνspin = cos(πaγ) cos
φ

2
(6.58)

Figure 6.6 shows the spin tune as a function of aγ. When φ = 0, we have
νspin = aγ. When φ = π, we have a full snake with νspin = K + 1

2 . When φ < π,
we have a partial snake. The spin tune has stopbands around each integer with
a stopband width of

∆νspin = ± φ

2π
(6.59)

It is clear from Fig.6.6 that a partial snake avoid integer (imperfection)
resonances even with a rather modest value of φ because the spin tune will
now never be equal to an integer. A 10% snake for example can help greatly
in avoiding the imperfection resonances. If φ is sufficiently large, the intrinsic
resonances can be avoided as well. A 20% snake for example can be used to
avoid intrinsic resonances for νy (fractional part) up to ±0.1. Solenoids become
a practical partial snake because the needed strength becomes accessible, up to
modestly high energy proton synchrotrons.

Exercise 17 Find the polarization direction with a partial snake.
Solution

n̂ = x̂ sin[(π − θ)aγ] sin
φ

2
+ ŷ sin(πaγ) cos

φ

2
+ ẑ cos[(π−θ)aγ] sin

φ

2
(6.60)
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Figure 6.6: Spin tune νspin as a function of aγ for partial Siberian snakes. The
cases φ = 0, π/3, 2π/3, and π correspond to no snake, 1/3 snake, 2/3 snake, and
full snake, respectively.

6.8 Depolarization Due to Snakes

A snake, whether full or partial, however, has also a depolarization mechanism.
Each time an integer resonance is crossed, there is some loss of polarization.
Even though the spin tune is far away from an integer, the perturbation of a
snake – rotation by as much as π! – is huge. To see this quantitatively, consider
a type-1 snake with rotation around ẑ by an angle φ. Spin precession can be
described by Eq.(6.14) with

�h = −aγŷ + φẑδp(θ) (6.61)

where δp(θ) is the periodic δ-function with period 2π. In spinor language, we
have Eqs.(6.23-6.24) with

�h · �σ =
[

−aγ φδp(θ)
φδp(θ) aγ

]
(6.62)

From Eq.(6.29-6.30), we then find the integer resonance strength

ε =
1
2π

∫ 2π

0

dθe−iKθφδp(θ) =
φ

2π
(6.63)
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We apply the Froissart-Stora equation and find that there is a loss of polarization
each time when aγ crosses an integer during acceleration,

S(∞)
S(−∞)

= 2e−φ
2/8πα − 1 (6.64)

With a full snake, the resonance strength is very large, ε = 1/2, and each
crossing means the spin is flipped. The loss of polarization is very small. When
the snake is partial, this is no longer true, and one has to be careful not to cross
the integer resonances too fast.

Exercise 18 Froissart-Stora equation was derived earlier assuming
the initial polarization is in the ŷ direction. With a type-1 snake, the
initial polarization is no longer along ŷ. Show that the F-S equation
still applies, as we did with Eq.(6.64).

Exercise 19 Equation (6.61) applies when the snake strength is con-
stant. What happens if the snake precession angle is φ sin ν1θδp(θ)
where ν1 is the spin modulation tune? Show that there are reso-
nances at aγ = K ± ν1.

Exercise 20 Consider a snake which is a combination of type-1
and type-2, and whose spin precession angle is time-dependent as
φ(x̂ cos ν1θ− ẑ sin ν1θ)δp(θ). Show that there are resonances at aγ =
K + ν1. What happens to the resonances aγ = K − ν1? What hap-
pens if the snake has precession angle φ(x̂ cos ν1θ + ẑ sin ν1θ)δp(θ)?

6.9 Siberian Snake Designs

A large number of snake designs have been invented. Most of them consist of
alternating horizontal and vertical bending dipoles whose net effect on spin is
as prescribed for a Siberian snake of the type needed, while its net effect on
orbit is made to vanish. We designate a bending magnet by (φ, φ̂) where φ is
the spin precession angle, and φ̂ is the spin precession axis, which is the same
as the magnetic field direction. Then one possible type-1 snake design is

(
π

2
, x̂)(

π

2
,−x̂)(

π

2
, ŷ)(

π

2
,−x̂)(π,−ŷ)(

π

2
, x̂)(

π

2
, ŷ) (6.65)

Figure 6.7 shows the design, where H and V means horizontal and vertical
bending dipoles, and the orbital angle θ is chosen such that the spin precesses
by π/2. The x- and y-trajectories of the beam are shown. For protons, we have

θ =
B 

(Bρ)
=

π

2aγ
, B = 2.747 T−m (6.66)

Note that, as emphasized before and seen in Fig.6.1, the spin precession is
relative to the rotating coordinate system. In absolute space, the spin precesses
by (aγ + 1)θ. Note also that (also mentioned before) the needed snake magnet
strengths are independent of the beam energy.

137



6–97
8322A24

Center
of Snake

H V H V VH

θ

V
–5

3 θ

–4 –3

θθ θ
5
2

– 0 2 4 5

θ

θ2

Figure 6.7: A design of type-1 snake. The middle and the bottom curves are
the vertical and the horizontal orbital excursions. The maximum excursions are
≈ 5 θ/2 horizontally and ≈ 3 θ vertically.

Exercise 21 Show that the design (6.65) constitutes a full type-1
Siberian snake.

The condition of no net orbital effect, however, is not necessary for a Siberian
snake. To save space for accelerator, for example, it may be useful to incorporate
part of the horizontal bends in the snake. We give below one possible type-2
snake design by Derbenev which contains a net horizontal bend. The design
consists of four magnets:

(φ, n̂+)(φ, n̂−)(φ, n̂−)(φ, n̂+)
n̂± = ±x̂ sinα + ŷ cosα (6.67)

These magnets are tilted in the x-y plane by angles ±α as sketched in Fig.6.8.
Their strengths are all the same, precessing the spin by an angle φ. The net
spin rotation is

Mtot = e−
i
2�σ·φn̂+e−

i
2�σ·φn̂−e−

i
2�σ·φn̂−e−

i
2�σ·φn̂+ (6.68)

Let Φ and n̂ be the net precession angle and axis, then Eq.(6.21) gives

n̂ sin
Φ
2

= 2 cosα sinφ

[
−x̂ sin2 φ

2
sin 2α + ŷ

(
cos2

φ

2
− cos 2α sin2 φ

2

)]

cos
Φ
2

= cos2 φ− cos 2α sin2 φ (6.69)
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Figure 6.8: A type-2 snake with net horizontal bending.

To make a full Siberian snake of type 2, we require Φ = π and n̂ = x̂. This
means we must choose α and φ so that

cot2 φ = cot2
φ

2
= cos 2α (6.70)

One solution is
φ =

2π
3

, α =
1
2

cos−1 1
3

= 35◦15′ (6.71)

Exercise 22 Verify Eq.(6.69-6.71).

Exercise 23 In the design of snakes, the following theorem comes
handy sometimes: if the magnet arrangement has a mirror sym-
metry, and if the spin precession axes φ̂i of these magnets are all
perpendicular to some direction k̂, then the axis of the total preces-
sion is also perpendicular to k̂. (a) Prove this theorem. (b) Use this
theorem to explain why design (6.67) cannot be a type-1 snake no
matter how α and φ are chosen.
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7 Symplectic Approximation of Maps

Linear motion in (x, x′, y, y′) can be described by maps in matrix form. For
example, the map for a quadrupole is

M =




cos kL 1
k sin kL 0 0

−k sin kL cos kL 0 0
0 0 cosh kL 1

k sinh kL
0 0 k sinh kL cosh kL


 (7.1)

where k =
√
G/B0ρ.

Often a good approximation can be obtained by letting L→ 0, G/(B0ρ) →
∞, while holding 1/f ≡ GL/(B0ρ) fixed. We then obtain the short-magnet
approximation of Eq.(7.1),

M ≈




1 0 0 0
− 1
f 1 0 0

0 0 1 0
0 0 1

f 1


 (7.2)

In the absence of x-y coupling, the matricesM degenerate into two 2×2 blocks.
One can treat the x and y motions separately by studying their respective 2× 2
blocks.

There is a theorem which says that

det M = 1 (7.3)

This theorem is true whether M is 2 × 2, 4 × 4, or 6 × 6. It is a consequence
of another more powerful theorem of symplecticity condition, and is related
to the conservation of phase space area. For a linear 1-D case with 2 × 2
matrices, the symplecticity condition holds if and only if Eq.(7.3) holds. For
higher dimensions, the symplecticity condition implies Eq.(7.3), but not vice
versa. Note that theorem (7.3) is true in general; it is valid even if the motion
is unstable.

Obviously, Eqs.(7.1) and (7.2) satisfy Eq.(7.3). As a check of the internal
consistency, note that if a map consists of many segments, the condition that
matrices of all segments have det=1 leads to the condition that the total matrix
must also have det=1. This is internally consistent because the total matrix
must also represent a map of the dynamic system and therefore has to be sym-
plectic.

Consider now a slice of the quadrupole magnet from position s to position
s+ ∆s. The map for the x motion is

Ms→s+∆s =
[

cos k∆s 1
k sin k∆s

−k sin k∆s cos k∆s

]
(7.4)

One maybe tempted to Taylor expand this matrix in terms of the small quantity
∆s. This leads to

Ms→s+∆s =
[

1 0
0 1

]
+ ∆s

[
0 1

−k2 0

]
+ ∆s2

[
−k2

2 0
0 −k2

2

]
+ · · · (7.5)
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Keeping only the leading term is not a very interesting thing to do because it
loses all the physics introduced by the quadrupole. Keeping up to the ∆s term,
i.e.

Ms→s+∆s ≈
[

1 ∆s
−k2∆s 1

]
(7.6)

constitutes a problem because it violates theorem (7.3). This exercise says that,
if truncations must be performed, then they must be performed carefully. A
brute force truncation might lead to violation of fundamental properties.

One reason nonsymplecticity is of concern is because if not used with cau-
tion, it may lead to erroneous conclusions. In particular, repeatedly iterating
map (7.6) could lead to wrong conclusions in terms of the long term stability
of the system. Note there is no objection if the map is approximate. The ob-
jection is that the map is nonsymplectic. So we need to explore ways to find
approximations without sacrificing symplecticity, i.e. we need symplectification
techniques.

One trick is to artificially add a O(∆s2) term to Eq.(7.6) as follows:

Ms→s+∆s ≈
[

1 ∆s
−k2∆s 1 − k2∆s2

]
(7.7)

Note that truncating Eq.(7.5) to O(∆s2) would give a matrix

Ms→s+∆s ≈
[

1 − 1
2k

2∆s2 ∆s
−k2∆s 1 − 1

2k
2∆s2

]
(7.8)

which differs from (7.7). On the other hand, map (7.7) is symplectic (det=1),
while map (7.8) is not (det	=1), in spite of the fact that map (7.8) is more
accurate than map (7.7).

If we consider a finite-but-thin quadrupole of length L and approximate its
map by Eq.(7.6) with ∆s = L, we get detM = 1+O(L2). If we adopt Eq.(7.8),
we get detM = 1 + O(L4). Both maps are nonsymplectic. But detM = 1
exactly if we adopt (7.7). Eq.(7.7) is one way to “symplectify” the map.

Is there a physical meaning to Eq.(7.7)? The answer is yes. In fact, we
are at this point launching onto the beginnings of two important topics: map
symplectification and canonical integration. Both are active fields of research.

The physical meaning of Eq.(7.7) is seen as follows. One way to assure
symplecticity is to model the quadrupole as a combination of interlacing drift
spaces and lumped kicks. For example, one might model the quadrupole as
sketched in Fig.7.1(a). In the drift region, the map is given by[

1 L
0 1

]
(7.9)

The lumped kick is obtained by concentrating the quadrupole strength to act
as a δ-function kick to the passing particles. The matrix that describes that
action is [

1 0
−k2L 1

]
(7.10)
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The drift map (7.9) is symplectic — its determinant is equal to 1. It is a
general property that lumped kicks give symplectic maps — matrix (7.10) has
determinant of 1. By modeling an accelerator element (linear or nonlinear) as
combination of drifts and lumped kicks, one obtains a symplectic model of the
element. If the quadrupole is modeled as a drift followed by a kick, the total
map for the quadrupole is

M =
[

1 0
−k2L 1

] [
1 L
0 1

]
=
[

1 L
−k2L 1 − k2L2

]
(7.11)

which obviously has det=1. But Eq.(7.11) has just reproduced Eq.(7.7)! In
other words, the artificial symplectification introduced in Eq.(7.7) could be a
consequence of the particular modeling represented by Fig.7.1(a).
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Figure 7.1: Symplectification Models.
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This observation then opens up to other ways to symplectify. For example,
the model of Fig.7.1(b) gives

M =
[

1 L
0 1

] [
1 0

−k2L 1

]
=
[

1 − k2L2 L
−k2L 1

]
(7.12)

which also has det = 1, and thus represents another way to symplectify map
(7.6).

Both Figs.7.1(a) and (b), although exactly symplectic, give maps that are
accurate only up to O(L) [leading error term is of order O(L2)]. One way
to improve the accuracy of the map while maintaining its symplecticity is to
consider Fig.7.1(c), the thin-lens model. It gives

M =
[

1 1
2L

0 1

] [
1 0

−k2L 1

] [
1 1

2L
0 1

]

=
[

1 − 1
2k

2L2 L− 1
4k

2L3

−k2L 1 − 1
2k

2L2

]
(7.13)

The thin-lens model is accurate up to order O(L2), as can be shown by com-
paring (7.13) with the exact expression (7.1).

Numerical iteration of the maps (7.8), (7.11), (7.12), and (7.13) is shown
respectively in Figs.7.2(c) through (f) for k∆s = 0.2. Fig.7.2(a) is a circle ob-
tained using the exact map (7.4). Fig.7.2(f) is almost, but not quite, a circle.
The deviation of Fig.7.2(f) from a circle will be shown in Fig.7.4(a) later. Fig-
ure 7.2(c), based on the nonsymplectic map (7.8), exhibits an outward spiral
motion, although the spiraling is slower than that shown in Fig.7.2(b), based on
Eq.(7.6). For long term stability purposes, enforcing the symplecticity condition
is important. If a map is approximate but symplectic, the contours of particle
trajectory in phase space maybe slightly distorted, but the long-term stability
of the motion is preserved, as shown in Figs.7.2(d,e,f). This is not true if the
symplecticity of the map is compromised.

A symplectic model, such as (7.11), (7.12), or (7.13), is extremely useful
to model accelerator elements. In the quadrupole example above, these mod-
els allow carrying out the mapping without the time-consuming trigonometric
functions. But more importantly, when the accelerator element is nonlinear,
we often do not have a closed form expression for its map as we do in the
quadrupole example. These nonlinear maps have to be obtained by ray tracing.
For long-term stability considerations, it is impractical to trace with hundreds
of steps per element because of computer limitations. One therefore searches
for efficient ways to model an element, which are accurate and, for purpose of
long term tracking, are also symplectic. The quadrupole example is just an
illustration of this search activity. Models in Fig.7.1 are all applicable to thick
nonlinear elements.

One may proceed to consider Fig.7.1(d) with the hope of finding a model
that represents the quadrupole to order O(L3). Obviously one has the condition
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Figure 7.2: Phase space trajectories of a particle traversing a quadrupole as
predicted using various tracking algorithms. (a) the exact map (7.4), (b) non-
symplectic map (7.6), (c) nonsymplectic map (7.8), (d) symplectic map (7.11),
(e) symplectic map (7.12), (f) symplectic thin-lens map (7.13).

2α+ β = 1. The matrix is

M =
[

1 αL
0 1

] [
1 0

− 1
2k

2L 1

] [
1 βL
0 1

] [
1 0

− 1
2k

2L 1

] [
1 αL
0 1

]
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=
[

1 − 1
2k

2L2 + 1
4αβk

4L4 L− α(α+ β)k2L3 + 1
4α

2βk4L5

−k2L+ 1
4βk

4L3 1 − 1
2k

2L2 + 1
4αβk

4L4

]
(7.14)

Eq.(7.14) does give detM = 1. But this map cannot represent the quadrupole
to order O(L3). Compared with Eq.(7.1), in order to represent the quadrupole
to order O(L3), we need

α(α+ β) =
1
6

1
4
β =

1
6

2α+ β = 1 (7.15)

which, unfortunately, does not have a solution.
Interestingly enough, it is possible to consider Fig.7.1(e) to obtain a map

which is correct to order O(L4) [errors of order O(L5)]. We obviously have, to
begin with, the conditions

2α+ 2β = 1
2γ + δ = 1 (7.16)

The map is given by

M =
[

1 αL
0 1

] [
1 0

−γk2L 1

] [
1 βL
0 1

] [
1 0

−δk2L 1

]

×
[

1 βL
0 1

] [
1 0

−γk2L 1

] [
1 αL
0 1

]
(7.17)

=




1 − 1
2k

2L2 + βγ(α+ 1
2δ)k

4L4 L− ( 1
4δ + αγ + 2αβγ)k2L3

−αβ2γ2δk6L6 +2αβγ(αγ + 1
2δ)k

4L5 − α2β2γ2δk6L7

−k2L+ βγ(1 + δ)k4L3 1 − 1
2k

2L2 + βγ(α+ 1
2δ)k

4L4

−β2γ2δk6L5 −αβ2γ2δk6L6




The conditions for (7.17) to represent the exact map to order O(L4) are, in
addition to (7.16),

βγ(α+
1
2
δ) =

1
24

βγ(1 + δ) =
1
6

1
4
δ + αγ + 2αβγ =

1
6

(7.18)

Equations (7.16) and (7.18) [4 unknowns, 5 equations] do have solutions! In
fact, one finds

β =
1 − 21/3

2(2 − 21/3)
≈ −0.1756
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α =
1
2
− β =

1
2(2 − 21/3)

≈ 0.6756

γ =
1

24β2
=

1
2 − 21/3

≈ 1.3512

δ = 1 − 2γ = − 21/3

2 − 21/3
≈ −1.7024 (7.19)

Note that β and δ are negative. This means the model involves seven steps as
shown in Fig.7.3. Following these 7 steps would yield a symplectic model of a
thick quadrupole — or any thick nonlinear element — to order O(L4).
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Figure 7.3: Seven steps in the 4-th order symplectic integration.

The map for a quadrupole is then obtained by substituting Eq.(7.19) into
Eq.(7.17),

M =




1 − 1
2k

2L2 + 1
24k

4L4 L− 1
6k

2L3 + 1−21/3

24(2−21/3)2
k4L5

+ 21/3

48(2−21/3)3
k6L6 + 21/3

96(2−21/3)4
k6L7

−k2L+ 1
6k

4L3 1 − 1
2k

2L2 + 1
24k

4L4

+ 21/3

24(2−21/3)2
k6L5 + 21/3

48(2−21/3)3
k6L6


 (7.20)

It can be explicitly checked that the determinant of (7.20) is 1. ThisM is correct
up to O(L4). By introducing artificial terms of the orders of O(L5), O(L6), and
O(L7), therefore, we have symplectified the map. See Exercises 11 and 12 for
more discussions on this point.

These explicit canonical integration techniques33 give symplectic models of
thick elements, and are most useful for particle tracking purposes. Note that
most tracking programs use kick approximation of one kind or another. One

33These are called explicit techniques because all quantities are evaluated directly from
previously known quantities and no implicit numerical inversion is required.
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often-used example is the thin-lens model, which is a “2nd order explicit canon-
ical integration”. Another example is the ray tracing model, which is typically
done with a first order integration but acquires accuracy by slicing the ele-
ment into a large number of steps. As mentioned before, this requires extensive
computer time and is not practical for long term stability studies of large ac-
celerators. Table 1 gives the various canonical integration techniques for an
accelerator element (linear or nonlinear) of strength S and length L. For a
quadrupole, we have S = k2. Exercise 13 shows that the popular Runge-Kutta
algorithm is nonsymplectic.

Table 1: Various techniques of explicit canonical integration for an accelerator
element of strength S and length L. The symbol (L) means a drift length L.
The symbol (SL) means a kick of integrated strength (SL). Values of α, β, γ, δ
are given by Eq.(7.19). See also Eq.(7.57) for a 6-th order integration.
Integrator Model Error
1st order (L)(SL) O(L2)
1st order (SL)(L) O(L2)
Ray tracing (Ln )(SLn ) ··· repeat n times O(L

2

n )
2nd order(thin-lens) (L2 )(SL)(L2 ) O(L3)
Ray tracing ( L2n )(SLn )( L2n ) ··· repeat n times O(L

3

n2 )
4th order (αL)(γSL)(βL)(δSL)(βL)(γSL)(αL) O(L5)
Ray tracing (αLn )(γSLn )(βLn )(δSLn )(βLn )(γSLn )(αLn ) ··· repeat n times O(L

5

n4 )

Note that symmetry always helps in providing one order higher accuracy.
Dividing an element into many steps also improves the accuracy. Note also that
the technique applies to integration in general, not only to accelerator elements.

In Figs.7.4(a) and (b), we compare the tracking results using the thin-lens
map (7.13) and the 4-th order map (7.20). Plotted in Fig.7.4 is the quantity
A =

√
x2 + (x′/k)2 as a function of iteration number for a particle with initial

conditions (x = 1, x′/k = 0) and kL = 0.2. The exact map (7.1) would give a
constantA = 1. Figure 7.4 shows the numerical accuracy of the two approximate
maps by computing A. Note the different vertical scales of the two graphs. Note
also that in either map — both being symplectic — the stability of the particle
motion is not in question; only the numerical accuracy is being compared.

Exercise 1 Still another symplectified form of a quadrupole, valid
to order O(L2), is [

1 − 1
2k

2L2 L
−k2L+ 1

4k
4L3 1 − 1

2k
2L2

]
(7.21)

What is its corresponding physical model?

Exercise 2 The two nonsymplectic tracking show exponential growth
of spiraling amplitude. Associate the growth rate to the deviation
of the matrices from unity.
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Figure 7.4: Tracking result showing amplitude as a function of time using sym-
plectic integrators, (a) 2-nd order, (b) 4-th order.

Solution Determinant of Eq.(7.6) is 1 + (k∆s)2. Determinant of
Eq.(7.8) is 1 + (k∆s)4/4. The amplitude grows or damps exponen-
tially depending on whether the determinant is > 1 or < 1.

Exercise 3 Apply the thin-lens approximation to integrate the equa-
tion

x′′ = f(x) (7.22)

Show that the result is

x′(L) ≈ x′0 + Lf(x0 +
L

2
x′0)

x(L) ≈ x0 +
L

2
(x′0 + x′(L)) (7.23)

Equation (7.23) is also called the leap-frog algorithm. Demonstrate
explicitly the symplecticity of this map. To what order of L is the
leap frog algorithm valid?
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Solution The exact Taylor map gives

x(L) = x0 + x′0L+
1
2
f(x0)L2 +

1
6
x′0f

′(x0)L3 + · · · (7.24)

The leap-frog algorithm gives

x(L) = x0 + x′0L+
1
2
f(x0)L2 +

1
4
x′0f

′(x0)L3 + · · · (7.25)

The error terms are O(L3).

Exercise 4 Equation (7.22) describes a conservative system. Its
leap-frog map is symplectic. Consider a nonconservative system de-
scribed by x′′ = f(x, x′). Develop a leap-frog algorithm for this
system. Examine its symplecticity.

Exercise 5 Consider a ray tracing model of a thick quadrupole. Let
there be n steps, each of length L/n. The total map is given by

M = mn (7.26)

where

m =
[

1 0
−k2L

n 1

] [
1 L

n
0 1

]
=
[

1 L
n

−k2L
n 1 − k2L2

n2

]
(7.27)

(a) Show that the matrix m can be written as

m = T
[
eiµ 0
0 e−iµ

]
T−1 (7.28)

where e±iµ are the eigenvalues of the matrix m with

sin
µ

2
=
kL

2n
(7.29)

and

T =

[
1√
2
e−iµ/2 iLn

eiµ/2
√

2 sinµ

i
√

2nL sin µ
2

1√
2 cos µ

2

]
(7.30)

(b) Use the property (7.28) to show

M =


 cos(n− 1

2 )µ

cos µ
2

L
n

sinnµ
sinµ

−2nL sinnµ tan µ
2

cos(n+ 1
2 )µ

cos µ
2


 (7.31)

(c) Show that the determinant of (7.31) is 1. Show also that when
n = 1 and when n → ∞, expression (7.31) becomes the expected
results (7.11) and (7.1) respectively.
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(d) Show explicitly that for finite n, the error terms are of the order
O(L2/n), as claimed in Table 1.
Solution Let m be eigenanalyzed as

m

[
u±
v±

]
= e±iµ

[
u±
v±

]
(7.32)

and choose normalization u+v− − u−v+ = 1. Then

T =
[
u+ u−
v+ v−

]
, detT = 1 (7.33)

Exercise 6 Repeat the above exercise for the thin-lens model.
Solution Parametrize m as

m =
[
a b
c a

]
with a2 − bc = 1 (7.34)

Eigenanalyze m according to Eq.(7.32), where the eigenvalues are
e±iµ with cosµ = a. The matrix T is found using Eq.(7.33) to be

T =

[
1√
2

i b√
2 sinµ

i sinµ√
2b

1√
2

]
, detT = 1 (7.35)

Matrix m can then be written as (7.28) and we find

M = mn =
[

cosnµ b
sinµ sinnµ

− sinµ
b sinnµ cosnµ

]
(7.36)

It follows that detM = 1, and thatM reduces to proper limits when
n = 1 and n → ∞. For the thin-lens model, parameters a, b, and c
are given by (7.13). We have sin µ

2 = kL/2n. Substituting this value
for µ and b = L

n − 1
4n3 k

2L3, it follows that model (7.36) agrees with
the exact map with error terms of the order O(L3/n2).
Alternative solution A simpler derivation uses the fact that the map
(7.36) can be written as a drift of length −L/2n followed by the map
(7.31) followed by a drift of length L/2n.

Exercise 7 Repeat the above for the 4th order integrator.
Solution Results (7.34-7.36) still hold. The only difference is the
values of a, b, and c. The error terms are of the order O(L5/n4).

Exercise 8 Consider the 1-D motion in a thick sextupole with equa-
tion of motion

x′′ = Sx2 (7.37)

Work out the exact problem first. Compare the result with those
obtained by the thin-lens, and the 4th order integrators.
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Solution Integrating (7.37) gives a constant of the motion

C =
1
2
(x′)2 − 1

3
Sx3 (7.38)

which gives

x′ = ±
√

2C +
2
3
Sx3 (7.39)

With the input coordinates (x0, x
′
0), we have 2C = (x′0)

2 − 2
3Sx

3
0.

The exit coordinates of the particle are described by (x(L), x′(L)),
where x(L) satisfies

∫ x(L)

x0

dx

±
√

(x′0)2 − 2
3S(x3

0 − x3)
= L (7.40)

Eqs.(7.39) and (7.40) are the exact solution we are looking for.
Equation (7.39) can be used iteratively to obtain x(s) and x′(s)

as Taylor expansion in s. These are approximate expressions for
short s. Start with the 0-th order expression x = x0. Insert this
expression into (7.39) gives x′(s) = x′0, which can be integrated to
yield the 1-st order expression x(s) = x0 + x′0s. Inserting this 1-
st order expression into (7.39) then yields a 1-st order expression
x′(s) = x′0 + Sx2

0s, which can be integrated to give a 2-nd order
expression of x(s). Repeating this process gives

x(s) = x0+x′0s+
1
2
Sx2

0s
2+

1
3
Sx0x

′
0s

3+
S

12
(x′20 +Sx3

0)s
4+O(s5)

x′(s) = x′0+Sx2
0s+Sx0x

′
0s

2+
S

3
(x′20 +Sx3

0)s
3+

5
12
S2x2

0x
′
0s

4+O(s5)

(7.41)

In comparison, the thin-lens approximation gives

x(L) = x0 + x′0L+
1
2
Sx2

0L
2 +

1
2
Sx0x

′
0L

3 +
1
8
Sx′0

2
L4

x′(L) = x′0 + Sx2
0L+ Sx0x

′
0L

2 +
1
4
Sx′0

2
L3 (7.42)

which agrees with (7.41) up to order O(L2). Map (7.42) is symplec-
tic. If the O(s5) terms are truncated, map (7.41) is not symplectic,
even though it is more accurate then Eq.(7.42).

In the 4th order integrator approximation, we use Mathematica
to obtain34

x(L) = x0 + x′0s+
1
2
Sx2

0s
2 +

1
3
Sx0x

′
0s

3 +
S

12
(x′20 + Sx3

0)s
4

34Explicit expressions of terms O(s6−22) and O(s6−22) are available but too long to be
included in Eq.(7.43).
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+0.0188747S2x′0x
2
0s

5 + O(s6−22)

x′(L) = x′0 + Sx2
0s+ Sx0x

′
0s

2 +
S

3
(x′20 + Sx3

0)s
3 +

5
12
S2x2

0x
′
0s

4

+S2x0(0.231125x′0
2−0.437566Sx3

0)s
5 + O(s6−21) (7.43)

These agree with the exact expressions to the appropriate orders
respectively but now higher orders (from 5th to 22nd order in s) are
added artificially to symplectify the map. Symplecticity of the exact
expressions (7.39-7.40), and the symplecticities of maps (7.42-7.43),
can be checked by observing

∂x(L)
∂x0

∂x′(L)
∂x′0

− ∂x(L)
∂x′0

∂x′(L)
∂x0

= 1 exactly (7.44)

Exercise 9 Show that the sextupole map (7.39-7.40) is symplectic.

Exercise 10 Consider the 1-D motion in a magnet with combined-
function quadrupole and sextupole fields. Let the equation of motion
be

x′′ + k2x = Sx2 (7.45)

Give the second-order symplectic integration (thin-lens approxima-
tion) for the map from the entrance to the exit of this magnet. Let
L be the length of the magnet. (a) Model both the quadrupole and
the sextupole components as thin-lenses. Does the ordering of these
thin-lens kicks matter? (b) Model the quadrupole component as a
thick-lens magnet, and the sextupole component as thin-lens. (c)
Show explicitly that the results obtained in (a) and (b) are symplec-
tic. This exercise demonstrates the fact that the drifts in the models
of Fig.7.1 can be replaced by any map which has exact (symplectic)
solution, quadrupole being one example.

Exercise 11 In obtaining Eq.(7.19), we have first obtained an equa-
tion for β,

48β3 − 24β2 + 1 = 0 (7.46)

Equation (7.19) is then the real solution of (7.46). But there are
also two other complex solutions given by

β± =
1
4

(
1

2 − 21/3
± 22/3 − 1

31/221/3
i

)
= 0.33780 ± 0.06729i (7.47)

which in turn gives

α = 0.16220 ∓ 0.06729i
γ = 0.32441 ∓ 0.13458i
δ = 0.35118 ± 0.26916i (7.48)
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Choosing these complex values are legitimate symplectifications. The
total matrix, however, now contains higher order symplectifying
terms which are complex! Is this allowed?

Exercise 12 The 3rd order model Fig.7.1(d) assumed a symmetry
around the mid-point of the accelerator element and we showed there
was no solution. An extra free parameter can be introduced if the
symmetry is sacrificed. Is there a solution for this asymmetric 3rd
order integrator?
Solution Consider two kicks −δk2L and −εk2L spaced by three free
spaces αL, βL and γL. For the system to describe a third order
map, we find two solutions

α =
√

3 ∓ 3i
6
√

3 ∓ 6i
= 0.25 ∓ 0.14434i

β =
1
2

γ =
1
4
± i 1

4
√

3
= 0.25 ± 0.14434i

δ =
√

3 ∓ 3i
3
√

3 ∓ 3i
= 0.5 ∓ 0.28868i

ε =
2
√

3
3
√

3 ∓ 3i
= 0.5 ± 0.28868i (7.49)

There is no real solution and the resulting 3rd order map is neces-
sarily complex.

Exercise 13 There are various often-used numerical integration tech-
niques. Some of them are nonsymplectic. Beware! Take the Runge-
Kutta integration for example. Consider the differential equation

x′′ = f(x, x′, s) (7.50)

Given x(0), x′(0) at s = 0, Runge-Kutta gives approximate expres-
sions of x(L) and x′(L) at s = L as

x(L) ≈ x(0) + Lx′(0) +
1
6
L(t1 + t2 + t3)

x′(L) ≈ x′(0) +
1
6
(t1 + 2t2 + 2t3 + t4) (7.51)

where

t1 = Lf [x(0), x′(0), 0]

t2 = Lf [x(0) +
1
2
Lx′(0), x′(0) +

1
2
t1,

1
2
L]

t3 = Lf [x(0) +
1
2
Lx′(0) +

1
4
Lt1, x

′(0) +
1
2
t2,

1
2
L]

t4 = Lf [x(0) + Lx′(0) +
1
2
Lt2, x

′(0) + t3, L] (7.52)

154



(a) Apply the Runge-Kutta technique to the x-motion in a quadrupole
and show that

x(L) ≈ x(0)
[
1 − 1

2
k2L2 +

1
24
k4L4

]
+

1
k
x′(0)

[
kL− 1

6
k3L3

]

x′(L) ≈ −kx(0)
[
kL− 1

6
k3L3

]
+x′(0)

[
1− 1

2
k2L2+

1
24
k4L4

]
(7.53)

(b) Apply it to the case of a sextupole, Eq.(7.37), to obtain

x(L) ≈ x0 + x′0L+
1
2
Sx2

0L
2 +

1
3
Sx0x

′
0L

3 +
S

12
(x′20 + Sx3

0)L
4

+
1
24
S2x2

0x
′
0L

5 +
1
96
S3x4

0L
6

x′(L) ≈ x′0 + Sx2
0L+ Sx0x

′
0L

2 +
S

3
(x′20 + Sx3

0)L
3 +

5
12
S2x2

0x
′
0L

4

+S2x0(
5
24
x′20 +

1
16
Sx3

0)L
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1
12
S2x′0(

1
2
x′20 + x3

0)L
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+
1
16
S3x2

0x
′2
0 L

7 +
1
48
S3x0x

′3
0 L

8 +
1

384
S3x′40 L

9 (7.54)

(c) Show that the determinant of the Jacobian matrix for the trans-
formation (7.53) is

1 − k
6L6

72
+
k8L8

576
	= 1 (7.55)

Similarly, for the transformation (7.54), the determinant is

1− 1
72

(2x′20 −9Sx3
0)S

2L6 +
7
36
x2

0x
′
0S

3L7 +
1

144
x0(7x′20 +15Sx3

0)S
3L8

+
1

288
x′0(−x′20 + 46Sx3

0)S
3L9 +

1
576
x2
p(45x′20 + 16Sx3

0)S
4L10

+
1

288
x0x

′
o(4x

′2
o + 13Sx3

0)S
4L11 +

1
576
x3

0(15x′20 + 2Sx3
0)S

5L12

+
1

576
x2

0x
′
0(4x

′2
0 + 3Sx3

0)S
5L13 +

1
1152

x0x
′2
0 (x′20 + 3Sx3

0)S
5L14

+
1

2304
x3

0x
′3
0 S

6L15 	= 1 (7.56)

In both (a) and (b), the Runge-Kutta integration is accurate to
order O(L4) but is not symplectic. The high order terms beyond
4th order in L in Eq.(7.54) [compare with Eq.(7.43)] do not make
the map symplectic as can be checked against Eq.(7.44).

An alert reader might have noted that we have derived all the symplectic
integrators in Table 1 using the linear quadrupole map. What if we have used
a different map, e.g. a solenoid, or a nonlinear map? Would we get the same
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integrators? The answer to this question is yes. It does not matter which map
we use to derive the integrators. The underlying reason can be seen if one
applies Lie algebra to the analysis.

I will not explore Lie algebra here, except to say that using Lie algebraic
technique allows a systematic way to extend to higher order integrators. For
example, a 6th order integrator is found to be as follows (notation the same as
in Table 1):

(c1L)(d1SL)(c2L)(d2SL)(c3L)(d3SL)(c4L)(d4SL)(c5L)(d5SL)
×(c6L)(d6SL)(c7L)(d7SL)(c8L)(d8SL)(c9L)(d9SL)(c10L) (7.57)

where

d1 = d3 = d7 = d9 =
1

(2 − 21/3)(2 − 21/5)
≈ 1.58722

d2 = d8 = − 21/3

(2 − 21/3)(2 − 21/5)
≈ −1.99978

d4 = d6 = − 21/5

(2 − 21/3)(2 − 21/5)
≈ −1.82324

d5 =
28/15

(2 − 21/3)(2 − 21/5)
≈ 2.29714

c1 = c10 =
1

2(2 − 21/3)(2 − 21/5)
≈ 0.793612

c2 = c3 = c8 = c9 =
1 − 21/3

2(2 − 21/3)(2 − 21/5)
≈ −0.206277

c4 = c7 =
1 − 21/5

2(2 − 21/3)(2 − 21/5)
≈ −0.118009

c5 = c6 = − 21/5(1 − 21/3)
2(2 − 21/3)(2 − 21/5)

≈ 0.23695 (7.58)

One can check that
∑
i ci =

∑
i di = 1.

In Table 1, we have kicks interlaced by drifts. This is not necessary. Instead
of drifts, one can have any map which has an exact expression. Most likely,
this map with exact expression is a linear map. For example, in Exercise 10, we
had a combined magnet with quadrupole and sextupole fields. One can have
sextupole kicks interlaced by quadrupole maps. The fact that the interlacing
map does not have to be drifts is also evident if one uses Lie algebra to hunt for
symplectic integrators.

We see that the 2nd order simplectic integrator (thin-lens approximation)
requires one lumped kick. The 4th order integrator requires 3 lumped kicks.
The 6th order integrator requires 9 lumped kicks.

Exercise 14 Draw the 19-step, 6th order symplectic integration model
according to Eqs.(7.57) and (7.58) as we did in Fig.7.3.
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Figure 7.5: Ninteen steps in the 6th order symplectic integrator.

Solution See Fig.7.5.

Exercise 15 It was said that symplecticity of a map is important for
its application to long-term stability study. Explore this statement
closely to see if long-term stability study requires the complete sym-
plecticity condition, or if it requires only the condition det=1. To
study this problem, one will need to study a 2-D or 3-D system.
Solution Consider the special case of a 2-D decoupled system. Its

map has the form M =
[
A 0
0 B

]
. Symplecticity requires detA =

detB = 1, while detM = 1 requires only detA detB = 1.
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8 Truncated Power Series Algebra

8.1 Introduction

In the study of nonlinear dynamics in accelerators, one often needs high-order
nonlinear maps. Examples: (i) given the maps of sufficiently high order and
sufficiently symplectic for all components in the accelerator, one can use them
to study the long-term stability of the accelerator system by particle tracking;
(ii) given the nonlinear one-turn map, methods (such as Lie algebra) exist to
extract various nonlinear dynamics quantities analytically. But for all these
applications, question remains as to how to generate high order maps efficiently.
Here we describe the truncated power series algebra (TPSA) technique, first
introduced for accelerator applications by Berz in 1989. Since then, a large
number of computer codes were written on this subject.

The TPSA technique is a powerful, practical calculational technique. It is
useful not only for accelerators, but also for any calculational algorithm which
relates some output quantities to some input quantities (see Fig.8.1). Once the
algorithm is given, TPSA allows one to generate power series expressions of the
output quantities in terms of the input quantities. The order of the power series
Ω is not limited (other than having sufficient memory space in a computer – see
Exercise 11) and can be specified by the user. One should note, however, that
TPSA does not contain physics; it is only a calculational technique.

What kind of algorithms are we talking about? The answer is any algorithm
that relates outputs to inputs in a well-defined manner. For example, one may
have explicit functions

yi = yi(x1, x2, · · ·, xn), i = 1, 2, · · ·, m (8.1)

or one may have written a computer code with X = (x1, x2, · · ·, xn) as inputs,
and Y = (y1, y2, · · ·, ym) as outputs. We are talking about any algorithm that
allows one to calculate the numerical values of Y once the numerical values of
X are given.

This algorithm, however, may be very complicated (the above computer code
may contain 10,000 lines), and to carry it out may be very time consuming. In
this case, one would want to approximate the map by something simpler such
as a Taylor expansion up to order Ω, or symbolically

Y ≈
Ω∑
j

CjX
j (8.2)

which we recognize as a Taylor map from X to Y . Once we find this map (8.2),
we can perform the calculation of the original algorithm much faster, although
admittedly only approximately. The TPSA technique is a way to calculate the
coefficients Cj once the original algorithm is specified.

For accelerator applications, one may consider X to be the (x, x′, y, y′, z, δ)
of a particle at some starting position in a storage ring. In a tracking code,
this X is followed element by element for one revolution and finally one obtains

159



6–97
8322A23

Outputs

y1, y2,...ym

Inputs

x1, x2,...xn

Algorithm

Figure 8.1: A calculation algorithm with inputs and outputs.

Y , which is the (x, x′, y, y′, z, δ) of the particle one revolution later. Once this
tracking program is written, TPSA allows one to extract the one-turn Taylor
map relating Y to X up to some pre-specified order Ω. Subsequent tracking
study can then be performed using this Taylor map instead of the original
element-by-element tracking. Note that if the original program contains a bug,
the TPSA would still work, just that its resulting Taylor map contains the same
bug. Note also that the original tracking program relates numerically a value of
Y to a value of X, while TPSA gives a map which relates Y to X algebraically.

The above rosy picture of TPSA sweeps under the rug a problem. The catch
lies in how to choose the truncation order Ω. Intricate details such as chaos in
phase space can be inadvertently affected by the choice of Ω. This truncation
in fact can be rather brutal. In the following, however, we shall not address this
subtle problem.

It is obvious from the definition of Taylor series that the coefficients Cj in
Eq.(8.2) are related to the derivative of Y with respect to X. So one may also
say that the TPSA allows one to calculate the high order derivatives of the
outputs with respect to the inputs, e.g.

∂10y5

∂3x1∂3x2∂4x8

once the algorithm is known. If Y = Y (X) is a simple analytic expression,
one can find derivatives analytically by hand, but such case is unlikely for a
10,000-line tracking code.

Consider the case with a single input x and single output y = f(x), where f
may be given as an analytic expression or a 10,000-line code. Let y be expressed
as a truncated Taylor series around a reference point x = a,

y = f(x) = f(a)+(x−a)f ′(a)+
1
2
(x−a)2f ′′(a)+.... +

1
Ω!

(x−a)Ωf (Ω)(a) (8.3)

where f (k) means the kth derivative of f(x). In the simplest application of the
TPSA technique, we will illustrate how to obtain the coefficients f(a), f ′(a),
f ′′(a), .... Both the order Ω of the power series and the reference point a are
specified by the user.

Note that to the extent that a function f(x) can be represented (at least
approximately) as a power series in x truncated to the Ω-th order, there is a
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one-to-one equivalence between the function f(x) and the vector

(f(a), f ′(a), ... f (Ω)(a)) (8.4)

In particular, the vector can be regarded as the TPSA representation of the
function around x = a. Once the coefficients (8.4) are known using TPSA —
there are Ω + 1 of them — the value of f(x) can be calculated using Eq.(8.3)
for arbitrary value of x.

One could imagine calculating the derivatives numerically instead of using
TPSA. To do so, one first chooses a small number ε, and then computes

f ′(a) ≈ f(a + ε) − f(a)
ε

(8.5)

This procedure, however, loses accuracy rapidly as one proceeds to high order
derivatives. As we will see, TPSA is so remarkable because it does not calcu-
late derivatives by subtracting two nearly equal numbers, and offers a way to
calculate high order derivatives to computer accuracy!35

Accelerator application of TPSA is of course not restricted to obtaining one-
turn maps. In particular, TPSA allows one to obtain high order Taylor map (of
order Ω) relating the exit coordinates (x, x′, y, y′, z, δ) to the entrance coordi-
nates of a single magnet element. Before the TPSA days, these high order maps
of magnet elements were done by solving the particle’s equation of motion. This
is clearly a tedious procedure, ending with long expressions, and the results are
limited to low orders. These pre-TPSA examples include TRANSPORT for sec-
ond orders, MARYLIE for third orders, and COSY for fifth orders. Although
analytic expressions allow more insight into the problem, TPSA makes the pre-
vious approach obsolete, at least as far as efficient generation of high order maps
is concerned.

After truncation, the Taylor map is generally nonsymplectic. This Taylor
map needs then to be symplectified. One way to do that is to apply Lie algebra.
The combined application of TPSA and Lie algebra results in a very powerful
modern tool in the study of nonlinear dynamics. This has triggered a revolution
on nonlinear dynamics research in accelerators since 1980’s.

8.2 TPSA

So far we have not yet described what TPSA does. To do so, let us consider
first an example,

f(x) =
1

x + 1
x

(8.6)

35This is almost anti-intuitive. We learned in school to compute derivatives like Eq.(8.5).
It seems intrinsic, and a matter of definition, that a small quantity ε be involved when one
calculates derivatives. It therefore seems unavoidable that attempts to calculate high order
derivatives numerically contain large numerical errors, but that intuition is apparently wrong.
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and suppose we want to find the coefficient f ′(2). One way is to do it analyti-
cally, i.e. we find first that

f ′(x) = − 1 − 1
x2

(x + 1
x )2

(8.7)

Substituing x = 2 into Eq.(8.7) then gives

f ′(2) = − 3
25

(8.8)

The second way is to find it numerically. For example,

f ′(2) ≈ f(2.1) − f(2)
2.1 − 2

=
0.38817 − 0.4

2.1 − 2
= −0.1183 (8.9)

By replacing the value 2.1 by something closer to 2, the accuracy of the calcu-
lation improves.

To compute f ′(2) using TPSA, let us first form a vector v = (2, 1) and try
to find f(v). The reason the first component of v is chosen to be 2 is because
we want to compute f ′(2). As we shall explain later, the second component of
v is always 1. We now have

f(v) =
1

v + 1
v

(8.10)

As we will establish later, vectors are manipulated in such a way that

1
(a1, a2)

= (
1
a1

,−a2

a2
1

) (8.11)

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2) (8.12)

Thus,

f(v) =
1

(2, 1) + 1
(2,1)

=
1

(2, 1) + ( 1
2 ,− 1

4 )

=
1

( 5
2 , 3

4 )
= (

2
5

,− 3
25

) (8.13)

Now notice that the two components in the final vector are miraculously equal
to f(2) and f ′(2)! In the above calculation, nowhere explicit expressions of
f ′(x) was used, and nowhere subtraction of nearly-equal numbers was needed.
The simplest version of the TPSA technique is thus

f(v) = (f(a), f ′(a)), for any function f(x), and v = (a, 1) (8.14)

Note that in the calculation (8.13), only the input vector v is pre-specified
to be equal to (2, 1). In the intermediate steps of the calculation, the vector is
of course changed from (2, 1).

The secret of TPSA is contained in these vector manipulation rules. How
are those rules established? Let us examine it in 3 steps as follows:
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Step 1 Consider the simple identity function f(x) = x. We of course
want to make sure (8.14) holds for this function. Suppose we take
v = (α, β), then

f(v) = v = (α, β) (8.15)

We want this to be equal to (f(a), f ′(a)), but we know f(a) = a
and f ′(a) = 1. This means we must choose (α, β) = (a, 1), i.e. the
first component of v must be chosen to be equal to the value of x at
which the direvative is to be taken, and the second component of v
must be 1. This is of course what we have been doing.

We can also apply (8.14) to the constant function f(x) = c, i.e.
we require f(v) = c to be equal to (f(a), f ′(a)) = (c, 0). This gives
the identification that

constant c = (c, 0) (8.16)

Step 2 Suppose we now have two functions f(x) and g(x), each sat-
isfying (8.14). We now want to establish a rule which allows the
new funtion h(x) = f(x) + g(x) to satisfy (8.14) also. The LHS of
Eq.(8.14) reads

h(v) = f(v) + g(v) = (f(a), f ′(a)) + (g(a), g′(a)) (8.17)

while the RHS is

(f(a) + g(a), f ′(a) + g′(a)) (8.18)

Obviously h(x) satisfies (8.14) if and only if we establish the vector
addition rule (8.12).

We know that the identity function and the constant function
satisfy (8.14). By combining them, we now have established (8.14)
for all functions of the type f(x) = c + dx.

Step 3 With f(x) and g(x) satisfying (8.14), we now want to find
the rule for the function h(x) = f(x)g(x) to satisfy (8.14). To do so,
we note

h(v) = (f(a), f ′(a)) (g(a), g′(a))
(h(a), h′(a)) = (f(a)g(a), f(a)g′(a) + f ′(a)g(a)) (8.19)

Thus (8.14) is assured if and only if we require the vector multipli-
cation rule

(a1, a2) (b1, b2) = (a1b1, a2b1 + a1b2) (8.20)

If we take f(x) = g(x) = x, we can use the vector multiplication
rule to assure that the function h(x) = x2 satisfies (8.14). Having es-
tablished that, we repeat the rule to establish (8.14) for any integer
power function h(x) = xn. The vector addition rule then establishes
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the validity of (8.14) for any power series of x. We have thus es-
tablished the TPSA for any arbitrary function which is expandable
into a Taylor series just by two simple vector algebraic rules. Just
substitute v = (a, 1) into f(v) and follow these simple rules to obtain
f(a) and f ′(a)!

Now how about Eq.(8.11)? One can establish it by applying the vector
multiplication rule as follows. Let

1
(a1, a2)

= (x, y) (8.21)

then

(a1, a2) (x, y) = (1, 0)
=⇒ (a1x, a1y + a2x) = 1 = (1, 0)
=⇒ a1x = 1, a1y + a2x = 0

=⇒ x =
1
a1

, y = −a2

a2
1

, Q.E.D. (8.22)

Again by applying the vector multiplication rule, we can also establish

c(a1, a2) = (c, 0) (a1, a2) = (ca1, 0 × a1 + ca2) = (ca1, ca2) (8.23)

Exercise 1 Show that

(a1, a2)−n = (
1
an1

,− na2

an+1
1

) (8.24)

Solution 1 Mathematical induction.
Solution 2 Identify a function f(x) ≈ f(a) + f ′(a)(x − a) to the
vector (a1, a2)−1 = (1/a1,−a2/a2

1). This means

f(x) ≈ 1
a1

− a2

a2
1

(x − a) (8.25)

Raising f(x) to n-th power,

fn(x) ≈
[

1
a1

− a2

a2
1

(x − a)
]n

≈ 1
an1

− na2

an+1
1

(x − a), Q.E.D.

(8.26)
Solution 1 requires n to be an integer. Solution 2 does not have that
requirement.
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8.3 Higher Orders

To obtain higher derivatives (and thus higher order power series expansions),
we need larger dimension for the vectors. Suppose we would like to obtain a
power series like (8.3) to the Ω-th order. We first form the vector

v = (a, 1, 0, 0, ...0) (8.27)

where the number of elements in the vector is Ω + 1. The first component
is the reference point a. The second component is always 1. The remaining
components are zeros. We would like to have the property that when x is
substituted by v in any function f(x), one would obtain

f(v) = (f(a), f ′(a), f ′′(a), ... , f (Ω)(a)) (8.28)

As before, the vector (8.27) is chosen in such a way that (8.28) is automati-
cally satisfied for the identity function f(x) = x. Indeed, in this case, f(v) =
(a, 1, 0, 0, ...0), which is equal to the right hand side of Eq.(8.28) trivially.

Next we need to construct the vector manipulation rules so that (8.28) is sat-
isfied for arbitrary functions f(x) which can be expressed as a truncated power
series. Consider first if we have two functions f(x) and g(x), each satisfying
(8.28), and would like the functions h(x) = f(x) + g(x) and h(x) = cf(x) also
to satisfy (8.28), we need the rules

c(a0, a1, a2, ... , aΩ) = (ca0, ca1, ca2, ... , caΩ) (8.29)
(a0, a1, a2, ... , aΩ) + (b0, b1, b2, ... , bΩ)

= (a0 + b0, a1 + b1, a2 + b2, ... , aΩ + bΩ) (8.30)

If we consider the function h(x) = f(x)g(x), validity of (8.28) requires

h(v) = f(v)g(v)
= ((f(a), f ′(a), f ′′(a), ... , f (Ω)(a)) (g(a), g′(a), g′′(a), ... , g(Ω)(a)) (8.31)

to be equal to

(h(a), h′(a), h′′(a), ... , h(Ω)(a))
= (f(a)g(a), f ′(a)g(a) + f(a)g′(a), f ′′(a)g(a) + 2f ′(a)g′(a) + f(a)g′′(a),

... ,

Ω∑
k=0

Ω!
k!(Ω − k)!

f (k)(a)g(Ω−k)(a)) (8.32)

This is assured if we choose the vector multiplication rule

(a0, a1, a3, ... , aΩ) (b0, b1, b3, ... , bΩ) = (c0, c1, c3, ... , cΩ)

cm =
m∑
k=0

m!
k!(m − k)!

akbm−k

c0 = a0b0, c1 = a1b0 + a0b1, c2 = a2b0 + 2a1b1 + a0b2, ... (8.33)
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By identifying a constant c as the vector (c, 0, 0, ...0), Eq.(8.29) follows from
Eq.(8.33).

The remarkable thing, again, is that once a vector addition rule (8.30) and
a vector multiplication rule (8.33) are established, high order derivatives of an
arbitrary function f(x) can be computed by substituting x by v = (a, 1, 0, 0, ...).
Once the high order derivatives are obtained, Taylor series expansion follows.

Exercise 2 For the case with Ω = 2, compute (a0, a1, a2)−1.

Exercise 3 Show that

f((a, λ, 0, 0, ...)) = (f(a), λf ′(a), λ2f ′′(a), ...) (8.34)

The cases λ = 0 and λ = 1 are the trivial cases.

Exercise 4 Suppose a function f(x) is identified with the vector
(a0, a1, a2, ...aΩ), i.e. f(a) = a0, f ′(a) = a1, etc. around x = a.
What is the vector that identifies with f(λx) around x = a? How
about f ′(x) and

∫ x
a

dx′f(x′)?
Solution

f(λx) ↔ (f(λa), λf ′(λa), ...) (8.35)

= (b0, b1, b2, ...) where bk = λk
Ω∑
n=k

an
(λ − 1)n−kan−k

(n − k)!

8.4 Special Functions

One might question how useful TPSA is in practice because not all operations
in the original calculational algorithm are additions and multiplications. What
if we have funtions like ex, ln x, sin x, cos x? Surely one can expand them into
an infinite power series before we substitute v into them, but that would be
computer time consuming and seems to defeat the purpose of TPSA. The answer
to this question is that there are useful tricks which allow one to decompose the
calculation of these special functions into a finite number of vector additions
and multiplications. The following exercises are meant to describe these tricks.

Exercise 5 Consider the case with Ω = 3. Show that

(1, 1, 0, 0)2 = (1, 2, 2, 0), (1, 1, 0, 0)3 = (1, 3, 6, 6)
(0, 1, 0, 0)2 = (0, 0, 2, 0), (0, 1, 0, 0)3 = (0, 0, 0, 6)
(0, 1, 0, 0)n = (0, 0, 0, 0) if n ≥ 4 (8.36)

Exercise 6 Apply TPSA to calculate f ′(x), f ′′(x), f (3)(x), ... for the
function f(x) = 1/x.
Solution Let

(x, 1, 0, 0, 0...)−1 = (b0, b1, b2, b3...) (8.37)
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we require

(1, 0, 0, 0, ...) = (x, 1, 0, 0, 0...)(b0, b1, b2, b3...)
= (xb0, xb1 + b0, xb2 + 2b1, xb3 + 3b2, ...)

=⇒ b0 =
1
x

, b1 = − 1
x

b0, b2 = − 1
x

2b1, ...

=⇒ bk−1 = (−1)k
k!

xk+1
, k = 1, 2, 3...

=⇒ (x, 1, 0, 0, 0...)−1 = (
1
x

,− 1
x2

,
2
x3

,− 6
x4

, ...) (8.38)

Exercise 7 Repeat the above exercise for the function f(x) = ex.
Solution To find e(x,1,0,0,0,...), first note that

e(x,1,0,0,0...) = e(x,0,0,0,0...)+(0,1,0,0,0...) = e(x,0,0,0,0...)e(0,1,0,0,0...)

=
∞∑
k=0

1
k!

(x, 0, 0, 0, 0...)k
∞∑
n=0

1
n!

(0, 1, 0, 0, 0...)n (8.39)

Then note that

(x, 0, 0, 0, 0...)k = (xk, 0, 0, 0, 0...)
(0, 1, 0, 0, 0...)n = (0, 0, ..., n!, ..., 0, 0...) (8.40)

where the term n! on the right-hand-side of the second entry occurs
at the (n + 1)-th element of the vector. When n ≥ Ω + 1, the vector
(0, 1, 0, 0, 0...)n vanishes.36 Substituting (8.40) into (8.39) gives

e(x,1,0,0,0...) = (ex, 0, 0, 0, 0...)(1, 1, 1, 1, 1, ...)
= (ex, ex, ex, ex, ex...) (8.41)

which is as expected because all high order derivatives of ex is ex.

Exercise 8 Follow a path similar to the previous exercise, show that

ln(x, 1, 0, 0, 0...) = (ln x,
1
x

,− 1
x2

, ...) (8.42)

sin(x, 1, 0, 0, 0...) = (sin x, cos x,− sin x,− cos x, ...) (8.43)
cos(x, 1, 0, 0, 0...) = (cos x,− sin x,− cos x, sin x, ...) (8.44)

The tricks used in the above exercises allow one to evaluate the special
function at the vector (x, 1, 0, 0, 0, ...). We still need to extend the trick to
evaluate the special functions at an arbitrary vector (a1, a2, a3, ...). This is
straightforward to do if we note that the “smallness vector” (0, 1, 0, 0, ...) is not

36We recognize that (x, 0, 0, 0, ...) is a constant, and that (0, 1, 0, 0, ...) is a “smallness”
vector.
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the only vector that is small. Any vector whose first component is zero is a
“small” vector in the sense that

(0,×,×,×, ...)k = (0, 0, 0, ...×,×) (8.45)

where each vector contains Ω + 1 components, and an × means a non-zero
component. The RHS of Eq.(8.45) means that, if k < Ω + 1, the leading k
components vanishes, while if k ≥ Ω + 1, all components vanish.

Using Eq.(8.45), it follows that

e(a0,a1,a2,... aΩ) = ea0

Ω∑
k=0

1
k!

(0, a1, a2, ... aΩ)k (8.46)

ln(a0, a1, a2, ... aΩ) = (ln a0, 0, 0, 0..., 0)

+
Ω∑
k=1

(−1)k+1 1
k

(0,
a1

a0
,
a2

a0
, ... ,

aΩ

a0
)k (8.47)

√
(a0, a1, a2, ... aΩ) =

√
a0

[
(1, 0, 0, 0...0) +

1
2
(0,

a1

a0
,
a2

a0
, ... ,

aΩ

a0
)

−
Ω∑
k=2

(−1)k
(2k − 3)!!

(2k)!!
(0,

a1

a0
,
a2

a0
, ... ,

aΩ

a0
)k
]

(8.48)

sin(a0, a1, a2, ... aΩ) = sin a0

∑
k=0

(−1)k

(2k)!
(0, a1, a2, ..., aΩ)2k

+ cos a0

∑
k=0

(−1)k

(2k + 1)!
(0, a1, a2, ..., aΩ)2k+1 (8.49)

cos(a0, a1, a2, ... aΩ) = cos a0

∑
k=0

(−1)k

(2k)!
(0, a1, a2, ..., aΩ)2k

− sin a0

∑
k=0

(−1)k

(2k + 1)!
(0, a1, a2, ..., aΩ)2k+1 (8.50)

Note that all serieses on the RHSs terminate, and that they can all be evaluated
readily by applying the vector addition and multiplication rules. Eqs.(8.47) and
(8.48) requires a0 > 0.

Exercise 9 Derive Eqs.(8.46-8.50).
Exercise 10 Find an expression for (a0, a1, ...aΩ)λ, where λ is a frac-
tional number and a0 > 0.

Exercise 11 Consider the function F (x) defined in the following
computer code:

READ X
X1 = X ∗ ∗2 − 1.0
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X2 = X1 ∗ EXP(X1)
X3 = X1 ∗ X2
F = COS(X1) ∗ X3
OUTPUT F (8.51)

Use TPSA to compute F, dF/dx, d2F/dx2 when x = 1.

8.5 Multiple Input and Output Variables

So far we discussed the case with a single input variable x and a single output
variable y. We will now generalize the algorithm to multiple variables.

It is trivial to generalize to multiple output variables. Each output variable
can be treated independently of the other output variables. This means we
can concentrate on just one of them each time and consider the case with y =
y(x1, x2, ..., xn).

To treat multiple input variables, we need vectors of larger dimension. To
keep track of the multiple indices, while using the computer storage efficiently is
an extremely complex technical problem when writing TPSA codes.37 However,
to illustrate the principle, we will assume two input variables (x1, x2) and one
output variable y below.

The TPSA requires that when input x1 is substituted by vector v1 and x2

substituted by v2, we want to obtain an output vector

y(v1, v2) =
(

y(a0, b0),
∂y

∂x1
(a0, b0),

∂y

∂x2
(a0, b0),

∂2y

∂x2
1

(a0, b0),
∂2y

∂x1∂x2
(a0, b0),

∂2y

∂x2
2

(a0, b0),

.... ,
∂Ωy

∂xΩ
2

(a0, b0)
)

(8.52)

where a0, b0 are prespecified reference positions for x1, x2 respectively. The first
component on the RHS is just y evaluated at the reference positions. The next
two terms are first order derivatives. The next three terms are second order
derivatives, etc. The last Ω + 1 terms are Ωth order derivatives. All derivatives
are evaluated at (a0, b0).

It is easy to show that in order for property (8.52) to hold for the identity
functions y(x1, x2) = x1 and y(x1, x2) = x2, we must choose

v1 = (a0, 1, 0, 0, 0, ...0)
v2 = (b0, 0, 1, 0, 0, ...0) (8.53)

37Remember that the code must be good for arbitrary number of input and output variables,
as well as arbitrary order Ω because these are specified by the user.
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The vector addition and multiplication rules are

(a00, a10, a01, a20, a11, a02, ... , a0Ω) + (b00, b10, b01, b20, b11, b02, ... , b0Ω)
= (a00 + b00, a10 + b10, a01 + b01, ... , a0Ω + b0Ω) (8.54)

(a00, a10, a01, a20, a11, a02, ... , a0Ω) (b00, b10, b01, b20, b11, b02, ... , b0Ω)
= (c00, c10, c01, c20, c11, c02, ... , c0Ω)

cmn =
m∑
s=0

n∑
t=0

astbm−s,n−t
m!n!

s!(m − s)!t!(n − t)!
(8.55)

Once property (8.52) is established, to evaluate a high order derivative, we
just have to substitute (8.53) into y(x1, x2), processing the calculation using the
vector manipulation rules (8.54-8.55), and the output vector contains the result.
Once all derivatives are obtained, a Taylor map for y follows.

Exercise 12 Find the total number of elements needed in the TPSA
vector to represent one output up to Ωth order when there are M
input variables.
Solution Consider M balls in M +Ω boxes to obtain (M +Ω)!/M !Ω!.

Exercise 13 Find f((x, 1, 0, 0, 0, 0...), (y, 0, 1, 0, 0, 0...)) for the func-
tions f(x, y) = x + y, xy, 1/xy and ex+y.

Applying TPSA to accelerator beam dynamics, we may consider (x, x′, y,
y′, z, δ) at some starting location in the accelerator as inputs, and the same
coordinates one turn later as outputs. A nonlinear Taylor map is then obtained
by TPSA. This map can be used to track particles, or to calculate some nonlinear
dynamics quantities (such as tune shifts with betatron amplitudes, or nonlinear
resonance strengths) analytically.

There may be a case when one is interested in knowing the dependence of
the one-turn nonlinear map on the strength S of some special magnet. In such a
case, one can include S as one of the input variables. The map is then obtained
as a Taylor expansion in terms of S in addition to all the other input variables.
This can be useful for example in the study of sensitivity to magnet errors.
One can also consider one of the inputs to be a fitting variable strength Q of a
quadrupole in a lattice design. This allows varying Q to match the β-functions
or the betatron tunes if they are chosen as output variables.

References
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9 Lie Algebra Techniques for Nonlinear Dynam-
ics

9.1 Symplecticity Condition and Poisson Brackets

Consider an n-dimensional (2n-dimensional phase space) linear system. Let the
canonical coordinates of the system be

X =




q1

p1

q2

p2

.

.

.




(9.1)

Let M be the 2n×2n matrix that describes the map that brings the coordinates
of the particles from the initial position s = 0 to the position of observation s in
this linear dynamical system. Then M must satisfy the symplecticity condition

M̃SM = S (9.2)

where a tilde means taking the transpose of a matrix, and the matrix S, some-
times called the symplectic form,

S =




S 0
0 S

...

...
S


 (9.3)

consists of a diagonal array of 2 × 2 matrices

S =
[

0 1
−1 0

]
(9.4)

Note that all symplectic matrices are necessarily even dimensional. Since S2 =
−I, S may be thought of as a matrix equivalent of the complex number i =

√
−1.

What is remarkable is that the symplecticity condition (9.2) applies also to a
nonlinear system if we identify M to be the Jacobian matrix of the map, whose
elements are defined as

Mαβ =
∂Xα

∂(X0)β
(9.5)

where (X0)β is the β-th component of the initial coordinates of a particle at s =
0, Xα is the α-th component of the final state X of the particle at an arbitrary
position s. In a linear system, the Jacobian matrix is just the transformation
matrix, and is independent of the particle coordinates. In a nonlinear system,
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the Jacobian matrix M depends on the components of X0, and the condition
(9.2) must be satisfied for all X0.

The symplecticity condition resembles a “unitarity” condition due to the
fact that the left hand side of (9.2) is quadratic in M , while the right hand
side is almost a unit matrix. Such a condition obviously imposes a very strong
constraint on the matrix M . For example, had the symplectic condition been
something like MS = SM̃ with both sides of the equation linear in M , then
M could be expanded or shrinked by some factor without consequence. If that
were the case, nonlinear dynamics would become very different – most likely
much less interesting.

Some of the consequences of the symplecticity condition follow simply from
Eq.(9.2). In particular, one observes that (see Exercise 6)

- the matrix S is symplectic. So is the identity matrix I.
- if M is symplectic, then detM = ±1. We shall only be interested in those

with det = +1.
- if M is symplectic, so are M̃ and M−1.
- if both M are N are symplectic, then MN is symplectic.
- if λ is an eigenvalue of a symplectic matrix M , then so is 1/λ.
Another consequence of a symplectic map is that it obeys the Liouville the-

orem, i.e. the phase space volume is conserved as the system evolves according
to the map. Symplectic maps therefore are area-preserving maps. Liouville
theorem follows because the Jacobian matrix, being symplectic, has unit deter-
minant, which in turn assures that a volume element in phase space maintains
its volume as it evolves with time. Note that the Liouville theorem is a con-
sequence of the symplecticity condition, but the reverse is not necessarily true.
(It is true only in a 1-dimensional system.)

We will now introduce the Poisson bracket

[f, g] =
n∑
i=0

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(9.6)

where f and g are arbitrary functions of s and the components of X. Note that
although f and g depend on s in general, the Poisson bracket discreminates
against these dependences in that no explicit s-derivatives are included in its
definition.

Using the notations already introduced, the Poisson bracket can also be
written as

[f, g] =
∑
α,β

∂f

∂Xα
Sαβ

∂g

∂Xβ
(9.7)

or in matrix notation,

[f, g] =
∂̃f

∂X
S

∂g

∂X
(9.8)

For what we plan to do, it is necessary to first get familiarized with the
Poisson brackets. There are several properties of the Poisson brackets that are
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important. For example, let f , g, h be functions of X and s, and let a and b be
some constants (independent of X, but can depend on s), we have

[f, g] = −[g, f ]
[af + bg, h] = a[f, h] + b[g, h]
[f, gh] = [f, g]h + g[f, h]
[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (9.9)

The last entry is called the Jacobi identity. The proofs of Eq.(9.9) are omitted.
We will now prove the symplecticity condition (9.2) for a nonlinear system

as follows. The proof for a linear system then follows as a special case. The only
information we have at this point is the fact that the system under consideration
is Hamiltonian. This means there exists a Hamiltonian H so that the equations
of motion can be written as

X ′ = S
∂H

∂X
(9.10)

where a prime means taking derivative with respect to s. We are going to use
Eq.(9.10) to calculate the derivative of M̃SM with respect to s, where M is the
Jacobian matrix (9.5). Before doing so, we establish the following:

M ′
αβ =

(
∂Xα

∂X0β

)′
=

∂

∂X0β

(
Sαγ

∂H

∂Xγ

)

= Sαγ
∂2H

∂X0β∂Xγ
= Sαγ

∂2H

∂Xδ∂Xγ

∂Xδ

∂X0β

= SαγHδγMδβ = (SHM)αβ
=⇒ M ′ = SHM (9.11)

where we have adopted the notation that a repeated index means summation
over the index, and we have defined a symmetric matrix H with elements

Hδγ =
∂2H

∂Xδ∂Xγ
(9.12)

Note that H is meant to be a function of X, not X0.
Taking the derivative of the matrix M̃SM with respect to s yields

(M̃SM)′ = M̃ ′SM + M̃SM ′

= ˜(M ′)SM + M̃SM ′

= ˜(SHM)SM + M̃SSHM

= M̃H̃S̃SM − M̃HM

= M̃HM − M̃HM = 0 (9.13)

This means the matrix M̃SM is an invariant, independent of s. In particular,
its value can be obtained by evaluating it at s = 0. At s = 0, we have neces-
sarily M(s|0) = I, i.e. the identity map. This then completes the proof of the
symplecticity condition (9.2).
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Note that the Jacobian matrix is symplectic only if we use canonical coor-
dinates as the vector X. The transformation matrix for the vector (x, x′, y, y′),
for example, would not be symplectic in a solenoid, as x′ and y′ are not the
canonical momenta in a solenoid. See Exercise 2, however.]

The symplecticity condition plays an important role in Hamiltonian dynam-
ics. It imposes a strong constraint on the Hamiltonian system. To be more spe-
cific, consider an n-dimensional (2n-dimensional phase space) linear system with
matrix map M . The symplecticity condition (9.2) imposes a total of n(2n − 1)
conditions.38 The 2n× 2n matrix M has therefore 4n2 −n(2n− 1) = n(2n + 1)
independent elements. In particular, in a 2-D case, M contains 16 elements,
but only 10 of them are independent.

The symplecticity condition imposes an even stronger constraint on non-
linear systems. In a linear system, the map is independent of X0 or X; the
symplecticity condition has only to hold for all s. In a nonlinear system, it has
to hold for all s and all X0.

Consider any function f of s and X. Its value changes with time s either
because of its explicit s dependence, or because it depends on X and changes
because X changes. The total time derivative of f therefore can be written as

f ′ =
∂f

∂s
+

∂f

∂Xα
X ′
α

=
∂f

∂s
+

∂f

∂Xα
Sαβ

∂H

∂Xβ

=
∂f

∂s
+ [f, H] (9.14)

A quantity f is a constant of the motion if it is not explicitly s dependent, and
that

[f, H] = 0 (9.15)

Equations (9.14-9.15) are one of the reasons why Poisson brackets play an
important role in dynamics; they are intimately related to the time evolution of
phase space quantities. At this point, the only relevant Poisson brackets seem
to involve the Hamiltonian H. In the next section, however, we will see why the
Poisson brackets in general are useful. In fact, we will see that, for our purpose,
the Lie39 algebra technique is basically an algebra of the Poisson brackets.

In later developments, we often compute the Poisson brackets of two Taylor
series of X. It is easy to see that if f is an n-th order and g is an m-th order
Taylor series, their Poisson bracket is another Taylor series of order m + n − 2.
For example, the Poisson bracket of two quadratic forms is another quadratic
form.

38To see this, first note that the matrix M̃SM is necessarily antisymmetric. The diagonal
elements of M̃SM are zeros. The number of free elements is equal to the number of elements
in the triangular upper (or lower) off-diagonal region.

39(Marius) Sophus Lie (1842-1899), Norweigian mathematician, noted for his work in dif-
ferential equations, for which he developed the theory of continuous groups.
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The Poisson bracket of arbitrary functions f and g is given by Eqs.(9.6-9.8).
There is one set of Poisson brackets that assumes particular significance, namely
the fundamental Poisson brackets

[Xα, Xβ ] = Sαβ (9.16)

Consider a map from X0 at s = 0 to X at s. The Jacobian matrix M
of this map was defined in Eq.(9.5). The symplecticity of M implies that the
fundamental Poisson brackets are preserved. To demonstrate this, consider the
quantities X at position s as functions of the quantities X0 at s = 0, and
compute the Poisson brackets

[Xα, Xβ ] =
∂Xα

∂X0γ
Sγδ

∂Xβ

∂X0δ
= MαγSγδMβδ

= (MSM̃)αβ = Sαβ

= [X0α, X0β ] (9.17)

where again, repeated indices are summed over. In fact, Eq.(9.17) demonstrates
that a system is symplectic if and only if all the fundamental Poisson brackets
are preserved and are given by Eq.(9.16).

Exercise 1 If M1 and M2 are symplectic matrices. Is the matrix
M1 + M2 symplectic?

Exercise 2 Let (q, p) be the canonical variables for a dynamical sys-
tem with Hamiltonian H. (a) Show that the variables q̄ = aq and
p̄ = bp (a and b are constants) are not canonical unless ab = 1.
(b) Let M̄αβ = ∂x̄α/∂x̄0β . Is the matrix M̄ symplectic? The issue
here is whether the use of noncanonical variables necessarily mean
nonsymplecticity.

Exercise 3 Show that, for a Hamiltonian system, if f and g are
constants of the motion, so is [f, g].
Solution Let H be the Hamiltonian governing the motion of the
system. Use the Jacobi identity to show that if [f, H] = 0 and
[g, H] = 0, then [[f, g], H] = 0.

Exercise 4 As an illustration of Exercise 3, consider a degenerate
2-D simple harmonic system described by the Hamiltonian

H =
1
2
(ω2x2 + p2

x + ω2y2 + p2
y)

Show that

f1 = ω2x2 + p2
x and f2 = ω2y2 + p2

y

are constants of the motion. The Poisson bracket [f1, f2] = 0 gives
only a trivial case. However, show that there is another constant of
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the motion (the angular momentum)

g = xpy − ypx

By forming the Poisson bracket [f1, g] or [f2, g], one then finds an-
other invariant

h = ω2xy + pxpy

The invariant h is not an independent invariant because it is related
to the other three invariants according to ω2g2 + h2 = f1f2.

Exercise 5 As another illustration of Exercise 3, consider the 3-D
system with Hamiltonian

H =
1
2
(x2 + p2

x + y2 + p2
y + z2 + p2

z) + ε(xy + yz + zx)

Show that

f1 = (1 − ε)(x − y)2 + (px − py)2

f2 = (1 − ε)(y − z)2 + (py − pz)2

f3 = (1 − ε)(z − x)2 + (pz − px)2

are constants of the motion. By forming Poisson brackets among
f1, f2, and f3, show that

g = x(py − pz) + y(pz − px) + z(px − py)

is an invariant. By forming the Poisson brackets of f1,2,3 and g, one
finds more invariants

h1 = (1 − ε)(x − y)(2z − x − y) + (px − py)(2pz − px − py)
h2 = (1 − ε)(y − z)(2x − y − z) + (py − pz)(2px − py − pz)
h1 = (1 − ε)(z − x)(2y − z − x) + (pz − px)(2py − pz − px)

Are these invariants all independent?

Exercise 6 (a) Show that, if M is symplectic, so are M̃ , M−1, and

M̄ ≡ −SM̃S (9.18)

The last matrix M̄ is called the symplectic conjugate of M . (b) Show
that if M1 and M2 are symplectic, then so is M1M2.

Exercise 7 Express a 4×4 symplectic matrix M in 2×2 block form
as

M =
[

A B
C D

]
(9.19)
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(a) Show that

M−1 = M̄ =
[

Ā C̄
B̄ D̄

]
=

[
(detA)A−1 (detC)C−1

(detB)B−1 (detD)D−1

]
(9.20)

(b) Show that the symplecticity condition gives six conditions

detA + detC = 1, detB + detD = 1, ĀB + C̄D = 0 (9.21)

(c) Since M̃ is also symplectic, applying the conditions (9.21) to M̃
gives

detA + detB = 1, detC + detD = 1, AC̄ + BD̄ = 0 (9.22)

The six conditions in Eq.(9.21) and the six conditions in Eq.(9.22)
are algebraically equivalent. Combining the first two members of
Eq.(9.21) and the first two members of Eq.(9.22) gives the necessary
properties

detA = detD, detB = detC (9.23)

Results in this exercise are useful when dealing with linearly coupled
motions in an accelerator.

Exercise 8 Show that the only way a 4 × 4 matrix M =
[

A B
0 D

]
is symplectic is when B = 0 and A and D are symplectic. A similar

conclusion can be made for the matrix M =
[

A 0
B D

]
.

Exercise 9 The above exercise can be extended to the 6 × 6 case.
Show that if

M =


M1 M2 M3

M4 M5 M6

M7 M8 M9


 (9.24)

is symplectic, then

detM1 + detM2 + detM3 = detM4 + detM5 + detM6

= detM7 + detM8 + detM9 = detM1 + detM4 + detM7

= detM2 + detM5 + detM8 = detM3 + detM6 + detM9 = 1 (9.25)

9.2 Taylor and Lie Representations

A map can be represented in various ways. Consider an n-dimensional system.
One example of this is the Taylor map, in which the final canonical variables
are expressed as truncated power series in terms of the initial variables,

Xα = Fα(X0) (9.26)

177



where Xα is the α-th component of the final X, and

Fα(X0) = Ω−th order power series in the components of X0 (9.27)

Since there are 2n variables, we have 2n polynomials like (9.27), each is of order
Ω.

Application of Taylor maps to accelerators has a long history. In the linear
case, the Taylor map is simply the linear map, which also has a matrix form, as
adopted in the Courant-Snyder anaysis.[1] An early version of a nonlinear (2-nd
order, i.e. Ω = 2) Taylor map was adopted in the program TRANSPORT.[2] A
more recent version of Taylor map scheme is developed in a 5-th order program
COSY.[3]

Another way to represent a map is the Lie map, which is based on the Lie
algebra techniques. Lie algebra techniques are an elegant and powerful tool in
the study of nonlinear dynamics in accelerators. It was introduced by Dragt,[4]
and extended and applied by many others.[5] It should be noted that the Lie
technique is only a tool. No new physics is introduced.

In the Courant-Snyder analysis of linear systems, we saw how matrices are
used extensively and effectively. The matrix analysis however is restricted to
linear systems. The question is then how to generalize the Courant-Snyder
analysis to nonlinear systems. Both the Taylor and the Lie representations can
be regarded as ways to provide this generalization. In the case of Taylor maps,
this generalization is an obvious one. To appreciate the fact that Lie maps
are also a way to generalize the Courant-Snyder analysis, the Courant-Snyder
analysis must first be cast in the Lie formulation instead of a matrix formulation.
When done, the formulation then allows generalization to nonlinear systems in
an elegant and natural manner. Details of these topics will be developed as we
proceed.

In the Lie representation, an Ω-th order map is expressed as

e:G(X): (9.28)

where

G(X) = (Ω + 1)−th order power series in the components of X (9.29)

Note the subtle differences between Eq.(9.27) and (9.29): Fα is Ω-th order, while
G is (Ω + 1)-th order; there are 2n functions of Fα, while there is only one G;
Fα is a function of X0, while G is a function of X.

Equation (9.28) represents an operator. When applied to X, it gives the
final coordinates in terms of the initial coordinates. In other words, the way the
Lie map is to be used is40

X = e:G(X):X
∣∣∣
X=X0

(9.30)

40As indicated in Eq.(9.30), the substitution of X by X0 is to be made after the application
of the operator. It would be misleading, or at least umbiguous, to write for example X =
e:G(X):X0 or X = e:G(X0):X0.
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Its detailed meaning and applications will become clear later.
We assume the map brings the origin X0 = 0 to the origin X = 0. This

means the lowest order leading terms of Fα are 1-st order in X0, and the leading
terms in G(X) are second order in X.

For a given accelerator system and a pre-determined order Ω, if we compare
the expressions of X for the Taylor representation (9.26-9.27) and the Lie rep-
resentation (9.28-9.29), they coincide up to the Ω-th order terms. There are no
terms beyond the Ω-th order in the Taylor map (9.26). All terms beyond the
Ω-th order are truncated. With this truncation, Taylor maps are not symplectic
in general, although it does maintain its symplecticity up to the Ω-th order. On
the other hand, if expanded, the map (9.30) contains higher order terms. These
higher order terms, as we will see later, are going to make the Lie map strictly
symplectic.

To study the long term stability of a particle in an accelerator, one may
encounter the situation when a high order Taylor map (say 12-th order) is
needed, while a relatively low order (say 5-th order) Lie map would suffice.
The reason one needs a high order Taylor map is not so much to make the
map extremely accurate. Rather, it is because the map needs to be extremely
symplectic. If one uses Lie maps, which are always symplectic, a lower order
map with less accuracy may suffice.

It should be mentioned here that there are still other ways to represent a
map. For example, one may choose to introduce a generating function, and then
express it as a power series. However, we will discuss only the Taylor and the
Lie representations.

Number of coefficients in a Taylor map How many coefficients are needed
to describe a Taylor map? Consider the function Fα(X0) which is a sum of k-th
order terms where k = 1, ..., Ω. Exercise 10 shows that the total number of
coefficients for the k-th order terms is

2n × (2n + k − 1)!
k!(2n − 1)!

(9.31)

where the factor 2n is because there are 2n functions of Fα. By adding the
number of coefficients from k = 1 to Ω, we obtain Table 2.

Exercise 10 Prove the statement (9.31).
Solution Consider one of the functions Fα(X0). To find the number
of coefficients in Fα that are of k-th order, let us consider k “ob-
jects” and 2n−1 “partitions”. Arrange the collection of objects and
partitions in a certain order. Represent an object by a cross, and a
partition by a vertical bar, one has for example the following pattern
for n = 2 and k = 4,

×× | × ||×
One may identify this pattern with x2

1x2x4. It is clear that each
pattern is in one-to-one correspondence to a term in the polynomial.
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The total number of coefficients is then the same as the number
of different patterns that can be made with k objects and 2n − 1
partitions. The answer is

(2n + k − 1)!
k!(2n − 1)!

Since there are 2n functions like Fα, we have proved Eq.(9.31).

Table 2: Total number of coefficients needed to describe a Taylor map of Ω-th
order. The phase space is 2n-dimensional.

Ω = 1 Ω = 2 Ω = 3 Ω = 4 Ω = 5
n = 1 4 10 18 28 40
n = 2 16 56 136 276 500
n = 3 36 162 498 1254 2766

Taylor maps have the advantage that the final coordinates can be computed
straightforwardly from the initial coordinates. However, as mentioned before,
Taylor representation is in general nonsymplectic. In addition, it requires more
coefficients than necessary to represent the map. To appreciate this, consider
the following two exercises.

Exercise 11 Consider the case n = 1 and Ω = 1. This linear map
can be written as a 2 × 2 matrix, with 4 elements. The Taylor map
therefore has 4 coefficients. On the other hand, the symplecticity
condition dictates that this matrix has unit determinant. So the
total number of independent coefficients is 3. As we will soon see,
the Lie representation indeed requires only 3 coefficients.

Exercise 12 Consider n = 1, Ω = 2. The Taylor map reads

x = R11x0 + R12p0 + T111x2
0 + T112x0p0 + T122p2

0

p = R21x0 + R22p0 + T211x2
0 + T212x0p0 + T222p2

0 (9.32)

There are 10 coefficients in this representation. The Jacobian matrix
of the map is

M =
[

R11 + 2T111x0 + T112p0 R12 + T112x0 + 2T122p0

R21 + 2T211x0 + T212p0 R22 + T212x0 + 2T222p0

]
(9.33)

Due to symplecticity, the determinant of M has to be unity for
arbitrary values of x0 and p0. This gives the conditions that

R11R22 − R12R21 = 1
R11T212 + 2R22T111 − 2R12T211 − R21T112 = 0
2R11T222 + R22T112 − R12T212 − 2R21T122 = 0 (9.34)
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where we have dropped terms second order in x0 or p0 because in-
formation is incomplete for these coefficients after the Taylor map
is truncated to second order as done in Eq.(9.32). We have thus ob-
tained 3 conditions constraining the various coefficients. The total
number of independent coefficients is therefore 7. As we will show
next, 7 is the number of coefficients required in the corresponding
Lie representation.

Number of coefficients in a Lie map Lie map has the minimum number
of coefficients to represent a map up to a given order Ω. Lie maps are more
concise than Taylor maps. The number of coefficients of the k-th order terms
in the function G(X) of Eq.(9.28) is

(2n + k − 1)!
k!(2n − 1)!

(9.35)

By adding the number of coefficients from k = 2 to k = Ω + 1, we obtain Table
3 below. Taylor maps are more convenient for numerical tracking; Lie maps
are better suited for analysis. One should nevertheless exercise caution when
applying Taylor maps for long-term stability tracking studies. The difference
between Tables 2 and 3 is of course due to the symplecticity condition.

Table 3: Total number of coefficients needed to describe a Lie map of Ω-th
order. The phase space is 2n-dimensional.

Ω = 1 Ω = 2 Ω = 3 Ω = 4 Ω = 5
n = 1 3 7 12 18 25
n = 2 10 30 65 121 205
n = 3 21 77 203 455 917

Taylor invariants For circular accelerators, a type of map of particular sig-
nificance is the one-turn map, which gives the map for one revolution around
the accelerator. It is instructive at this point to see how to construct a Taylor
expression of an invariant from a Taylor one-turn map. Suppose we are looking
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for an invariant of Ω-th order. Consider the vector

Z =




x
p
x2

xp
p2

x3

x2p
.
.
.

xpΩ−1

pΩ




Let the one-turn map of the accelerator be written in a matrix form as

Zfinal = MZinitial (9.36)

In writing down Eq.(9.36), we have truncated the map at the Ω-th order. Let
the invariant be expressed as an Ω-th order Taylor series,

W = Ṽ Z (9.37)

where V is a vector yet to be found, while the matrix M is assumed known.
Since W is an invariant, we must have

Ṽ Z = Ṽ MZ for all Z

=⇒ Ṽ = Ṽ M

=⇒ M̃V = V (9.38)

This means V is just the eigenvector of M̃ with eigenvalue 1. This is the way V
— and therefore the invariant W — can be found. If an eigenvector of eigenvalue
1 cannot be found, it means there is no invariant of the order being considered.
Note that even in the linear case, Z must be kept up to the quadratic terms in
order to find W .41

Exercise 13 Equation (9.32) is a terminated power series because
we have performed a truncation. If Eq.(9.32) turns out to be exact,
i.e. the higher order terms all vanish exactly, what can we say about
this map?
Solution In this case, we can impose the symplecticity condition
exactly. Keep all terms including terms second order in X0, we have
in addition to (9.34), three more conditions

T111T212 − T112T211 = T111T222 − T122T211

= T112T222 − T122T212 = 0 (9.39)
41This is except for the trivial case when the map for (x, p) is the identity map, in which

case x and p are invariants.
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By solving Eqs.(9.34) and (9.39), it follows that the map (x0, p0) →
(x, p) can be written as a two-step process, namely

x1 = R11x0 + R12p0

p1 = R21x0 + R22p0 (9.40)

followed by

x = x1 + T111

(
T111p1−T211x1

R21T111−R11T211

)2

p = p1 + T211

(
T111p1−T211x1

R21T111−R11T211

)2

(9.41)

Both steps (9.40) and (9.41) are symplectic. In case either T111 = 0
or T211 = 0, we have a kick map.

Exercise 14 Consider the linear one-turn map

x = x0 cos µ + p0 sin µ

p = −x0 sin µ + p0 cos µ (9.42)

Find Taylor expressions of an invariant up to 2nd order, 3rd order,
and 4-th order in (x, p).
Solution There are no 1-st and 3-rd order invariants. The 2-nd order
invariant is x2 + p2. The 4-th order invariant is (x2 + p2)2.

Exercise 15 Consider the map that represents a linear map followed
by a thin-lens sextupole. The combined map is given by

x = x0 cos µ + p0 sin µ

p = −x0 sin µ + p0 cos µ + εx2 (9.43)

Find a Taylor expression of an invariant up to 3rd order in (x, p).
Solution Let c = cos µ and s = sin µ, we find the 3-rd order invariant

W3 = x2 + p2 − ε
sc

(1 + 2c)(1 − c)
x3 − εx2p − ε

s

1 + 2c
xp2 (9.44)

where x and p are values observed at the exit of the thin-lens sex-
tupole. Note that W3 diverges when cos µ = 1 or − 1

2 , i.e. when
µ
2π = n

3 with n an integer. One may proceed to obtain a 4-th order
invariant W4 and find that it diverges when µ

2π = n
4 .

One may perform a numerical test of the invariance of W2 =
x2 + p2 and W3. Take for example a case with µ = 2π × 0.23 and
ε = 0.05. A particle with initial conditions x0 = 1 and p0 = 0
is tracked for 1000 iterations. The resulting values of x and p for
each iteration are used to calculate the values of W2 and W3 and
plotted as functions of iteration number in Fig.9.1. It can be seen
that W2 is not a good invariant; its value fluctuates by about 10%.
In comparison, W3 fluctuates only by < 0.1%. Round-off errors are
negligible in these calculations.
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Figure 9.1: Invariants W2 and W3.

9.3 Algebra of Operators

In this section, we will describe the techniques of Lie algebra, i.e. the algebra
of Poisson brackets. For convenience we rewrite the Poisson bracket (9.6) in
another notation, following Dragt,

:f :g = [f, g] (9.45)

In this notation, the quantity :f : is viewed as an operator — a Lie operator —
which operates on the function g. Obviously we have :f :g = −:g:f . An identity
map will be designated as 1.42

One can define functions of operators. For example, powers of an operator
can be obtained by letting

(:f :)2g = :f :(:f :g) = [f, [f, g]]
42Note that :1: is not the identity map. In fact, any function operated on by :1: becomes

zero.
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(:f :)3g = [f, [f, [f, g]]], .... etc. (9.46)

It can be shown that

(:f :)k(gh) =
k∑

n=0

k!
n!(k − n)!

[(:f :)ng][(:f :)k−nh] (9.47)

When k = 1, it is just the third member of Eq.(9.9). The rest can be proved by
induction.

It also follows from the Jacobi identity that the commutator of two operators
:f : and :g:, defined as

{:f :, :g:} ≡ :f : :g: − :g: :f : (9.48)

is equal to the operator :[f, g]:, i.e.

{:f :, :g:} = :[f, g]: (9.49)

Equation (9.49) has a useful variation, namely,

{:f :, :g:}h = :h::g:f (9.50)

Equation (9.50) is just another way of writing the Jacobi identity.
Equation (9.49) is the reason Poisson brackets play a prominent role in Lie

algebra of operators. The commutators of operators occur often, and Eq.(9.49)
relates them to Poisson brackets. In particular, when [f, g] = 0, the operators
:f : and :g: commute. [However, see Exercise 19.]

Other functions of operators can then be constructed based on power ex-
pansions. Of particular significance are the exponential operators,

e:f : =
∞∑
k=0

1
k!

(:f :)k (9.51)

The leading term on the right-hand-side of Eq.(9.51) is the identity map 1.

Exercise 16 Although eln x = x is an identity, show that the maps
e: ln x: and :x: are quite different.
Solution They are very different:

e: ln x:x = x, e: ln x:p = p + 1
x

:x:x = 0, :x:p = 1

In particular, the map e: ln x: is symplectic as its Jacobian matrix[
1 0

−1/x2 1

]
has determinant of 1. The map :x: is nonsymplectic.

Exercise 17 Let a(s) be a function of s and not a function of X.
What is the operator :a(s):? What is e:a(s):?
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Exercise 18 To familiarize with the fact that :f : is an operator,
establish the following:

:q: =
∂

∂p
, :p: = − ∂

∂q

:q:2 =
∂2

∂p2
, :p:2 =

∂2

∂q2

:qp: = p
∂

∂q
− q

∂

∂p

:q::p: = − ∂2

∂q∂p
= :p::q:

:q2: = 2q
∂

∂p
, :p2: = −2p

∂

∂q
(9.52)

Exercise 19 It was mentioned that :f : and :g: commute if [f, g] = 0.
In fact, :f : and :g: commute even if [f, g] �= 0 but = constant (inde-
pendent of x and p but can depend on s). (a) Although [ax, bp] =
ab �= 0, show that

:ax::bp: = :bp::ax:

(b) Although [ax2, bpx ] = 2ab �= 0, show that

:ax2::
bp

x
: = :

bp

x
:ax2:

Exercise 20 Show that

:g::f :2g = −:f ::g:2f (9.53)

This identity is of some use later.
Solution Define h = :f :g, then

:g::f :2g = :g::f :h = −:f ::h:g − :h::g:f
= :f ::g:h + :h::f :g = :f ::g:h + :h:h
= :f ::g:h = :f ::g::f :g = −:f ::g:2f =⇒ Q.E.D.

Lie operators for accelerator elements The maps for accelerator elements
can be represented as exponential operators. For simplicity, let us consider a
1-D system. A drift space of length L, for example, can be represented as the
operator exp(: − 1

2Lp2 :). To show that, let’s first establish the following:

:p2:x =
∂p2

∂x

∂x

∂p
− ∂p2

∂p

∂x

∂x
= −2p

:p2:p =
∂p2

∂x

∂p

∂p
− ∂p2

∂p

∂p

∂x
= 0

(:p2:)2x = :p2:(:p2:x) = :p2:(−2p) = 0
(:p2:)2p = :p2:(:p2:p) = :p2:(0) = 0
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We then apply the operator exp(: − Lp2/2:) to (x, p) to obtain

e:−Lp2/2:x = x − 1
2

L:p2:x +
1
8

L2(:p2:)2x + ...

= x − 1
2

L(−2p) = x + Lp

e:−Lp2/2:p = p − 1
2

L:p2:p + ... = p (9.54)

If we identify the x and p on the right hand sides of Eq.(9.54) as the initial
coordinate and momentum of the particle, we recognize that exp(: − 1

2Lp2:)x
and exp(: − 1

2Lp2:)p give the final coordinate and momentum of the particle.
We therefore identify exp(:− 1

2Lp2:) as the Lie operator of a drift space, and it
is to be applied according to Eq.(9.30).

Similarly we can establish the Lie operators for other accelerator elements.
A few simpler examples are given in Table 4. [See Exercise 27.]

Table 4: Lie operators of some accelerator elements.
Element Map Lie Operator
Drift space x = x0 + Lp0 exp(: − 1

2Lp2:)
p = p0

Thin-lens Quadrupole x = x0 exp(: − 1
2f x2:)

p = p0 − 1
f x0

Thin-lens Multipole x = x0 exp(:λxn:)
p = p0 + λnxn−1

Thin-lens kick x = x0 exp(:
∫ x
0

f(x′)dx′:)
p = p0 + f(x)

Thick focusing quad x = x0 cos kL + p0
k sin kL exp[: − 1

2L(k2x2 + p2):]
p = −kx0 sin kL + p0 cos kL

Thick defocusing quad x = x0 cosh kL + p0
k sinh kL exp[:12L(k2x2 − p2):]

p = kx0 sinh kL + p0 cosh kL
Coordinate shift x = x0 − b exp(:ax + bp:)

p = p0 + a
Coordinate rotation x = x0 cos µ + p0 sin µ exp[: − 1

2µ(x2 + p2):]
p = −x0 sin µ + p0 cos µ

Scale change x = e−λx0 exp(:λxp:)
p = eλp0

Exponential Lie operators We will now establish a few formulae of the al-
gebra of exponential operators, which are frequently used in later developments.
First, we show that the inverse map of exp(:f :) is exp(−:f :), i.e.

(e:f :)−1 = e−:f : (9.55)
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Proof:

e:f :e−:f : =
∞∑
m=0

∞∑
n=0

1
m!n!

(:f :)m(−:f :)n

=
∞∑
k=0

k∑
n=0

1
(k − n)!n!

(:f :)k−n(−:f :)n

=
∞∑
k=0

1
k!

k∑
n=0

k!
(k − n)!n!

(:f :)k−n(−:f :)n

=
∞∑
k=0

1
k!

(:f : − :f :)k = 1 =⇒ Q.E.D. (9.56)

The derivation in Eq.(9.56) can be repeated to show that if :f : and :g:
commute (i.e. if :f : :g: = :g: :f :, or if [f, g] = constant depends only on s), then

e:f :e:g: = e:f+g: (9.57)

In fact, Eq.(9.56), and therefore (9.55), is just a special case of (9.57). When
:f : and :g: do not commute, Eq.(9.57) is no longer valid. In that case, the
right hand side of Eq.(9.57) will acquire additional terms that relate to the
commutators of the operators. The corresponding formula is called the Baker-
Campbell-Hausdorff formula, which is an important later subject.

Next we establish the following:

e:f :(gh) = (e:f :g)(e:f :h) (9.58)

Note that Eq.(9.58) applies for exponential maps (which means all symplectic
maps); if one is interested in :f :(gh), one should consider applying the third
member of Eq.(9.9). The proof of Eq.(9.58) can be established using Eq.(9.47)
and is omitted here. One useful variation of Eq.(9.58) is

e:f :[g, h] = [e:f :g, e:f :h] (9.59)

It follows from Eq.(9.58) that, for an arbitrary function g of X (X is the
vector whose components are the canonical coordinates), one has

e:f :g(X) = g(e:f :X) (9.60)

The proof of Eq.(9.60) is as follows. Letting g(X) = h(X) = X in Eq.(9.58)
gives e:f :(X2) = (e:f :X)2, i.e. Eq.(9.60) holds if g(X) = X2 including the cross
products of the components of X. This can be extended to arbitrary powers
of X. Since any function (of interest to us) can be expressed as power series,
Eq.(9.60) therefore holds for arbitrary functions of X. Equations (9.58-9.60)
establish the fact that the most basic Lie operation is of the type e:f :X.

According to Eq.(9.60), the operation by an exponential operator on a func-
tion can be propagated to the argument of the function. In other words, ex-
ponential Lie operators are “penetrating” in the sense that they penetrate into
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the guts of a functions they operate on. Since any symplectic operator can be
written as an exponential operator, this property holds for all symplectic op-
erators. This is a very interesting and useful property.43 Table 5 lists several
often-used formulae for Lie operators.

Table 5: Some formulae for Lie operators. Here a is a constant and C is a
constant vector, both independent of X, S is given by Eqs.(9.3-9.4), and f, g,
and G are arbitrary functions. Square brackets mean Poisson brackets. Curly
brackets mean commutators.

:a: = 0, e:a: = 1
:f :a = 0, e:f :a = a
:f :f = 0, e:f :f = f
{:f :, :g:} = :[f, g]:

e:f :g(X) = g(e:f :X)
e:C̃X:g(X) = g(X − SC)

e:f :G(:g:)e−:f : = G(:e:f :g:)

Equation (9.60) describes what happens when a symplectic Lie operator is
applied to a function. Lie operators can also be applied to other Lie operators.
The counterpart of Eq.(9.60) in that case reads

e:f ::g:e−:f : = :(e:f :g): (9.61)

Note that it now takes a sandwich form (similarity transformation). Note also
the penetrating property of exponential operators into the guts of the operator
that being being operated on. Proof of Eq.(9.61) is given in Exercise 23. Similar
to Eq.(9.58), Eq.(9.61) is applicable only to symplectic maps.

Exercise 21 Show that the quantity f is invariant under the map
e:f :.
Solution Consider the map X = e:f :X

∣∣∣
X=X0

. We need to show that

f(X) = f(X0), which is true because

f(X) = f(e:f :X
∣∣∣
X=X0

) = e:f :f(X)
∣∣∣
X=X0

= f(X)
∣∣∣
X=X0

= f(X0)

(9.62)

Exercise 22 Show that if [f, g] = 0, then g is invariant under e:f :.
(In particular, if f is the Hamiltonian, then e:f : describes the time
evolution of the system, and this exercise says that if [f, g] = 0, then
g is a constant of the motion.)

Exercise 23 Prove Eq.(9.61).

43Note again that Eq.(9.60) applies only to symplectic operators. An equation such as
:f :g(X) = g(:f :X) does not hold in general. Incidentally, e:f : = :ef : is also invalid.
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Solution Consider an arbitrary function h(X), we have

e:f ::g:h = e:f :[g, h] = [e:f :g, e:f :h] = :(e:f :g):e:f :h

=⇒ e:f ::g: = :(e:f :g):e:f : (9.63)

where use has been made of Eq.(9.59). Multiplying both sides from
the right by e−:f : proves Eq.(9.61).

It follows from Eq.(9.61) that

e:f :(:g:)ne−:f : = (e:f ::g:e−:f :)n = (:e:f :g:)n (9.64)

which in turn leads to the property that, for an arbitrary function G that can
be expressed as power series, one has

e:f :G(:g:)e−:f : = G(:e:f :g:) (9.65)

This property has been listed in Table 5. One particularly useful special case of
Eq.(9.65) is

e:f :e:g:e−:f : = exp(:e:f :g:) (9.66)

Note the difference between Eq.(9.65) — Lie operation on operators — and
Eq.(9.60) — Lie operation on functions. In Eq.(9.60), one sees the powerful
property for symplectic Lie operators that they permeate into the guts of the
functions they apply to. In Eq.(9.65), one sees that the application assumes
a sandwich form (similarity transformation), and that again, symplectic Lie
operators permeate into the guts of the operators being applied to.

The sandwich form in Eq.(9.65) has the consequence that when a string of
operators are being transformed, the result can be written as the same string
of the transformed operators, i.e.

e:f :(:g1: :g2: ... :gn:)e−:f : = (:e:f :g1:)(:e:f :g2:) ... (:e:f :gn:)
= [:g1(e:f :X):][:g2(e:f :X):] ... [:gn(e:f :X):] (9.67)

where use has been made of Eq.(9.55). This sandwiching property has been
used in Eq.(9.64) and will be used frequently later. Equation (9.67) indicates
that the sandwiching transformation is equivalent to substituting the dynamical
coordinates X by e:f :X in the arguments of the operators.

There is a subtlety concerning the ordering of operators. Consider an accel-
erator section consisting of an element F (with operator e:F :), followed by an
element G (with operator e:G:). Let X0 be the coordinates of a particle entering
element F . Let X1 be the coordinates of the particles exiting element F and
entering element G. Then we have

X1 = e:F (X):X
∣∣∣
X=X0

(9.68)
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Let X2 be the coordinates exiting element G, then

X2 = e:G(X):X
∣∣∣
X=X1

= exp[:G(e:F (X):X):]e:F (X):X
∣∣∣
X=X0

= exp[:e:F (X):G(X):]e:F (X):X
∣∣∣
X=X0

= (e:F :e:G:e:−F :)e:F :X
∣∣∣
X=X0

= e:F :e:G:X
∣∣∣
X=X0

(9.69)

Equation (9.69) indicates that, when a string of elements are connected into an
accelerator section, the ordering of the operators is such that operators of the
earlier elements appear to the left of operators of the later elements. This is
opposite to what one might be used to when dealing with the linear systems
with matrices!

We are now in a position to show another key property of exponential op-
erators, namely, an operator of exponential form e:f : is necessarily symplec-
tic for an arbitrary function f(X, s). To prove this, consider the quantity
X = e:f :X

∣∣∣
X=X0

, and form the fundamental Poisson brackets

[Xα, Xβ ] = [e:f :Xα, e:f :Xβ ]
∣∣∣
X=X0

= (e:f :[Xα, Xβ ])
∣∣∣
X=X0

= (e:f :Sαβ)
∣∣∣
X=X0

= Sαβ (9.70)

Equations (9.16-9.17) then prove that the operator e:f : is symplectic. Con-
versely, symplectic maps can always be expressed as exponential maps.

The fact that exponential operators are necessarily symplectic has an im-
portant practical meaning. In practice, one often has the exponential form e:f :

of a symplectic map, and one needs to compute the effect of the map on the
motion of a particle, i.e., one needs to find e:f :X. For a general f , however, this
is often not an easy task. The trick often adopted is to expand f in terms of a
power series in the components of X,

e:f : = e:(f2+f3+f4+...): (9.71)

where fk is a homogeneous power series of k-th order in the components of X.
The exponential form allows the possibility that this power series be truncated
at will without losing symplecticity. (What one loses is accuracy.) In contrast,
had the map been written as :f : instead of an exponential form, a truncation
would in general lead to a loss of the symplecticity of the map.

Furthermore, one can also write the map in a different form,

e:f : = e:f2:e:f3:e:f4:... (9.72)

The f2 in Eq.(9.72) is the same as the f2 in Eq.(9.71), but all the higher order
fk’s differ. Again in this form, exponential factors of higher orders can be
truncated at will without losing symplecticity. In either the form (9.71) or
(9.72), truncation down to the second order gives the linear map e:f2:.
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Applications to Linear Systems Let us apply operator algebra to a linear
system. Consider a quadratic form

f2 = −1
2

X̃FX (9.73)

where F is a symmetric, positive definite matrix.44 We have

:f2:X = SFX (9.74)

where S is the familiar matrix (9.3). The proof of Eq.(9.74) is as follows:

:f2:Xα =
∂f2

∂Xβ
Sβγ

∂Xα

∂Xγ

= −1
2

∂(F�mX�Xm)
∂Xβ

Sβγδαγ

= −Fβ�X�Sβα = (SFX)α, Q.E.D.

It follows from Eq.(9.74) that

e:f2:X ↔ eSFX, or e:f2: ↔ eSF (9.75)

There is a reason I use ↔ instead of = in Eq.(9.75): The left-hand-side of
Eq.(9.75) is a Lie operator form, while the right-hand-side is a matrix form. In
particular, the left-hand-side can be applied to the components of X individu-
ally, while the right-hand-side must be applied simultaneously to all components
of X.

Computation of eSF requires taking exponentials of a matrix. Exponentia-
tion of a matrix A is defined in a power series fashion as

eA =
∞∑
k=0

1
k!

Ak (9.76)

To be more specific, consider a 1-D system for which F is a symmetric 2× 2
matrix. Let F be

F =
[

a b
b c

]
(9.77)

The positive definiteness of F means the quantity X̃FX ≥ 0 for arbitrary X.
This leads to

b2 ≤ ac and a ≥ 0 (9.78)

We now need to compute the matrix eSF . To do so, we apply a theorem called
the Hamilton-Cayley theorem, which says that, for an N × N matrix A, and
f(A) being any function of A, we have

f(A) =
N−1∑
k=0

akA
k (9.79)

44The condition of positive definiteness is for the particle motion to be stable. Examples of
exception can be found in Eqs.(9.106) and (9.109).
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where ak are a set of coefficients which satisfy the algebraic conditions

f(λ) =
N−1∑
k=0

akλ
k with λ = eigenvalues of A (9.80)

To appreciate the power of the Hamilton-Cayley theorem, note that the
matrix f(A) is a N×N matrix; it has N2 elements. However, Eq.(9.79) expresses
it with only N (not N2) “fitting parameters” ak. Furthermore, these N fitting
parameters can be found by solving Eq.(9.80). The prove of the Hamilton-
Cayley theorem is given in Exercise 25.

To apply the Hamilton-Cayley theorem to the present problem, we have
N = 2 and

eSF = exp
([

b c
−a −b

])
= a0 + a1

[
b c
−a −b

]
(9.81)

where a0 and a1 are yet to be determined. The eigenvalues of the matrix

SF =
[

b c
−a −b

]
are

λ± = ±i
√

ac − b2 (9.82)

The coefficients a0 and a1 therefore satisfy

eλ+ = a0 + a1λ+, eλ− = a0 + a1λ−

=⇒ a0 = cos(
√

ac − b2), a1 =
sin(

√
ac − b2)√

ac − b2
(9.83)

We thus obtain

eSF = cos(
√

ac − b2) +
sin(

√
ac − b2)√

ac − b2

[
b c
−a −b

]
(9.84)

Equation (9.84) can be used to find the matrix form of the map when the
Lie form of the map e:f2: = e:− 1

2 (ax2+2bxp+cp2): is known. One can also try to
find the Lie form, given the matrix form, as follows. Suppose we know that the
linear map has a matrix form

R =
[

R11 R12

R21 R22

]
with detR = 1 (9.85)

By identifying the right-hand-side of Eq.(9.84) with Eq.(9.85), the coefficients
a, b and c can be related to the R matrix elements according to

cos(
√

ac − b2) =
1
2
trR

a

−R21
=

2b

R11 − R22
=

c

R12
=

√
ac − b2

sin(
√

ac − b2)
(9.86)

Knowing a, b, c, the Lie form of the map is readily obtained.
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For example, the R matrix may be a one-turn map of the Courant-Snyder
form

R =
[

cos µ + α sin µ β sin µ
−γ sin µ cos µ − α sin µ

]
(9.87)

where β and α are the β- and α-functions at the observation position in the
circular accelerator, γ = (1 + α2)/β, and µ is the betatron phase advance per
turn. In terms of α, β, γ and µ, we find

a = µγ, b = µα, and c = µβ

ac − b2 = µ2 ≥ 0 (9.88)

This gives, using Eq.(9.73),

f2 = −µ

2
(γx2 + 2αxp + βp2)

= −µ

2
× (Courant-Snyder invariant) (9.89)

The Courant-Snyder map (9.87) has thus acquired a Lie operator form

e:f2: = e:−µ
2 (γx2+2αxp+βp2): (9.90)

As we will see later, the one-turn map of a circular accelerator has the general
form e−C:Heff : where C is the accelerator circumference and Heff is the effective
Hamiltonian. Equation (9.90) says that in the linear case, the Courant-Snyder
invariant has acquired the physical meaning of the effective Hamiltonian that
describes the one-turn map, while the betatron phase advance per turn µ has
the meaning of the total length of the accelerator (except that it is measured in
radians instead of in meters).

In general, linear maps can be described by an exponential operator exp(:f2:),
where f2 is a quadratic function of X. In particular, let f2 be written as
Eq.(9.73). We have shown that the map corresponding to the operator exp(:f2:)
can be written in a matrix notation as

X = MX0 where M = eSF (9.91)

Consider two quadratic forms f = − 1
2X̃FX and g = − 1

2X̃GX. Their
corresponding maps can be concatenated into another linear map according to

e:h: = e:f :e:g: (9.92)

where h = − 1
2X̃HX is another quadratic form whose corresponding matrix H

satisfies
eSH = eSGeSF (9.93)

Comparing Eq.(9.92) in the Lie representation and (9.93) in the matrix repre-
sentation, note that the ordering of the F and G components appear in reversed
order. [See discussion following Eq.(9.69).]
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The proof of Eq.(9.93) is as follows:

e:f :e:g:Xα = e:f :(eSGX)α = e:f :(eSG)αβXβ

= (eSG)αβe:f :Xβ = (eSG)αβ(eSFX)β = (eSGeSFX)α =⇒ Q.E.D.

The map (9.90) can be extended to include the synchrotron motion. Consider
a 2-D linear system whose dynamical variables are (x, x′, z, δ) where z is the
longitudinal coordinate of a particle relative to an ideal reference particle, and
δ = ∆P/P is the momentum error relative to the reference particle. In the
present consideration, we consider δ = constant in time, i.e., the momentum is
an invariant. The motion can be decomposed into a betatron and a synchrotron
motion,

x = xβ + ηδ, x′ = x′
β + η′δ (9.94)

where η is the dispersion function. Since x and p = x′ in Eq.(9.90) actually are
the betatron components xβ and x′

β , the relevant f2 in the present system is

f2 = −µ

2
(γx2

β + 2αxβx′
β + βx′

β
2)

→ f2 = −µ

2
[γ(x − ηδ)2+2α(x − ηδ)(x′ − η′δ)+β(x′ − η′δ)2]+

1
2

Cαcδ
2

(9.95)

In Eq.(9.95), x and x′ refer to the total physical horizontal coordinates (9.94).
An extra term 1

2Cαcδ
2, where αc is the momentum compaction factor and C

is the accelerator circumference, has been added to f2; its function will become
clear momentarily.

Given the quadratic form (9.95), we then ask what is the 4× 4 matrix R for
the map e:f2:? This is done by calculating explicitly the quantities e:f2:X and
equating the results with the matrix form RX. Omitting the algebra, the result
is R =


cos µ+α sin µ β sin µ 0 η−ηR11−η′R12

−γ sin µ cos µ−α sin µ 0 η′−η′R22−ηR21

η′−η′R11+ηR21 −η+ηR22−η′R12 1 (γη2+2αηη′+βη′2)sin µ−Cαc
0 0 0 1


(9.96)

which is a familiar result from basic accelerator optics.

Exercise 24 Consider Eq.(9.75). (a) Show that for any matrix A,

det(eA) = etrA (9.97)

It follows that, with F any symmetric matrix, det(eSF ) = 1. (b)
Show that the matrix eSF is symplectic, where F is any symmetric
matrix.

Exercise 25 Prove the Hamilton-Cayley theorem (9.79-9.80).
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Solution Consider the characteristic polynomial P (λ) = det(A−λI),
which is an N -th order polynominal in λ. We have

P (λ) = (λ − λ1)(λ − λ2) ... (λ − λN ) (9.98)

where λj are the eigenvalues of A. Consider the function of A,

P (A) = (A − λ1I)(A − λ2I) ... (A − λNI) (9.99)

If we apply P (A) to Vj , which is an eigenvector of A, we obtain

P (A)Vj = 0 (9.100)

The only way Eq.(9.100) can be true for all j = 1, 2, ...N is when
P (A) = 0 identically. The fact that P (A) = 0 is the Hamilton-
Cayley theorem.

As a consequence of this theorem, when A is raised to a power
≥ n, the resulting matrix can always be expressed in terms of a
summation over lower powers of A with order ≤ n − 1. If f(A) can
be expressed as a power series in A, then it can be expressed as a
power series with order ≤ n − 1. Thus we have proved Eq.(9.79).
Having established Eq.(9.79), Eq.(9.80) follows.

Exercise 26 Consider the matrix

A =
[

a b
c d

]

(a) Demonstrate the Hamilton-Cayley theorem explicitly, i.e. show
that

P (A) = A2 − (a + d)A + ad − bc = 0

(b) Apply the Hamilton-Cayley theorem to obtain

f(A) =
1

λ+ − λ−
{[λ+f(λ−) − λ−f(λ+)] + [f(λ+) − f(λ−)]A}

(9.101)
where

λ± =
1
2
(a + d) ± 1

2

√
(a − d)2 + 4bc

are the eigenvalues of A. Given matrix A, Eq.(9.101) gives the ma-
trix f(A) for an arbitrary function f(x). Observe from Eq.(9.101)
that if the 2×2 matrix A is triangular (i.e. either b = 0 or c = 0), the
matrix f(A) is necessarily triangular for arbitrary f(x). Similarly,
if A is diagonal, so is f(A).
(c) Find the matrices A2, A3, A−1,

√
A, and eA as special cases of

Eq.(9.101).
Solution (c) All these matrices can be written in the form a0 +a1A,
as follows

A2 = −(ad − bc) + (a + d)A
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A3 = −(a + d)(ad − bc) + (a2 + ad + d2 + bc)A

A−1 =
1

ad − bc
[(a + d) − A] (9.102)

√
A =

1√
λ+ +

√
λ−

(
√

ad − bc + A)

eA = e(a+d)/2


 sinh

√
(a−d)2+4bc

2√
(a − d)2 + 4bc

(−a − d + 2A)

+ cosh

√
(a − d)2 + 4bc

2

]

Exercise 27 It is possible to establish the connections among Eqs.(9.75),
(9.87) and (9.90) differently from the text.
(a) Show by brute force, without using the Hamilton-Cayley theo-
rem, that the quantity exp(:f2:)X with f2 given by Eq.(9.90) gives
a transformation according to the matrix (9.87).
(b) Another way is as follows. We have

e:f2:X = RX =⇒ :f2:X = (ln R)X (9.103)

If R has the form (9.87), whose eigenvalues are e±iµ, an application
of the Hamilton-Cayley theorem gives

ln R = µ

[
α β
−γ −α

]
(9.104)

This map is to be identified with :f2:. This can be done if f2 is given
by Eq.(9.89).

Exercise 28 Find the Lie operators representing (a) a drift space,
(b) a thin-lens quadrupole, (c) a thick focusing quadrupole, and (d)
a thick defocusing quadrupole. These results have been given in
Table 4.
Solution
(a) Let the operator for a drift space L be written as e:f2: = exp(:−
1
2X̃FX:). We need to find F . Let F be written as Eq.(9.77), then
we have, using Eq.(9.84),

cos(
√

ac − b2) +
sin(

√
ac − b2)√

ac − b2

[
b c
−a −b

]
=

[
1 L
0 1

]
(9.105)

The solution is found to be, using Eq.(9.86), a = 0, b = 0, c = L
which gives f2 = − 1

2Lp2.

(b) Replace the right-hand-side of Eq.(9.105) by
[

1 0
− 1
f 1

]
where

f = focal length. We have a = 1
f , b = 0, c = 0, which gives f2 =

− 1
2f x2. For a defocusing thin-lens quadrupole, just let f < 0.
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(c) Replace the right-hand-side of Eq.(9.105) by
[

cos kL 1
k sin kL

−k sin kL cos kL

]
.

We find a = k2L, b = 0, c = L, which gives f2 = − 1
2L(k2x2 + p2).

(d) Replace k in the case above by ik to obtain

a = −k2L, b = 0, c = L (9.106)

which gives f2 = 1
2L(k2x2 − p2). Note that in this case, ac− b2 < 0.

Exercise 29 If the matrix R is not given by the Courant-Snyder rep-
resentation (9.87) for a stable system, but is for an unstable system
with

R =
[

cosh µ + α sinh µ β sinh µ
1−α2

β sinh µ cosh µ − α sinh µ

]
(9.107)

Show that R can also be written as eSG, where

G = µ

[
α2−1
β α
α β

]
(9.108)

and the corresponding Lie representation of the map is

exp
[
: − µ

2
(
α2 − 1

β
x2 + 2αxp + βp2):

]
(9.109)

Note that the quadratic form in Eq.(9.109) is not positive definite.

Exercise 30 Lie representation is very useful for generalization to
nonlinear systems, but is awkward for a linear system. Linear sys-
tems are best studied with matrices. To appreciate this, try to con-
catenate a drift space followed by a thin-lens quadrupole. This can
be easily done in the matrix language. In the Lie language, one
needs to concatenate

e:− 1
2Lp

2:e:− 1
2f x

2: (9.110)

This can drive you crazy.

Exercise 31 Use Exercise 30 to demonstrate the “reverse” ordering
rule of the Lie operators, i.e. Eq.(9.110) describes a quadrupole
followed by a drift, and not a drift followed by a quadrupole.

Exercise 32 The Lie map (9.90) gives the one-turn Courant-Snyder
map (9.87). The Courant-Snyder map from position 1 (with pa-
rameters α1, β1) to position 2 (with parameters α2, β2) is (ψ is the
betatron phase advance from position 1 to position 2)


√
β2
β1

(cos ψ + α1 sin ψ)
√

β1β2 sin ψ

− 1+α1α2√
β1β2

sin ψ + α1−α2√
β1β2

cos ψ
√

β1
β2

(cos ψ − α2 sin ψ)


 (9.111)
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Find the Lie representation of this map.
Solution The Lie map is given by exp[−: 12 (ax2 + 2bxx′ + cx′2):],
where a, b, and c are determined by Eq.(9.86). In particular,

√
ac − b2 = cos−1

[
1
2

(√
β2

β1
+

√
β1

β2

)
cos ψ

+
1
2

(
α1

√
β2

β1
− α2

√
β1

β2

)
sin ψ

]
(9.112)

Again, one observes that the Lie map is much clumsier than the
matrix map for linear problems. One special case occurs when
α1 = α2 and β1 = β2. Then the Lie map has a simple form
exp[−: 12ψ(γx2 + 2αxx′ + βx′2):].

Application to Nonlinear Systems So far we have been considering linear
systems, which can be analysed using matrices. Using Lie technique for linear
cases in fact is more cumbersome than using matrices. [See Exercises 30 and 32.]
Lie technique is not very useful for linear cases, but it is useful for nonlinear
cases. In fact, it provides the natural way to generalize the Courant-Snyder
analysis to nonlinear systems.

As an application of the operator algebra to a nonlinear problem, consider
a map which is known to have a second order Taylor representation

Xα = RαβX0β + TαβγX0βX0γ + O(X3
0 ) (9.113)

where the T -coefficients satisfy Tαβγ = Tαγβ . We may proceed to find a Lie
representation of this map, accurate to order O(X2), in the form

e:f2:e:f3: (9.114)

In Eq.(9.114), f2 and f3 are homogeneous power series in X,

f2 = −1
2

X̃FX = −1
2

F�mX�Xm

f3 = C�mnX�XmXn (9.115)

where the F and C coefficients are symmetric with respect to permutations on
their respective subscript indices. Our job is to find the F - and C-coefficients
in terms of the R- and T -coefficients, and vice versa.

We first note that

:f3:Xα =
∂f3

∂Xδ
Sδγ

∂Xα

∂Xγ

=
∂(C�mnX�XmXn)

∂Xδ
Sδγδαγ

= C�mn(δδ�XmXn + X�δmδXn + X�Xmδδn)Sδα
= −3SαδCδmnXmXn
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and that
(:f3:)2Xα = O(X3)

It follows that

e:f3:Xα = [1 + :f3: +
1
2
:f3:2 + ...]Xα

= Xα − 3SαδCδmnXmXn + O(X3) (9.116)

This then gives

e:f2:e:f3:Xα = e:f2:Xα − 3SαδCδmne:f2:(XmXn) + O(X3)
= (eSFX)α − 3SαδCδmn(e:f2:Xm)(e:f2:Xn) + O(X3) (9.117)

Equation (9.117) then leads to

R = eSF (9.118)

as expected, and
Tαβγ = −3SαδCδmnRmβRnγ (9.119)

Equations (9.118-9.119) express the R- and the T -coefficients in terms of the
F - and C-coefficients. Their reverses can also be obtained. The procedure of
finding F from R is given by Eqs.(9.86) and (9.77). The C-coefficients are found
to be

C�mn =
1
3

S�α(R−1)βm(R−1)γnTαβγ (9.120)

as can be proved by back substitution into Eq.(9.119). This exercise shows an
explicit transformation between a Lie map and its corresponding Taylor map.
It should be kept in mind that representations (9.113) and (9.114) agree with
each other to second order in X, but differ in higher orders.

To be specific, consider a circular accelerator which is otherwise perfectly
linear aside from a thin-lens sextupole at s = 0. The linear Lie map around
s = 0 is (consider 1-D motion)

e:f2: where f2 = −µ

2
(γx2 + 2αxp + βp2) (9.121)

Let the thin-lens sextupole be (see Table 4)

e:f3: where f3 = λx3 (9.122)

The one-turn map from s = 0+, going through the accelerator, then the sex-
tupole, and end up at s = C+, is given by

e:f2:e:f3: (9.123)

As discussed earlier, the ordering of the Lie operators is reversed fromthat used
to in a matrix formulation.
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The Taylor representation of the map is given by combining the two steps,
i.e., passing through the accelerator,

x1 = x0(cos µ + α sin µ) + p0β sin µ

p1 = −x0γ sin µ + p0(cos µ − α sin µ) (9.124)

followed by passing through the sextupole,

x = x1 and p = p1 + 3λx2
1 (9.125)

The combination of Eqs.(9.124-9.125) gives a Taylor map of the form (9.113)
with all higher order terms terminated, and

R11 = cos µ + α sin µ

R12 = β sin µ

R21 = −γ sin µ

R22 = cos µ − α sin µ

T211 = 3λR2
11

T212 = T221 = 3λR12R11

T222 = 3λR2
12 (9.126)

All unlisted T -coefficients vanish. Note that this Taylor map is exactly sym-
plectic and is a special case of the map (9.40-9.41).

As to the Lie representation, the quadratic form f2 is obtained by implement-
ing Eq.(9.118) and is of course given by Eq.(9.121) as one would expect. The
C-coefficients that describe f3 according to Eq.(9.115) are given by Eq.(9.120).
It is found that the only nonvanishing C-coefficient is

C111 = λ (9.127)

This leads to the expected Eq.(9.122) for f3.

Monomial Maps We now proceed to describe an interesting formula involv-
ing monomials. Let x and p be the canonical variables, a, α, and β be arbitrary
constants. Consider the exponential operator exp(a:xαpβ :), where the exponent
is a single term in the form of a power of x and p (α and β do not have to be
integers). The formula reads

ea:x
αpβ :x =

{
x[1 + a(α − β)xα−1pβ−1]β/(β−α), if α �= β
x exp(−aαxα−1pα−1), if α = β

ea:x
αpβ :p =

{
p[1 + a(α − β)xα−1pβ−1]α/(α−β), if α �= β
p exp(aαxα−1pα−1), if α = β

(9.128)

The α = β case can be obtained by taking the limit α → β in the α �= β
expressions. One way to appreciate Eq.(9.128) is mentioned in Exercise 38.

201



To prove Eq.(9.128), one first note that the map ea:x
αpβ : describes a dynam-

ical system with Hamiltonian [see Eq.(9.178) later.]

H = − a

T
xαpβ (9.129)

where T is the total time period over which the Hamiltonian is being applied
to the system. The equations of motion are

ẋ =
∂H

∂p
= −aβ

T
xαpβ−1

ṗ = −∂H

∂x
=

aα

T
xα−1pβ (9.130)

Since H is a constant of the motion, we have xαpβ = xα0 pβ0 . From the first line
of Eq.(9.130), we have therefore

ẋ = −aβ

T
x
α(β−1)/β
0 pβ−1

0 xα/β

=⇒ x−α/βẋ = −aβ

T
x
α(β−1)/β
0 pβ−1

0

=⇒ [x(t)](β−α)/β = x
(β−α)/β
0 − a(β − α)

T
tx
α(β−1)/β
0 pβ−1

0 (9.131)

Setting x to be x(T ), we obtain

x = x0[1 + a(α − β)xα−1
0 pβ−1

0 ]β/(β−α) (9.132)

which proves the first line of Eq.(9.128).
Similarly,

ṗ =
aα

T
xα−1

0 p
β(α−1)/α
0 pβ/α

=⇒ p = p0[1 + a(α − β)xα−1
0 pβ−1

0 ]α/(α−β) (9.133)

which proves the second identity in Eq.(9.128).
One particular case of Eq.(9.128) is when α and β are integers. Then the

exponent is a monomial in x and p. Equation (9.128) then gives the exact result
of the evolution of the dynamical variables due to the exponential monomial
map. Note that if the exponent contains two monomial terms, then there is in
general not an exact expression any more.

Equation (9.128) is exactly symplectic. To demonstrate that, we need only
to show that the Poisson brackets of the two expressions in Eq.(9.128) is equal
to 1, i.e.,

[x, p] =
∂x

∂x0

∂p

∂p0
− ∂x

∂p0

∂p

∂x0
= 1 (9.134)

Exercise 33 As mentioned in the text, exponential Lie maps are al-
ways symplectic, while Taylor maps are not. However, Taylor maps
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are symplectic up to the order it is truncated. Show that when
Eqs.(9.118) and (9.119) are satisfied, the Taylor map (9.113) is sym-
plectic to order O(X).
Solution The Jacobian matrix of the map (9.113) is

Mαδ = Rαδ + 2TαδβX0β + O(X2)

This leads to

(M̃SM)αβ = (R̃SR)αβ+2S�m(T�αnRmβ−R�αTmβn)X0n+O(X2)

We need to prove

R̃SR = S

S�m(T�αnRmβ − R�αTmβn) = 0 for all α, β, n (9.135)

Exercise 34 In this section, we have been considering perturbation
in powers of X, i.e. X is the small quantity in the perturbation
treatment (assuming we are interested in the region of phase space
close to the origin). This is not necessary; the perturbation expan-
sion can be in other small quantities as well. Consider a Taylor map
which is first order in the strength ε of a certain linear or nonlinear
perturbation in such a way that

X = X0 + εG(X0) (9.136)

where G is a vector function which could be nonlinear in X0. Find
the corresponding Lie map to first order in ε.
Solution Let the Lie map be written as exp[:εf(X):], then we must
have

:f(X):X = G(X) or [f(X), X] = G(X) (9.137)

Using Eq.(9.7), this gives

−Ski
∂f

∂Xi
= Gk or − S∇f(X) = G(X) (9.138)

By inverting Eq.(9.138), we obtain

∇f(X) = SG(X)

=⇒ f(X) =
∫ X

0

dX ′SG(X ′) (9.139)

The integral in Eq.(9.139) is along any path from 0 to X in the
multi-dimensional phase space. This integral being independent of
the path taken is a result of the dynamic system being conservative.
Equation (9.138) can be used to obtain the Taylor map once the Lie
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map is known (knowing f , one can compute G). Equation (9.139)
can be used the other way around (knowing G, one can compute f).

Exercise 35 Kick maps constitute a simple application of Eq.(9.138-
9.139). Consider a kick map described by Eq.(9.136) with

X =
[

x
p

]
, G(X) =

[
0

g(x)

]
(9.140)

where g(x) is a function of x and not p. Find the corresponding Lie
map to first order in ε.
Solution Equation (9.139) gives[

∂f(X)
∂x

∂f(X)
∂p

]
= ∇f(X) =

[
0 1
−1 0

] [
0

g(x)

]
=

[
g(x)

0

]

=⇒ f(X) =
∫ x

0

dx′g(x′) (9.141)

independent of p. Conversely, if one is given the Lie map with f(X)
in the form (9.141), then

G(X) = −S∇f(X) = −
[

0 1
−1 0

] [
g(x)

0

]
=

[
0

g(x)

]
(9.142)

Exercise 36 As another application of Exercise 34, find the Lie map,
to first order in ε, that gives the Taylor map

x = x0 − εp2
0, p = p0 + εx2

0 (9.143)

Solution

exp[:
ε

3
(x3 + p3):] (9.144)

Exercise 37 Factorize exp[:ax2 + 2bxp + cp2:] into monomial map
factors. Give physical meaning of each of the monomial factor maps.
This factorization is exact.
Solution This factorization is not unique. One way is to factorize
the map into a drift space of length L1, followed by a focusing thin-
lens quadrupole of focal length f , followed by another drift space
L2, where

L1 =
√

ac − b2

a
tan

√
ac − b2

2
+

b

a

f =
√

ac − b2

a sin
√

ac − b2

L2 =
√

ac − b2

a
tan

√
ac − b2

2
− b

a
(9.145)
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This means we have factorized

e:ax2+2bxp+cp2: = e:− 1
2L1p

2:e:− 1
2f x

2:e:− 1
2L2p

2: (9.146)

A generalization of this factorization into monomial maps to a non-
linear system can be found in Exercise 59 after we learn the Baker-
Campbell-Hausdorff formula.

Exercise 38 The text mentioned one appreciation of Eq.(9.128) by
considering its symplecticity. [See Eq.(9.134).] Another apprecia-
tion of Eq.(9.128) is provided by first considering the infinite series
representation of the exponential map; application of this map on x
or p then leads to infinite series. What Eq.(9.128) says is that the
resulting infinite series can be summed exactly. Show this explicitly
by first proving that, for k ≥ 1,

(:xαpβ :)kx = (β − α)k
Γ(k + β

α−β )

Γ( β
α−β )

x(α−1)k+1p(β−1)k

(:xαpβ :)kp = (β − α)k
Γ(k − α

α−β )

Γ(− α
α−β )

x(α−1)kp(β−1)k+1 (9.147)

Use Eq.(9.147) to prove Eq.(9.128).

Exercise 39 Consider the (x, p) phase space and a map e:pf(x): with
some function f(x). Find the explicit expressions of[

X
P

]
= e:pf(x):

[
x
p

]
(9.148)

Solution The map e:pf(x): is a map from t = 0 to t = T for a
dynamical system with Hamiltonian H = −pf(x)/T . The Hamilton
equations of motion are

ẋ = − 1
T

f(x), ṗ =
1
T

pf ′(x) (9.149)

The first member of Eq.(9.149) gives∫ x

x0

dx′

f(x′)
= − t

T
(9.150)

where (x0, p0) are the initial coordinates at time t = 0.
Since the Hamiltonian is a constant of the motion, we have

pf(x) = p0f(x0) =⇒ x = f−1(
p0

p
f(x0)) (9.151)

The second member of Eq.(9.149) then gives

ṗ =
p

T
f ′[f−1(

p0

p
f(x0))]

=⇒
∫ p/p0

1

du

uf ′[f−1( 1
uf(x0))]

=
t

T
(9.152)
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Knowing f(x), Eq.(9.150) gives the solution for x as a function
of t while Eq.(9.152) gives the solution for p. When t = T , the
solutions give explicit expressions of X and P .

One can apply the result to special cases. Taking f(x) = ax
gives the map

x(t) = x0e−at/T , p(t) = p0eat/T (9.153)

Taking f(x) = ax2 gives

x(t) =
Tx0

T + ax0t
, p(t) = p0(1 + ax0

t

T
)2 (9.154)

Taking f(x) = αeax gives

x(t) = −1
a

ln(e−ax0 + αa
t

T
), p(t) = p0(1 + αa

t

T
eax0) (9.155)

Taking f(x) = α sin(ax) gives

tan
ax(t)

2
=

(
tan

ax0

2

)
e−αat/T

p(t) =
p0e−αat/T

2(1 + cos ax0)
[(1+cos ax0)2e2αat/T + sin2 ax0](9.156)

One may check that the Jacobian matrices for the maps (9.153-
9.156) have unit determinants. One may also check Eqs.(9.153-
9.154) against Eq.(9.128) because they are special cases of Eq.(9.128).

If the map (9.148) is considered to be a change of variables from
(x, p) to (X, P ), this type of coordinate change is called contact
transformations. In particular, X and P/p0 depend only on x0 and
not on p0. The map (9.155) with t = T , for example, is equivalent
to a contact transformation with a generating function

F (x, P ) = −P

a
ln(e−ax + αa) (9.157)

Exercise 40 Consider the map e:f(x)g(p):. Find expressions for[
X
P

]
= e:f(x)g(p):

[
x
p

]
(9.158)

Solution Follow a similar procedure as in Exercise 39 to obtain∫ x

x0

dx

f(x)g′[g−1( f(x0)g(p0)
f(x) )]

= − t

T∫ p

p0

dp

g(p)f ′[f−1( f(x0)g(p0)
g(p) )]

=
t

T
(9.159)
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The map (9.158) is obtained by setting t = T in Eq.(9.159). Equa-
tions (9.128), (9.150) and (9.152) are special cases of Eq.(9.159). As
a special case, taking f(x)g(p) = αeax+bp gives

x(t) = x0 − αb
t

T
eax0+bp0

p(t) = p0 + αa
t

T
eax0+bp0 (9.160)

Taking f(x)g(p) = αxaebp gives

x(t) = x0 − αbxa0ebp0
t

T

p(t) = −a

b
ln

(
e−bp0/a − αbxa−1

0 eb(a−1)p0/a
t

T

)
(9.161)

Denoting the coordinate x as φ and momentum p as A, and taking
f(φ)g(A) = α

√
A sin φ give

cot φ(t) = cot φ0 +
α

2
√

A0 sin φ0

t

T

A(t) = A0 sin2 φ0 + (
√

A0 cos φ0 +
αt

2T
)2 (9.162)

Similarly, taking f(φ)g(A) = α
√

A cos φ gives

tan φ(t) = tan φ0 −
α

2
√

A0 cos φ0

t

T

A(t) = A0 cos2 φ0 + (
√

A0 sin φ0 +
αt

2T
)2 (9.163)

One can check the symplecticity of the maps (9.160-9.163) by veri-
fying the Jacobian matrices have unit determinants.

Exercise 41 We learned in Exercise 21 that if

e:f(x,p):x = X(x, p), e:f(x,p):p = P (x, p) (9.164)

then
f(X(x, p), P (x, p)) = f(x, p) (9.165)

There is also an inverse relationship to Eq.(9.165). To see that, note
that Eq.(9.164) allows us to write

x = X(e:−f(x,p):x, e:−f(x,p):p), p = P (e:−f(x,p):x, e:−f(x,p):p)
(9.166)

Knowing the explicit expressions of the functions X(x, p) and P (x, p),
we can solve Eq.(9.166) for the quantities e:−f(x,p):x and e:−f(x,p):p
to obtain the expressions

e:−f(x,p):x = X̄(x, p), e:−f(x,p):p = P̄ (x, p) (9.167)
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It follows that one has an additional condition

f(x, p) = f(X̄(x, p), P̄ (x, p)) (9.168)

Check the validity of Eqs.(9.165) and (9.168) for the case of Eq.(9.128).
Solution We have f(x, p) = axαpβ , and X, P, X̄, P̄ are given by

X = x[1 + a(α − β)xα−1pβ−1]β/(β−α)

P = p[1 + a(α − β)xα−1pβ−1]α/(α−β)

x = X̄[1 + a(α − β)X̄α−1P̄ β−1]β/(β−α)

p = P̄ [1 + a(α − β)X̄α−1pP̄ β−1]α/(α−β) (9.169)

Conditions (9.165) and (9.168) follow by observing

xαpβ = XαP β = X̄αP̄ β (9.170)

Note that one can solve the last two expressions of Eq.(9.169) to
obtain explicit expressions of X̄ and P̄ in terms of x and p. The
result will be the same expressions as X and P except that a is
replaced by −a, as one expects.

Exercise 42 The canonical transformation {x =
√

2A sin φ, p =√
2A cos φ}, or {A = (x2 + p2)/2, φ = tan−1(x/p)} can be described

by a generating function, as is well known. Can this also be de-
scribed in Lie language? In other words, look for a function f(x, p)
which gives

e:f :x = tan−1 x

p
, e:f :p =

x2 + p2

2
(9.171)

(a) Find f if possible. (b) If not, at least use Eq.(9.171) to show
that

e:−f :x =
√

2p sin x, e:−f :p =
√

2p cos x (9.172)

(c) What is the map e:−µ(x2+p2)/2: expressed in the (φ, A) coordi-
nates?
Solution (a) f(x, p) must exist because the Jacobian matrix of the
map (9.171) has determinant 1. According to Exercise 41, f(x, p)
must satisfy f(x, p) = f(tan−1(x/p), (x2+p2)/2) = f(

√
2p sin x,

√
2p cos x).

How could this be possible? In particular, one must have f(0, p) =
f(0, p2/2) = f(0,

√
2p).

(b) The first member of Eq.(9.171) gives

x = e:−f : tan−1 x

p
= tan−1

[
e:−f :(

x

p
)
]

= tan−1

[
e:−f :x

e:−f :p

]

=⇒ tan x =
e:−f :x

e:−f :p
(9.173)

Similarly, the second member of Eq.(9.171) gives

2p = (e:−f :x)2 + (e:−f :p)2 (9.174)

208



Solving Eqs.(9.173-9.174) for the quantities e:−f :x and e:−f :p gives
the needed proof of Eq.(9.172).
(b) The transformation can be described by

e:−f :e:−µ(x2+p2)/2:e:f : = exp[: − µ

2
e:−f :(x2 + p2):]

= e:−µp: → e:−µA: (9.175)

This map is to be applied to coordinates (φ, A). Note the order-
ing on the left hand side of Eq.(9.175). In particular, it is not
e:f :e:−µ(x2+p2)/2:e:−f :.

Exercise 43 (a) Show that the map

x = x0 + bf(ax0 + bp0)
p = p0 − af(ax0 + bp0) (9.176)

is symplectic for arbitrary values of a, b, and arbitrary function f(u).
(b) Find the Lie representation of the map. This map can be re-
garded as the generalized kick map. The usual kick map is obtained
when either a = 0 or b = 0.
Solution (b)

exp

[
: −

∫ ax+bp

0

f(u)du:

]
(9.177)

9.4 Baker-Campbell-Hausdorff Formula

In the previous section, we tried to establish some familiarity with the Lie oper-
ators. Before we turn attention to accelerator applications in the following sec-
tions, we need to introduce a set of formulae — the Baker-Campbell-Hausdorff
formula and its variations — which are used repeatedly later.

Single accelerator element An accelerator typically consists of a sequence
of elements. Consider one particular element of length L. Let the particle mo-
tion in this element be described by the Hamiltonian H which is independent of
s inside the element. The map for this element can be written as an exponential
operator. Some examples have been given in Table 4. For the element being
considered here, the map is

e:−LH: (9.178)

To prove Eq.(9.178), one only has to note that

dX

ds
= −:H:X =⇒ dkX

dsk
= (−:H:)kX (9.179)

It follows that the map

X(s) =
∞∑
k=0

sk

k!

(
dkX

dsk

)
s=0

(9.180)
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can be represented by the Lie operator
∞∑
k=0

sk

k!
(−:H:)k = e:−sH: (9.181)

The operator (9.178) is obtained just by integrating the map to the end of the
element s = L.

Given below are the Hamiltonians of a few typical accelerator elements:

H =




−xδ
ρ + 1

2ρ2 x2 + 1
2(1+δ) (p

2
x + p2

y) dipole
1
2K(x2 − y2) + 1

2(1+δ) (p
2
x + p2

y) quadrupole
1
3S(x3 − 3xy2) + 1

2(1+δ) (p
2
x + p2

y) sextupole
1
4λ(x4 − 6x2y2 + y4) + 1

2(1+δ) (p
2
x + p2

y) octupole

(9.182)

where K, S, and λ are the strengths of quadrupole, sextupole and octupole
elements, ρ is the dipole bending radius. The dynamical variables for the above
Hamiltonians are (x, px, y, py, z, δ). All elements are considered thick-lens.

In general, for an n-th multipole other than dipole (n = 1, 2, 3 for quadrupole,
sextupole, octupole, etc), we have

H =
1

n + 1
Re[(λn + iλ̄n)(x + iy)n+1] +

1
2(1 + δ)

(p2
x + p2

y) (9.183)

where λn and λ̄n are the normal and the skew components of the multipole field.
Equation (9.182) contains only the normal components with K = λ1, S = λ2

and λ = λ3. Explicit equations of motion for the Hamiltonians (9.182) can be
found in Exercise 42.

The nonlinear effect of δ through the term 1
2(1+δ) (p

2
x+p2

y) in the Hamiltonians
(9.182-9.183) is often (although not always) negligible. In those cases, it is a
good approximation to make the replacement

1
2(1 + δ)

(p2
x + p2

y) →
1
2
(p2
x + p2

y) (9.184)

In this approximation, the chromatic effects are solely contained in the −xδ/ρ
term of the dipole magnets.

The Hamiltonians (9.182) applies to the 6-D phase space (x, px, y, py, z, δ).
If one is interested only in the 4-D transverse phase space, it is possible to
simplify the Hamiltonians somewhat as follows. One first notes that for the
elements described by (9.182), we have x′ = ∂H/∂px = px/(1+ δ) and similarly
y′ = py/(1 + δ). One then notes that if there are no electric devices (e.g. an rf
cavity), δ can be regarded as a numerical constant if one ignores the longitudinal
dynamics. It is then easy to show that the Hamiltonian equations of motion
hold for the variables (x, x′, y, y′) with the new Hamiltonians

H =




1
1+δ (−xδ

ρ + 1
2ρ2 x2) + 1

2 (x′2 + y′2) dipole
1

2(1+δ)K(x2 − y2) + 1
2 (x′2 + y′2) quadrupole

1
3(1+δ)S(x3 − 3xy2) + 1

2 (x′2 + y′2) sextupole
1

4(1+δ)λ(x4 − 6x2y2 + y4) + 1
2 (x′2 + y′2) octupole

(9.185)
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Hamiltonians (9.185) apply only if one ignores the longitudinal dynamics. In
particular, if one wants to find the path length equation of motion by z′ =
∂H/∂δ, he should use Eq.(9.182), not Eq.(9.185).

As mentioned, given the Hamiltonian, the Lie map is simply e:−LH:. Exer-
cises 45 and 46 give the matrix representations of the linear maps for quadrupoles
and dipoles. On the other hand, although these two exercises are applied to
linear cases, the power of Lie technique lies really in nonlinear cases. Take the
sextupole case in Eq.(9.182) as an illustration. With the approximation (9.184),
we first work out the following:

:H:x = − ∂H

∂px
= −px

:H:2x = −:H:px = −∂H

∂x
= −S(x2 − y2)

:H:3x = −S(− ∂H

∂px
2x +

∂H

∂py
2y) = 2S(xpx − ypy)

:H:4x = 2S(− ∂H

∂px
px + x

∂H

∂x
+

∂H

∂py
py −

∂H

∂y
y)

= 2S[−p2
x + p2

y + Sx(x2 + y2)]

:H:5x = O(S2)

We then obtain the Taylor map

e:−LH:x = x + pxL − 1
2

SL2(x2 − y2) − 1
3

SL3(xpx − ypy)

+
1
12

SL4[−p2
x + p2

y + Sx(x2 + y2)] + O(S2L5) (9.186)

where O(S2L5) means terms same-or-higher order than S2 in S and same-or-
higher order than L5 in L. Similarly, we have

e:−LH:px = px−SL(x2−y2)−SL2(xpx−ypy)−
1
3

SL3[p2
x−p2

y−Sx(x2+y2)]

+
1
12

S2L4(5x2px − y2px + 6xypy) + O(S2L5)

e:−LH:y = y + Lpy + SL2xy +
1
3

SL3(xpy + ypx)

+
1
12

SL4[2pxpy + Sy(x2 + y2)] + O(S2L5)

e:−LH:py = py+2SLxy + SL2(xpy+ypx) +
1
3

SL3[2pxpy+Sy(x2+y2)]

− 1
12

S2L4(x2py − 6xypx − 5y2py) + O(S2L5) (9.187)

So we have already obtained some useful results! These expressions are of course
approximate and nonsymplectic if the higher order terms are truncated.
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Chain of Elements So far we have applied Lie operators for single elements.
An accelerator typically consists of a sequence of elements. Let the elements be
ordered according to the index i = 1, 2, ..., N so that the beam passes through
element 1, then element 2, etc. Let the i-th element have length Li and Hamil-
tonian Hi. The map for the i-th element is e:−LiHi:. The one-turn map around
the entrance of the first element (call this position s = 0) is (note the order of
the operators)

e:−L1H1:e:−L2H2: ... e:−LNHN : (9.188)

which we shall abbreviate as
N∏
i=1

e:−LiHi: (9.189)

The situation is illustrated in Fig.9.2. The total one-turn map of the accelerator
is obtained by multiplying a sequence of exponential operators. A simple ex-
ample representing a single thin-lens sextupole in an otherwise perfectly linear
accelerator was worked out following Eqs.(9.121-9.122).

Figure 9.2: The accelerator model viewed in Lie language.

The forms (9.188) or (9.189) are not yet very useful. To proceed, we would
like to have the total map represented as a single exponential operator instead
of a product of exponential operators. The process of combining exponential
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operators is called concatenation. After concatenation, the single exponential
operator can be written as

one turn map = e:−CHeff : (9.190)

where C is the accelerator circumference.
Drawing an analogy of Eq.(9.190) to Eq.(9.178) for a single element allows

the quantity Heff to be identified as the effective Hamiltonian of the one-turn
map. It describes the one-turn motion of particles in the system. It is a func-
tion of the dynamical variables X, but does not depend on s, i.e. it is time-
independent. As a consequence, Heff is a constant of the motion when observed
at the position s = 0. When (or if) one has obtained the one-turn map in the
form (9.190) by concatenation, it is impressive that a complex system of an ac-
celerator, which consists of many pieces each having its own Hamiltonian, can
be combined into a simple form (9.190) and a constant of the motion can be
found this way.

Note that Heff is not only a constant of the motion, but also the Hamiltonian.
One can actually derive the equations of motion by applying the Hamilton’s
equations to it. The condition is that the equations obtained this way apply
only if one observes the motion at position s = 0.

BCH Formula – First Form The basic formula that allows concatena-
tion of exponential operators is called the Baker-Campbell-Hausdorff (BCH)
formula.[6] It can be cast in several forms. We will introduce four forms of this
formula. The first form reads

e:f :e:g: = e:h: (9.191)

where f and g are arbitrary functions of the dynamical variables X, and

h = f + g +
1
2
:f :g +

1
12

:f :2g +
1
12

:g:2f +
1
24

:f ::g:2f

− 1
720

:g:4f − 1
720

:f :4g +
1

360
:g::f :3g +

1
360

:f ::g:3f

+
1

120
:f :2:g:2f +

1
120

:g:2:f :2g + O((f, g)6) (9.192)

where O((f, g)6) means terms of the order of fmgn where m + n ≥ 6. If we use
the commutator notation of Eq.(9.48) and apply Table 5, Eqs.(9.191-9.192) can
be rewritten as

e:f :e:g: = exp
[
:f : + :g: +

1
2
{:f :, :g:} +

1
12

{:f :, {:f :, :g:}} +
1
12

{:g:, {:g:, :f :}}

+
1
24

{:f :, {:g:, {:g:, :f :}}} − 1
720

{:g:, {:g:, {:g:, {:g:, :f :}}}}

− 1
720

{:f :, {:f :, {:f :, {:f :, :g:}}}} +
1

360
{:g:, {:f :, {:f :, {:f :, :g:}}}}

+
1

360
{:f :, {:g:, {:g:, {:g:, :f :}}}} +

1
120

{:f :, {:f :, {:g:, {:g:, :f :}}}}
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+
1

120
{:g:, {:g:, {:f :, {:f :, :g:}}}} + :O((f, g)6):

]
(9.193)

The proof of (9.191-9.193) is somewhat technical. It is given in Exercise 50.
There does not seem to be an easy rule of the coefficients in Eq.(9.193). Equa-
tions (9.191-9.193) are our first form of the BCH formula. It applies when the
two functions f and g are small for the power series to converge. Small f and
g means the two operators e:f : and e:g: differ only slightly from identity maps.

When :f : and :g: commute (or when [f, g] = constant depending only on s),
we simply have h = f + g, as discussed in Eq.(9.57).

BCH Formula – Second Form The first form has an important variation,
which gives the second form of the BCH formula. It is obtained by summing
the infinite power series in the first BCH form over either the function f or the
function g. If summed over g, then to first order in f , we have

e:f :e:g: = exp
[
:g +

(
:g:

e:g: − 1

)
f + O(f2):

]
(9.194)

If we choose to sum over f , the summation can be done analytically to first
order in g to yield

e:f :e:g: = exp
[
:f +

(
:f :

1 − e−:f :

)
g + O(g2):

]
(9.195)

The proof of Eqs.(9.194-9.196) are given in Exercises 51 to 53.
Equation (9.195) applies when the function g is small, but f does not have

to be small. This expression is particularly useful when we try to concatenate
the map for a small perturbation with the map for the rest of the accelerator.
In that case, we would obviously choose g to be the perturbation, and f to be
the rest of the accelerator. The price to pay in order for f not having to be
small is that we have an expression only to first order in the perturbation.45

The BCH formula describes how to concatenate two exponential operators
into one. It can be inverted to give a formula that describes how to factorize an
exponential operator into a product of two exponential operators. In particular,
Eq.(9.195) can be inverted to give

e:f+h: = e:f : exp
[
:
(

1 − e−:f :

:f :

)
h:
]

e:O(h2): (9.197)

45There is actually an analytic expression to second order in g. It would contribute the
following to the O(g2) term in Eq.(9.195):

1

2

(
:f :

1 − e−:f :

)∫ 1

0

udu

∫ 1

0

dve−u:f :
[
euv:f :

(
:f :

1 − e−:f :

)
g,

(
:f :

1 − e−:f :

)
g

]
(9.196)

A similar statement can be made with Eq.(9.194).
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In actual calculations, the opeartion (1− e−:f :)/:f : is not easy to perform as is.
In that case, one may prefer an alternative expression for Eq.(9.197) by noting(

1 − e−:f :

:f :

)
h(X) =

(∫ 1

0

du e−u:f :

)
h(X) =

∫ 1

0

du h(e−u:f :X)

=⇒ e:f+h: = e:f : exp
[
:
∫ 1

0

du e−u:f :h:
]

(9.198)

What is the physical meaning of Eq.(9.198)? A kick by a slice of h at location
s = uL is, to first order in h, equivalent to a kick h(e−:uf :X) at the biginning
of the element. The effect of e−:uf : is just to transform the slice kick to the
biginning of the element. The integration is then to sum up these kicks of the
slices.

BCH Formula – Third Form A third form of the BCH formula which is
similar to the first form except that it is more symmetric looking,

e:f :e:g:e:f : = e:h: (9.199)

where

h = 2f + g +
1
6
:g:2f − 1

6
:f :2g +

7
360

:f :4g − 1
360

:g:4f

+
1
90

:f ::g:3f +
1
45

:g::f :3g− 1
60

:f :2:g:2f +
1
30

:g:2:f :2g+O((f, g)7)(9.200)

The symmetry has the consequence that there are no even-order terms on the
right hand side of Eq.(9.200). The symmetry makes the algebra simpler. In
practice, Eqs.(9.199-9.200) apply when the particle motion is observed at the
middle of some element in the accelerator. The proof of Eqs.(9.199-9.200) is
provided in Exercise 54.

BCH Formula – Fourth Form Finally the fourth form of the BCH formula
is when the right hand side of Eq.(9.200) is summed over g while keeping only
to first order in f . This yields

e:f :e:g:e:f : = exp
[
:g: + :

(
:g:

e:g: − 1

)
f : + :O(f2):

]
e:f :

= exp
[
:g: + :

(
:g:

e:g: − 1

)
f : + :

(
:g:

1 − e−:g:

)
f : + :O(f2):

]

= exp
[
:g: + :

(
:g: coth(

:g:
2

)f
)

: + :O(f2):
]

(9.201)

In other words, if we let
e:f :e:g:e:f : = e:h: (9.202)

then
h = g + :g: coth(

:g:
2

)f + O(f2) (9.203)
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If g is also small, we can expand Eq.(9.203) in power series in g. The result
agrees with Eq.(9.200) as it should. In the first and second lines of Eq.(9.201),
we have applied Eqs.(9.194) and (9.195) respectively.

One can also apply the BCH formula to find h in Eq.(9.202) when f is not
small but g is small. The result is

e:f :e:g:e:f : = e:2f : exp(:e−:f :g:)

= exp
[
:2f : + :

(
:2f :

1 − e−:2f :

)
(e−:f :g): + O(g2)

]

= exp
[
:2f : + :

(
:f :

sinh :f :

)
g: + O(g2)

]
(9.204)

Again, expanding for small f gives an expression consistent with Eq.(9.200).
We have thus introduced four forms of the BCH formula. The first form is

given by Eqs.(9.191-9.193), the second form by (9.194-9.195), the third form by
(9.199-9.200), the fourth by (9.202-9.204). These formulae are applied often in
later sections.

Exercise 44 Find explicit equations of motion for the Hamiltonians
given in Eqs.(9.182) and (9.183).46

Solution (a) For dipoles,

x′ =
∂H

∂px
=

px
1 + δ

p′x = −∂H

∂x
=

δ

ρ
− x

ρ2

y′ =
∂H

∂py
=

py
1 + δ

p′y = −∂H

∂y
= 0

z′ =
∂H

∂δ
= −x

ρ
−

p2
x + p2

y

2(1 + δ)2
= −x

ρ
− 1

2
(x′2 + y′2)

δ′ =
∂H

∂z
= 0 =⇒ δ = const (9.205)

Note that px �= x′ and py �= y′. Equations (9.205) can be combined
to yield

x′′ +
1

(1 + δ)ρ2
x =

δ

(1 + δ)ρ
, y′′ = 0 (9.206)

Closed form expressions of x(s) and y(s) can be found by solving
Eq.(9.206).

46One should note however that no explicit use of these equations of motion has been made
in the text.
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(b) For quadrupoles,

x′′ +
K

1 + δ
x = 0, y′′ − K

1 + δ
y = 0 (9.207)

(c) For sextupoles,

x′′ +
S

1 + δ
(x2 − y2) = 0, y′′ − 2S

1 + δ
xy = 0 (9.208)

(d) For octupoles,

x′′ +
λ

1 + δ
(x3 − 3xy2) = 0, y′′ +

λ

1 + δ
(y3 − 3x2y) = 0 (9.209)

(e) For a general multipole, we have the longitudinal component of
the vector potential

As = − 1
n + 1

P0

e
Re[(λn + iλ̄n)(x + iy)n+1] (9.210)

which gives a magnetic field

By + iBx =
P0

e
(λn + iλ̄n)(x + iy)n (9.211)

The Hamiltonian (9.183) is simply

H =
eAs

cP0
+

1
2(1 + δ)

(p2
x + p2

y) (9.212)

and the equations of motion are

x′′ +
1

1 + δ
Re[(λn + iλ̄n)(x + iy)n] = 0

y′′ − 1
1 + δ

Im[(λn + iλ̄n)(x + iy)n] = 0 (9.213)

Exercise 45 Given the Hamiltonian (9.182) of a quadrupole, find
the matrix representation of the map exp(: − LH:) for the vector
(x, px, y, py).
Solution Write the map as exp(:f2:), where δ is regarded as a con-
stant. Since x and y motions are decoupled, we can treat them
separately with f2 = f2x+f2y. For the x motion, f2x can be written
as Eqs.(9.73) and (9.77) with

a = KL, b = 0, c =
L

1 + δ
(9.214)

The matrix form can be obtained by applying Eq.(9.84). Similarly
we obtain the matrix for the y motion. By combining the x and y
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results, we obtain the matrix representation of the map, assuming
K > 0 and defining θ =

√
KL2/(1 + δ),


cos θ L

(1+δ)θ sin θ 0 0

− (1+δ)θ
L sin θ cos θ 0 0
0 0 cosh θ L

(1+δ)θ sinh θ

0 0 (1+δ)θ
L sinh θ cosh θ




(9.215)
Note that had we used (x, x′, y, y′) as vector, the transformation

matrix would be slightly different:


cos θ L
θ sin θ 0 0

− θ
L sin θ cos θ 0 0
0 0 cosh θ L

θ sinh θ

0 0 θ
L sinh θ cosh θ


 (9.216)

Using the dynamical variables px and py, the map (9.215) is actually
nonlinear in δ. Note also that the path length variation, determined
by the z′ equation, is a nonlinear effect, which can not be represented
by a matrix.47 These nonlinear effects, however, are small, and it is
often possible to ignore them by making the approximation (9.184).

Exercise 46 Repeat the above exercise for dipole magnets for the
vector (x, px, y, py, z, δ). In this problem, treat δ as a dynamical
variable instead of a constant. Ignore nonlinear effects by making
the approximation (9.184).
Solution The y-motion is separated from the x- and z-motions. To
describe the y-motion, we have

f2y = −L

2
p2
y (9.217)

which is just equivalent to a drift space. The remaining f2 that
describes the x- and z-motions is

f2 =
L

ρ
xδ − L

2ρ2
x2 − L

2
p2
x (9.218)

Knowing Eqs.(9.217-9.218), the 6×6 transformation matrix is found
to be



cos
(
L
ρ

)
ρ sin

(
L
ρ

)
0 0 0 ρ − ρ cos

(
L
ρ

)
− 1
ρ sin

(
L
ρ

)
cos

(
L
ρ

)
0 0 0 sin

(
L
ρ

)
0 0 1 L 0 0
0 0 0 1 0 0

− sin
(
L
ρ

)
−ρ + ρ cos

(
L
ρ

)
0 0 1 −L + ρ sin

(
L
ρ

)
0 0 0 0 0 1




(9.219)
47The same nonlinear effect appears in a drift space. In this sense, a drift space is a nonlinear

element.
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Exercise 47 Find the path length change ∆z as a particle passes
through a quadrupole of strength K and length L to order O(L3).
Solution At the exit of the quadrupole, we have

z(L) = e:−LH:z|X=X0

= {z−L[H, z]+
L2

2
[H, [H, z]]−L3

6
[H, [H, [H, z]]]+O(L4)}X=X0

With H given in Eq.(9.182), we find

[H, z] =
1

2(1 + δ)2
(p2
x + p2

y)

[H, [H, z]] =
K

(1 + δ)2
(xpx − ypy)

[H, [H, [H, z]]] =
K2

(1 + δ)2
(x2 + y2)

=⇒ ∆z = z(L) − z0 = −L

2
(x′

0
2 + y′

0
2) +

KL2

2(1 + δ)
(x0x′

0 − y0y′
0)

− K2L3

6(1 + δ)2
(x2

0 + y2
0) + O(L4) (9.220)

Equations (9.215) and (9.220) constitute the map for the quadrupole.

Exercise 48 Find the Taylor map, to order O(λ), for (x, px, y, py)
for a thick octupole of strength λ.
Solution The Lie map is

e−:LH:, where H =
1
2
(p2
x + p2

y) +
1
4

λ(x4 − 6x2y2 + y4) (9.221)

The result is

e−:LH:x = x+Lpx−
1
2

L2λ(x3−3xy2)+
1
6

L3λ[3px(y2−x2)+6xypy]

+
1
4

L4λ(−xp2
x+xp2

y+2ypxpy)+
1
20

L5λ(3pxp2
y−p3

x)+O(λ2)

e−:LH:px = px − Lλ(x3 − 3xy2) +
3
2

L2λ[px(y2 − x2) + 2xypy]

− L3λ(xp2
x−xp2

y−2ypxpy)+
1
4

L4λ(3pxp2
y−p3

x)+O(λ2)

(9.222)

Results for the y-dimension can be obtained by switching x and y
in Eq.(9.222).

Exercise 49 Consider a map M that depends on a parameter α, and
can be written as M(α) = e:h(α): with some function h(α) [h(α) is
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also a function of X]. Show that

dM

dα
M−1 = :

(
e:h: − 1

:h:

)
dh

dα
: (9.223)

Equation (9.223) is a useful formula. It gives an expression of dM/dα
when the expression of an exponential map M(α) is known.
Solution Consider the map

M = e:βh(α): (9.224)

where the dummy variable β will set to 1 later. Define

A =
dM

dα
M−1 (9.225)

Then we have

dA

dβ
= (

d

dα

dM

dβ
)M−1 +

dM

dα

dM−1

dβ

= [
d

dα
(:h:M)]M−1 − dM

dα
M−1:h:

=
d:h:
dα

+ :h:A − A:h: = :
dh

dα
: − :Ah: (9.226)

where the last step used Eq.(9.49). The solution to (9.226) is

A = :
(

eβ:h: − 1
:h:

)
dh

dα
: (9.227)

as can be seen by back substitution. Having established Eq.(9.227),
Eq.(9.223) follows by setting β = 1.

Exercise 50 Prove the first form of the BCH formula, Eqs.(9.191-
9.193).
Solution Consider

e:αf :e:αg: = e:h(α): = M(α) (9.228)

which gives

dM

dα
M−1 = :f : + M :g:M−1 = :f + Mg: (9.229)

Using Eq.(9.223), we obtain

f + Mg =
(

e:h: − 1
:h:

)
dh

dα
(9.230)

Let
h = αh1 + α2h2 + α3h3 + α4h4 + α5h5 + ... (9.231)
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Expand (9.230) in powers of α, the left-hand-side is given by

LHS = f + e:h:g = f +g + :h:g+
1
2
:h:2g+

1
6
:h:3g +

1
24

:h:4g+O(α5)

= f + g + α(:h1:g) + α2(:h2:g +
1
2
:h1:2g)

+α3(:h3:g +
1
2
:h1::h2:g +

1
2
:h2::h1:g +

1
6
:h1:3g)

+α4(:h4:g +
1
2
:h1::h3:g +

1
2
:h2:2g +

1
2
:h3::h1:g (9.232)

+
1
6
:h1:2:h2:g +

1
6
:h2::h1:2g +

1
6
:h1::h2::h1:g +

1
24

:h1:4g)

The right-hand-side of Eq.(9.230) is

RHS = (1 +
1
2
:h: +

1
6
:h:2 +

1
24

:h:3 +
1

120
:h:4)(h1 + 2αh2

+3α2h3 + 4α3h4 + 5α4h5)

= h1+α(2h2)+α2(
1
2
:h1:h2+3h3)+α3(

1
6
:h1:2h2+:h1:h3+4h4)

+ α4(5h5+
3
2
:h1:h4+

1
3
:h1:2h3+

1
2
:h2:h3−

1
6
:h2:2h1+

1
24

:h1:3h2)

(9.233)

Equating the α coeffiecients of both sides and applying the identity
(9.53) give

O(α0) =⇒ h1 = f + g

O(α1) =⇒ h2 =
1
2
:f :g

O(α2) =⇒ h3 =
1
3
(:h2:g +

1
2
:h1:h2) =

1
12

:f :2g +
1
12

:g:2f

O(α3) =⇒ h4 =
1
4
(:h3:g +

1
2
:h1::h2:g +

1
6
:h1:3g − 1

6
:h1:2h2 − :h1:h3)

=
1
24

:f ::g:2f

O(α4) =⇒ h5 =
1
5
(:h4:g+

1
2
:h1::h3:g+

1
2
:h2:2g+

1
2
:h3::h1:g+

1
6
:h1:2:h2:g

+
1
6
:h2::h1:2g+

1
6
:h1::h2::h1:g+

1
24

:h1:4g− 3
2
:h1:h4

−1
3
:h1:2h3 −

1
2
:h2:h3 +

1
6
:h2:2h1 −

1
24

:h1:3h2)

= − 1
720

:f :4g +
1

360
:g::f :3g +

1
120

:g:2:f :2g +
1

120
:f :2:g:2f

+
1

360
:f :g:3f − 1

720
:g:4f (9.234)

This completes the proof of the first form of BCH formula when α
is set to 1.
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Exercise 51 Prove the second form of the BCH formula, Eq.(9.194).
Solution Consider

eα:f :e:g: = e:h(α): = M

=⇒ dM

dα
M−1 = :f : (9.235)

With Eq.(9.223), we have

f =
(

e:h: − 1
:h:

)
dh

dα
(9.236)

Define
h = g + αh1 + α2h2 + ...

To the leading order in α, Eq.(9.236) gives

f =
(

e:g: − 1
:g:

)
h1

or

h1 =
(

:g:
e:g: − 1

)
f =⇒ Q.E.D. (9.237)

Exercise 52 Prove the other second form of the BCH formula, Eq.(9.195).
Solution Let

e:f :eα:g: = e:h(α): = M

=⇒ M−1 dM

dα
= :g: (9.238)

At the same time, it can be shown that

M−1 dM

dα
= :

(
1 − e−:h:

:h:

)
dh

dα
: (9.239)

Combining Eqs.(9.238-9.239), we have

g =
(

1 − e−:h:

:h:

)
dh

dα
(9.240)

Define
h = f + αh1 + α2h2 + ... (9.241)

To the leading order in α, Eq.(9.240) gives

g =
(

1 − e−:f :

:f :

)
h1 (9.242)

or

h1 =
(

:f :
1 − e−:f :

)
g =⇒ Q.E.D. (9.243)
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Solution (alternative) Start with Eq.(9.194) which is valid for small
f . Sandwitch it by e:g: from the left and e−:g: from the right. This
yields

e:g:e:f : = exp
[
:e:g:

(
g + (

:g:
e:g: − 1

)f
)

+ O(f2):
]

= exp
[
:g +

(
(

:g:
1 − e−:g:

)f
)

+ O(f2):
]

(9.244)

Exchanging f and g then proves Eq.(9.195).

Exercise 53 Prove the second order expression (9.196).
Solution To deal with the second order terms, instead of Eq.(9.242),
we start with

g =
(

1 − e−:h:

:h:

)
(h1 + 2αh2) (9.245)

The operator in Eq.(9.245) can be written as
(

1 − e−:h:

:h:

)
=

∫ 1

0

dβ e−β:f+αh1: (9.246)

If we denote the operator e−β:f+αh1: by M , then(
1 − e−:h:

:h:

)
=

∫ 1

0

dβ

(
M

∣∣∣
α=0

+ α
dM

dα

∣∣∣
α=0

)
+ O(α2) (9.247)

We need to compute dM/dα. It follows from Eq.(9.223) that

dM

dα
= :

(
e−β:f+αh1: − 1

β:f + αh1:

)
βh1: e−β:f+αh1: (9.248)

Substituting Eq.(9.248) into Eq.(9.247) yields
(

1 − e−:h:

:h:

)
=

∫ 1

0

dβ

[
e−β:f : + α :

(
e−β:f : − 1

β:f :

)
βh1: e−β:f :

]
(9.249)

Substituting Eq.(9.249) into Eq.(9.245) yields

g =
∫ 1

0

dβ

[
e−β:f : + α :

(
e−β:f : − 1

β:f :

)
βh1: e−β:f :

]
(h1 + 2αh2)

(9.250)
Terms independent of α and terms first order in α must separately
be equal on the two sides of Eq.(9.250). The terms constant in α
gives simply Eq.(9.243). Terms linear in α give

0 =
∫ 1

0

dβ e−β:f :2h2 +
∫ 1

0

dβ :
(

e−β:f : − 1
β:f :

)
βh1: e−β:f :h1 (9.251)
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Substituting h1 from Eq.(9.243) then gives

0 = 2
(

1−e−:f :

:f :

)
h2+

∫ 1

0

dβ

[(
e−β:f :− 1
1−e−:f :

)
g, e−β:f :

(
:f :

1−e−:f :

)
g

]

=⇒ h2 = −1
2

(
:f :

1−e−:f :

)∫ 1

0

dβ

[(
e−β:f :−1
1−e−:f :

)
g, e−β:f :

(
:f :

1−e−:f :

)
g

]
(9.252)

which in turn can be written in the form (9.196). By a change of
variables from v to v′ = u(1 − v), Eq.(9.196) also can be written as

1
2

(
:f :

1−e−:f :

)∫ 1

0

du

∫ u

0

dv

[
e−v:f :

(
:f :

1−e−:f :

)
g, e−u:f :

(
:f :

1−e−:f :

)
g

]
(9.253)

Exercise 54 Prove the third form of the BCH formula (9.199-9.200).
Solution Consider

e:αf :e:αg:e:αf : = e:h(α): ≡ M(α) (9.254)

We have

M−1(α) = e−:αf :e−:αg:e−:αf : = M(−α)
=⇒ e−:h(α): = e:h(−α):, or − h(α) = h(−α) (9.255)

i.e. the function h(α) is an odd function of α. Let

h(α) = αh1 + α3h3 + α5h5 + ... (9.256)

We then consider

dM(α)
dα

= :f :M + e:αf ::g:e:αg:e:αf : + M :f :

=⇒ dM

dα
M−1 = :f : + e:αf ::g:e−:αf : + M :f :M−1

= :f : + :e:αf :g: + :Mf : (9.257)

where use has been made of Table 5. We now combine Eqs.(9.223)
and (9.257) to obtain

f + Mf + e:αf :g =
(

e:h: − 1
:h:

)
dh

dα
(9.258)

Expand both sides of Eq.(9.258) in powers of α. The left-hand-side
reads

f + f + :h:f +
1
2
:h:2f +

1
6
:h:3f +

1
24

:h:4f
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+g + α:f :g +
1
2

α2:f :2g +
1
6

α3:f :3g +
1
24

α4:f :4g + O(α5)

= 2f + g + α(:h1:f + :f :g) +
1
2

α2(:h1:2f + :f :2g)

+α3(
1
6
:h1:3f + :h3:f +

1
6
:f :3g)

+α4(
1
2
:h3::h1:f +

1
2
:h1::h3:f +

1
24

:h1:4f +
1
24

:f :4g) + O(α5)

(9.259)

The right-hand-side of Eq.(9.258) reads

(1+
1
2
:h:+

1
6
:h:2+

1
24

:h:3+
1

120
:h:4)(h1+3α2h3+5α4h5)+O(α5)

= h1 + 3α2h3 + α3(
1
2
:h3:h1 +

3
2
:h1:h3)

+α4(5h5 +
1
2
:h1:2h3 +

1
6
:h1::h3:h1) + O(α5) (9.260)

We then equate for each order of α on both sides of Eq.(9.258),

O(α0) =⇒ h1 = 2f + g

O(α1) =⇒ 0 = :h1:f + :f :g
=⇒ 0 = :g:f + :f :g, satisfied automatically

O(α2) =⇒ 3h3 =
1
2
:h1:2f +

1
2
:f :2g

=⇒ h3 =
1
6
:g:2f − 1

6
:f :2g

O(α3) =⇒ 1
2
:h3:h1 +

3
2
:h1:h3 =

1
6
:h1:3f + :h3:f +

1
6
:f :3g

=⇒ satisfied automatically

O(α4) =⇒ 5h5 +
1
2
:h1:2h3 +

1
6
:h1::h3:h1

=
1
2
:h3::h1:f +

1
2
:h1::h3:f +

1
24

:h1:4f +
1
24

:f :4g

=⇒ h5 =
1

120
:h1:4f +

1
120

:f :4g +
1
10

:h3::g:f

+
1
10

:h1::h3:f − 1
15

:h1:2h3 (9.261)

One still needs to substitute h1 and h3 into the h5 expression above.
We first note, using property (9.53), that

:h1:4f = −8:f :4g+8:f :2:g:2f +2:f ::g:3f−4:g::f :3g

−4:g:2:f :2g+:g:4f

:h3::g:f =
1
6
:f ::g:3f +

1
6
:g:2:f :2g +

1
6
:f :2:g:2f +

1
6
:g::f :3g
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:h1::h3:f = −1
3
:f :2:g:2f +

1
6
:g:2:f :2g +

1
3
:f :4g +

1
6
:g::f :3g

:h1:2h3 =
1
3
:f ::g:3f− 2

3
:f :4g+:f :2:g:2f +

1
6
:g:4f

−1
3
:g::f :3g− 1

2
:g:2:f :2g (9.262)

Substituting into Eq.(9.261) and simplifying give

h5 =
7

360
:f :4g − 1

60
:f :2:g:2f +

1
90

:f ::g:3f +
1
45

:g::f :3g

+
1
30

:g:2:f :2g − 1
360

:g:4f (9.263)

Substituting h1, h3 and h5 into Eq.(9.256) and setting α = 1 then
give the result (9.200).

Exercise 55 On the right hand side of Eq.(9.197), the ordering of
the two factor maps are as chosen. Show that one could choose the
reversed ordering to obtain

e:f+g: = exp
[
:
(

e:f : − 1
:f :

)
g:
]

e:f :

= exp
[
:
(∫ 1

0

du eu:f :

)
g:
]

e:f : (9.264)

A generalization of Eq.(9.264) and several applications can be found
following Eqs.(9.421-9.422) later.

Exercise 56 Concatenate the map

e−:2f2:e:f2+f3:e:f2+g3: (9.265)

into a form
e:h3+O(X4): (9.266)

Find h3 in terms of f2, f3, and g3.
Solution

h3 =
∫ 1

0

du e−u:f2:(e−:f2:f3 + g3) (9.267)

Exercise 57 (a) Concatenate the map

e:f+g:e:−f+g: (9.268)

to first order in g, assuming g is small but f is not. (b) Consider two
short-but-strong sextupoles, each of the same length L but opposite
polarity S and −S. Consider L to be short, but S strong in such
a way that SL is held fixed. Arrange these two sextupoles back to
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back. The leading effect is that these two sextupoles will cancel each
other, but the cancellation is not complete and one ends up with a
residual error map. Apply the result in (a) to find this residual
error map to leading order in L (but to all orders in LS). Consider
on-momentum particles only.
Solution (a) The result is not e:2g: but

exp
[
:2

(
e:f :−1

:f :

)
g+O(g2):

]
=exp

[
:2

(∫ 1

0

du eu:f :

)
g+O(g2):

]
(9.269)

(b) The map is given by Eq.(9.268) with

f = −LS

3
(x3 − 3xy2), g = −L

2
(p2
x + p2

y) (9.270)

and g is small and f is not small. Applying Eq.(9.269) gives the
residual map

exp
[
−:L

(
p2
x + p2

y − LSpx(x2 − y2) + 2LSpyxy

+
1
3

L2S2(x2 − y2)2 +
4
3

L2S2x2y2

)
+ O(L2):

]
(9.271)

Exercise 58 Consider a thick-lens sextupole which is represented by
the map [see Eq.(9.182)]

M = e:h2+h3:, where
{

h2 = −L
2 (p2

x + p2
y)

h3 = −L
3 S(x3 − 3xy2)

(9.272)

The map M can be factorized to read

M = e:h2:e:g3:e:O(X4): (9.273)

where g3 is a homogeneous 3-rd order polynomial in X. Find g3.
Find the thin-lens limit of the result.
Solution Apply Eq.(9.197-9.198)to obtain

g3 =
∫ 1

0

du h3(e−u:h2:X)

= −1
3

SL

∫ 1

0

du[(x − uLpx)3 − 3(x − uLpx)(y − uLpy)2]

= −1
3

SL[x3 − 3
2

Lx2px + L2xp2
x −

1
4

L3p3
x − 3xy2 +

3
2

Lpxy2

+3Lxypy − 2L2ypxpy − L2xp2
y +

3
4

L3pxp2
y] (9.274)

Take the thin-lens limit L → 0, S → ∞, while holding LS fixed, this
reduces to

g3 → −SL

3
(x3 − 3xy2) (9.275)
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Exercise 59 Factorize the map

exp[:ax3 + bx2p + cxp2 + dp3:] (9.276)

into the form

e:Ax3:e:Bx2p:e:Cxp2:e:Dp3:e:Ex4:e:Fx3p:e:Gx2p2:e:Hxp3:e:Ip4:e:O(X5):

(9.277)
Apply both Eqs.(9.276-9.277) to x and p. Show that the results
agree to order O(X3). This factorization can be useful as one can
apply the monomial map formula (9.128) to Eq.(9.277). See also
Exercise 37.
Solution

A = a, B = b, C = c, D = d

E = −3
2

ab, F = −3ac, G = −3
2
(3ad + bc)

H = −3bd, I = −3
2

cd (9.278)

Exercise 60 The BCH formula can of course be applied to concate-
nate two linear maps. Take for example the first form, Eq.(9.191-
9.192). It follows that given two matrices A and B of the same
dimension, they can be concatenated as

eAeB = eC (9.279)

where

C = A+B+
1
2
{A, B}+ 1

12
{A, {A, B}}+ 1

12
{B, {B, A}}+... (9.280)

where we have used the curly brackets to mean the commutators of
matrices. Note that C contains only A and B and their commuta-
tors. No stand-alone terms like A2, AB or A2B, etc. appear.
Solution To demonstrate Eq.(9.280), start with the BCH formula.
Consider the quadratic forms

f2 = −1
2

X̃FX, g2 = −1
2

X̃GX (9.281)

where F and G are symmetric matrices. Equations (9.92-9.93) and
(9.191-9.192) say that

eSGeSF = eSH (9.282)

where H is a symmetric matrix for which the corresponding quadratic
form h2 = − 1

2X̃HX satisfies

h2 = f2+g2+
1
2
[f2, g2]+

1
12

[f2, [f2, g2]]+
1
12

[g2, [g2, f2]]+... (9.283)
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where the square brackets are the Poisson brackets. We want to use
this property to prove Eq.(9.280), at least for the special case when
A and B can be written as SG and SF respectively where F and G
are symmetric matrices. To do that, note that

[f2, g2] =
1
4

∂(FαβXαXβ)
∂X�

S�m
∂(GγδXγXδ)

∂Xm

= Fα�XαS�mGγmXγ = X̃FSGX = −1
2

X̃(GSF−FSG)X

(9.284)

We have therefore demonstrated that [f2, g2] is a quadratic form,
and its corresponding matrix is given by

GSF − FSG = −S{SG, SF} (9.285)

In the last step of Eq.(9.284), we have used the fact that

FSG = −(G̃SF ) (9.286)

to assure the symmetry of the matrix (9.285). Using Eq.(9.286), it
follows that [f2, [f2, g2]] is also a quadratic form, and its correspond-
ing matrix is

−S{S(−S{SG, SF}), SF} = −S{SF, {SF, SG}}

The quadratic form h2 therefore is given by the matrix

H = F + G − 1
2

S{SG, SF} − 1
12

S{SF, {SF, SG}}

− 1
12

S{SG, {SG, SF}} + ...

or

SH = SF + SG +
1
2
{SG, SF} +

1
12

{SF, {SF, SG}}

+
1
12

{SG, {SG, SF}} + ... (9.287)

which proves Eq.(9.280) if one identifies A = SF, B = SG, C = SH.

9.5 Localized rf Cavity

In the following sections, we will apply the Lie algebra techniques to several
accelerator applications, including

localized rf cavities
a single localized sextupole
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distribution of multipoles
multipole correction algorithms
higher order chromaticities
achromats
resonance strengths

To fully address these applications, it turns out there is one more important
technique we still need to learn, namely the normal form technique to be covered
later. But we will consider a few simpler applications first before we discuss nor-
mal forms. As a first application of the techniques developed so far,[7] consider
the longitudinal particle motion whose dynamic variables are (z, δ). Consider
an rf cavity located at s = 0, whose action on particle motion is given by the
map

z = z0, δ = δ0 − V sin kz0 (9.288)

where V and k are related to the voltage and frequency of the rf cavity. Repre-
sent the rest of the accelerator by the simple map

z = z0 + αδ0, δ = δ0 (9.289)

where α is related to the momentum compaction factor of the accelerator design.
Here, α > 0 is below transition; α < 0 is above transition.

Strictly speaking, the system described by Eqs.(9.288-9.289) is not inte-
grable. But to the extent that a power series converges, it is at least approx-
imately integrable when some appropriate parameters are “small”, and in this
sense, there is an invariant of the motion. In this first application of the Lie
techniques, we will find this invariant. In fact, we will find several expressions
of this invariant, each applicable in its own validity range of the parameters.

We will first find an expression of the invariant when both α and V are small
in some sense. The two maps (9.288-9.289) are both close to the identity map.
Let us first write them in their Lie algebraic forms (see Table 4),

Mcav = exp(: −
∫ z

0

dz′V sin kz′:) = exp
[
: − V

k
(1 − cos kz):

]

Macc = exp(: − 1
2

αδ2:) (9.290)

Observe the particle motion at the exact middle of the rf cavity, the one-turn
map is

Mcav/2MaccMcav/2 = exp
[
: − V

2k
(1 − cos kz):

]
exp(: − 1

2
αδ2:)

× exp
[
: − V

2k
(1 − cos kz):

]
(9.291)
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This map can be concatenated using the 3rd form of the BCH formula, Eqs.(9.199-
9.200), if we identify

f = − V

2k
(1 − cos kz)

g = −1
2

αδ2 (9.292)

In the concatenation procedure, we note

:g:f = −1
2

V αδ sin kz

:g:2f = −1
2

V α2kδ2 cos kz

:g:3f =
1
2

V α3k2δ3 sin kz

:g:4f =
1
2

V α4k3δ4 cos kz

:f :g =
1
2

V αδ sin kz

:f :2g = −1
4

V 2α sin2 kz

:f :3g = 0

:f ::g:3f = −3
4

V 2α3k2δ2 sin2 kz

:f ::g:2f =
1
4

V 2α2kδ sin 2kz

:f :2:g:2f = −1
8

V 3α2k sin kz sin 2kz

:g::f :2g = −1
4

V 2α2kδ sin 2kz

:g:2:f :2g = −1
2

V 2α3k2δ2 cos 2kz (9.293)

After concatenation, the one-turn map becomes e:h:, where

h = −1
2

αδ2 − V

k
(1 − cos kz)

− 1
12

V α2kδ2 cos kz +
1
24

V 2α sin2 kz

− 1
720

V α4k3δ4 cos kz +
1

120
V 2α3k2δ2(3 sin2 kz − 2)

+
1

480
V 3α2k sin kz sin 2kz + O((V, α)7) (9.294)

Why are we interested in h? Because it is an invariant of the motion. That
is, if we measure (z, δ) of a particle turn after turn as it passes by the middle
of the rf cavity, and calculate the value of h(z, δ), we will find that the value
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of h does not vary from turn to turn.48 More importantly, we are interested
in h not only because h is an invariant, but also because −h is the effective
Hamiltonian of the system. By finding h, we have replaced the discrete system
consisting of piecewise constant Hamiltonians by a smooth system which has an
s-independent Hamiltonian −h. This smooth system is of course much simpler
to handle than the original discrete system. In fact, having found h, the problem
has been “integrated”.

For Eq.(9.294) to be an invariant, the series expansion must converge. This
applies when

|kαV | � 1, |kαδ̂| � 1 (9.295)

where δ̂ is the peak value of δ during the evolution of the particle under consid-
eration. For particles inside the rf bucket, δ̂ < bucket height. Since the bucket
height =

√
4V/kα, the second condition of (9.295) is satisfied for particles inside

the rf bucket if the first condition of (9.295) is satisfied. [For an idea of what
does the rf bucket looks like, see Fig.9.3(a).]

One may also try to find an expression of the invariant in case kαV is small
but kαδ̂ is not necessarily small by applying the 4-th BCH form (9.202-9.203).
With f and g defined in Eq.(9.292), one obtains an invariant to first order in V
which holds for particles outside the rf bucket. We note that

:g:f = αδ
∂f

∂z

=⇒ (:g: coth
:g:
2

)f = − V

2k

[
(αδ

∂

∂z
) coth(

αδ

2
∂

∂z
)
]

(1 − eikz)

= −V

k
+

V

2k
(αδik) coth(

αδ

2
ik)eikz

= −V

k
+

V

2k
(αδk) cot

αδk

2
eikz (9.296)

In the above expressions, only the real parts are meaningful, and we have used
the fact that i coth(ix) = cot x. Substituting Eq.(9.296) into Eq.(9.203) gives

h = −1
2

αδ2 − V

k
+

1
2

αδV cot
αδk

2
cos kz + O(V 2) (9.297)

If kαδ̂ is also small, Eq.(9.297) agrees with (9.294) to first order in V .
The 4-th BCH form also can be used to obtain an expression when kαδ̂ is

small, but kαV is not necessarily small. It follows from Eq.(9.204) that

h = 2f + (
:f :

sinh :f :
)g + O(α2)

= 2f + (1 − 1
6
:f :2 +

7
360

:f :4 + ...)g + O(α2)

= 2f + (1 − 1
6
:f :2)g + O(α2)

48provided h exists. If the power series expansion (9.294) does not converge, for example,
then h may not exist. In that case, there is not an invariant, and the system is not integrable.
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= −V

k
(1 − cos kz) − 1

2
αδ2 +

1
24

V 2α sin2 kz + O(α2) (9.298)

Again, this expression is consistent with Eq.(9.294) in the appropriate limit.
As mentioned, −h also has the meaning of being the one-turn effective Hamil-

tonian. For example, if one is interested in the one-turn equations of motion to
first order in α, one may use Eq.(9.298) to obtain

dz

dn
= −∂h

∂δ
= αδ + O(α2)

dδ

dn
=

∂h

∂z
= −V [sin kz − 1

24
αkV sin 2kz] + O(α2) (9.299)

where n is a turn number index which increases by 1 per turn. What we have
shown is that the discrete maps (9.288-9.289) are approximately equivalent to
the continuous evolution (9.299), provided the particle motion is observed only
at discrete times at the middle of the rf cavity when n = integers.

Sometimes it is more useful to find an invariant which is valid when the
dynamical varables z and δ are small, i.e. when the synchrotron motion is close
to the origin of the phase space. In this representation, V and α do not have to
be small. To do so, let us write the map of half of the the rf cavity as

Mcav/2 = exp
[
: − V

2k
(1 − cos kz):

]
= e:f2+fNL: (9.300)

where f2 is the term in f that is quadratic in the dynamic variables, and fNL

contains the remaining, higher order nonlinear terms of f , i.e.

f2 = −V

4
kz2

fNL = − V

2k
(1 − cos kz − 1

2
k2z2) (9.301)

Since :f2: and :fNL: commute, we have

Mcav/2 = e:f2:e:fNL: = e:fNL:e:f2: (9.302)

The one-turn map then reads

M = e:fNL:e:f2:e:g2:e:f2:e:fNL: (9.303)

where g = − 1
2αδ2 has been designated as g2 because it is second order in δ.

The three operators in the middle of Eq.(9.303) describe the linearized syn-
chrotron motion, which we designate as

M2 = e:f2:e:g2:e:f2: (9.304)

The action of M2 on the vector X = (z, δ) can be described most conveniently
by a matrix [see Eqs.(9.288-9.289)]

M2 =
[

1 0
− 1

2kV 1

] [
1 α
0 1

] [
1 0

− 1
2kV 1

]

=
[

1 − 1
2kV α α

−kV + 1
4k2V 2α 1 − 1

2kV α

]
(9.305)
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For sufficiently small z and δ, we can ignore the nonlinear effects described
by fNL. The one-turn map is just the linear map M2. Let us first find the
“Courant-Snyder” invariant of this linear system. This means we are looking
for a quadratic invariant, which is solely determined by M2.

Let the Lie representation of M2 be written as exp(:F2:). Let F2 be written
as − 1

2X̃FX, where F is a symmetric matrix parametrized as Eq.(9.77). By
applying the Hamilton-Cayley technique using Eq.(9.86), we obtain

a =
µ

α
sin µ, b = 0, c =

αµ

sin µ
(9.306)

where µ is determined by

cos µ = 1 − 1
2

kV α (9.307)

For stability of the system, we must have 4 ≥ kV α ≥ 0. We will choose µ to be
between 0 and π.

The quadratic invariant — the Courant-Snyder invariant — is given by

F2 = −1
2
(az2 + 2bzδ + cδ2)

= −µ

2
(
sin µ

α
z2 +

α

sin µ
δ2) (9.308)

We next look for the higher order terms of the invariant. To do this, we will
apply Eq.(9.203) to the one-turn map

M = e:fNL:e:F2:e:fNL: (9.309)

To first order in fNL, the invariant is given by

h = F2 + :F2: coth
(

:F2:
2

)
fNL (9.310)

To calculate the invariant, therefore, we need to find :F2: coth(:F2:/2)fNL.
We learned before that an exponential operator operating on a complicated
function can be simplified by using (see Table 5) e:f :g(X) = g(e:f :X). But
here we have a complicated operator operating on a complicated function, and
the question is how to proceed. The answer lies in the idea of eigenmodes. To
appreciate this, note that the complicated operator is made up of :F2:, which is a
much simpler object. If the function fNL to be operated on can be decomposed
into some eigenmodes of the operator :F2:, then the calculation will simplify
considerably. So our first job is to find these eigenmodes of :F2:.49

We first simplify the expression of F2 by introducing the dynamical variables

z̄ = z

√
sin µ

|α| , δ̄ = δ

√
|α|

sin µ
(9.311)

49We are touching upon the topic of normal forms.
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This is a canonical transformation because the fundamential Poisson brackets
are preserved (see Exercise 2):

[z̄, δ̄] = [z, δ] = 1 (9.312)

This means we can treat (z̄, δ̄) as the new dynamical variables. The new F2

reads
F2 = −µ

2
(z̄2 + δ̄2) (9.313)

Applying :F2: on z̄ and δ̄ gives

:F2:
[

z̄
δ̄

]
= µ sgn(α)

[
δ̄
−z̄

]
(9.314)

One then notes that if we apply :F2: to z̄ ± iδ̄, we obtain

:F2:(z̄ ± iδ̄) = ∓i sgn(α)µ (z̄ ± iδ̄) (9.315)

This means (z̄ ± iδ̄) are eigenmodes of :F2: with eigenvalues ∓i sgn(α)µ. We
have thus found two eigenmodes of :F2:. But we need to find more such modes,
as is done next.

To simplify the consideration, below we will consider the case below tran-
sition only, with α > 0. Make another canonical transformation from (z̄, δ̄) to
(φ, A) according to50

z̄ =
√

2A sin φ, δ̄ =
√

2A cos φ (9.316)

or
A =

1
2
(z̄2 + δ̄2), φ = tan−1 z̄

δ̄
(9.317)

This is a canonical transformation because

[φ, A] = 1 (9.318)

The new F2 is
F2 = −µA (9.319)

It follows that
:F2:A = 0, :F2:φ = µ (9.320)

and that einφ is an eigenmode of :F2: with eigenvalue inµ for any integer n, i.e.,

:F2:einφ = inµeinφ (9.321)

Equation (9.315) is just the special case of Eq.(9.321) with n = ±1. We have
thus found a host of eigenmodes of the operator :F2:. Furthermore, einφ is also
an eigenmode of any function of :F2:, i.e.,

G(:F2:)einφ = G(inµ)einφ (9.322)
50Remember that φ is the coordinate, A is the momentum, not the other way around.
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We are now ready to calculate :F2: coth(:F2:/2)fNL. We first note that

fNL(z) =
1
48

V k3z4 + O(z6)

=
1
48

V k3 α2

sin2 µ
z̄4 + O(z̄6)

=
1
12

V k3 α2

sin2 µ
A2 sin4 φ + O(A3) (9.323)

We then decompose fNL into a linear combination of the eigenmodes of :F2: as

fNL =
1

192
V k3 α2

sin2 µ
A2(ei4φ − 4ei2φ + 6 − 4e−i2φ + e−i4φ) + O(A3) (9.324)

We then find

:F2: coth
(

:F2:
2

)
fNL =

1
192

V k3 α2

sin2 µ
A2[i4µ coth(i2µ)ei4φ

−i8µ coth(iµ)ei2φ + 12 + i8µ coth(−iµ)e−i2φ

−i4µ coth(−i2µ)e−i4φ] + O(A3)

=
1
48

V k3 α2

sin2 µ
A2(2µ cot 2µ cos 4φ − 4µ cot µ cos 2φ + 3) (9.325)

where we have used the fact that x coth x = 2 as x → 0 and that i coth(ix) =
cot x.

Equation (9.325) can be expressed in terms of (z̄, δ̄) coordinates as

:F2: coth
(

:F2:
2

)
fNL =

1
48

V k3 α2

sin2 µ
[z̄4(

µ

2
cot 2µ + µ cot µ +

3
4
)

+z̄2δ̄2(−3µ cot 2µ +
3
2
) + δ̄4(

µ

2
cot 2µ − µ cot µ +

3
4
)] (9.326)

It can also be expressed in terms of the original coordinates (z, δ). When sub-
stituted into the invariant expression (9.310), one obtains finally

h = −µ

2
(
sin µ

α
z2 +

α

sin µ
δ2)

+
1
48

V k3 α2

sin2 µ

[ sin2 µ

α2
z4(

µ

2
cot 2µ + µ cot µ +

3
4
) (9.327)

+ z2δ2(−3µ cot 2µ +
3
2
) +

α2

sin2 µ
δ4(

µ

2
cot 2µ − µ cot µ +

3
4
)
]
+O((z, δ)6)

Equation (9.325) gives the effective Hamiltonian in the (φ, A) phase space.
This expression can be used to calculate the dependence of the synchrotron tune
on the longitudinal action A. See Exercise 97.

We can check the various invariants obtained in this section numerically as
illustrated in Fig.9.3. Figure 9.3(a) shows the turn-by-turn tracking result of the
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Figure 9.3: Tracking results of various invariants for the case of a localized rf.

238



system described by Eqs.(9.288-9.289). The motion of a particle is observed as
it passes by the middle of the rf cavity turn after turn. The observed coordinates
(z, δ) are plotted for 500 turns for three particles whose initial conditions are51

first particle : (kz = 3.14 × 1
3

, δ = 0)

second particle : (kz = 3.14 × 2
3

, δ = 0)

third particle : (kz = 3.14, δ = 0) (9.328)

The parameters used are k = 1, V = 0.3, α = 0.3. The small-amplitude syn-
chrotron tune, determined by Eq.(9.307), is µ/2π = 0.04793. The trajectory
of the third particle approximately traces out the boundary of the rf bucket,
within which particle motion is to be confined.

Figure 9.3(b) shows the numerical value of the approximate invariant given
by the first two terms [terms linear in (α, V )] of Eq.(9.294) as a function of turn
number as the third particle circulates around the accelerator. If it is a true
invariant, this quantity would be constant. Figure 9.3(b) shows that it is not
an accurate invariant, although the vertical scale is rather expanded. Fig.9.3(c)
is the same as Fig.9.3(b) except that all terms in Eq.(9.294) are included, i.e.
Fig.9.3(c) is a plot of the 6-th order invariant. For convenience, in Figs.9.3(b)
and (c), the vertical coordinates refer to h+0.6, instead of the invariant h. It can
be seen that the invariant plotted in Fig.9.3(c) is indeed much more accurate
than that of Fig.9.3(b). For these figures, conditions (9.295) are reasonably
satisfied [kαV = 0.09, kαδ̂ = 0.6 for the third particle].

Figure 9.3(d) plots the time evolution of h + 0.6 where the invariant h is as
calculated using Eq.(9.297), an invariant for small kαV . Figure 9.3(e) shows
the same using Eq.(9.298), an invariant for small kαδ̂. One can also plot the
invariant h when it is calculated using Eq.(9.327) for the three particles. This
is shown in Fig.9.3(f). In this figure, note that the small-amplitude synchrotron
period is given by 2π/ cos−1(1 − 1

2kαV ) ≈ 20 turns. One observes that the
invariance holds for small amplitude particles better.

Exercise 61 Show that, when kαV � 1, the quadratic invariant
(9.308) is consistent with Eq.(9.294) for small z and δ.

Exercise 62 For small µ, check that Eq.(9.327) agrees with Eq.(9.294)
for small z and δ.

Exercise 63 (a) Consider the invariant (9.308) as the effective Hamil-
tonian. Derive and solve the effective one-turn equations of motion
for z and δ. (b) Derive the equations of motion for the effective
Hamiltonian (9.327).

51In Fig.9.3(a), we are not exploring chaotic motions. Had we looked in great detail in the
phase space, there will be small regions where particle motion is chaotic. See Exercise 65.
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Exercise 64 Find the Courant-Snyder parameters for the linear mo-
tion described by Eq.(9.305). Plot β(s) and α(s) as functions of s
around the accelerator.

Exercise 65 If one looks closely into Fig.9.3(a), one would notice
that there are particles in the neighborhood of the third particle
whose turn-to-turn trajectory behaves chaotically. To see this more
clearly, consider a case with V = 0.3, α = 0.3, and k = 8. We now
have kαV = 0.72, which is no longer � 1, and the series expan-
sions may no longer converge, especially for particles very close to
the unstable fixed points. Perform numerical tracking for a particle
with initial conditions (kz = 3.141, δ = 0) to observe this chaotic
trajectory.
Solution The portion of the trajectory between kz = −4 to kz = 4
is shown in Fig.9.4.

Figure 9.4: Tracking results showing chaos.

Exercise 66 Consider a 1-D motion of a particle going through an
accelerator element which has a length L and is described by the
equation of motion

x′′ + λ sin αx = 0 (9.329)

(a) Find the Lie map that describes the motion of a particle through
the element.
One may look for Taylor series approximations of this map in differ-
ent forms. Each form is valid when a certain parameter is small.
(b) Find the Taylor map up to third order in L. [Error terms are
O(L4).] This expression is valid when the element is short.
(c) Find the Taylor map up to third order in X for arbitrary values
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of L and λ. This expression holds when particles considered are close
to the design orbit.
Solution (a)

M = exp
[
: − L

2
p2 − λL

α
(1 − cos αx):

]
(9.330)

(b)

x = x0 + Lp0 −
1
2

λL2 sin αx0 −
1
6

λαL3p0 cos αx0 + O(L4)

p = p0 − λL sin αx0 −
1
2

λαL2p0 cos αx0

+
1
6

λαL3(λ cos αx0 + αp2
0) sin αx0 + O(L4) (9.331)

(c) To 4-th order in X, the map (9.330) can be written as

M = e:f2: exp
[

Lλα3

24
:
(∫ 1

0

due−u:f2:x4

)
:
]

(9.332)

where
f2 = −L

2
p2 − Lλα

2
x2 (9.333)

describes the linearized motion. With

e−u:f2:

[
x
p

]
=

[
x cos uθ − p√

λα
sin uθ√

λαx sin uθ + p cos uθ

]
(9.334)

where θ =
√

λαL is the betatron phase advance if only the linear
terms are kept, we have

M = e:f2: exp

[
Lλα3

24
:
∫ 1

0

du

(
x cos uθ − p√

λα
sin uθ

)4

:

]

= e:f2: exp
[

:
θp4

768λ2L
(12θ − 8 sin 2θ + sin 4θ)

+
αxp3

192λ
(−3 + 4 cos 2θ − cos 4θ)

+
αθx2p2

128λL
(4θ − sin 4θ) +

α2x3p

192
(−5 + 4 cos 2θ + cos 4θ)

+
θα2x4

768L
(12θ + 8 sin 2θ + sin 4θ) :

]
(9.335)

The 3rd order Taylor map is found to be

x = x0 cos θ +
p0√
αλ

sin θ +
α2x3

0

192
(cos θ − cos 3θ + 12θ sin θ)
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+
θαx2

0p0

64λL
(−4θ cos θ + 7 sin θ − sin 3θ)

+
αx0p2

0

64λ
(− cos θ + cos 3θ + 4θ sin θ)

+
θp3

0

192λ2L
(−12θ cos θ + 9 sin θ + sin 3θ)

p = −x0

√
αλ sin θ + p0 cos θ +

θα2x3
0

192L
(12θ cos θ + 11 sin θ + 3 sin 3θ)

+
α2x2

0p0

64
(3 cos θ − 3 cos 3θ + 4θ sin θ)

+
θαx0p2

0

64λL
(4θ cos θ + 5 sin θ − 3 sin 3θ)

+
αp3

0

64λ
(− cos θ + cos 3θ + 4θ sin θ) (9.336)

Equation (9.336) in the limit of small L and Eq.(9.331) in the limit
of small x0 and p0 can be shown to be consistent.

9.6 Single Sextupole

The previous section considered the synchrotron motion of particles in an ac-
celerator which contains a single nonlinear thin-lens element, i.e. a localized
rf cavity. The rest of the accelerator is regarded as perfectly linear. A simi-
lar situation occurs in the transverse x- and y-dimensions. In this section, we
will consider a single thin-lens sextupole in a circular accelerator whose beam
dynamics is otherwise perfectly linear. One difference, however, is that in this
section, we are dealing with a 2-D system (4-D phase space). We consider
on-momentum particles, so the longitidinal motion is ignored.

The thin-lens sextupole has the map52

Msext = e:−LH: = exp[:λ(x3 − 3xy2):] (9.337)

where λ = − 1
3SL is the integrated strength of the thin-lens sextupole with S the

quantity that appears in the Hamiltonian (9.182). To relate λ to the physical
quantities, we have

λ = −1
6

L

Bρ

∂2By

∂x2
(9.338)

The rest of the accelerator can be described by the map

Macc = e:f2: (9.339)

where

f2 = −µx
2

(γxx2 + 2αxxpx + βxp2
x) −

µy
2

(γyy2 + 2αyypy + βyp
2
y) (9.340)

52One might compare Eq.(9.337) with Eq.(9.122), which applies when the y-motion is ig-
nored. If a particle has y = 0 and y′ = 0 initially, it will stay in the horizontal plane at all
times. For those particles, ignoring y-motion, applying Eq.(9.122) is legitimate.
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The quantities αx,y, βx,y and γx,y are the unperturbed Courant-Snyder param-
eters evaluated at the position of the sextupole.

We will observe the motion of a particle at the exit end of the sextupole.
The one-turn Lie map is

MaccMsext (9.341)

Effective Hamiltonian away from resonances We now concatenate the
two factor maps in Eq.(9.341) to become exp(: − CHeff :), where C is the ac-
celerator circumference, and the effective Hamiltonian Heff is an invariant. To
first order in the sextupole strength, we apply the BCH form (9.195) to obtain
the expression of the invariant as

h = f2 +
(

:f2:
1 − e−:f2:

)
λ(x3 − 3xy2) + O(λ2) (9.342)

The O(λ2) terms in Eq.(9.342) are small for two reasons. First, they are of
the order of λ2, and are therefore small when the sextupole is weak. Second,
These terms are also of order (x, y)4, and are small near the origin of the phase
space. In what follows, we will simply drop these terms.53

We learned in the previous section that, to evaluate (9.342), we need to find
the eigenmodes of the operator :f2:. To do so, we make two successive canonical
transformations. The first is

x̄ =
x√
βx

, p̄x =
αxx + βxpx√

βx
(9.343)

or
x =

√
βxx̄, px =

−αxx̄ + p̄x√
βx

(9.344)

and similar pairs of expressions with x replaced by y. The function f2 becomes

f2 = −µx
2

(x̄2 + p̄2
x) −

µy
2

(ȳ2 + p̄2
y) (9.345)

The second transformation is

x̄ =
√

2Ax sin φx, p̄x =
√

2Ax cos φx (9.346)

and a similar pair of expressions with x replaced by y. Both transformations
(9.343-9.344) and (9.346) are canonical. The new expression of f2 is then

f2 = −µxAx − µyAy (9.347)

The eigenmodes of :f2: are, as we found in the previous section, einxφx+inyφy

with eigenvalues inxµx + inyµy. That is,

:f2:Ax = 0, :f2:Ay = 0
:f2:einxφx+inyφy = (inxµx + inyµy)einxφx+inyφy (9.348)

53Be reminded that there are subtle nonlinear dynamics effects, such as higher order reso-
nances and chaotic effects, that feed on these higher order terms. Dropping the higher order
terms is daring, and must be done with caution.
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We now have(
:f2:

1 − e−:f2:

)
λ(x3 − 3xy2) (9.349)

= λ

(
:f2:

1 − e−:f2:

)
[(2βxAx)3/2 sin3 φx − 3(2βxAx)1/2(2βyAy) sin φx sin2 φy]

We then note that(
:f2:

1 − e−:f2:

)
sin3 φx

=
i

8

(
:f2:

1 − e−:f2:

)
(ei3φx − 3eiφx + 3e−iφx − e−i3φx)

=
i

8

(
i3µx

1 − e−i3µx
ei3φx − i3µx

1 − e−iµx
eiφx +

−i3µx
1 − eiµx

e−iφx − −i3µx
1 − ei3µx

e−i3φx

)

= −3
8

µx

[
sin(3φx + 3µx

2 )
sin 3µx

2

− sin(φx + µx

2 )
sin µx

2

]
(9.350)

and that (
:f2:

1 − e−:f2:

)
sin φx sin2 φy

=
i

8

(
:f2:

1 − e−:f2:

)
(eiφx+i2φy − 2eiφx + eiφx−i2φy

−e−iφx+i2φy + 2e−iφx − e−iφx−i2φy )

= −1
8
(µx + 2µy)

sin(φx + 2φy + µx

2 + µy)
sin(µx

2 + µy)
+

1
4

µx
sin(φx + µx

2 )
sin µx

2

−1
8
(µx − 2µy)

sin(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)
(9.351)

Substituting Eqs.(9.349-9.351) into (9.342) gives an expression of the effec-
tive Hamiltonian to first order in λ,

h = −µxAx − µyAy −
3
8

λµx(2βxAx)3/2
[

sin(3φx + 3µx

2 )
sin 3µx

2

− sin(φx + µx

2 )
sin µx

2

]

−3λ(2βxAx)1/2(2βyAy)
[
− 1

8
(µx + 2µy)

sin(φx + 2φy + µx

2 + µy)
sin(µx

2 + µy)

+
1
4

µx
sin(φx + µx

2 )
sin µx

2

− 1
8
(µx − 2µy)

sin(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)

]
(9.352)

Resonances Note the expression (9.352) contains divergences when one of
the following resonance conditions is satisfied:

νx = integer
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3νx = integer
νx + 2νy = integer
νx − 2νy = integer (9.353)

where we have defined the tunes

νx,y =
µx,y
2π

(9.354)

Away from resonances (9.353), Eq.(9.352) gives the expression of the invariant.
Near resonances, the above analysis leading to Eq.(9.352) breaks down. We
need to treat the problem differently, which we will do momentarily.

Note also that had we kept some higher order terms in λ, we would have
found terms that diverge at higher order resonances. For example, had we kept
a term of order X4, the expression for h would contain a term of the type(

:f2:
1 − e−:f2:

)
sin 4φx (9.355)

which diverges when νx = 1
4×integer. When dropping these higher order terms

in Eqs.(9.342) and (9.352), therefore, we have inadvertantly dropped effects of
higher order resonances. This is of course quite serious. As a result, if one is
interested in knowing the effect of a higher order resonance, it is necessary to
keep terms of sufficiently high order for the resonance of interest. Even worse,
the question arises as to whether the expansion converges at all since there is
always some high order resonance of interest even if µx and µy are irrational
numbers. We will not pursue these subtleties however, assuming that the higher
order resonances are sufficiently weak to be ignored.

Invariant near a single resonance To proceed, we now consider a 1-D
case. This can be obtained by considering only those particles with no y-motion
(y = 0, y′ = 0) in the 2-D case. We will further drop the subscripts x. The
one-turn map then becomes

e:−µA:e:λx3: (9.356)

The invariant, to first order in λ and away from resonances, is

h = −µA +
(

: − µA:
1 − e:µA:

)
λx3

= −µA − 3
8

µλ(2βA)3/2
[

sin(3φ + 3µ
2 )

sin 3µ
2

− sin(φ + µ
2 )

sin µ
2

]
(9.357)

The effective Hamiltonian is of course given by Heff = −h/C. Equation (9.357)
is just Eq.(9.352) when Ay = 0.

Particles move in the phase space along contours of constant h. To study the
phase space topology, let us go from the (φ, A) back to the (x̄, p̄) coordinates
according to Eq.(9.346). Then Eq.(9.357) becomes

h = −µ

2
(x̄2 + p̄2)− 3

8
µλβ3/2x̄[(3p̄2− x̄2) cot

3µ

2
− (x̄2 + p̄2) cot

µ

2
−4x̄p̄] (9.358)
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Figure 9.5 shows these contours in the (x̄, p̄) space for the case with ν = µ/2π =
0.17 and 3

8λβ3/2 = 0.1. The four contours correspond to −h/µ = 0.0137, 0.0515,
0.109, and 0.180. As seen in Fig.9.5, a small-amplitude particle traces out
a circular contour in phase space. As the amplitude increases, the countour
distorts from a circle.

Figure 9.5: Phase space contour plots with a sextupole perturbation, away from
resonances.

The invariance of (9.357), and therefore the validity of Fig.9.5, requires ν
and 3ν to be away from an integer, i.e., away from resonances. To illustrate
how to deal with the situation when there is a resonance near by, consider the
case when

ν ≈ p

3
(9.359)

where p is some integer. Let d be the distance of ν from the resonance with

ν =
p + d

3
, |d| � 1 (9.360)

The trick of treating the case near a resonance (9.359) is to observe the system
every 3 turns instead of every turn as we have been doing. The motion of
particles, when observed every 3 turns, will appear to move slowly. And it is
this slow (strobing) motion that we will study. Thus, the 3-turn map is

M3 = (e:−µA:e:λx3:)3

= e:−µA:e:λx3:e:−µA:e:λx3:e:−µA:e:λx3:

246



= e:−3µA:e:2µA:e:λx3:e:−2µA:e:µA:e:λx3:e:−µA:e:λx3:

= e:−3µA: exp(:e:2µA:λx3:) exp(:e:µA:λx3:)e:λx3: (9.361)

The first operator e:−3µA: in the last line of Eq.(9.361) takes on a different
form near the resonance. In fact, this is where the strobing is taking place, i.e.

e:−3µA: = e:−6πνA: = e:−2πdA: (9.362)

where the last step is because

e:2πmA: = 1 (9.363)

identically for any integer m. The remaining three right-most operators in
Eq.(9.361) can be combined to first order in λ easily,

exp(:e:2µA:λx3:) exp(:e:µA:λx3:)e:λx3:

= exp[:(e:2µA: + e:µA: + 1)λx3 + O(λ2):]

= exp
[
:
(

1 − e:3µA:

1 − e:µA:

)
λx3 + O(λ2):

]

= exp
[
:
(

1 − e:2πdA:

1 − e:µA:

)
λx3 + O(λ2):

]
(9.364)

We then apply the BCH formula to obtain

M3 = e:3h: (9.365)

where 3h is a new expression of the invariant near the resonance (9.359) and is
given by

3h = −2πdA +
(

: − 2πdA:
1 − e:2πdA:

)(
1 − e:2πdA:

1 − e:µA:

)
λx3

= −2πdA +
(

: − 2πdA:
1 − e:µA:

)
λx3 (9.366)

This leads to

h = −2π

3
dA − π

12
dλ(2A)3/2

[
sin(3φ + 3µ

2 )
sin 3µ

2

− sin(φ + µ
2 )

sin µ
2

]
(9.367)

The expression (9.367) is well-behaved near the resonance as d → 0. Inter-
estingly, it is very similar to the result obtained by the one-turn map, provided
one pretends that µ in the one-turn map can be replaced by 2πd/3, the fre-
quency after strobing. To see this, let us consider the invariant (9.357), which
was obtained assuming no proximity to resonances. If we insist on applying
this invariant even near a 3-rd order resonance ν ≈ 1/3, we may keep only the
sin(3µ/2) term in Eq.(9.357), i.e.

h ≈ −µA − 3
8

µλ(2βA)3/2
sin( 3µ

2 + 3φ)
sin 3µ

2

(9.368)
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Multiplying h by the factor 2πd/(3µ) is still an invariant. Thus we write

h ≈ −2π

3
dA − π

4
dλ(2βA)3/2

sin( 3µ
2 + 3φ)

sin 3µ
2

(9.369)

We further note that

sin
3µ

2
= − sin(πd) ≈ −πd

sin(
3µ

2
+ 3φ) ≈ − sin 3φ

The invariant then becomes

h ≈ −2π

3
dA − 1√

2
λ(βA)3/2 sin 3φ (9.370)

which is the same as Eq.(9.367) when d → 0.
We can now study the phase space topology. Again make the transformation

to the Cartesian coordinates by Eq.(9.346),54

h ≈ −π

3
d(x̄2 + p̄2) − 1

4
λβ3/2x̄(3p̄2 − x̄2) (9.371)

Because the invariant (9.371) has the significance of being the effective Hamil-
tonian, it gives the fixed points55 according to

∂h

∂x̄
= −2π

3
dx̄ − 1

4
λβ3/2(3p̄2 − 3x̄2) = 0

∂h

∂p̄
= −2π

3
dp̄ − 1

4
λβ3/26x̄p̄ = 0 (9.372)

There are four fixed points corresponding to the four solutions to Eq.(9.372).
One of them is the origin (x̄, p̄) = (0, 0). The other three are

(x̄, p̄) =




(ε, 0)
(− 1

2ε,
√

3
2 ε)

(− 1
2ε,−

√
3

2 ε)
(9.373)

where we have introduced a new parameter

ε =
8πd

9λβ3/2
(9.374)

At the three fixed points (9.373), the value of h is given by

h = −π

9
dε2 (9.375)

54Note in this case, however, x̄ and p̄ are not related to the original x and p by Eq.(9.343)
because of the strobing.

55Fixed points are special points in phase space. A particle located at a fixed point will
stay there turn after turn.

248



Particles move in the phase space along contours of constant Hamiltonian h. The
constant-h contour that goes through the fixed points are called the separatrix.
To find the separatrix, we set h of Eq.(9.371) to be equal to (9.375). This gives

(x̄ +
1
2

ε)(x̄ − ε +
√

3p̄)(x̄ − ε −
√

3p̄) = 0 (9.376)

The separatrix of the system (9.371), therefore, consists of three straight lines,
as shown in Fig.9.6(a).

Comparing Fig.9.6, the phase space contours near resonance, with Fig.9.5,
the contours away from resonances, one notes that the contours near resonances
are more or less triangular in shape, while the contours away from resonances
are more approximately like circles.

In Fig.9.6(a), the dashed straight lines are the separatrices in the (x̄, p̄) phase
space for the case ε = 0.5. The three intersection points are the fixed points
(9.373). The solid curves are the constant-h contours. The numerical values
next to each curve give the value of ξ = −8h/3λβ3/2. The value of ξ on the
separatrices is ξ = ε3/3 = 0.0417.

The topology depends on the parameter ε, i.e. the ratio of distance to
resonance d to the sextupole strength λ. The topology for the case ε = −0.5
is given by the mirror reflection of Fig.9.6(a) with respect to the vertical x̄ = 0
line. Right on resonance, when ε = 0, the phase space looks like Fig.9.6(b). The
three fixed points and the origin coincide. Values of ξ are again indicated for
each branch of curves. Exactly on resonance, there is no region in the phase
space that provides stable motion for the particles. When away from resonances
or when the sextupole strength vanishes, ε = ∞, we have the unperturbed case
where the topology consists of concentric circles.

Invariant away from resonances We now return to the 2-D case starting
with the effective invariant (9.352) away from resonances. The effective Hamil-
tonian is of course one of the invariants. We first rewrite it as

h = −µxWx − µyWy (9.377)

where

Wx = Ax +
3
8

λ(2βxAx)3/2
[

sin(3φx + 3µx

2 )
sin 3µx

2

− sin(φx + µx

2 )
sin µx

2

]

+
3
8

λ(2βxAx)1/2(2βyAy)
[
− sin(φx + 2φy + µx

2 + µy)
sin(µx

2 + µy)

+2
sin(φx + µx

2 )
sin µx

2

− sin(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)

]

Wy = Ay +
3
4

λ(2βxAx)1/2(2βyAy)
[
− sin(φx + 2φy + 1

2µx + µy)
sin(µx

2 + µy)

+
sin(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)

]
(9.378)
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Figure 9.6: Phase space countor plots (a) Top figure: near a third order reso-
nance, (b) Bottom figure: exactly on resonance.

We then make the physical observation that if we make the artificial replace-
ments

µx → µx + 2πnx and µy → µy + 2πny (9.379)

for arbitrary integers of nx,y, the quantity h in Eq.(9.377) must still be an
invariant. This is because the sextupole is located at a fixed location, and it
will not know the integer part of the x- and y-tunes. Since the expressions of
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Wx and Wy in Eq.(9.378) are unchanged by the replacements (9.379), the only
way for h to be an invariant is that Wx and Wy are separately invariants by
their own. That is, there are actually two invariants Wx and Wy, instead of
only one invariant h. The important difference between Wx,y and h, however,
is that h maintains the unique physical meaning of the effective Hamiltonian of
the system.

One may try to apply this argument to the 1-D case, but that does not lead
to any information of new invariants. The quantity h in 1-D case contains a
multiplicative factor µ, which can be simply scaled away, as we did in the step
from (9.368) to (9.369).

One can actually prove the invariance of Wx and Wy using the fact that h
is the effective Hamiltonian. One first note that the rates of change of Wx per
turn is given by

dWx

dn
=

∂Wx

∂Ax

dAx

dn
+

∂Wx

∂Ay

dAy

dn
+

∂Wx

∂φx

dφx
dn

+
∂Wx

∂φy

dφy
dn

(9.380)

and a similar expression for dWy/dn. It then follows straightforwardly from

dAx

dn
=

∂h

∂φx
,

dφx
dn

= − ∂h

∂Ax

dAy

dn
=

∂h

∂φy
,

dφy
dn

= − ∂h

∂Ay
(9.381)

and the expression of h that dWx/dn = dWy/dn = 0, i.e., Wx and Wy are
invariants.

We will return to the topic of single sextupoles later after we introduce the
normal form technique. We will discuss the case of a general distribution of
sextupoles. The study of strategically arranged distributions of sextupoles will
also be discussed under the subject of achromats.

Exercise 67 Figure 9.5 gives the trajectories of particles when Eq.(9.358)
is the effective Hamiltonian. Write a numerical tracking program for
the exact system (9.341). Compare the results with those shown in
Fig.9.5.

Exercise 68 We worked out an expression of invariant W3 in Eq.(9.44).
Show that it agrees with the invariant h of Eq.(9.358).
Solution Away from resonances, Eqs.(9.358) and (9.44) are identical
if one notes ε = 3λβ3/2, and the trigonometric identities

cot
3µ

2
+ cot

µ

2
=

4sc

(1 + 2c)(1 − c)

3 cot
3µ

2
− cot

µ

2
= − 4s

1 + 2c
(9.382)

where c = cos µ and s = sin µ.
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Exercise 69 Equations (9.371-9.374) studied the phase space topol-
ogy in the Cartesian coordinates. One can do the same in the polar
coordinates (φ, A) also. Show that the fixed points determined by
∂h/∂A = 0 and ∂h/∂φ = 0 are indeed given by Eq.(9.373).
Solution Take the case ε > 0 for example. The solutions are given
by A = ε2/4 and φ = 90◦, 210◦, 330◦.

Exercise 70 Consider the Taylor map (9.43). Find the fixed points
in the (x, p) space. What is the connection, if any, between these
fixed points and the fixed points found using the effective Hamilto-
nian (9.358)?
Solution To be a fixed point for the map (9.43), it is necessary that

x = x cos µ + p sin µ

p = −x sin µ + p cos µ + εx2 (9.383)

There are two solutions of (9.383). One is the trivial case of the
origin. The other is located at

x =
2
ε

tan
µ

2
, p =

2
ε

tan2 µ

2
(9.384)

The fixed point (9.384) is not a fixed point for Eq.(9.358). The fixed
point in Fig.9.5 for example is located at (x, p) = (0.95, 0.56) while
Eq.(9.384) gives (1.48, 0.87) using the same parameters.

Exercise 71 Verify the invariance of Wx and Wy in Eq.(9.378) by
carrying out the steps (9.380-9.381).

Exercise 72 Consider a thin-lens octupole in an otherwise perfectly
linear optics of a circular accelerator. Condiser 1-D motion. The
Lie map is e:f2:e:λx4:. Find the effective Hamiltonian to first order
in λ. First do this away from resonances. Then repeat close to a
resonance νx ≈ 1/4.

Exercise 73 Extend the calculation in the text to find an expression
of the effective Hamiltonian for a single sextupole to second order in
the sextupole strength. Do this for the 1-D case. Results obtained
in Exercises 72 and 73 can be used to calculate the tune shift with
betatron amplitude, as will be described in a later section.

9.7 Distribution of Multipoles

In the last section, we considered the effects of a single sextupole in an other-
wise perfectly linear accelerator. In this section, we will consider the effects of
a distribution of multipoles. Sextupoles are of course a special case of multi-
poles. The special topic of achromats — special distribution of multipoles that
minimizes optical abberrations — will be postponed to a later section.
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Element maps and one-turn map As illustrated in Fig.9.2, an accelerator
elements of piecewise sections, each given by a constant Hamiltonian. Let the
i-th element have Hamiltonian Hi and length Li, then we have the total Lie
map Mtot of the accelerator given by Eq.(9.189), where N is the total number
of elements in the accelerator. For a circular accelerator, this total map gives
the one-turn map around the accelerator.

In case there is a distribution of nonlinear elements around the accelerator,
these Hamiltonians Hi are in general nonlinear. One way to proceed (done in
program MARYLIE, for example) is as follows. First, for each element, the
Hamiltonian Hi is Taylor expanded as

Hi = H2i + H3i + H4i + ... (9.385)

where Hki contains terms k-th order in the components of the dynamic variable
X. The leading order is taken to be quadratic in X. If Hi contains only second
order terms, i.e. if Hi = H2i, we have a linear element. We regard the nonlinear
terms to be small, which would be the case if we restrict our attention to phase
space regions close to the origin. We will consider Hamiltonians up to (Ω + 1)-
th order in X. This means maps are considered up to the Ω-th order. Higher
order terms are ignored. The analysis below applies exactly for Hamiltonians
quadratic in X, but represents a perturbation analysis as far as the higher order
terms are concerned.

Having made the Taylor expansion (9.385), the map of the i-th element reads

e−:LiHi: = e−:Li[H2i+H3i+...+H(Ω+1)i]: (9.386)

The BCH formula can be applied to factorize (9.386) to become

e−:LiHi: = e:f2i:e:f3i:...e:f(Ω+1)i: (9.387)

where the function fki is a k-th order homogeneous polynomial in the com-
ponents of X. Knowing H2i, ..., H(Ω+1)i, we are looking for expressions for
f2i, ..., f(Ω+1)i. The expression for f2i is simply

f2i = −LiH2i (9.388)

The next order term f3i follows from Eq.(9.198),

f3i = −Li

∫ 1

0

du e:uLiH2i:H3i (9.389)

The reader is reminded of Eq.(9.120), which gives f3 when the Taylor map is
known. The higher order factors can be obtained by iteration.[8] For example,

f4 = −Li

∫ 1

0

du e:uLiH2i:H4i

−L2
i

2

∫ 1

0

du

∫ u

0

dv [e:vLiH2i:H3i, e
:uLiH2i:H3i] (9.390)
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Exercise 74 illustrates the procedure of Eqs.(9.387-9.390) by a simple example.
Derivation of Eq.(9.390) is given in Exercise 75.

Having obtained the maps of all individual elements in the form (9.387), the
total map Mtot is expressed as a long string of factor maps. A procedure is
followed using the BCH formula to commute the factor maps in Mtot in such a
way that at the end of the procedure it reads

Mtot = e:f2:e:f3:...e:fΩ+1: (9.391)

where again fk is a k-th order homogeneous polynomial in X. The Courant-
Snyder linear one-turn map is just e:f2:. In fact, f2 is the Courant-Snyder
invariant as given by Eq.(9.89).

After Mtot has been obtained in the form of Eq.(9.391), the BCH formula
can be applied to concatenate all the factors into a single factor,

Mtot = e:F : (9.392)

where F is related to the effective Hamiltonian, as was mentioned in Eq.(9.190),
by F = −CHeff . This is in fact how the effective Hamiltonian can be obtained
explicitly as a Taylor series expansion in X. The quantity F obtained this way
is an (Ω+1)-th order Taylor series in X. It is an invariant because (see Exercise
21)

MtotF = F (9.393)

i.e. the value of F does not change by the application of the one-turn map. The
leading (quadratic) terms of F is the Courant-Snyder invariant.

The effective Hamiltonian, once obtained, contains a wealth of analytical
information on the nonlinear dynamics of the accelerator system. In fact, the
procedure described here is a natural way to generalize the Courant-Snyder
analysis to a nonlinear system. This point we will elaborate more later.

Particle tracking using Lie maps In passing, Lie maps can also be used
for numerical particle tracking. When doing so, it is often necessary to make
sure the numerical application keeps the symplecticity of the map. For example,
one may consider applying the one-turn map (9.392) for particle tracking. One
notes first that F , being truncated to become an (Ω+1)-th order Taylor series, is
only an approximate expression; nevertheless, the map (9.392) remains exactly
symplectic. One would then attempt to compute

(Xj)final = e:F :Xj

∣∣∣∣
X=Xinitial

(9.394)

where Xj represents the j-th component of X, and one needs to compute (9.394)
for all the components. To do that, one expands the exponential operator into
an infinite series,

(Xj)final =
∞∑
n=0

1
n!

:F :nXj

∣∣∣∣
X=Xinitial

(9.395)
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Each of the terms in Eq.(9.395) can be evaluated exactly. This is because F
is a Taylor series that terminates. Application of a finite power of :F : on X is
therefore a terminated Taylor series, which can be evaluated exactly. However,
the series (9.395) is an infinite series. To perform numerical tracking, it is
necessary to truncate it to a certain order. This truncation, unlike the one that
truncates F to (Ω + 1)-th order, is in general nonsymplectic, and must be done
at a sufficiently high order that the nonsymplecticity introduced is negligible
numerically.

This inconvenience of having to check symplecticity numerically for tracking
can be avoided in several ways. As an illustration, we will mention one way as
follows. Instead of tracking with (9.392) or (9.391), one could factorize the map
as

Mtot = product of (e:monomial:) (9.396)

Each factor in Eq.(9.396) is a Lie map whose exponent contains a single mono-
mial term in X. The highest order monomial in the representation (9.396) is
(Ω + 1)-th order. The number of factors in (9.396) is therefore finite. If all fac-
tors in Eq.(9.396) are concatenated into one exponential map, and the exponent
is truncated to (Ω + 1)-th order, one re-obtains (9.392). But the form (9.396)
now allows exactly symplectic tracking because one can now apply the exact
formulae (9.128). The price to pay is that there is a large number of factors
in Eq.(9.396) if a high order map is required, which slows down the tracking
program.

Concatenating two nonlinear maps We have thus described how a one-
turn Lie map can be obtained once the accelerator design is given, and how
the one-turn Lie map might be used for particle tracking. To illustrate the
concatenation procedure more explicitly, consider the following. Suppose we
are interested in a 3-rd order map (Ω = 3), and we have two element-maps
which have been factorized into the form (9.387), i.e. we have

e:f : = e:f2:e:f3:e:f4: and e:g: = e:g2:e:g3:e:g4: (9.397)

Our job is to concatenate these two maps into the form (9.391). To do so, let
us write the total map as

e:h: = e:f :e:g: (9.398)

We then note that

e:h: = e:f2:e:f3:e:f4:e:g2:e:g3:e:g4:

= [e:f2:e:g2:][e−:g2:e:f3:e:g2:][e−:g2:e:f4:e:g2:]e:g3:e:g4: (9.399)

The idea of the second line is to commute the lower order maps to the left of
the expression. The first pair of square brackets describes the linear map of the
combined map, i.e.

e:f2:e:g2: = e:h2: (9.400)
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where the second order h2 is such that the matrix relation [see Eqs.(9.92-9.93)]

eSH = eSGeSF (9.401)

holds, where the symmetric matrices F, G and H are related to f2, g2 and h2 by
f2 = − 1

2X̃FX, etc.
The second pair of square brackets in Eq.(9.399) can be written as

e−:g2:e:f3:e:g2: = exp
(
:e:−g2:f3:

)
= exp

[
:f3(e:−g2:X):

]
= exp

[
:f3(e−SGX):

]
i.e. it is a second order map described by e:f3:, except that the arguments of f3

are transformed from the old coordinates X to the new coordinates according
to e:−g2:.

Similarly, maps in the third pair of square brackes in Eq.(9.399) can be
combined into

exp
[
:f4(e−SGX):

]
We therefore have

e:h: = e:h2: exp
(
:f3(e−SGX):

)
exp

(
:f4(e−SGX):

)
e:g3:e:g4: (9.402)

= e:h2:
[
exp

(
:f3(e−SGX):

)
e:g3:

] [
e−:g3: exp

(
:f4(e−SGX):

)
e:g3:

]
e:g4:

The two maps in the first pair of square brackets of Eq.(9.402) are both second
order. They can be concatenated to read

exp
(
:f3(e−SGX):

)
e:g3: = exp

(
:f3(e−SGX)+g3+

1
2
[f3(e−SGX), g3] + O(X5):

)

= exp
(
:f3(e−SGX) + g3:

)
exp

(
:
1
2
[f3(e−SGX), g3]:

)

where the brackets in the last two lines are the Poisson brackets. The term
represented by the Poisson brackets is 4-th order in X. Terms higher ordered
than 5-th are dropped in the last line. The second pair of square brackets in
Eq.(9.402), to 4-th oder in X, is simply

e−:g3: exp
(
:f4(e−SGX):

)
e:g3: = exp

(
:e−:g3:f4(e−SGX):

)
= exp

(
:f4(e−SGX) + O(X5):

)
Combining the results so far gives

e:h: =e:h2:exp
(
:f3(e−SGX)+g3:

)
exp

(
:
1
2
[f3(e−SGX), g3]:

)
exp

(
:f4(e−SGX):

)
e:g4:

(9.403)
If we then write

e:h: = e:h2:e:h3:e:h4: (9.404)

then we have the explicit final results

h3 = f3(e−SGX) + g3

h4 =
1
2
[f3(e−SGX), g3] + f4(e−SGX) + g4 (9.405)
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A perturbation theory As another illustration, we will develop a particular
perturbation theory. Consider the dynamical system described by

X ′ = −:H:X (9.406)

where a prime means derivative with respect to s, and H(X, s) is the Hamilto-
nian of the system. Let the map that describes the evolution of X be designated
formally as M , so that

X(s) = MX(0) (9.407)

and
f(X(s)) = Mf(X(0)) (9.408)

for any function f of X. The map M is a function of s. We have, by substituting
Eq.(9.407) into Eq.(9.406), that

M ′X(0) = −[H(X, s), MX(0)]
= −M [H(X(0), s), X(0)] (9.409)

where the square brackets are the Poisson brackets and use has been made of
Eq.(9.408) in the second step. Equation (9.409) can be written symbolically as

M ′ = −M :H: (9.410)

In particular, if the Hamiltonian is independent of s, then we have

M ′ = −M :H: =⇒ M = e−s:H: (9.411)

which is what one expects.
Now consider a system described by a Hamiltonian which is basically given

by an unperturbed Hamiltonian H0(X, s), but contains in addition a small per-
turbation,

H = H0(X, s) + εV (X, s) (9.412)

where ε is considered to be small. Let us assume the unperturbed Lie map,
M0(X, s), from position s = 0 to position s is known. We will now find an
expression for the evolution map M(X, s) from position s = 0 to position s for
this slightly perturbed system to first order in ε.

We know M is approximately given by M0. Let M be written in the form

M = NM0 (9.413)

where N is approximately equal to the identity map. To first order in ε, we let

N = e:εf1: (9.414)

and we need to find an expression for f1(X, s).
Using (9.413), the left-hand-side of Eq.(9.410) reads

M ′ = N ′M0 + NM ′
0 = N ′M0 − NM0:H0: (9.415)
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The right-hand-side of Eq.(9.410) is given by

−M :H: = −NM0(:H0: + ε:V :) (9.416)

Substituting Eqs.(9.415-9.416) into Eq.(9.410) gives

N ′ = −εNM0:V :M−1
0 = −εN : (M0V ) : (9.417)

We need an expression for N ′ using Eq.(9.414). The result is56

N ′ = :
(

e:εf1: − 1
:εf1:

)
εf ′

1:N (9.419)

To first order in ε, however, either one of the expressions in Eq.(9.418) applies.
We will take the second of the pair. We then obtain from Eq.(9.417), to first
order in ε, that

εf ′
1 = −εM0V (9.420)

Solving Eq.(9.420) gives the result we are looking for,

f1(X, s) = −
∫ s

0

ds′ M0(X, s′)V (X, s′)

= −
∫ s

0

ds′ V (M0(X, s′)X, s′) (9.421)

The physical meaning of Eq.(9.421) is described following Eq.(9.198). To first
order in ε, the effect of errors at position s′ can be transformed to the observation
position s by the map M0.

If H0 = H0(X) is independent explicitly on s, then M0 = e−s:H0:, and

f1(X, s) = −
∫ s

0

ds′ e−s
′:H0:V (X, s′) (9.422)

Equation (9.422) is just the BCH formula (9.264). This is seen as follows.
Consider H = H0 + εV where H0 and V are s-independent. Then, using
Eq.(9.422),

M = e−:sH0+sεV :

= exp
[
:
∫ 1

0

due−:usH0:(−sεV ):
]

e−:sH0:

= exp
[
−ε:(

∫ s

0

ds′e−:s′H0:V ):
]

e−:sH0: (9.423)

This means Eq.(9.421) is a generalization of the BCH formula (9.264).
Below, we will consider several applications of Eqs.(9.421) and (9.422).

56Note that
N ′ �= ε:f ′1:N, and N ′ �= Nε:f ′1: (9.418)

as one might be tempted to write using Eq.(9.414). Expressions (9.418) hold only if the
operators :f1: and :f ′1: commute, which is not true in general. The correct expression for N ′

is obtained by Eq.(9.223).
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Weak multipole in a long drift space Consider a weak error perturbation
uniformly distributed over a drift distance L. Suppose we care only about the
optics in 1-D (e.g. we care only about not messing up the x-emittance and
don’t care much about the y-emittance in this application). Let the perturbed
Hamiltonian be

H =
1
2

p2 + εv(x) (9.424)

Equation (9.422) gives

εf1 = −
∫ s

0

ds′e−: s′
2 p

2:v(x) = −
∫ s

0

ds′v(x + s′p) (9.425)

For example, the perturbation maybe a multipole. From Eq.(9.183), we have

v(x) =
λ

n + 1
xn+1 (9.426)

Then we have

εf1 = − λ

(n + 1)(n + 2)
(x + sp)n+2 − xn+2

p
(9.427)

For a quadrupole error of strength λ = k, we have n = 1 and

εf1 = −k

6
(3sx2 + 3s2xp + s3p2) (9.428)

Error multipole correction algorithms We can apply Eqs.(9.421) and
(9.422) to error correction algorithms. Suppose we have an uniform error per-
turbation v(x), and we want to make a correction so that, when observed down-
stream from position s = L, its effect is compensated, at least to first order in
the perturbation strength. Suppose we introduce a set of Nc thin-lens multipole
correctors (of the same type of multipole as the error multipole). Let the i-th
corrector (i = 1, 2, ..., Nc) have location s = si and strength αi. How should we
choose the corrector strengths αi, assuming the corrector positions are given?

Let the Hamiltonian, including the error perturbation and the correctors, be

H =
1
2

p2 + εv(x) +
Nc∑
i=1

αiδ(s − si)v(x) (9.429)

To first order in the perturbation strength, the correction requires

∫ L

0

ds′e−: s′
2 p

2:v(x)

[
ε +

Nc∑
i=1

αiδ(s′ − si)

]

=
∫ L

0

ds′ v(x + s′p) +
∑

αiv(x + sip) = 0 (9.430)

To apply Eq.(9.430), we consider si and v(x) to be given, and we need to
compute αi so that Eq.(9.430) is satisfied for all values of x and p. In case
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the perturbation is a multipole, v(x) = λ
n+1xn+1, this correction scheme can be

accomplished by having a finite number of correctors. If only 1-D is of interest,
there are n+2 coefficients to vanish in Eq.(9.430). This requires n+2 correctors.

If the error multipole is a weak quadrupole (n = 1) of strength k and suppose
we introduce three thin-lens quadrupoles of strength α1,2,3 at locations s = 0, L2 ,
and L, what should the corrector strengths be?

The correctors Hamiltonian is

α1

2
x2δ(s) +

α2

2
x2δ(s − L

2
) +

α3

2
x2δ(s − L) (9.431)

To first order in k, the correction requires

−k

6
(3sx2 + 3s2xp + s3p2) +

α1

2
x2 +

α2

2
(x +

L

2
p)2 +

α3

2
(x + Lp)2 = 0 (9.432)

where the first term is from Eq.(9.428). Equation (9.432) is to hold for all values
of x and p. This means the coefficients of x2, xp and p2 must vanish separately.
This gives three conditions to determine the three corrector strengths. The
solution is found to be

α1 = α3 =
1
6

kL, α2 =
2
3

kL (9.433)

The relative weights of the three corrector strengths are just the Simpson’s rule
of integral approximation.

In case the perturbation is not a pure multipole, or if the perturbation is
a multipole but the number of correctors available is less than n + 2, then
Eq.(9.430) can not be fulfilled exactly. One can still do it approximately if the
function v(x + s′p) does not vary rapidly in the range s = 0 to s = L for all
values of x and p of interest. The corrector strengths are then determined by∫ 1

0

du v(x + uLp) = − 1
L

∑
i

αiv(x + uiLp) (9.434)

If we call the function v(x + uLp) ≡ G(u), then it becomes clear that we are
just looking for a set of values αi and si which best approximates the integral∫ 1

0

duG(u) = − 1
L

∑
i

αiG(ui) (9.435)

for any reasonably smooth function G(u). Simpson’s rule is then just one way to
make this approximation. Simpson’s rule is exact if v(x) and H0 are quadratic
in x.

To find other ways to make approximate corrections, let us consider a drift
space from s = 0 to s = L. The Hamiltonian of the drift space is H0(X) = 1

2p2.
Now consider some perturbation in this drift space. Let the perturbation be
some sextupole fields distributed along the drift space according to the strength
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distribution α(s). We consider α(s) to be small. Let the sextupole Hamiltonian
be written as α(s)f(X), the Hamiltonian of the system is then57

H(X, s) = H0(X) + α(s)f(X) (9.436)

We then raise the following question: Suppose we regard the sextupole dis-
tribution α(s) to be due to error sextupoles, and suppose one inserts a thin-lens
correction sextupole at the middle of the drift space (s = L/2) to correct for
the effect of this error sextupole distribution, what would be the optimal setting
of this thin-lens correction sextupole? To address this question, we assume the
optimization is reached when the corrector sextupole removes the effect of the
error sextupoles to first order in the strength of the error sextupoles. When the
correction sextupole is included, the Hamiltonian can be written as

H(X, s) = H0(X) + α(s)f(X) + βδ(s − L

2
)f(X) (9.437)

where β, yet to be chosen, characterizes the strength of the correction sextupole.
In order for the correction sextupole to correct for the effect of the error sex-
tupoles, we want it so that the system behaves as closely as possible to the
unperturbed case when the system is observed at the end of the drift space, i.e.
at s = L. For this to happen, we wish to choose the corrector strength so that
[see Eq.(9.422)]

f1 = −
∫ L

0

ds e−s:H0:[α(s) + βδ(s − L

2
)]f(X) = 0 (9.438)

Equation (9.438) is to be valid for all X. The function f(X) of course de-
scribes the sextupole effect. The operation e−s:H0: is to transform the sextupole
effect to position s while observing it at s = L. Clearly, the effect of a sextupole
at position s is in general not described by the function f(X) when observed at
a different position at s = L. This means that, in general, the condition (9.438)
is impossible to meet exactly, and we do not have a single corrector that entirely
removes the first order error effects. But if the drift space is short enough, this
can be done because e−s:H0: ≈ 1 — which is equivalent to ignoring the difference
made on f(X) due to the transport from s to L — and we have the condition

∫ L

0

ds [α(s) + βδ(s − L

2
)] = 0, or β = −

∫ L

0

ds α(s) (9.439)

In other words, the optimal correction is achieved by — not surprisingly —
choosing the corrector to be of a sextupole type (reflected by the fact that
f1 ∝ f(X)), and choosing β to be negative of the total integral of the error
sextupole strength. It is easy to see that this choice of β is independent of the
location of the corrector sextupole. See Exercise 78.

57In this application, we assume H0 is drift space and v(x) is sextupole, but these are not
necessary. Same approximate schemes apply for other choices.
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If the drift space is not that short, to improve the accuracy of the correction,
we can insert two correctors. For example, one might insert one corrector at
the entrance (s = 0) and another at the exit (s = L) of the drift space. The
condition for correction becomes∫ L

0

ds [1 − s:H0:][α(s) + β1δ(s) + β2δ(s − L)]f(X) = 0 (9.440)

where we have kept one more term in e−s:H:, i.e., we now use e−s:H0: ≈ 1−s:H0:.
Regardless of the expression of H0, Eq.(9.440) can be satisfied if∫ L

0

ds [α(s) + β1δ(s) + β2δ(s − L)] = 0

∫ L

0

ds s[α(s) + β1δ(s) + β2δ(s − L)] = 0 (9.441)

or

β1 = −
∫ L
0

ds (1 − s
L )α(s)

β2 = − 1
L

∫ L
0

ds sα(s) (9.442)

The condition (9.439) and the first condition of Eq.(9.441) have the physical
meaning that the total angular kick of the perturbation (errors plus correctors)
observed at s = L is zero. The physical meaning of the second condition of
Eq.(9.441) is that the total perturbation on the displacement of the particle’s
trajectory is zero when observed at s = L.

In Exercise 79, it is shown that Eq.(9.442) is related to the trapezoidal rule
of numerical integration,∫ 1

0

dx f(x) ≈ 1
2

f(0) +
1
2

f(1) (9.443)

where f(x) is any smooth function of x. In fact, Eq.(9.439) is simply the cruder
approximation

∫ 1

0
dx f(x) ≈ f(1/2).

One can further improve the accuracy of correction when the drift space is
not too short by having three correctors, located at s = 0, s = L/2 and s = L.
The conditions for correction is then∫ L

0

ds [α(s) + β1δ(s) + β2δ(s − L

2
) + β3δ(s − L)] = 0

∫ L

0

ds s[α(s) + β1δ(s) + β2δ(s − L

2
) + β3δ(s − L)] = 0

∫ L

0

ds s2[α(s) + β1δ(s) + β2δ(s − L

2
) + β3δ(s − L)] = 0 (9.444)

or

β1 =
∫ L

0

ds α(s)(−1 +
3s

L
− 2s2

L2
)
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β2 =
∫ L

0

ds α(s)(−4s

L
+

4s2

L2
)

β3 =
∫ L

0

ds α(s)(
s

L
− 2s2

L2
) (9.445)

Equation (9.445) is related to the Simpson’s rule of numerical integration
∫ 1

0

dx f(x) ≈ 1
6

f(0) +
2
3

f(
1
2
) +

1
6

f(1) (9.446)

The proof is described in Exercise 81. Exercises 80 and 81 also ask for general-
ization of the integration technique to include weight functions.

Equations (9.439), (9.442) and (9.445) give various error correction algo-
rithms for short accelerator sections. It does not matter which type of errors
are being considered, sextupole or otherwise. It also does not matter which
unperturbed H0 is being considered (However, see Exercise 85.).

Compensation for the dynamical effects of error multipoles is an important
topic for accelerator designs. Depending on the problem at hand, the most
effective way to provide the compensation varies. It should be mentioned here
that the compensation discussed in this section applies only for the case when
the effects of error multipoles are to be compensated locally (or almost locally).
In particular, if it is the effect accumulated over one turn of the accelerator
that is to be compensated, i.e., if the errors are to be corrected globally, the
compensation scheme used would be quite different.

Exercise 74 As an illustration of the factorization procedure de-
scribed from Eq.(9.387) to Eq.(9.390), factorize the 3-rd order map
for a magnet with combined sextupolar and octupolar fields,

M = exp(: − L

2
p2 − Sx3 − εx4:) (9.447)

into a form
M = e:f2:e:f3:e:f4:e:O(X5): (9.448)

Find expressions for f2,3,4. This exercise can be compared with
Exercise 58.
Solution

f2 = −L

2
p2

f3 = −S

∫ 1

0

du (e−u:f2:x)3

= −S

∫ 1

0

du (x − uLp)3

= −S(x3 − 3
2

Lx2p + L2xp2 − 1
4

L3p3)
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f4 = −ε

∫ 1

0

du[e−u:f2:x]4−S2

2

∫ 1

0

du

∫ u

0

dv[(e−v:f2:x)3, (e−u:f2:x)3]

= −ε

∫ 1

0

du(x − uLp)4−S2

2

∫ 1

0

du

∫ u

0

dv[(x−vLp)3, (x−uLp)3]

= −ε(x4 − 2Lx3p + 2L2x2p2 − L3xp3 +
1
5

L4p4)

−S2L

2
[− 3

28
L4p4+

3
4

L3xp3− 9
4

L2x2p2+3Lx3p− 3
2

x4] (9.449)

Exercise 75 Prove Eq.(9.390).
Solution Instead of iteration as suggested in the text, we could ap-
ply the second form of the BCH formula, Eqs.(9.195), (9.196) and
(9.253). It suffices to show that

e:−LiH2i−LiH3i−LiH4i: = e:f2:e:f3:e:f4: = e:f2:e:f3+f4:e:O(X5) (9.450)

holds when f2,3,4 are given by Eqs.(9.388-9.390). Applying Eqs.(9.195-
9.196) [or Eq.(9.253)] to the right hand side of Eq.(9.450), keeping
terms up to O(X4), and substituting f2,3,4 by Eq.(9.388-9.390), in-
deed one obtains e:−LiH2i−LiH3i−LiH4i:.

Exercise 76 Find factorized Lie maps to O(X4) for thick combined-
function magnets, (a) combined quadrupole and sextupole, (b) com-
bined quadrupole and solenoid, (c) combined dipole and quadrupole,
(d) combined dipole and sextupole. Do this in 1-D case. Then do it
for 2-D. Which of these can be found exactly? Apply the results to
obtain 4-th order Taylor maps.

Exercise 77 Equations (9.421) to (9.423) apply when the perturbed
map M is written in the form (9.413). Repeat the procedure if M
assumes a different form M = M0N . Give the physical meaning as
done following Eq.(9.421).

Exercise 78 Equation (9.439) gives the optimal setting of a single
sextupole corrector to compensate for a distribution of error sex-
tupoles. Estimate the residual effect of the sextupoles after correc-
tion by computing the net Lie or Taylor map.

Exercise 79 Relate the discussions leading to Eq.(9.442) to the tra-
pazoidal rule, Eq.(9.443), of numerical integration.
Solution Identify e−s:H0: as a function of s and call it f(s). If it
behaves sufficiently smoothly in the region between s = 0 and s = 1,
we have shown that the best choice of β1 and β2 that makes∫ 1

0

ds f(s)[α(s) + β1δ(s) + β2δ(s − 1)] ≈ 0 (9.451)
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is given by Eq.(9.442) regardless of the exact form of f(s). Now if
we take α(s) = 1, Eq.(9.442) gives

β1 = β2 = −1
2

(9.452)

Substituting back into Eq.(9.451) yields Eq.(9.443).

Exercise 80 The trapezoidal rule (9.443) applies when f(x) is a
smooth function of x between 0 and 1. If one is interested in calcu-
lating the integral of f(x)W (x) where f(x) is smooth but W (x) is
not, we can reconsider Exercise 79 but this time take α(s) = W (s).
Show that this leads to∫ 1

0

dx f(x)W (x) ≈ β1f(0) + β2f(1) (9.453)

where

β1 =
∫ 1

0

dx (1 − x)W (x)

β2 =
∫ 1

0

dx xW (x) (9.454)

As applications of Eqs.(9.453-9.454), show that∫ 1

−1

dx f(x)(1 − x2) ≈ 2
3 [f(−1) + f(1)]

∫ 1

−1

dx f(x)
√

1 − x2 ≈ π
4 [f(−1) + f(1)]

∫ 1

−1

dx
f(x)√
1 − x2

≈ π
2 [f(−1) + f(1)] (9.455)

Exercise 81 Follow Exercise 79 to prove the Simpson’s rule (9.446).
Follow Exercise 80 to find the Simpson’s rule with a weight function.
Solution The Simpson’s rule with weight function is∫ 1

0

dxf(x)W (x) ≈ β1f(0) + β2f(
1
2
) + β3f(1) (9.456)

where

β1 =
∫ 1

0

dx (1 − x)(1 − 2x)W (x)

β2 = 4
∫ 1

0

dx x(1 − x)W (x)

β3 = −
∫ 1

0

dx x(1 − 2x)W (x) (9.457)
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As applications of Eqs.(9.456-9.457), we have∫ 1

−1

dx f(x)(1 − x2) ≈ 2
15

f(−1) +
16
15

f(0) +
2
15

f(1)

∫ 1

−1

dx f(x)
√

1 − x2 ≈ π

16
f(−1) +

3π

8
f(0) +

π

16
f(1)

∫ 1

−1

dx
f(x)√
1 − x2

≈ π

4
f(−1) +

π

2
f(0) +

π

4
f(1) (9.458)

Exercise 82 Equation (9.445) describes how to correct for some
known nonlinear effects of a short accelerator section from s = 0
to s = L using three correctors located at s = 0, L/2, and L. The
accuracy of this correction is up to order O(L3). Free up the lo-
cations of the correctors. See if better correction accuracy can be
achieved.
Solution To simplify the algebra, change coordinates so that the
region of interest is from s = −L to L. The accuracy of correction
is O(L4) if the correctors are located at

s1 = −
√

I3

I1
, s2 = 0, s3 =

√
I3

I1
(9.459)

and the corrector strengths are chosen to be

β1 = −I1(I2 −
√

I1I3)
2I3

β2 = −I0 +
I1I2

I3

β3 = −I1(I2 +
√

I1I3)
2I3

(9.460)

where

Ik =
∫ L

−L
ds α(s)sk (9.461)

The residual effect of the errors after correction is given by

I4 −
I2I3

I1
= O(L5) (9.462)

For the special case when I1 = 0 and I3 = 0, a O(L5) correction
can be achieved with three correctors:

s1 = −s3 = −
√

I4

I2
, s2 = 0

β1 = β3 = − I2
2

2I4
, β2 = −I0 +

I2
2

I4
(9.463)
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One can obtain a numerical integration rule from Eq.(9.463) by
considering α(x) = 1. This leads to

∫ 1

−1

dx f(x) ≈ 5
9

f(−
√

3
5
) +

8
9

f(0) +
5
9

f(

√
3
5
) (9.464)

Equation (9.464) is exact if f(x) is a 5-th order Taylor series in x.
In contrast, Simpson’s rule (9.446) is exact if f(x) is a 3-rd order
Taylor series. Compare this with Legendre integration with roots of
P3(x) = 0.

One can also include a weight function by considering α(x) =
W (x). Equations (9.459-9.461) give for example

∫ 1

−1

dx xf(x) ≈ 1
3

√
5
3

[
f(

√
3
5
) − f(−

√
3
5
)

]
(9.465)

which is consistent with Eq.(9.464). In case I1 = 0 and I3 = 0, we
obtain∫ 1

−1

dx W (x)f(x) ≈ I0f(0) +
I2
2

2I4

[
f(

√
I4

I2
) + f(−

√
I4

I2
) − 2f(0)

]

(9.466)
where Ik =

∫ 1

−1
dx W (x)xk. As special cases, we have

∫ 1

−1

dx f(x)(1 − x2) ≈ 14
45

f(−
√

3
7
) +

32
45

f(0) +
14
45

f(

√
3
7
)

∫ 1

−1

dx f(x)
√

1 − x2 ≈ π

8
f(−

√
1
2
) +

π

4
f(0) +

π

8
f(

√
1
2
)

∫ 1

−1

dx
f(x)√
1 − x2

≈ π

3
f(−

√
3
4
) +

π

3
f(0) +

π

3
f(

√
3
4
)(9.467)

Compare this with Tsybechev integration.

Exercise 83 Determine the strengths of four correctors located at
s = 0, L/3, 2L/3, and L to provide a correction accuracy of O(L4).
Free up the locations of these four correctors to achieve a higher
correction accuracy. Compare this with Legendre integration with
roots of P4(x) = 0.

Exercise 84 Consider an accelerator transport line consisting of a
thin focusing quadrupole at location s = 0, followed by two dipoles,
each of length D, followed by a thin defocusing quadrupole at lo-
cation s = 2D, followed by another two dipoles, each of length D,
followed by a thin focusing quadrupole at s = 4D. Suppose that
the four dipoles are known to have weak error sextupole fields with
strengths of αi, i = 1, ... , 4, and that it is possible to insert some
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thin correctors next to each of the three quadrupoles. Assume the
sextupole field within each dipole is uniform over the length of the
dipole. (a) Design a single-pass correction scheme and determine
the corrector strengths for this transport line. (b) Consider the 2-D
motion of on-momentum particles. Give expressions of the Lie and
Taylor maps before and after correction to the leading order in α
and D.
Solution Three thin sextupoles at the locations next to the quadru-
poles serve as the correctors. Apply Eq.(9.445) to obtain their
strengths:

β1 = −2
3

α1D − 1
6

α2D +
1
12

α3D +
1
12

α4D

β2 = − 5
12

α1D − 11
12

α2D − 11
12

α3D − 5
12

α4D

β3 =
1
12

α1D +
1
12

α2D − 1
6

α3D − 2
3

α4D (9.468)

These corrector settings are independent of the strengths of the
quadrupoles or the dipoles.

Exercise 85 Equations (9.431-9.433) are for the case to correct a
weak uniform error quadrupole in a free space with three correctors.
Consider the case to correct a weak uniform error quadrupole in a
not-so-weak, unperturbed quadrupole. Again, we will see that three
correctors are needed. Let K and k be the unperturbed and error
quadrupole strengths respectively. The Hamiltonian is

H =
1
2

p2 +
1
2

Kx2 +
k

2
x2 +

3∑
i=1

αi
2

x2δ(s − si) (9.469)

We want∫ L

0

ds′e−:s′( 1
2p

2+ 1
2Kx

2):[kx2 +
∑
i

αix
2δ(s − si)] = 0

=⇒ k

∫ L

0

ds′(x cos
√

Ks′ +
p√
K

sin
√

Ks′)2

+
∑
i

αi(x cos
√

Ksi +
p√
K

sin
√

Ksi)2 = 0

=⇒




k
∫ L
0

ds′ cos2
√

Ks′+
∑

i αi cos2
√

Ksi = 0
k
∫ L
0

ds′ sin
√

Ks′ cos
√

Ks′+
∑

i αi sin
√

Ksi cos
√

Ksi=0
k
∫ L
0

ds′ sin2
√

Ks′ +
∑

i αi sin2
√

Ksi = 0
(9.470)

Let the three correctors be located at si = 0, L2 and L. The
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corrector strengths are found to be (with q =
√

KL)

α1 = α3 =
k

4
√

K sin2 q
2

(−q + sin q)

α2 =
k

2
√

K sin2 q
2

(q cos q − sin q) (9.471)

When K = 0, this reduces to the Simpson’s rule α1 = α3 = −kL/6, α2 =
−2kL/3. When L is short, this also reduces to Simpson’s rule.

9.8 Normal Form

In our discussions so far, linear maps have played an important role. This is not
unexpected. We can learn and have learned a lot from linear maps. Linear maps
can simultaneously be viewed as Taylor maps and Lie maps and therefore have
the advantages of both. In particular, we learned that a lot of the linear system
analysis can be handled with matrices. However, we have also learned that an
elegant and insightful treatment of linear systems is provided by a Courant-
Snyder analysis, and the Courant-Snyder analysis is intimately related to the
Lie representation of linear maps. [See Eq.(9.90).]

What we learned from linear systems can be generalized to nonlinear sys-
tems. In fact, even the very concept of maps is learned from analysing the
linear systems. In a linear system, one speaks of matrices and Courant-Snyder
transformation of these matrices without having to think of them as maps.
But when considering a nonlinear system, the map concept becomes inevitable.
More reasons why maps are useful:

(1) We are interested in observation of particle motion at a fixed
location of the accelerator, not the entire time evolution.

(2) Maps are easier to handle mathematically — maps can be
multiplied; Hamiltonians can not.

(3) A map allows an algebraic expression of the final coordinates
as functions of the initial coordinates, while tracking only establishes
their numerical connection.

One then realizes that representing nonlinear maps in their Lie forms provides
a natural way to generalize the Courant-Snyder analysis to nonlinear systems,
but being able to write the nonlinear maps in Lie forms constitutes only a
first step toward completing the analogy to linear analysis. What is missing is
the equivalent of the Courant-Snyder transformation, and the analyses of the
properties of the linear system subsequent to the transformation. In this section,
we will introduce a normal form technique which is the nonlinear equivalent of
the Courant-Snyder analysis.

Indeed, having obtained the one-turn Lie map such as Eq.(9.190) with the
effective Hamiltonian Heff , and transformed it into its normal form, many phys-
ical quantities related to the nonlinear dynamics of the system can be extracted.
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These physical quantities include:

closed orbit distortion in the accelerator
Courant-Snyder α, β, γ functions
Courant-Snyder functions for off-momentum particles
strengths for various resonances
smear or distortion functions
betatron tunes as functions of momentum deviation and betatron amplitudes
KAM tori (or KAM invariants)

These quantities are expressed as explicit Taylor expressions in terms of the
perturbations up to the order specified by the map.58

Note that once one recognizes the significant role maps play, the questions
are then (a) how to generate maps efficiently, and (b) once generated, how to
analyze those maps. The subject of high-order map generation is addressed by
the technique of truncated power series algebra (TPSA) and is not covered here.
In this section, we address question (b) using the normal form technique.

Courant-Snyder transformation for 1-D linear systems To introduce
the concept of normal forms, let’s first consider the nonlinear map for a 1-D
system,

M = e:f2(X):e:f3(X):... (9.472)

where X are the physical coordinates X = (x, px) with px = x′. If the system
is linear, we have fk = 0 for k ≥ 3. From the Courant-Snyder analysis, we
know it is convenient to transform the physical coordinates to the normalized
coordinates

U =
[

x̄
p̄x

]
=

[ 1√
β

0
α√
β

√
β

] [
x
px

]
(9.473)

The question we first ask is how to introduce this transformation in the Lie
language.

It is important to realize that the Courant-Snyder transformation (9.473) is
not the unique way to lead to normal forms. See Exercise 90.

To proceed, consider the map (in Lie representation)

N = A2MA−1
2 (9.474)

58If the map treats the dynamic variables (components of X) as perturbations, these quan-
tities are expressed to the specified order in terms of the components of X. If the map treats
the strength of a certain nonlinear element as the perturbation, explicit expressions of these
quantities as functions of this nonlinear element strength can be obtained. It is also possible
to simultaneously use X and the strengths of a set of accelerator elements (linear or nonlinear)
as perturbations and obtain the corresponding Taylor expressions of these quantities.
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where A−1
2 is the linear symplectic map59 whose matrix representation A2

−1

are such that

A2
−1X = U, or A2

−1 =

[ 1√
β

0
α√
β

√
β

]
or A2 =

[ √
β 0

− α√
β

1√
β

]

(9.475)
The map N operates on coordinates U . We have

N = A2e:f2(X):e:f3(X):....A−1
2

∣∣
X=U

= A2e:f2(X):A−1
2 A2e:f3(X):A−1

2 ....
∣∣
X=U

= e:A2f2(X):e:A2f3(X):...
∣∣
X=U

= e:f2(A2U):e:f3(A2U):... (9.476)

where fn(A2U) just means fn(X) when it is re-expressed in terms of U = A−1
2 X.

For example, [See Eq.(9.90)]

f2(X) = −µ

2
(γx2 + 2αxpx + βp2

x) = −µ

2

[
(

x√
β

)2 + (
αx + βx′

√
β

)2
]

=⇒ f2(A2U) = −µ

2
(x̄2 + p̄2

x) (9.477)

The map N describes the dynamics of the same physical system as described
by M , and it has the same form as M except that all coordinates X are trans-
formed into U . If the system is linear, one can use a matrix language. The
matrix representation of Eq.(9.474) is, recalling the reversed ordering,

N = A2
−1MA2 (9.478)

If the map M is applied to X, we have

MX = A2NA2
−1X = A2NU (9.479)

It is also easy to see that applying the map k times gives

MkX = A2NkU (9.480)

This means that to study the multi-turn beam dynamics, one can study the
effects of the map M on the physical coordinates X, or equivalently, one can
study the effects of the map N on the normalized coordinates U . The operation
A2 on the right-hand-side of Eq.(9.480) simply means that after the study, one
needs to remember to transform the results back to the physical space, but such
transformation needs to be done only once at the end. The dynamics of the map
M in terms of the X-coordinates and the map N in terms of the U -coordinates
are the same.

59One can consider nonsymplectic transformations as well, but we are not interested in
them for our purpose.
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3-D linear systems Let us now consider a 3-D case. More specifically let
us consider a section of accelerator design that contains only magnetic devices
and no electric devices so that δ in an invarinat. For example, if there is only
one rf cavity in a circular accelerator, and the cavity is considered to be a thin-
lens element located at position s = 0, the accelerator section being considered
could be the map from s = 0+ to s = C− for one turn around the accelerator
excluding the rf cavity.

We will adopt the dynamic variables X = (x, x′, y, y′, z, δ). Let the map
through the section be M , which has the form (9.472). Because δ is a constant
of the motion, all functions fn(X) do not depend on z, as one would also expect
physically. For a linear system, of course f3(X) = 0, etc.

We then make a transformation according to Eq.(9.474), where A2 is chosen
such that the function f2(A2U) is given by

f2(A2U) = − µ̄x
2

(x̄2 + p̄2
x) −

µ̄y
2

(ȳ2 + p̄2
y) −

ᾱc
2

δ2 (9.481)

where

U =




x̄
p̄x
ȳ
p̄y
z̄
δ


 = A−1

2 X (9.482)

and µ̄x,y (the normal mode frequencies) and ᾱc (the normal mode momentum
compaction factor) are constants determined by the system. Note that the
variable δ is the same before and after the transformation and that f2(A2U)
[and fn(A2U) if the system is nonlinear] do not depend on z̄.

How to obtain the normalized coordinates U knowing the one-turn linear
map of a circular accelerator? The matrix of the linear map can be written in
general as

M =




R

0 R16

0 R26

0 R36

0 R46

R51 R52 R53 R54

0 0 0 0
1 R56

0 1


 (9.483)

where R is a 4 × 4 matrix. Couplings among the three dimensions are allowed
in Eq.(9.483). As written, Eq.(9.483) contains 25 yet-unspecified elements, but
symplecticity of M imposes strong constraints on these elements. First, it re-
quires that R be symplectic. This reduces the number of independent elements
of R from 16 to 10. Second, it also requires that the R-elements satisfy

R̃S




R16

R26

R36

R46


 +




R51

R52

R53

R54


 = 0 (9.484)
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where S is the 4× 4 member of the symplectic form (9.3-9.4) and a tilde means
taking the transpose of a matrix. Equation (9.484) constitutes 4 more condi-
tions. The total number of independent elements in Eq.(9.483) is 15.

We will make a succession of three canonical transformations. These trans-
formations follows the Courant-Snyder transformation but is its generalization
to 3-D linear system. We will obtain a “normal form” result at the end. This
discussion then serves as the background to discuss normal forms for nonlinear
systems later.

We first make a transformation of coordinates

from X =




x
x′

y
y′

z
δ


 to X1 = BX (9.485)

where B is the symplectic matrix

B =




1 0 0 0 0 −ηx
0 1 0 0 0 −η′

x

0 0 1 0 0 −ηy
0 0 0 1 0 −η′

y

η′
x −ηx η′

y −ηy 1 0
0 0 0 0 0 1


 (9.486)

The four components (ηx, η′
x, ηy, η

′
y) are the dispersion functions. They form a

vector that satisfies a fixed point condition

R




ηx
η′
x

ηy
η′
y


 +




R16

R26

R36

R46


 =




ηx
η′
x

ηy
η′
y


 (9.487)

or 


ηx
η′
x

ηy
η′
y


 = −(R − 1)−1




R16

R26

R36

R46


 (9.488)

The condition (9.487) allows expressions of the elements R16, R26, R36, R46

in terms of ηx, η′
x, ηy, η

′
y. The symplecticity condition (9.484) then allows ex-

pressions of R51, R52, R53, R54 in terms of ηx, η′
x, ηy, η

′
y as




R51

R52

R53

R54


 = (1 − R̃)S




ηx
η′
x

ηy
η′
y


 (9.489)
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The transformation matrix for the new coordinates (9.485) is given by

N = BMB−1 =




R

0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0

1 ᾱc
0 1


 (9.490)

where
ᾱc = R56 + η′

xR16 − ηxR26 + η′
yR36 − ηyR46 (9.491)

and use has been made of Eqs.(9.487) and (9.489). The matrix (9.490) is obvi-
ously simpler than the matrix (9.483).

We can make the matrix even simpler by introducing a second transformation
which deals with the matrix R in Eq.(9.490). Assuming the betatron motion is
stable, R can be block diagonalized by a 4 × 4 matrix T:

T−1RT =




cos µ̄x sin µ̄x 0 0
− sin µ̄x cos µ̄x 0 0

0 0 cos µ̄y sin µ̄y
0 0 − sin µ̄y cos µ̄y


 (9.492)

The 6 × 6 matrix A−1
2 of Eq.(9.482) is given by

A−1
2 =




T

0 0
0 0
0 0
0 0

0 0 0 0
0 0 0 0

1 0
0 1


B

=




T

0 (A−1
2 )16

0 (A−1
2 )26

0 (A−1
2 )36

0 (A−1
2 )46

η′
x −ηx η′

y −ηy
0 0 0 0

1 0
0 1


 (9.493)

where 


(A−1
2 )16

(A−1
2 )26

(A−1
2 )36

(A−1
2 )46


 = −T




ηx
η′
x

ηy
η′
y


 (9.494)

One can also take the inverse of Eq.(9.493) to obtain

A2 =




T−1

0 ηx
0 η′

x

0 ηy
0 η′

y
(A2)51 (A2)52 (A2)53 (A2)54

0 0 0 0
1 0
0 1


 (9.495)
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where 


(A2)51
(A2)52
(A2)53
(A2)54


 = −T̃−1S




ηx
η′
x

ηy
η′
y


 (9.496)

In terms of the new coordinates (9.482), finally, the transformation matrix
assumes a simple form

N =




cos µ̄x sin µ̄x 0 0 0 0
− sin µ̄x cos µ̄x 0 0 0 0

0 0 cos µ̄y sin µ̄y 0 0
0 0 − sin µ̄y cos µ̄y 0 0
0 0 0 0 1 ᾱc
0 0 0 0 0 1


 (9.497)

We have thus transformed the complex matrix (9.483) to a much simpler form
(9.497) by two coordinate transformations. Application to a special case of 3-D
linear system is given in Exercise 86.

Note that B contains the dispersion function information of the system, while
T contains the betatron functions and N contains the normal mode frequencies.
The dispersion and the betatron functions, and therefore B and T, depend on
the location s of where the one-turn map (9.483) is taken. On the other hand,
the normal mode frequencies, and therefore N, are s-independent. [See Exercise
88.]

The components of U are the normalized coordinates which transform the
linear part of the map into e:f2(A2U): with f2(A2U) given by Eq.(9.481). To
complete the normal form representation, we still need to introduce a third
coordinate transformation. Following what we learned following Eq.(9.346), we
introduce the coordinates (φx, Ax, φy, Ay) according to

x̄ =
√

2Ax sin φx, p̄x =
√

2Ax cos φx

ȳ =
√

2Ay sin φy, p̄y =
√

2Ay cos φy (9.498)

We have
f2(A2U) = −µ̄xAx − µ̄yAy −

1
2

ᾱcδ
2 (9.499)

The eigenmodes of :f2: are given by Eq.(9.348).
What has been described so far since Eq.(9.473) is the normal form formalism

for a linear system. Given a general linear map M = e:f2:, we have found
a transformation A (or a succession of transformations whose net result is a
transformation A) such that the transformed map N = AMA−1 has the very
simple form e:h2:, where h2 = f2(A2U) is a function only of Ax, Ay, and δ.
In contrast, note that in the original map e:f2:, f2 is a function of 5 variables
x, x′, y, y′, and δ.
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Nonlinear systems We are now ready to introduce the idea of normal form
for a nonlinear system. For a nonlinear map M such as (9.472), the idea of
normal form is to look for a nonlinear symplectic transformation A such that
the map

N = AMA−1 (9.500)

is “as simple as possible”. Drawing an analogy to the linear analysis, this means
the transformed map N — which has the “simplest possible” form — depends
only on Ax, Ay and δ even though the original map M depends on 5 variables
x, x′, y, y′, and δ.60

It should be emphasized that, recalling the discussion following Eq.(9.480), A
is a coordinate transformation that can be detached from the multi-turn studies.
All dynamical effects that involve multi-turns — such as the beam dynamics
encountered in circular accelerators — are contained in the map N , and that is
why we would like N to be simple.61 The map A and A−1 are applied once and
only once before and after the study of the multi-turn effects. We shall see that
A has the physical meaning of the Courant-Snyder parameters generalized to
the nonlinear systems, that N contains information about tune dependence on
the dynamical variables Ax, Ay, δ, and that N also contains information about
the resonance strengths.

To demonstrate the normal form formalism for a nonlinear system, consider
a second order map

M = e:f2:e:f3: (9.501)

Again, we are looking for a map N and a transformation A in the form of (9.500)
so that N is simple. Let us first consider the second order transformation

A = e:F3:A2 (9.502)

where A2 is the linear transformation (9.482) which transforms the X-coordinates
to the U -coordinates. Note we have chosen to write the two factor maps in the
order as in Eq.(9.502) instead of a reversed order. The function F3 is yet to be
found.

After the transformation, we have

N = AMA−1 = e:F3(X):A2e:f2(X):e:f3(X):A−1
2 e−:F3(X):

∣∣∣∣
X=U

= e:F3(U):e:f2(A2U):e:f3(A2U):e−:F3(U): (9.503)

where use has been made of Eq.(9.476). The map e:f2(A2U): is a simple rotation
map corresponding to Eq.(9.497). The function f2(A2U) is a function only of
Ax, Ay, and δ if one makes a further transformation (9.498).

We will deal exclusively with the U coordinates in the following develop-
ments. At a slight risk of confusion, we write fn(A2U) as fn(U), or simply as

60This is away from resonances. When there is a resonance near by, there are complications.
See later.

61Normal forms are not as useful for single pass devices such as a transport line.
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fn. To second order in U ,

N = e:f2:e−:f2:e:F3:e:f2:e:f3:e−:F3:

= e:f2: exp(:e−:f2:F3:)e:f3:e−:F3:

= e:f2: exp[:(e−:f2: − 1)F3 + f3:] + :O(U3): (9.504)

An inspection of Eq.(9.504) indicates that, at this point in an effort to make
N as simple as possible, one would be tempted to choose F3 as

F3 =
(

1
1 − e−:f2:

)
f3 (9.505)

so that the map N , to second order in U , is simply the linear map e:f2:. It
however turns out that this cannot be done in general.62 On the other hand,
we can try to approach Eq.(9.505) as closely as possible as follows.

Consider a function fn(U), which is an n-th order homogeneous polynomial
in the components of U (other than z̄). It is possible to express fn(U) as

fn =
n∑

{
a, b, c, d, e = 0
a+b+c+d+e=n

C
(n)
abcd,e|abcd, e〉 (9.506)

where[9]

|abcd, e〉 ≡ (
√

Axeiφx)a(
√

Axe−iφx)b(
√

Aye
iφy )c(

√
Aye

−iφy )dδe

= A(a+b)/2
x A(c+d)/2

y ei(a−b)φxei(c−d)φy δe (9.507)

are the eigenmodes (sometimes referred to as the resonance basis) of :f2: with

:f2: |abcd, e〉 = i[(a − b)µ̄x + (c − d)µ̄y] |abcd, e〉 (9.508)

We have used the fact that :f2: leaves δ untouched.
It follows from the fact that fn(U) is a real function that

C
(n)
abcd,e∗ = C

(n)
badc,e (9.509)

In what follows, we will simplify the notations by dropping the bars on the
normal mode frequencies µ̄x,y. We will also drop the bars on ᾱc and z̄.

For f3 we have

f3 =
3∑

a,b,c,d,e=0

C
(3)
abcd,e|abcd, e〉 (9.510)

Using Eq.(9.508) the right-hand-side of Eq.(9.505) reads(
1

1 − e−:f2:

)
f3 =

∑
a,b,c,d,e

C
(3)
abcd,e

[
1

1 − e−i(a−b)µx−i(c−d)µy

]
|abcd, e〉 (9.511)

62If this could be done, all of the nonlinear dynamics are contained simply in the boring
coordinate transformation A. There would be no multi-turn effects to speak of any more.
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The expression (9.511) is fine except for those terms in the summation when
one finds zero demonimators:

e−i(a−b)µx−i(c−d)µy = 1
or (a − b)

µx
2π

+ (c − d)
µy
2π

= integer (9.512)

There are two circumstances when the condition (9.512) occurs. One is when

a = b and c = d (9.513)

The other occurs only when a “resonance” condition is fulfilled63, i.e.

m
µx
2π

+ n
µy
2π

= p (9.514)

where m, n, and p are integers without common denominators. When Eq.(9.514)
is satisfied, terms with

a − b = km, and c − d = kn (9.515)

must also be avoided, where k is any integer.
Since the choice of F3 is at our disposal, we will choose it to be given

by Eq.(9.511) excluding terms that give us trouble. In other words, we cer-
tainly exclude from the summation those terms corresponding to Eq.(9.513)
and, when a resonance is uncomfortably close by, also those terms correspond-
ing to Eq.(9.515). We postpone the discussion of the resonance terms till later.
For now, let us consider the case away from resonances. In this case, we have

F3 =
3∑

{
a, b, c, d, e = 0
a+b+c+d+e=3
unless a=b and c=d

C
(3)
abcd,e

[
1

1 − e−i(a−b)µx−i(c−d)µy

]
|abcd, e〉

(9.516)
which leads to

(e−:f2: − 1)F3 + f3 =
∑
a,c,e

C(3)
aacc,e|aacc, e〉

=
∑
a,c,e

C(3)
aacc,eA

a
xAc

yδ
e

= C
(3)
0000,3δ3+C

(3)
1100,1Axδ+C

(3)
0011,1Ayδ ≡ h3(9.517)

We have designated the above function as h3.
Substituting Eq.(9.517) into Eq.(9.504) gives the simplest form of N , to

second order in U , as
N = e:f2:e:h3: (9.518)

63Recall that µx,y here are really µ̄x,y , the normal mode frequencies, which take into account
the linear perturbations of the accelerator.
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Both f2 and h3 are functions only of Ax, Ay, and δ. Note that h3 contains only
three terms in the summation, each proportional to Axδ, Ayδ, and δ3 respec-
tively. Note also that since :f2: and :h3: commute, we can write

N = e:f2+h3: (9.519)

An inspection of Eqs.(9.501) and (9.518) indicates that the normal form
transformation basically means dropping the oscillating terms from f3, and keep-
ing only the 0-th harmonic terms. The reason these 0-th harmonic terms can
not be dropped is because it is impossible to find F3 to transform them away.

The normal form procedure from Eq.(9.501) to Eq.(9.519) can be extended
to higher orders. Consider a third order map

M = e:f2(X):e:f3(X):e:f4(X): (9.520)

By making the transformation with

A = e:F4(U):e:F3(U):A2 (9.521)

we obtain
N = AMA−1 = e:F4:e:F3:e:f2:e:f3:e:f4:e−:F3:e−:F4: (9.522)

All functions in Eq.(9.522) are expressed as functions of U . We choose F3 to be
given by Eq.(9.516).

To proceed, we need to go back to Eq.(9.504) and keep terms O(U3). Con-
sider the following:

e:F3:e:f2:e:f3:e−:F3: = e:f2:(e−:f2:e:F3:e:f2:)(e:f3:e−:F3:)

= e:f2: exp(:e−:f2:F3:)[exp(:f3−F3−
1
2
:f3:F3:)+:O(U4):]

= e:f2:
{

exp[:e−:f2:F3 + f3 − F3 −
1
2
:f3:F3

−1
2
:(f3 − F3):e−:f2:F3] + :O(U4):

}
= e:f2:e:h3:e:g4: + :O(U4): (9.523)

where use has been made of the BCH formula (9.192), h3 is given by Eq.(9.517),
and we have introduced

g4 = −1
2
(:f3: + :f3:e−:f2: − :F3:e−:f2:)F3 (9.524)

By definition of h3 in Eq.(9.517), Eq.(9.524) can also be written as

g4 = −1
2
[:f3:F3 + :(f3 − F3):h3] (9.525)

Having obtained Eq.(9.523), we have

e:F3:e:f2:e:f3:e:f4:e−:F3: = (e:F3:e:f2:e:f3:e−:F3:)(e:F3:e:f4:e−:F3:)
= [e:f2:e:h3:e:g4: + :O(U4):][e:f4: + :O(U4):]
= e:f2:e:h3:e:f4+g4: + :O(U4): (9.526)
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Substituting Eq.(9.526) into Eq.(9.522) gives

N = e:F4:e:f2:e:h3:e:f4+g4:e−:F4:

= e:f2: exp(:e−:f2:F4:)e:h3:e:f4+g4:e−:F4:

= e:f2:e:h3: exp[:(e−:f2: − 1)F4: + f4 + g4:] + :O(U4): (9.527)

Following the steps which are by now familiar, we decompose

f4 + g4 =
4∑

a,b,c,d,e

C
(4)
abcd,e|abcd, e〉 (9.528)

and choose F4 to be (away from resonances)

F4 =
4∑

{
a, b, c, d, e = 0
a+b+c+d+e=4
unless a=b and c=d

C
(4)
abcd,e

(
1

1 − e−i(a−b)µx−i(c−d)µy

)
|abcd, e〉

(9.529)
Then, to third order, we have

N = e:f2:e:h3:e:h4:

= e:f2+h3+h4: (9.530)

where
h4 =

∑
a,c,e

C(4)
aacc,eA

a
xAc

yδ
e (9.531)

is a function of Ax, Ay, and δ. In general, h4 contains six terms, proportional to
δ4, Axδ2, Ayδ

2, A2
x, AxAy, and A2

y, respectively. Knowing A2, F3(U), and F4(U),
the coordinate transformation A, given by Eq.(9.521), is obtained.

One can extend the procedure to higher orders and in general obtains an
Ω-th order representation

M = e:f2(X):e:f3(X):... e:fΩ+1(X):

A = e:FΩ+1(U):... e:F3(U):A2

N = e:f2+h3+h4+... hΩ+1: (9.532)

where f2, h3, ... , hΩ+1 are functions of Ax, Ay, and δ only. Equation (9.532) is
the normal form representation of the map M away from resonances.

Applications of normal forms as well as the effect of resonances are later
subjects.

Exercise 86 In the absence of x-y coupling, Eqs.(9.483-9.497) have
simpler forms. Let the linear part of the accelerator section be rep-
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resented by the transformation matrix [see Eq.(9.96)]

M =




R11 R12 0 0 0 η−ηR11−η′R12

R21 R22 0 0 0 η′−η′R22−ηR21

0 0 R33 R34 0 0
0 0 R43 R44 0 0

η′−η′R11+ηR21 −η+ηR22−η′R12 0 0 1 Aη sin µx − Cαc

0 0 0 0 0 1




(9.533)

where

R11 = cos µx + αx sin µx

R12 = βx sin µx

R21 = −γx sin µx

R22 = cos µx − αx sin µx

R33 = cos µy + αy sin µy

R34 = βy sin µy

R43 = −γy sin µy

R44 = cos µy − αy sin µy

Aη = γxη2 + 2αxηη′ + βxη′2 (9.534)

Find the matrix A2 and f2(A2U).
Solution One should first check that the symplectic condition (9.484)
is satisfied (and it is) by the matrix M . The matrix map (9.533) has
a Lie form e:f2(X): with [See Eq.(9.95)]

f2(X) = −µx
2

[γx(x − ηδ)2 + 2αx(x − ηδ)(x′ − η′δ) + βx(x′ − η′δ)2]

−µy
2

(γyy2 + 2αyyy′ + βyy
′2) − 1

2
Cαcδ

2 (9.535)

Following the procedure outlined in the text, we find

U = A2
−1X =




x−ηδ√
βx

αx(x−ηδ)+βx(x′−η′δ)√
βx
y√
βy

αyy+βyy
′√

βy

z + η′x − ηx′

δ




µ̄x = µx, µ̄y = µy, ᾱc = αc

f2(A2U) = −µx
2

(x̄2 + p̄2
x) −

µy
2

(ȳ2 + p̄2
y) −

1
2

Cαcδ
2(9.536)
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and

A2
−1 =




1√
βx

0 0 0 0 − η√
βx

αx√
βx

√
βx 0 0 0 −αxη+βxη

′√
βx

0 0 1√
βy

0 0 0

0 0 αy√
βy

√
βy 0 0

η′ −η 0 0 1 0
0 0 0 0 0 1




A2 =




√
βx 0 0 0 0 η

− αx√
βx

1√
βx

0 0 0 η′

0 0
√

βy 0 0 0
0 0 − αy√

βy

1√
βy

0 0

−αxη+βxη
′√

βx

η√
βx

0 0 1 0

0 0 0 0 0 1



(9.537)

The matrix representation of the map N is

N = A2
−1MA2 =




cos µx sin µx 0 0 0 0
− sin µx cos µx 0 0 0 0

0 0 cos µy sin µy 0 0
0 0 − sin µy cos µy 0 0
0 0 0 0 1 −Cαc
0 0 0 0 0 1




(9.538)
Equation (9.533) gives the 6×6 matrix for one-turn map around

a certain position in the circular accelerator. For completeness and
later use, we give below the 6× 6 matrix from position 1 to position
2:

M =




R11 R12 0 0 0 η2 − R11η1 − R12η′
1

R21 R22 0 0 0 η′
2 − R21η1 − R22η′

1

0 0 R33 R34 0 0
0 0 R43 R44 0 0
A B 0 0 1 C − Aη1 − Bη′

1

0 0 0 0 0 1




R11 =

√
βx2
βx1

[cos ψx + αx1 sin ψx]

R12 =
√

βx1βx2 sin ψx

R21 = − 1√
βx1βx2

[(1 + αx1αx2) sin ψx − (αx1 − αx2) cos ψx]

R22 =

√
βx1
βx2

[cos ψx − αx2 sin ψx]
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R33 =

√
βy2
βy1

[cos ψy + αy1 sin ψy]

R34 =
√

βy1βy2 sin ψy

R43 = − 1√
βy1βy2

[(1 + αy1αy2) sin ψy − (αy1 − αy2) cos ψy]

R44 =

√
βy1
βy2

[cos ψy − αy2 sin ψy]

A = R21η2 − R11η′
1 + η′

1

B = −R12η′
2 + R22η2 − η1

C = −
∫ s2

s1

ds
η(s)
ρ(s)

(9.539)

where ψx and ψy are the horizontal and vertical betatron phase
advances from position 1 to position 2. As mentioned in Exercise
32, an explicit expression of the corresponding Lie representation
can only be done transcendentally.

Exercise 87 Equations (9.506-9.509) are when f2(A2U) is given by
Eq.(9.499) for stable linear motion. If the system is linearly unstable
[see Exercise 29], how are f2(A2U) and Eqs.(9.506-9.509) modified?
Solution Note that, even though unstable, the system is symplec-
tic. Note also that, unlike the stable case, these eigenmodes do not
involve complex quantities.

Exercise 88 Show that in the normal form transformation (9.500)
of a one-turn map M(s) around the location s, the map N is s-
independent. The s-dependence is contained in the coordinate trans-
formation map A.

Exercise 89 Show that the Poisson bracket

[|a1b1c1d1, e1〉, |a2b2c2d2, e2〉] (9.540)

=
i

2
(a1b2−a2b1) |a1+a2−1, b1+b2−1, c1+c2, d1+d2, e1+e2〉

+
i

2
(c1d2−c2d1) |a1+a2, b1+b2, c1+c2−1, d1+d2−1, e1+e2〉

In particular, it follows that the operators :e−iφx,y : can be regarded
as lowering operators, while :eiφx,y : have the meaning of raising op-
erators.

Exercise 90 Equation (9.473), the Courant-Snyder transformation,
has played a critical role leading to normal forms. However, it is not
the only way to reach the normal forms. [more to be added]
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9.9 Applications of Normal Forms Away From Resonances

Invariants In the previous section, we transformed the nonlinear map M by
a map A into a normal form N according to

N = AMA−1 or M = A−1NA (9.541)

We noted that, away from resonances, N has the form e:h: where h depends
only on Ax, Ay, and δ out of the phase space coordinates (φx, Ax, φy, Ay, z, δ)
[See Eq.(9.532)]. It follows that the quantities Ax, Ay and δ are invariant under
the map N , i.e.,

NAx = Ax, NAy = Ay, Nδ = δ (9.542)

The quantities Ax, Ay, and δ are the three constants of the motion in the 3-D
motion under the map M .

Let us consider the quantities

Wx = A−1Ax and Wy = A−1Ay (9.543)

The meaning of the above operation is as follows: in order to obtain an ex-
pression of Wx, one first writes Ax = 1

2 (x̄2 + p̄2
x), and then expresses x̄ and p̄x

(components of the normalized coordinates U) in terms of the physical X com-
ponents using U = A−1X; the resulting expression in terms of the X coordinates
is Wx. Similar meaning applies for Wy.

The two quantities Wx,y are invariant under the map M , as can be seen as
follows:

MWx = A−1NAWx = A−1NAx = A−1Ax = Wx (9.544)

and similarly for Wy. As a particle’s motion is observed turn after turn, the
physical coordinates change but the values of Wx and Wy remain constant.

There is a third invariant, which is simply δ. Its invariance follows from the
fact that M is independent of z. Particle motion in the 6-D (x, px, y, py, z, δ)
phase space must stay on “surfaces” of constant Wx, Wy and δ.

Effective Hamiltonian We next look for an expression of the effective Hamil-
tonian of the nonlinear system for the one-turn motion in the (x, px, y, py, z, δ)
phase space. This is obtained by first writing N = e:h(Ax,Ay,δ): and then noting

M = A−1NA = A−1e:h(Ax,Ay,δ):A

= exp[:A−1h(Ax, Ay, δ):] = exp[:h(A−1Ax, A−1Ay, A
−1δ):]

= e:h(Wx,Wy,δ): (9.545)

This means −h(Wx, Wy, δ) is the effective Hamiltonian in the X phase space
away from all resonances. The case when a resonance is close by will be ad-
dressed later. Suffice it to say here that then the effective Hamiltonian would
contain additional terms.
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Fixed point for an off-momentum particle For an on-momentum particle,
the fixed point in the X space is simply the origin X = 0. Consider an off-
momentum particle with δ = δ0 = constant. First note that the vector

U0 =




0
0
0
0
0
δ0


 (9.546)

is transformed by N according to

NU
∣∣
U=U0

=




0
0
0
0
z1

δ0


 ≡ U1 (9.547)

The vector U1 differs from U0 only in its z-component, and z1 is some quantity
whose exact form does not matter here. The first four components of U1 vanish
because N does not couple the three normal modes of U . Consider the vector

X0 = AU
∣∣
U=U0

(9.548)

We have

MX
∣∣
X=X0

= AMU
∣∣
U=U0

= AA−1NAU
∣∣
U=U0

= NAU
∣∣
U=U0

= AU
∣∣
U=U1

(9.549)

In writing down the first step in Eq.(9.549), recall that the earlier Lie operators
apply from the left. Since the first four components of the vector on the right
hand side of Eq.(9.549) are the same as those of X0, Eq.(9.549) shows that
the first four components of X0 form a fixed point, i.e. its position does not
change turn after turn, in the (x, px, y, py) space for an off-momentum particle.
This fixed point is closly related to the linear and the higher order dispersion
functions.

Exercises 91 and 92 apply these analyses to 1-D and 3-D linear systems.
Exercies 88 applies them to a nonlinear system.

Exercise 91 Find explicit expressions of the invariant Wx and the
effective one-turn Hamiltonian for a 1-D Courant-Snyder system.
Solution The invariant Wx is obtained by substituting

x̄ =
1√
β

x, p̄x =
1√
β

(αx + βpx) (9.550)
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into the expressions

Ax =
1
2
(x̄2 + p̄2

x) (9.551)

The result is, as expected,

Wx =
1
2β

[x2 + (αx + βpx)2] (9.552)

The one-turn map for the system is given by Eq.(9.90). It follows
that the effective Hamiltonian is

H = −f2 = µWx =
µ

2β
[x2 + (αx + βpx)2]

=
µ

2
(γx2 + 2αxpx + βp2

x) (9.553)

The effective Hamiltonian can be used to obtain the one-turn
behavior of the variables x and px as follows:

dx

dn
=

∂H

∂px
= µ(αx + βpx)

dpx
dn

= −∂H

∂x
= −µ(γx + αpx) (9.554)

where n is a turn index which runs from 0 to 1 for one complete
turn. Note that although the betatron functions α, β, and γ depend
on the location around the accelerator, in the effective Hamiltonian
description here, they are taken as constants in the turn index n. The
result obtained applies only when the particle motion is observed at
this particular location.

Equation (9.554) can be solved to yield

x(n) = x(0)(cos nµ + α sin nµ) + p(0)β sin nµ

px(n) = −x(0)γ sin nµ + p(0)(cos nµ − α sin nµ) (9.555)

When n is set to 1, one recovers map (9.87).

Exercise 92 Consider the 3-D linear system described in Exercise 86.
Find expressions of the invariants Wx, Wy, the effective Hamiltonian,
and the off-momentum fixed point.
Solution The connection between the physical coordinates (x, px =
x′, y, py = y′, z, δ) and the normalized coordinates (x̄, p̄x, ȳ, p̄y, z̄, δ)
is provided by Eq.(9.536). The two betatron invariants then have
the expressions

Wx =
1

2βx
{(x − ηδ)2 + [αx(x − ηδ) + βx(px − η′δ)]2}

Wy =
1

2βy
[y2 + (αyy + βypy)2] (9.556)
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The effective Hamiltonian is

H =
µx
2βx

{(x − ηδ)2 + [αx(x − ηδ) + βx(px − η′δ)]2

+
µy
2βy

[y2 + (αyy + βypy)2] +
1
2

αcδ
2 (9.557)

A somewhat lengthy but straightforward algebra similar to that of
Eqs.(9.554-9.555) verifies that the Hamilton’s equations using this
effective Hamiltonian in the (x, px, y, py, z, δ) phase space recovers
the map (9.533).

The off-momentum fixed point in the (x, px, y, py) space is, ac-
cording to Eq.(9.548), given by the first four components of the
vector A2U0. With A2 given by Eq.(9.537) and U0 by Eq.(9.546),
it follows that the fixed point is simply




x
px
y
py


 = δ0




η
η′

0
0


 (9.558)

for a particle whose relative momentum error is δ = δ0.

Exercise 93 Consider the linear system of Exercise 86. Let there be
a static angular kick ∆x′ = θ at position s = 0 of this accelerator.
Analyze the steady state motion of the particles.
Solution The one-turn map around s = 0 is given by the matrix M
of Eq.(9.533), with α, β, γ, η, and η′ evaluated at the position s = 0.
The steady state (x, x′, y, y′, z, δ) observed at the exit of the angular
kick satisfies the condition

M




x
x′

y
y′

z
δ


 +




0
θ
0
0
0
0


 =




x
x′

y
y′

z1

δ


 (9.559)

The quantity z1 on the right hand side is not the same as z. This
is because z does not have a steady state. We need to analyze the
motion described by Eq.(9.559).

Obviously we have y = 0, y′ = 0. The remaining of Eq.(9.559)
can be written as

R11(x − ηδ) + R12(x′ − η′δ) = (x − ηδ)
R21(x − ηδ) + R22(x′ − η′δ) + θ = (x′ − η′δ)
(η′ − η′R11 + ηR21)x + (−η + ηR22 − η′R12)x′ + z

+(−Cαc + Aη sin µx)δ = z1 (9.560)
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where the definitions of the various quantities can be found with
Eq.(9.533).

The first two of Eq.(9.560) can be solved for x and x′,

x =
θ

2
βx cot

µx
2

+ ηδ

x′ =
θ

2
(1 − αx cot

µx
2

) + η′δ (9.561)

These give the closed-orbit displacement of the beam particles in
the accelerator observed at the exit of the angular kick. The third
equation in (9.560) gives the path length slippage per turn in the
“steady state”. When x and x′ are substituted using Eq.(9.561),
one obtains

z1 − z = −Cαcδ − ηθ (9.562)

The path length slips by −Cαcδ due to a momentum error, and by
−ηθ due to an angular kick θ, and this slippage occurs every turn.

Note that a kick in x′ is therefore intrinsically coupled to the
longitudinal motion. This intrinsic link is a necessary consequence
of the symplecticity of the system. This coupling does not occur in
the y-dimension.

Exercise 94 Replace the horizontal angular kick of Exercise 93 by a
thin-lens sextupole of strength λ. Find the dispersion functions at
the exit of the sextupole to order δ2.

Tune shift and chromaticity In the previous two sections, we have devel-
oped a normal form scheme away from resonances. In terms of the canonical
coordinates U = (φx, Ax, φy, Ay, z, δ), we showed that, away from resonances,
a nonlinear map can be transformed into a simple form

N = e−:H(Ax,Ay,δ): (9.563)

where H is the effective Hamiltonian. The Hamilton equations of motion read

dφx
dn

=
∂H

∂Ax
,

dAx

dn
= − ∂H

∂φx
dφy
dn

=
∂H

∂Ay
,

dAy

dn
= − ∂H

∂φy
dz

dn
=

∂H

∂δ
,

dδ

dn
= −∂H

∂z
(9.564)

where n is the turn index which runs from 0 to 1 for one turn.
Since H is independent of φx, φy, and z, it follows from Eq.(9.564) that

Ax, Ay, and δ are constants of the motion. With H = H(Ax, Ay, δ), the effective
Hamiltonian H is a constant of the motion. It then follows that dφx/dn, dφy/dn,
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and dz/dn are constants independent of n. Integrations over one turn then give
the one-turn map which reads

∆φx =
∂H

∂Ax
, ∆Ax = 0

∆φy =
∂H

∂Ay
, ∆Ay = 0

∆z =
∂H

∂δ
, ∆δ = 0 (9.565)

where ∆ of a quantity means the change of this quantity over one turn. In
particular, the phases φx,y and z advance by an amount specified by Eq.(9.565)
per iteration of the map. These advances depend on the values of Ax,y and δ,
which are invariant under the application of the map.

If the map being considered is a one-turn map around a circular accelerator,
one can identify the tunes to be

νx(Ax, Ay, δ) =
∆φx
2π

=
1
2π

∂H

∂Ax

νy(Ax, Ay, δ) =
∆φy
2π

=
1
2π

∂H

∂Ay
(9.566)

Different particles with different Ax,y and δ have dirfferent tunes. The depen-
dences of the tunes on Ax,y are called the detuning effects. The dependences on
δ are called the chromaticities.

We showed earlier that, to third order in U , the effective Hamiltonian, away
from resonances, can be written as [see Eqs.(9.517) and (9.530-9.531)]

H = −f2 − h3 − h4

f2 = −µxAx − µyAy −
1
2

αcδ
2

h3 = −Cx1Axδ − Cy1Ayδ − C3δ3 (9.567)
h4 = −CxxA2

x − CxyAxAy − CyyA
2
y − Cx2Axδ2 − Cy2Ayδ

2 − C4δ4

where µx,y/2π are the unperturbed tunes of the linear system. This gives, using
Eq.(9.566),

νx(Ax, Ay, δ) =
1
2π

(µx + Cx1δ + 2CxxAx + CxyAy + Cx2δ2)

νy(Ax, Ay, δ) =
1
2π

(µy + Cy1δ + CxyAx + 2CyyAy + Cy2δ2) (9.568)

In particular, the chromatic effects are seen by setting Ax = Ay = 0:

νx(δ) =
1
2π

(µx + Cx1δ + Cx2δ2)

νy(δ) =
1
2π

(µy + Cy1δ + Cy2δ2) (9.569)
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and the detuning effects are seen by setting δ = 0:

νx(Ax, Ay) =
1
2π

(µx + 2CxxAx + CxyAy)

νy(Ax, Ay) =
1
2π

(µy + CxyAx + 2CyyAy) (9.570)

When Ax = Ay = 0 and δ = 0, the tunes are of course just given by µx,y/2π.
Note that all terms contained in Eq.(9.568) appear in either Eq.(9.569) or
Eq.(9.570). This however is not true to higher orders because then there will
be synchro-betatron coupling terms that involve both Ax,y and δ in the tune
expressions. Note also from Eq.(9.570) that the Ax-dependence of νy is the
same as the Ay-dependence of νx — both are described by the coefficient Cxy.

The Hamiltonian (9.567) also describes the behavior of the path length ac-
cording to

∆z = αcδ + 3C3δ2 + 4C4δ3 + Cx1Ax + Cy1Ay + 2Cx2Axδ + 2Cy2Ayδ (9.571)

The path length change per revolution depends on the betatron amplitudes Ax,y

and δ. In particular, the Ax-dependence of ∆z is the same as the δ-dependence
of νx and the Ay-dependence of ∆z is the same as the δ-dependence of νy.
Chromaticities are therefore intimately related to the dynamics of the path
length!

Smooth approximation Applications of the results in this section can be
found later when we discuss more on single sextupole and the beam-beam in-
teraction. In what follows below, we will introduce a tune shift treatment,
sometimes called the smooth approximation, which does not use the Lie lan-
guage. A comparison will then be made with what is obtained using the Lie
language. For the tune shift considerations, we will ignore the resonance effects,
even though the smooth approximation applies to the case of isolated resonances
as well.

Consider a 1-D motion of a particle described by the equation

x′′ + K(s)x = f(x, s) (9.572)

where K(s) is the focusing function of the linear, unperturbed accelerator envi-
ronment, f(x, s) is a perturbation that depends on the instantaneous displace-
ment of the particle x and the position coordinate s. The perturbation f(x, s)
is considered to be periodic in s with period 2πR, the circumference of the
accelerator. The system can be described by the Hamiltonian64

H(x, px, s) =
1
2

p2
x +

1
2

K(s)x2 −
∫ x

0

dx′f(x′, s) (9.573)

64Do not write (9.573) with px replaced by x′. The fact that px = x′ is a consequence
of the Hamiltonian (9.573). Replacing px by x′ at the Hamiltonian level is a misuse of the
Hamiltonian.
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Let us start with the equation of motion (9.572). We learned from the
Courant-Snyder treatment that the problem simplifies if we introduce the trans-
formation

x =
√

β(s) u

θ =
ψ(s)

ν
=

1
ν

∫ s

0

ds′

β(s′)
(9.574)

where β(s) is the unperturbed β-function found in the absence of f(x, s), and
ν is the unperturbed tune. With Eq.(9.574), the dynamic variable x is replaced
by u, and the independent time-variable s becomes θ. The functions β(s), K(s)
and f(x, s) become β(θ), K(θ) and f(u, θ), and are periodic in θ with period
2π. Equation (9.572) in the new variables reads

d2u

dθ2
+ ν2u = ν2β3/2(θ)f(u, θ) ≡ F (u, θ) (9.575)

In the absence of perturbation, u is described by a simple harmonic motion
in θ. This means we can write

u =
√

2A sin φ (9.576)

and
du

dθ
= ν

√
2A cos φ (9.577)

where A and dφ/dθ = ν are constants. With a perturbation, we could insist
on the action-angle transformation of the form (9.576-9.577) except that A and
dφ/dθ now depend on θ and we need to solve for them. To do so, first note that
by substituting (9.576) into (9.577), one obtains a self-consistency condition

1
2

dA

dθ
sin φ + (

dφ

dθ
− ν)A cos φ = 0 (9.578)

Secondly, substituting Eqs.(9.576-9.577) into Eq.(9.575) gives another condition

1
2

dA

dθ
cos φ − (

dφ

dθ
− ν)A sin φ =

√
A√
2ν

F (
√

2A sin φ, θ) (9.579)

Equations (9.578-9.579) can be combined to give

dA

dθ
=

√
2A

ν
cos φ F (

√
2A sin φ, θ)

dφ

dθ
= ν − 1

ν
√

2A
sin φ F (

√
2A sin φ, θ) (9.580)

Effectively we have decomposed a second order differential equation (9.575) of
one variable u into two first order differential equations (9.580) of two variables
A and φ. So far no approximations have been made; Eq.(9.580) is exact.
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If the perturbation is sufficiently weak, the quantities A and dφ/dθ are ap-
proximately constants of the motion, i.e. they change slowly with time variable
θ. We can approximate the expressions (9.580) by keeping only the slowly vary-
ing terms and dropping all fast oscillating terms on the right hand sides. In
other words, we make the “smooth approximation”

dA

dθ
≈

√
2A

ν
〈cos φ F (

√
2A sin φ, θ)〉

dφ

dθ
≈ ν − 1

ν
√

2A
〈sin φ F (

√
2A sin φ, θ)〉 (9.581)

where the angular brackets mean the smoothing procedure. Fast and slow refer
to a comparison with the revolutions. The angular variables θ and φ are con-
sidered to be fast variables, while the changes in A and dφ/dθ per revolution
are considered to be slow for sufficiently weak perturbations.

Consider the case when the tune is away from resonances. The smoothing in
this case is obtained by a straightforward averaging over the angular variables
θ and φ, i.e.

〈 〉 =
1

4π2

∫ 2π

0

dφ

∫ 2π

0

dθ (9.582)

After averaging, Eq.(9.581) becomes

dA

dθ
≈ 0

dφ

dθ
≈ ν − 1

4π2ν
√

2A

∫ 2π

0

dφ

∫ 2π

0

dθ sin φ F (
√

2A sin φ, θ) (9.583)

The reason dA/dθ vanishes is that F (
√

2A sin φ, θ) is an even function in φ′ ≡
φ− π

2 ; the product cos φ F (
√

2A sin φ, θ) is an odd function of φ′ which averages
to zero. The fact that we are averaging θ and φ independently of each other
assumes that they are not correlated in some way. Such correlations would be a
consequence of resonances, which we ignore in this section, but will be discussed
following Eq.(9.672).

Equation (9.583) says that the action variable A is approximately a constant
of the motion even in the presence of (weak) perturbations provided the unper-
turbed tune is away from resonances. The quantity dφ/dθ, which assumes the
physical meaning of the perturbed tune, depends on A. The motion of particles
in the polar (

√
2A, φ) phase space is such that particles move along circles of√

2A = constant with constant angular speeds. This constant angular speed,
however, is different for different particles, creating a sheering effect on the dis-
tribution of particles in the phase space. The dependence of the perturbed tune
on A specifies the detuning effect. The tune shift is given by

∆ν(A) = − 1
4π2ν

√
2A

∫ 2π

0

dφ

∫ 2π

0

dθ sin φ F (
√

2A sin φ, θ) (9.584)

From Eq.(9.584), one notes that if the perturbation f(x, s) is an even func-
tion of x, then to first order of the perturbation, the tune shift vanishes. Since

292



the perturbation due to sextupoles, decapoles, etc. are even in x, these multi-
poles do not contribute to tune shifts for on-momentum particles to first order
of their strengths. Quadrupoles, octupoles, and the beam-beam force, on the
other hand, do contribute to first order tune shifts.

Noting the fact that the action and angle variables are canonical variables,
one can cast Eq.(9.583) in a Hamiltonian form. Indeed, with the Hamiltonian

H = νA − 1
4π2ν

∫ 2π

0

dφ

∫ 2π

0

dθ sin φ

∫ A

0

dA′
√

2A′
F (

√
2A′ sin φ, θ) (9.585)

Eq.(9.584) is recovered by the Hamilton equations

dφ

dθ
=

∂H

∂A
and

dA

dθ
= −∂H

∂φ
= 0 (9.586)

Since the Hamiltonian H is independent of the time-variable θ, it is a constant
of the motion. The system is solvable, or “integrable”, away from resonances.65

The Hamiltonian (9.585) is in fact simply the Hamiltonian (9.573) averaged over
θ and φ, i.e., (9.585) is (9.573) after smoothing.

Let us consider a few examples. Consider first a thin-lens error quadrupole
with focal length f located as the position s = 0 in the circular accelerator. In
this case, we have

f(x, s) = −x

f
δp(s) (9.587)

where δp(s) is the periodic δ-function with period 2πR. The kick a particle
receives as it traverses the error quadrupole is ∆x′ = −x/f . This means

F (u, θ) = ν2β3/2(0)f(u, θ) = −νβ(0)
u

f
δp(θ) (9.588)

Substitution into Eq.(9.584) yields

∆ν ≈ β(0)
4πf

(9.589)

which is a familiar result of accelerator optics. In particular, in this case, ∆ν is
independent of A.

Now consider a more complex problem, namely the case of a thin-lens error
octupole with

f(x, s) = εx3δp(s) (9.590)

Substititing into Eq.(9.584) gives

∆ν ≈ − 1
2π2

εβ2(0)A
∫ 2π

0

dφ cos4 φ = − 3
8π

εβ2(0)A (9.591)

This tune shift is proportional to the action A.
65The fact that H is also independent of φ gives the additional nice feature A = const, but

this property is not a necessary condition for the system to be called integrable.
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Computing tune shifts “physically” It may be instructive at this point
to make the following observation. If one is given a perturbation such as that
given by Eq.(9.590) and is asked to calculate the tune shift, and had he not
known the smooth approximation, what would he do? First, he might note
that the focusing effect changes from turn to turn, so some kind of averaging
would be unavoidable in order to calculate the tune shift, and he would have
to first introduce an “instantaneous” tune and then try to average it over many
turns. Naively, the first quantity that comes to mind to be averaged is the
force, because the force is what is “physically” applied to the particle. The
instantaneous force is given by f(x, s), which is proportional to x3. Now since
x is basically sinusoidal in time s, the average of the force over many turns is
zero, which of course gives a wrong answer.

One might then consider perhaps the averaging should be performed over
the “gradient” of the force. Although the gradient is not what the particle ex-
perience directly, the intuition of averaging over the gradient may be supported
by the direct link between tune shift and gradient, as Eq.(9.589) suggests. One
then computes the gradient which is connected to an instantaneous focal length
f with 1/f = −3εx2. Substituting into Eq.(9.589) and averaging over φ give

∆ν ≈ β(0)
4π

〈−3εx2〉 = − 3
4π

εβ2(0)A (9.592)

This result gets closer to (9.591) but still is wrong!
The right answer, surprisingly, is effectively to average over the potential of

the force, i.e. the average should be performed over the integral of the force

V (x, s) = −
∫ x

0

dx′f(x′, s) (9.593)

instead of either the force itself or the derivative (the gradient) of the force. Not-
ing the fact that the potential is a term contained in the Hamiltonian, one then
recognizes that what is being averaged over is the Hamiltonian.66 In fact, that
was what we observed in the smooth approximation developed from Eq.(9.572)
to Eq.(9.586). Indeed, the averaged potential is given by

〈V 〉 = −εβ2(0)A2〈sin4 φ〉δp(s) = −3
8

εβ2(0)A2δp(s) (9.594)

In terms of the potential V , the tune shift (9.584) can be written as

∆ν =
1
2π

∫
ds

∂〈V 〉
∂A

(9.595)

Substituting Eq.(9.594) into Eq.(9.595), we recover the correct tune shift (9.591).
As funny looking as Eq.(9.595) is, it gives the right answer.

66Who says Hamiltonian is merely a mathematical construct?
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Tune shift using Lie algebra Now let us try to connect these results to Lie
analysis. Consider the case when the perturbation is localized, i.e., let

f(x, s) = ε(x)δp(s) (9.596)

The tune shift, Eq.(9.584) or Eq.(9.595), reads

∆ν(A) = −
√

β(0)
4π2

√
2A

∫ 2π

0

dφ sin φ ε(
√

2Aβ(0) sin φ) (9.597)

The Hamiltonian (9.585) reads

H = νA − 1
4π2

∫ 2π

0

dφ

∫ √
2Aβ(0) sinφ

0

dx′ε(x′) (9.598)

This system can also be described in the Lie language. If one observes the
particle motion at the exit of the perturbation, the one-turn map, in the (φ, A)
phase space, is

e:−2πνA: exp

[
:
∫ √

2Aβ(0) sinφ

0

dx′ε(x′):

]
(9.599)

To first order in the perturbation strength, this map can be concatenated to
yield

exp

[
: − 2πνA +

(
: − 2πνA:
1 − e:2πνA:

)∫ √
2Aβ(0) sinφ

0

dx′ε(x′):

]
(9.600)

Let us decompose∫ √
2Aβ(0) sinφ

0

dx′ε(x′) =
∞∑

k=−∞
Ck(A)eikφ (9.601)

then we have(
: − 2πνA:
1 − e:2πνA:

)∫ √
2Aβ(0) sinφ

0

dx′ε(x′) =
∞∑

k=−∞
Ck(A)

(
2πkν

1 − e−2πkν

)
eikφ

(9.602)
Away from resonances, terms with k �= 0 can be transformed away by a normal
form analysis. After the transformation, the map (9.600) becomes

N = exp[: − 2πνA + C0(A):] (9.603)

where

C0(A) =
1
2π

∫ 2π

0

dφ

∫ √
2Aβ(0) sinφ

0

dx′ε(x′) (9.604)

This map is of course described by the effective Hamiltonian (9.598), and it
has the tune shift (9.597). The actual normal form transformations are short
circuited here. This connects the Lie analysis and the smooth approximation
at least away from resonances. Note that it is the 0-th Fourier harmonic of the
potential (9.601) that contributes to the tune shift away from resonances.
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Exercise 95 As a somewhat trivial exercise of a tune shift effect,
consider a simple harmonic oscillator. The map that brings the
canonical coordinates (φ, A) from t = 0 to t is

M = e:−ωAt: (9.605)

where ω is the rotation frequency of the oscillator. One has

Mφ = φ + ωt and MA = A (9.606)

which means the map can be written as

φ(t) = φ(0) + ωt and A(t) = A(0) (9.607)

as expected.
One can also describe the system in terms of the Hamiltonian

language with the Hamiltonian

H = ωA (9.608)

Indeed, the Hamilton equations read

φ̇ =
∂H

∂A
= ω and Ȧ = −∂H

∂φ
= 0 (9.609)

Now describe the system in a rotating frame which has a rotation
frequency Ω so that the oscillator has an angular frequency of ω−Ω.
Describe it in both the Lie and the Hamiltonian languages.
Solution In the Hamiltonian language, we introduce a generating
function G which transforms the coordinates from (φ, A) to (φ′, A′),
where

G(φ, A′, t) = (φ − Ωt)A′ (9.610)

The new coordinates are then related to the old ones by

φ′ =
∂G

∂A′ = φ − Ωt and A =
∂G

∂φ
= A′ (9.611)

The new Hamiltonian is

H ′ = H +
∂G

∂t
= (ω − Ω)A (9.612)

The new equations of motion are

φ̇′ = ω − Ω and Ȧ′ = 0 (9.613)

In the Lie language, the old map is given by Eq.(9.605). The
coordinate transformation can be described by the Lie map [See the
coordinate shift map of Table 4]

R(t) = e:ΩAt:

=⇒ Rφ = φ − Ωt = φ′ and RA = A = A′ (9.614)
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The new map must involve a transformation from the new coordi-
nates to the old ones at time t = 0 and from the old coordinates
back to the new ones at time t, i.e.,

M ′ = R(t)MR−1(0) (9.615)

Note that because the coordinate transformation depends on time,
the map is not transformed according to a similarity transformation
as prescribed, e.g., by Eq.(9.61).

Substituting R from Eq.(9.614) and M from Eq.(9.605) into
Eq.(9.615) gives

M ′ = e:ΩAt:e:−ωAt: = e:−(ω−Ω)At: (9.616)

which is consistent with the new Hamiltonian (9.612). This exercise
will be used later when we discuss the effects of resonances.

Exercise 96 Consider an accelerator with uniform focusing and a
uniform distribution of octupole error. The equation of motion is

d2x

dθ2
+ ν2x = εx3 (9.617)

the tune shift can be obtained from Eq.(9.584),

∆ν = − εA

πν

∫ 2π

0

dφ sin4 φ = −3εA

4ν
(9.618)

But Eq.(9.617) — when the perturbation is uniformly distributed —
can be solved exactly. Show that the tune shift (9.618) agrees with
this exact solution to first order in ε.
Solution Equation (9.617) has a constant of the motion, which we
designate as ν2A, namely

1
2
(
dx

dθ
)2 +

ν2

2
x2 − ε

4
x4 = constant = ν2A (9.619)

Equation (9.619) gives

dx

dθ
= ±

√
2ν2A − ν2x2 +

ε

2
x4 (9.620)

Integrating the periodic motion (9.620) gives a period

Θ = 4
∫ x̂

0

dx√
2ν2A − ν2x2 + ε

2x4
(9.621)

where x̂ is the peak amplitude of the motion with

2ν2A − ν2x̂2 +
ε

2
x̂4 = 0 (9.622)
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Equation (9.621) gives an exact expression of the tune shift ∆ν.
When ε = 0, the unperturbed case has

x̂0 =
√

2A and Θ0 =
2π

ν
(9.623)

When ε �= 0, the perturbed tune is related to Θ by

ν + ∆ν =
2π

Θ
(9.624)

To compute ∆ν, we need to compute Θ of Eq.(9.621). We will do
this to first order in ε. By a change of variable from x to u, where

u = x2 − ε

2ν2
x4

=⇒ dx =
du

2
√

u
(1 +

3ε

4ν2
u + O(ε2)) (9.625)

we find

Θ =
2
ν

∫ 2A

0

du
1 + 3ε

4ν2 u√
u(2A − u)

=
2π

ν
(1 +

3ε

4ν2
A) (9.626)

Substituting into Eq.(9.624) gives a tune shift which agrees with
Eq.(9.618).

Exercise 97 Refer to Eq.(9.325). Find the dependence of the syn-
chrotron tune on the synchrotron oscillation amplitude.

Exercise 98 Find the tune shifts in the presence of a 1-D single
thin-lens octupole.

Exercise 99 3-D analysis of the fringe field effects of a thick quadrupole
on tune shifts.

9.10 Isolated Resonances

The normal form analysis so far applies when the betatron frequencies are away
from resonances. When a resonance condition [See Eq.(9.514)]

mνx + nνy = p (9.627)

is valid or approximately valid, we have to modify our analysis. We will consider
the idealized situation when there is one and only one isolated resonance near
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by. We will not discuss the case with two or more interplaying resonances. This
idealization excludes the study of chaos.67

First consider a second order map (9.501). We have described a normal
form analysis of this map, and shown that it can be transformed into the form
of Eq.(9.504). We next decompose f3 according to Eq.(9.510). Away from
resonances, we choose F3 according to Eq.(9.516). Near a resonance, the normal
form analysis as described so far must be modified. In this case, the “simplest
possible” form of the map no longer gives an effective Hamiltonian that depends
only on Ax, Ay, and δ. In stead, the “simplest” form is now more complicated.
Near a resonance, we now choose F3 similarly to Eq.(9.516) except that terms
excluded from the summation are not only those with (a = b and c = d), but
also those resonant terms satisfying (a − b = km and c − d = kn) for some
integer k. We then have

(e−:f2: − 1)F3 + f3 = h3 + h
(r)
3 (9.628)

where h3 has been defined in Eq.(9.517) and is a function of Ax, Ay and δ only.
The function h

(r)
3 is given by

h
(r)
3 =

∑
k

∑
a,c,e

C
(3)
a,a−km,c,c−kn,eA

a− 1
2km

x A
c− 1

2kn
y eik(mφx+nφy)δe (9.629)

The summations in Eq.(9.629) contains terms that satisfy the conditions

k �= 0
2a + 2c − k(m + n) + e = 3
0 ≤ a, a − km, c, c − kn, e ≤ 3 (9.630)

The reason the k = 0 terms are excluded from the summation is because they
have already been included in h3.

We see now that the “simplest” form depends not only Ax, Ay and δ, but
also on φx, φy. However, it is important to note that it is only the combined
variable mφx + nφy that appears in the normal form.

Take the resonance 3νx = p for example. We have m = 3, n = 0. There are
only two terms that satisfy the conditions (9.630) and therefore contribute to
h

(r)
3 . The result is

h
(r)
3 = A3/2

x (C(3)
3000,0ei3φx + C

(3)
0300,0e−i3φx) (9.631)

67All along we have been assuming the problem is integrable. This assumption is hidden
in that we assumed our expressions of the effective Hamiltonian and the invariants converge
in whichever perturbation calculation we have chosen. Chaos is actually a result when the
system is nonintegrable. One way to appreciate the convergence of the problem is to look at
the map of resonances in the (νx, νy) plane. As the order of resonances (which is defined as
|m| + |n|) is raised, we have ever increasingly dense web of resonance lines. Obviously the
number of neighboring resonances does not converge as one increases the resonance order. On
the other hand, the hope is the strengths (or the width) of resonances decrease sufficiently
rapidly with the resonance order, so that the effect on beam dynamics actually converge. As
a result, hopefully only one of a relatively low order resonance plays a dominating role, and
our analysis of this section approximately applies. In particular, the system then becomes
integrable.

299



Similarly we can work out for all the other resonances excited by this second
order map. The results are:

resonance 2νx + νy = p

h
(r)
3 = AxA1/2

y (C(3)
2010,0ei2φx+iφy + C

(3)
0201,0e−i2φx−iφy )

resonance 2νx − νy = p

h
(r)
3 = AxA1/2

y (C(3)
2001,0ei2φx−iφy + C

(3)
0210,0e−i2φx+iφy )

resonance νx + 2νy = p

h
(r)
3 = A1/2

x Ay(C
(3)
1020,0eiφx+i2φy + C

(3)
0102,0e−iφx−i2φy )

resonance νx − 2νy = p

h
(r)
3 = A1/2

x Ay(C
(3)
1002,0eiφx−i2φy + C

(3)
0120,0e−iφx+i2φy )

resonance 3νy = p

h
(r)
3 = A3/2

y (C(3)
0030,0ei3φy + C

(3)
0003,0e−i3φy )

resonance 2νx = p

h
(r)
3 = Axδ(C(3)

2000,1ei2φx + C
(3)
0200,1e−i2φx)

resonance νx + νy = p

h
(r)
3 = A1/2

x A1/2
y δ(C(3)

1010,1eiφx+iφy + C
(3)
0101,1e−iφx−iφy )

resonance νx − νy = p

h
(r)
3 = A1/2

x A1/2
y δ(C(3)

1001,1eiφx−iφy + C
(3)
0110,1e−iφx+iφy )

resonance 2νy = p

h
(r)
3 = Ayδ(C

(3)
0020,1ei2φy + C

(3)
0002,1e−i2φy )

resonance νx = p

h
(r)
3 = A1/2

x δ2(C(3)
1000,2eiφx + C

(3)
0100,2e−iφx)

+Axδ(C(3)
2000,1ei2φx + C

(3)
0200,1e−i2φx)

+A1/2
x Ay(C

(3)
1011,0eiφx + C

(3)
0111,0e−iφx)

+A3/2
x (C(3)

3000,0ei3φx + C
(3)
0300,0e−i3φx)

+A3/2
x (C(3)

2100,0eiφx + C
(3)
1200,0e−iφx)

resonance νy = p

h
(r)
3 = A1/2

y δ2(C(3)
0010,2eiφy + C

(3)
0001,2e−iφy )

+Ayδ(C
(3)
0020,1ei2φy + C

(3)
0002,1e−i2φy )

+AxA1/2
y (C(3)

1110,0eiφy + C
(3)
1101,0e−iφy )

+A3/2
y (C(3)

0030,0ei3φy + C
(3)
0003,0e−i3φy )

+A3/2
y (C(3)

0021,0eiφy + C
(3)
0012,0e−iφy ) (9.632)

The term h3 is the same for all resonances.
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There are a total of 35 C-coefficients of third order. The resonances men-
tioned above involve 32 C-coefficients (8 of them involved twice). The remaining
3 appeared in the function h3.

Near the resonance (9.627), we now have

N = e:f2:e:h3+h
(r)
3 : (9.633)

where h3 is given by Eq.(9.517) and h
(r)
3 is given by Eqs.(9.631-9.632). Given

Eq.(9.633), we next try to obtain the effective Hamiltonian of the system. To
do so, it seems that we need to concatenate the two factor maps on the right
hand side, which gives, to first order in h

(r)
3 ,

N = exp
[
:f2 +

(
:f2:

1 − e−:f2:

)
(h3 + h

(r)
3 ):

]

= exp
[
:f2 + h3 +

(
:f2:

1 − e−:f2:

)
h

(r)
3 :

]
(9.634)

However, expression (9.634) contains the term(
:f2:

1 − e−:f2:

)
h

(r)
3 =

∑
k �=0

∑
ace

C
(3)
a,a−km,c,c−kn,e

× ik(mµx + nµy)
1 − e−ik(mµx+nµy)

A
a− 1

2km
x A

c− 1
2kn

y eik(mφx+nφy)δe (9.635)

which is problematic because it diverges near the resonance.
To get around this problem, we will consider observing the particle motion

in a frame which rotates in the phase space. Take the resonance 3νx = p for
example. We are specifically considering a transformation of coordinates from
U = (φx, Ax, φy, Ay, z, δ) to U ′ = (φ′

x, Ax, φy, Ay, z, δ), where

φ′
x = φx −

2π

3
pk (9.636)

In Eq.(9.636), k is the turn index which increases by one unit per turn and
assumes the role of the time variable. The new variable φ′

x, the angle variable
in the rotating frame, is a slow variable because it increases by 2πd/3 per turn,
where d = 3νx − p is a small parameter [see Eq.(9.360)].

To facilitate this change of coordinates, we consider the coordinate shift map
[see Exercise 95]

R(k) = e: 2π
3 pkAx:

=⇒ Rφx = φx −
2π

3
pk = φ′

x (9.637)

In the new coordinate system, the map for the k-th turn (which takes the particle
motion as the turn index increases from k to k + 1) can be written as

N ′ = e: 2π
3 p(k+1)Ax:Ne−: 2π

3 pkAx:

= [e: 2π
3 p(k+1)Ax:e:f2:e−: 2π

3 pkAx:][e: 2π
3 pkAx:e:h3+h

(r)
3 :e−: 2π

3 pkAx:](9.638)
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The two factor maps in the square brackets in Eq.(9.638) can be rewritten
in more convenient forms. The first factor map reads

e: 2π
3 p(k+1)Ax:e:f2:e−: 2π

3 pkAx: = e:f ′
2: (9.639)

where
f ′
2 = −2π

3
dAx − µyAy −

1
2

αcδ
2 (9.640)

Equations (9.639-9.640) follow because Ax commutes with f2. The other factor
map in Eq.(9.638) can be written as

e: 2π
3 pkAx:e:h3+h

(r)
3 :e−: 2π

3 pkAx:

= exp
[
:e: 2π

3 pkAx:(h3 + h
(r)
3 ):

]
= exp

[
:h3 + e: 2π

3 pkAx:h
(r)
3 :

]
= exp

[
:h3 + 2A3/2

x Re
(

C
(3)
3000,0ei3φ

′
x

)
:
]

(9.641)

where we have substituted expression (9.631) for h
(r)
3 , and Re[...] means taking

the real part of the quantity [...]. We have also applied Eq.(9.509) and used

e: 2π
3 pkAx:ei3φx = ei3(φx− 2π

3 pk) = ei3φ
′
x (9.642)

In the above procedure, note in Eq.(9.640) that the quantity µx has been
effectively replaced by the small parameter 2πd/3, and in Eq.(9.641), φx has
been replaced by the slow phase φ′

x. In the new rotating system, we are now
ready to concatenate the map (9.638) without introducing a small denominator,
to first order in the nonlinearity strength,

N ′ = e:f ′
2: exp

[
:h3 + 2A3/2

x Re
(

C
(3)
3000,0ei3φ

′
x

)
:
]

= exp
[
:f ′

2 + h3 +
(

:f ′
2:

1 − e−:f ′
2:

)
2A3/2

x Re
(

C
(3)
3000,0ei3φ

′
x

)
:
]

= exp
{

:f ′
2 + h3 + 2A3/2

x Re
[
C

(3)
3000,0

(
i2πd

1 − e−i2πd

)
ei3φ

′
x

]
:
}
(9.643)

where we have used
:f ′

2:e
i3φ′

x = i2πdei3φ
′
x (9.644)

The expression in Eq.(9.643) is now well-behaved when d → 0. The effective
Hamiltonian for the one-turn map is then, in the rotating frame,

H =
2π

3
dAx + µyAy +

1
2

αcδ
2 − C

(3)
0000,3δ3 − C

(3)
1100,1Axδ − C

(3)
0011,1Ayδ

−2A3/2
x Re

(
C

(3)
3000,0

i2πd

1 − e−i2πd
ei3φ

′
x

)
(9.645)

The rotating frame thus avoides the small denominator problem. Alterna-
tively to a rotating frame, one could apply a trick by raising the map to some
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integer power. This amounts to observing the particle motion not once every
turn, but once every few turns. For a third order resonance, for example, one
would observe the system once every three turns. By “strobing” the system at
three-turn intervals, one expects that the dynamics of the resonance will emerge
more visibly.

We thus consider the map M3 = (A−1NA)3 = A−1N3A. The dynamics are
contained in the map N3 which reads

N3 = (e:f2:e:h3+h
(r)
3 :)3

= e3:f2:(e−2:f2:e:h3+h
(r)
3 :e2:f2:)(e−:f2:e:h3+h

(r)
3 :e:f:)e:h3+h

(r)
3 :

= e3:f2: exp[:e−2:f2:(h3 + h
(r)
3 ):] exp[:e−:f2:(h3 + h

(r)
3 ):]e:h3+h

(r)
3 :(9.646)

To first order in h3 and h
(r)
3 , this gives

N3 = e3:f2: exp

[
:

2∑
k=0

e−k:f2:(h3 + h
(r)
3 ):

]
(9.647)

Since f2 and h3 both depend only on Ax, Ay, and δ, we have

2∑
k=0

e−k:f2:h3 = 3h3 (9.648)

The other quantity in Eq.(9.647) reads

2∑
k=0

e−k:f2:h(r)
3 = 2A3/2

x Re

[
C

(3)
3000,0ei3φx(

2∑
k=0

e−i3kµx)

]

= 2A3/2
x Re

[
C

(3)
3000,0ei3φx

1 − e−i9µx

1 − e−i3µx

]

= 2A3/2
x Re

[
C

(3)
3000,0ei3φx

1 − e−i6πd

1 − e−i2πd

]
(9.649)

We next note that the factor e:3f2: in Eq.(9.647) can be written as [See
Eq.(9.363)]

e:3f2: = e:3f ′
2: (9.650)

Combining the results gives, to first order in h3 and h
(r)
3 ,

N3 = e:3f ′
2: exp

[
:3h3 + 2A3/2

x Re
(

C
(3)
3000,0ei3φx

1 − e−i6πd

1 − e−i2πd

)
:
]

= exp
{

:3f ′
2 + 3h3 + 2A3/2

x Re
[
C

(3)
3000,0

1 − e−i6πd

1 − e−i2πd

(
3:f ′

2:
1 − e−3:f ′

2:

)
ei3φx

]
:
}

= exp
{

:3f ′
2 + 3h3 + 2A3/2

x Re
[
C

(3)
3000,0

i6πd

1 − e−i2πd
ei3φx

]
:
}

(9.651)
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Equation (9.651) obtained by strobing agrees with Eq.(9.643) obtained by
rotating the phase space. In particular, the small denominator is removed. Note
that at three-turn intervals, the difference between φx and φ′

x disappears.
Let k be the turn index which runs from 0 to 1 per turn. The one-turn

Hamilton equations of motion are, using the effective Hamiltonian (9.645),

dφx
dk

=
∂H

∂Ax
=

2π

3
d − C

(3)
1100,1δ − 3A1/2

x Re
[
C

(3)
3000,0

i2πd

1 − e−i2πd
ei3φ

′
x

]
dAx

dk
= − ∂H

∂φ′
x

= −2A3/2
x Re

[
C

(3)
3000,0

6πd

1 − e−i2πd
ei3φ

′
x

]
dφy
dk

=
∂H

∂Ay
= µy − C

(3)
0011,1δ

dAy

dk
= − ∂H

∂φy
= 0

dz

dk
=

∂H

∂δ
= αcδ − 3C

(3)
0000,3δ2 − C

(3)
1100,1Ax − C

(3)
0011,1Ay

dδ

dk
= −∂H

∂z
= 0 (9.652)

Take the first member of Eq.(9.652) for example. There are three terms on
the right hand side. The first term describes the unperturbed betatron phase
advance per turn. The second term gives the nonlinear effect which is not driven
by resonance. The third term is the nonlinear resonance driven term.

There are three constants of the motion: δ, Ay, and

hx =
2π

3
dAx − C

(3)
1100,0Axδ − 2A3/2

x Re
[
C

(3)
3000,0

i2πd

1 − e−i2πd
ei3φ

′
x

]
(9.653)

The quantity hx can be regarded as the effective Hamiltonian in the x phase
space. For small d, and consider on-momentum particles with δ = 0, we have

hx ≈ 2π

3
dAx − 2A3/2

x Re(C(3)
3000,0ei3φ

′
x) (9.654)

In the next section [See Eq.(9.681)], we will show that for the case of a single
thin-lens sextupole and observing the particle motion at the exit point of the
sextupole, C

(3)
3000,0 = i

8λ(2βx)3/2, where λ is the sextupole strength. For this
case,

hx =
2π

3
dAx +

λ√
2
(βxAx)3/2 sin 3φ′

x (9.655)

which agrees with Eq.(9.370).
From the first member of Eq.(9.652), it follows that, as φ′

x varies on the
right hand side, 1

2π
dφ′

x

dk oscillates around the value d/3 with an amplitude ∆/3,
where, for small d,

∆ =
9
2π

A1/2
x |C(3)

3000,0| (9.656)
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This quantity ∆ can be loosely associated with a “tune resonance width” in
the sense that the “tune” of the particle oscillates in time slowly with a half-
width of ∆/3. If a particle has ∆ >∼ d (which happens when the particle has
an unperturbed tune close to 1/3, and its amplitude Ax is sufficiently large),
its motion will exhibit a pronounced resonance response. When ∆ <∼ d, the
resonance behaviour would be weak. In this sense, the quantity ∆ can be
loosely associated with the “width” of the resonance.

So far we have been considering the resonance 3νx ≈ p which involves only
the x-motion. The analysis can be extended to the coupling resonances such
as the 2νx + νy ≈ p resonance. The corresponding h

(r)
3 is given by Eq.(9.632).

Let us define two reference tunes νx0 and νy0 in such a way that νx ≈ νx0
and νy ≈ νy0, where νx0,y0 satisfy the resonance condition 2νx0 + νy0 = p
exactly. (This definition does not give νx0,y0 uniquely, but this ambiguity does
not matter.) Let 2νx + νy = p + d with a small d, |d| � 1. Consider then a
frame that “rotates” with frequency νx0 in the x phase space and frequency νy0
in the y phase space. The change of coordinates from (φx, Ax, φy, Ay, z, δ) to
(φ′

x, Ax, φ′
y, Ay, z, δ), where

φ′
x = φx − 2πνx0k, and φ′

y = φy − 2πνy0k (9.657)

can be facilitated by the map

R(k) = e:2π(νx0Ax+νy0Ay)k: (9.658)

The new map is then

N ′ = e:2π(νx0Ax+νy0Ay)(k+1):Ne:−2π(νx0Ax+νy0Ay)k:

= e:f ′
2: exp

[
:h3 + e:2π(νx0Ax+νy0Ay)k:h

(r)
3 :

]
= e:f ′

2: exp
[
h3 + 2AxA1/2

y Re(C(3)
2010,0ei2φ

′
x+iφ′

y )
]

(9.659)

where
f ′
2 = −2π(νx − νx0)Ax − 2π(νy − νy0)Ay −

1
2

αcδ
2 (9.660)

Concatenating the two factor maps in Eq.(9.659) gives

N ′ = e:−H: (9.661)

where H is the effective Hamiltonian

H = 2π(νx − νx0)Ax + 2π(νy − νy0)Ay +
1
2

αcδ
2

−C
(3)
0000,3δ3 − C

(3)
1100,1Axδ − C

(3)
0011,1Ayδ

−2AxA1/2
y Re

[
C

(3)
2010,0

i2πd

1 − e−i2πd
ei2φ

′
x+iφ′

y

]
(9.662)
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The Hamilton equations give

dφ′
x

dk
=

∂H

∂Ax
= 2π(νx − νx0) − C

(3)
1100,1δ

−2A1/2
y Re

[
C

(3)
2010,0

i2πd

1 − e−i2πd
ei2φ

′
x+iφ′

y

]
dAx

dk
= − ∂H

∂φ′
x

= −2AxA1/2
y Re

[
C

(3)
2010,0

4πd

1 − e−i2πd
ei2φ

′
x+iφ′

y

]
dφ′

y

dk
=

∂H

∂Ay
= 2π(νy − νy0) − C

(3)
0011,1δ

−AxA−1/2
y Re

[
C

(3)
2010,0

i2πd

1 − e−i2πd
ei2φ

′
x+iφ′

y

]
dAy

dk
= − ∂H

∂φy
= −2AxA1/2

y Re
[
C

(3)
2010,0

2πd

1 − e−i2πd
ei2φ

′
x+iφ′

y

]
(9.663)

The equations for dz/dk and dδ/dk are the same as those in Eq.(9.652).
As can be seen from Eq.(9.663), the resonance affects both x and y motions.

There is an apparent divergence of dφ′
y/dk when Ay → 0, but this does not cause

problem in actual beam dynamics. There are three constants of the motion. The
first two are δ and H. An inspection of Eq.(9.663) gives a third constant, i.e.,

d

dk
(Ax − 2Ay) = 0 =⇒ Ax − 2Ay = constant (9.664)

One can obtain a resonance width by associating it to the amplitude of
variation of the quantity 1

2πd(2φ′
x + φ′

y)/dk, which according to Eq.(9.663), for
small d and δ = 0, is given by

1
2π

d(2φ′
x + φ′

y)
dk

= d − 1
2π

(4A1/2
y + AxA−1/2

y )Re(C(3)
2010,0ei2φ

′
x+iφ′

y ) (9.665)

In analogy to the tune width defined in Eq.(9.656), one may be tempted to
introduce

∆ = (4A1/2
y + AxA−1/2

y )|C(3)
2010,0| (9.666)

This definition of resonance width, however, has the drawback of a divergence
as Ay → 0.

One can repeat the above analysis for a general resonance described as νx ≈
νx0, νy ≈ νy0 with mνx0 + nνy0 = p. The one-turn effective Hamiltonian,
observed in the rotating frame defined by Eq.(9.657), would have the general
form

H = 2π(νx − νx0)Ax + 2π(νy − νy0)Ay +
1
2

αcδ
2

−h(Ax, Ay, δ) − A|m|/2
x A|n|/2

y Re(εeimφ
′
x+inφ′

y ) (9.667)

where h is some function developed in the normal form analysis and depends
on Ax, Ay, and δ only, ε is some complex coefficient related to the strength of
the resonance-driving nonlinearity.
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It follows from the Hamilton equation with the Hamiltonian (9.667) that

d

dk
(nAx − mAy) = −(n

∂H

∂φ′
x

− m
∂H

∂φ′
y

) = 0 (9.668)

This property (9.668) means the quantity nAx−mAy is a constant of the motion.
The quantity (9.664) is just its special case. In this system, the three constants
of the motion are δ, H, and nAx − mAy. Property (9.668) follows because φ′

x

and φ′
y appear in H as a combined quantity mφ′

x + nφ′
y.

The invariance of nAx−mAy, valid to first order in the nonlinearity strength,
is an important observation. When m and n have opposite signs, i.e. the
resonance is a “difference resonance”, the invariance of nAx − mAy imposes a
constraint on both of the oscillation amplitudes Ax and Ay. The particle motion
is then necessarily bounded and is therefore necessarily stable. For the “sum
resonances”, on the other hand, the invariance of nAx − mAy does not impose
a constraint on either Ax or Ay. The particle motion is not necessarily stable.

For resonances of third order and lower, the one-turn effective Hamiltonian
can be written as

H = 2π(νx − νx0)Ax + 2π(νy − νy0)Ay +
1
2

αcδ
2

−C
(3)
0000,3δ3 − C

(3)
1100,1Axδ − C

(3)
0011,1Ayδ + H ′ (9.669)

where H ′ has the same expression as −h
(r)
3 in Eqs.(9.631-9.632) for the corre-

sponding resonance, except that φx,y are replaced by φ′
x,y.

A general expression for the tune width is, for the system with effective
Hamiltonian (9.667),

∆ =
1
2
(
m|m|
Ax

+
n|n|
Ay

)A|m|/2
x A|n|/2

y |ε| (9.670)

where we have set d = mνx + nνy − p and δ = 0. For resonances of third order,
for example, we have

|ε| =




|C(3)
3000,0|, 3νx = p

|C(3)
2010,0|, 2νx + νy = p

|C(3)
2001,0|, 2νx − νy = p

|C(3)
1020,0|, νx + 2νy = p

|C(3)
1002,0|, νx − 2νy = p

|C(3)
0030,0|, 3νy = p

(9.671)

If one would like a geometric definition of a width in the νx-νy plane around
the resonance line mνx+nνy = p, it may be more appropriate to call ∆/

√
m2 + n2

the resonance width as illustrated in Fig.9.7. It should be mentioned here that
a careful examination of a strict definition of a resonance width or resonance
stopband can be rather involved [see comment following Eq.(9.666)]. For our
purpose, the simplistic definition seems to suffice.
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Figure 9.7: A resonance with width in the tune plot.

Smooth approximation near an isolated resonance In the previous sec-
tion, we introduced a smooth approximation for an 1-D system, under which the
equations of motion of a particle can be approximately written as Eq.(9.581),
where the brackets mean keeping the slowly varying terms. Away from reso-
nances, the slowly varying terms are extracted by (9.582). When the tune is
close to a rational number n/p, there are additional slow terms to be included
in the smoothing process. To see this, let us first change variable from φ to

ψ = φ − n

p
θ (9.672)

Since φ advances by 2πν per turn, and θ advances by 2π per turn, and ν is close
to n/p, it is easy to see that ψ is slowly varying. We further Fourier decompose68

F (
√

2A sin φ, θ) =
∞∑

m=−∞

∞∑
k=−∞

fmk(A)eikφ+imθ (9.673)

then

〈cos φ F 〉 =
1
2

∞∑
q=−∞

eiqpψ[f(−nq)(qp−1) + f(−nq)(qp+1)]

68This is possible because F is periodic in both θ and φ with period 2π.
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〈sin φ F 〉 =
1
2i

∞∑
q=−∞

eiqpψ[f(−nq)(qp−1) − f(−nq)(qp+1)] (9.674)

In fact, Eq.(9.674) follows from the Hamiltonian

H(ψ, A, θ) = (ν − n

p
)A −

√
2A

2ν

∞∑
q=−∞

eiqpψ

iqp
(f−nq,qp−1 + f−nq,qp+1) (9.675)

This Hamiltonian is independent of s, and is a constant of the motion. Away
from resonances, only the q = 0 term in the summation would remain.

Exercise 100 Prove Eq.(9.668) using Eq.(9.667).

Exercise 101 Apply the smooth approximation to a single sextupole
problem near the resonance νx = p/3. The result should agree with
Eq.(9.645) when the C-coefficients are substituted from Eq.(9.681).

Single sextupole, away from resonances We can apply the normal form
results to a simple nonlinear system as an illustration of the normal form tech-
nique. The system we will study next is an otherwise-perfectly-linear circular
accelerator which contains a single thin-lens sextupole. Observed at the exit
point of the sextupole, the one-turn Lie map is

M = e:f2(X):e:f3(X): (9.676)

where f2(X), given by Eq.(9.535) with α, β, γ, η, and η′ the unperturbed lattice
functions evaluated at the exit of the sextupole, describes the linear transfor-
mation of the accelerator and

f3(X) = λ(x3 − 3xy2) (9.677)

is due to the thin-lens sextupole whose strength is given by Eq.(9.338).
We first carry out a third order normal form transformation according to

A = e:F3(U):A2 (9.678)

where A2 is the linear map whose matrix representation is given by Eq.(9.537).
The transformed map reads

N = AMA−1 = e:f2+h3: (9.679)

where f2 here is given by Eq.(9.536). To find expressions for F3 and h3, we
follow the normal form procedure. First, we need to express f3 as

f3(A2U) = λ(x3 − 3xy2)
∣∣
x=

√
βxx̄+ηδ, y=

√
βy ȳ

= λ(
√

βxx̄ + ηδ)3 − 3λ(
√

βxx̄ + ηδ)(
√

βy ȳ)2

= λ(
√

2βxAx sin φx + ηδ)3

−3λ(
√

2βxAx sin φx + ηδ)(
√

2βyAy sin φy)2 (9.680)
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We need to express the above in terms of the eigenmode functions |abcd, e〉
defined by Eq.(9.507). The result is given by Eq.(9.510) with coefficients

C
(3)
0000,3 = λη3

C
(3)
1000,2 = −C

(3)
0100,2 = −3i

2
λ
√

2βxη2

C
(3)
2000,1 = C

(3)
0200,1 = −3

2
λβxη

C
(3)
1100,1 = 3λβxη

C
(3)
0020,1 = C

(3)
0002,1 =

3
2

λβyη

C
(3)
0011,1 = −3λβyη

C
(3)
3000,0 = −C

(3)
0300,0 =

i

8
λ(2βx)3/2

C
(3)
2100,0 = −C

(3)
1200,0 = −3i

8
λ(2βx)3/2

C
(3)
1020,0 = −C

(3)
0102,0 = C

(3)
1002,0 = −C

(3)
0120,0 = −3i

4
λ
√

2βxβy

C
(3)
1011,0 = −C

(3)
0111,0 =

3i

2
λ
√

2βxβy (9.681)

The unlisted coefficients vanish.
Away from resonances, we have then from Eq.(9.517),

h3 = C
(3)
0000,3δ3 + C

(3)
1100,1Axδ + C

(3)
0011,1Ayδ

= λη3δ3 + 3λβxAxηδ − 3λβyAyηδ (9.682)

and by working out the expression (9.516), we find

F3 = −3
2

λ
√

2βxAxη2δ2 cos(φx + µx

2 )
sin µx

2

−3
2

ληδ

[
Axβx

sin(2φx + µx)
sin µx

− Ayβy
sin(2φy + µy)

sin µy

]

+
1
8

λ(2βxAx)3/2
[

cos(3φx + 3
2µx)

sin 3µx

2

− 3
cos(φx + µx

2 )
sin µx

2

]

−3
4

λ
√

2βxAxβyAy

[
cos(φx + 2φy + µx

2 + µy)
sin(µx

2 + µy)

+
cos(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)
− 2

cos(φx + µx

2 )
sin µx

2

]
(9.683)

The effective Hamiltonian, to first order in λ and away from resonances, is

H = −f2 − h3

= µxAx + µyAy +
1
2

αcδ
2 − λη3δ3 − 3λβxAxηδ + 3λβyAyηδ (9.684)
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This gives the betatron tunes as

νx(Ax, Ay, δ) =
1
2π

∂H

∂Ax
=

1
2π

(µx − 3λβxηδ)

νy(Ax, Ay, δ) =
1
2π

∂H

∂Ay
=

1
2π

(µy + 3λβyηδ) (9.685)

The terms proportional to δ of the above expressions are contributions of the
sextupole to the linear chromaticities of the accelerator design.

The effective Hamiltonian also gives an expression of the path length change
per turn as

∆z(Ax, Ay, δ) =
∂H

∂δ
= αcδ − 3λη3δ2 − 3λη(βxAx − βyAy) (9.686)

As pointed out after Eq.(9.571), the linear chromaticities also appear in the
path length dependences on the betatron amplitudes.

One can understand Eq.(9.685) physically as follows. As a particle passes
through the sextupole with transverse displacements x and y, it receives angular
kicks

∆x′ = −ByL

Bρ
= 3λ(x2 − y2)

∆y′ =
BxL

Bρ
= −6λxy (9.687)

For an off-momentum particle, the particle executes betatron oscillation relative
to a displaced position x = ηδ. This makes the sextupole behave as if it is a
quadrupole with strength (L/Bρ)∂By

∂x = −6ληδ. This leads to the chromatic
part of the tune shifts as described in Eq.(9.685).

To understand Eq.(9.686), substitute

x =
√

2βxAx sin φx + ηδ, y =
√

2βyAy sin φy

into Eq.(9.687), and recognize the fact that sin φx,y are rapidly oscillating from
turn to turn, which means we can take averages over φx and φy to obtain

∆x′ = 3λ(η2δ2 + βxAx − βyAy)
∆y′ = 0 (9.688)

Eq.(9.686) then follows by noting that the path length change ∆z is related to
∆x′ by ∆z = −η∆x′ [see Exercise 93].

Having obtained Eq.(9.683), one can calculate the two betatron invariants
Wx,y in terms of the linear amplitudes Ax,y and the phases φx,y as follows.

Wx,y = A−1Ax,y = e−:F3:Ax,y = Ax,y − :F3:Ax,y + O(λ2X4) (9.689)

Noting that

:F3:Ax,y = [F3, Ax,y] =
∂F3

∂φx,y
(9.690)
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we obtain the results

Wx = Ax −
3
2

λ
√

2βxAxη2δ2 sin(φx + µx

2 )
sin µx

2

+ 3λβxAxηδ
cos(2φx + µx)

sin µx

−3
4

λ
√

2βxAxβyAy

[
sin(φx + 2φy + µx

2 + µy)
sin(µx

2 + µy)

+
sin(φx − 2φy + µx

2 − µy)
sin(µx

2 − µy)
− 2

sin(φx + µx

2 )
sin µx

2

]

−3
8

λ(2βxAx)3/2
[

sin(φx + µx

2 )
sin µx

2

− sin(3φx + 3µx

2 )
sin 3µx

2

]
+ O(λ2X4)

Wy = Ay − 3λβyAyηδ
cos(2φy + µy)

sin µy

−3
2

λ
√

2βxAxβyAy

[
sin(φx+2φy+ µx

2 +µy)
sin(µx

2 +µy)
− sin(φx−2φy+ µx

2 −µy)
sin(µx

2 −µy)

]
+O(λ2X4) (9.691)

These expressions are identical to Eq.(9.378) if we drop the terms proportional
to δ. We have another derivation of these results later by Eq.(9.695).

How are the normalized coordinates related to the physical coordinates? We
have obtained an expression of F3 in terms of the coordinates φx, Ax, φy, Ay,
and δ. One may also express it in terms of x̄, p̄x, ȳ, p̄y, and δ. [See Eq.(9.498).]
We first find that

F3 =
3
2

λ
√

βx(x̄ − cot
µx
2

p̄x)η2δ2

+
3
4

λ[βx(x̄2 − 2 cot µxx̄p̄x − p̄2
x) − βy(ȳ2 − 2 cot µy ȳp̄y − p̄2

y)]ηδ

+
3
8

λ
√

βxβy[−4x̄ȳ2 + 2p̄x(ȳ2 + p̄2
y) cot

µx
2

−(2x̄ȳp̄y + p̄xp̄2
y − p̄xȳ2) cot(

µx
2

− µy)

+(2x̄ȳp̄y − p̄xp̄2
y + p̄xȳ2) cot(

µx
2

+ µy)]

+
1
8

λβ3/2
x [4x̄3 − 3p̄x(x̄2 + p̄2

x) cot
µx
2

− p̄x(3x̄2 − p̄2
x) cot

3µx
2

](9.692)

The normalized coordinates U are given by

U = A−1X = e−:F3:A2X

= e−:F3:




x̄
p̄x
ȳ
p̄y
z̄
δ


 =




x̄
p̄x
ȳ
p̄y
z̄
δ


− :F3:




x̄
p̄x
ȳ
p̄y
z̄
δ


 + O(λ2X3) (9.693)
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Substituting Eq.(9.692) into Eq.(9.693) gives explicit expressions of the U -
coordinates, i.e. the final normal form coordinates, in terms of the coordinates
(x̄, p̄x, ȳ, p̄y, z̄, δ). By relabelling (x̄, p̄x, ȳ, p̄y, z̄, δ) as (x̄1, p̄x1, ȳ1, p̄y1, z̄1, δ) and
substituting for (x̄1, p̄x1, ȳ1, p̄y1, z̄1, δ) by Eq.(9.536), and reserving the sym-
bols (x̄, p̄x, ȳ, p̄y, z̄, δ) for the components of U , we obtain the relation between
the final normal form coordinates in terms of the original physical coordinates
(x, px, y, py, z, δ) as follows:

x̄ = x̄1 −
3
2

λ
√

βxη2δ2 cot
µx
2

− 3
2

λβxηδ(x̄1 cot µx + p̄x1)

+
3
8

λ
√

βxβy{2(ȳ2
1 + p̄2

y1) cot
µx
2

+(ȳ2
1 − p̄2

y1)[cot(
µx
2

+ µy) + cot(
µx
2

− µy)]}

−3
8

λβ3/2
x [(x̄2

1 + 3p̄2
x1) cot

µx
2

+ (x̄2
1 − p̄2

x1) cot
3µx
2

] + O(λ2X3
1 )

=
x − ηδ√

βx
− 3

2
λ
√

βxη2δ2 cot
µx
2

−3
2

λ
√

βxηδ[(x − ηδ) cot µx + αxx + βxx′ − αxηδ − βxη′δ]

+
3
8

λ
√

βx{2[y2 + (αyy + βyy
′)2] cot

µx
2

+[y2 − (αyy + βyy
′)2][cot(

µx
2

+ µy) + cot(
µx
2

− µy)]}

−3
8

λ
√

βx{[(x − ηδ)2 + 3(αxx + βxx′ − αxηδ − βxη′δ)2] cot
µx
2

+[(x − ηδ)2 − (αxx + βxx′ − αxηδ − βxη′δ)2] cot
3µx
2

} + O(λ2X3)

p̄x = p̄x1 −
3
2

λ
√

βxη2δ2 − 3
2

λβxηδ(x̄1 − p̄x1 cot µx)

+
3
4

λ
√

βxβy{2ȳ2
1 + ȳ1p̄y1[cot(

µx
2

− µy) − cot(
µx
2

+ µy)]}

−3
4

λβ3/2
x x̄1[2x̄1 − p̄x1(cot

µx
2

+ cot
3µx
2

)] + O(λ2X3
1 )

=
αx(x − ηδ) + βx(x′ − η′δ)√

βx
− 3

2
λ
√

βxη2δ2

−3
2

λ
√

βxηδ[(x − ηδ) − (αxx + βxx′ − αxηδ − βxη′δ) cot µx]

+
3
4

λ
√

βx{2y2 + y(αy + βyy
′)[cot(

µx
2

− µy) − cot(
µx
2

+ µy)]}

−3
4

λ
√

βx(x − ηδ)[2(x − ηδ)

−(αxx + βxx′ − αxηδ − βxη′δ)(cot
µx
2

+ cot
3µx
2

)] + O(λ2X3)

ȳ = ȳ1 +
3
2

λβyηδ(ȳ1 cot µy + p̄y1)
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−3
4

λ
√

βxβy[−2p̄x1p̄y1 cot
µx
2

+ (x̄1ȳ1 + p̄x1p̄y1) cot(
µx
2

− µy)

−(x̄1ȳ1 − p̄x1p̄y1) cot(
µx
2

+ µy)] + O(λ2X3
1 )

=
y√
βy

+
3
2

λ
√

βyηδ(y cot µy + αyy + βyy
′)

−3
4

λ
√

βy{−2(αxx + βxx′ − αxηδ − βxη′δ)(αyy + βyy
′) cot

µx
2

+[(x−ηδ)y + (αxx+βxx′−αxηδ−βxη′δ)(αyy+βyy
′)] cot(

µx
2
−µy)

−[(x−ηδ)y − (αxx+βxx′−αxηδ−βxη′δ)(αyy+βyy
′)] cot(

µx
2

+µy)}

+O(λ2X3)

p̄y = p̄y1 +
3
2

λβyηδ(ȳ1 − p̄y1 cot µy]) +
3
4

λ
√

βxβy[4x̄1ȳ1 − 2p̄x1ȳ1 cot
µx
2

+(x̄1p̄y1 − p̄x1ȳ1) cot(
µx
2

− µy) − (x̄1p̄y1 + p̄x1ȳ1) cot(
µx
2

+ µy)]

+O(λ2X3
1 )

=
αyy + βyy

′√
βy

+
3
2

λ
√

βyηδ[y − (αyy + βyy
′) cot µy]

+
3
4

λ
√

βy{4(x − ηδ)y − 2(αxx + βxx′ − αxηδ − βxη′δ)y cot
µx
2

+[(x−ηδ)(αyy+βyy
′) − (αxx+βxx′−αxηδ−βxη′δ)y] cot(

µx
2
−µy)

−[(x−ηδ)(αyy+βyy
′) + (αxx+βxx′−αxηδ−βxη′δ)y] cot(

µx
2

+µy)}

+O(λ2X3)

z̄ = z̄1 + 3λη2δ
√

βx(x̄1 − p̄x1 cot
µx
2

) +
3
4

λβxη(x̄2
1 − 2 cot µxx̄1p̄x1 − p̄2

x1)

−3
4

λβyη(ȳ2
1 − 2 cot µy ȳ1p̄y1 + p̄2

y1) + O(λ2X3
1 )

= z + η′x − ηx′ + 3λη2δ[x − ηδ − (αxx + βxx′ − αxηδ − βxη′δ) cot
µx
2

]

+
3
4

λη[(x − ηδ)2 − 2 cot µx(x − ηδ)(αxx + βxx′ − αxηδ − βxη′δ)

−(αxx + βxx′ − αxηδ − βxη′δ)2

−y2 + 2 cot µyy(αyy + βyy
′) − (αyy + βyy

′)2] + O(λ2X3) (9.694)

One can calculate the invariants Wx and Wy to order O(λ2X4) by substi-
tuting the expressions of x̄ and p̄x in terms of (x̄1, p̄x1, ȳ, p̄y1, z̄1) in Eq.(9.694)
into Wx = 1

2 (x̄2 + p̄2
x) and Wy = 1

2 (ȳ2 + p̄2
y). This gives

Wx =
1
2
(x̄2

1 + p̄2
x1) −

3
2

λ
√

βxη2δ2(x̄1 cot
µx
2

+ p̄x1)

−3
2

λβxηδ[(x̄2
1 − p̄2

x1) cot µx + 2x̄1p̄x1]
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+
3
8

λ
√

βxβy{4p̄x1ȳ2
1 + 2x̄1(ȳ2

1 + p̄2
y1) cot

µx
2

+x̄1(ȳ2
1 − p̄2

y1)[cot(
µx
2

+ µy) + cot(
µx
2

− µy)]

−2p̄x1ȳ1p̄y1[cot(
µx
2

+ µy) − cot(
µx
2

− µy)]}

−3
8

λβ3/2
x {x̄1(x̄2

1 + 3p̄2
x1) cot

µx
2

+ x̄1(x̄2
1 − p̄2

x1) cot
3µx
2

+2x̄1p̄x1[2x̄1 − (cot
µx
2

+ cot
3µx
2

)p̄x1]} + O(λ2X4
1 )

Wy =
1
2
(ȳ2

1 + p̄2
y1) +

3
2

λβyηδ[(ȳ2
1 − p̄2

y1) cot µy + 2ȳ1p̄y1]

+
3
4

λ
√

βxβy{4x̄1ȳ1p̄y1

−[ȳ1(x̄1ȳ1 + p̄x1p̄y1) − p̄y1(x̄1p̄y1 − p̄x1ȳ1)] cot(
µx
2

− µy)

+[ȳ1(x̄1ȳ1 − p̄x1p̄y1) − p̄y1(x̄1p̄y1 + p̄x1ȳ1)] cot(
µx
2

+ µy)}

+O(λ2X4
1 ) (9.695)

If we substitute x̄1, p̄x1, ȳ, p̄y1 in Eq.(9.695) respectively by
√

2Ax sin φx,
√

2Ax cos φx,√
2Ay sin φy, and

√
2Ay cos φy, it follows that one recovers Eq.(9.691). As was

mentioned there, these results also agree with those obtained in Eq.(9.378) by
manipulating the BCH formula. Note also that one can obtain the connec-
tions between the invariants and the physical coordinates (x, x′, y, y′, z, δ) by
substituting x̄1, p̄x1, ȳ, p̄y1 in Eq.(9.695) using Eq.(9.536).

So far we have looked at the second order effects. One can also explore the
third order effects of this accelerator with a single sextupole. This accelerator is
modeled by Eq.(9.520) with f2 given by Eq.(9.535), f3 given by Eq.(9.677), and
f4 = 0. Substituting Eq.(9.680) for f3, (9.683) for F3 and (9.682) for h3 into
Eq.(9.525), and after performing some algebra, one obtains, using Eq.(9.531),

h4 =
9
16

λ2βxβ2
yA2

y[4 cot
µx
2

+ cot(
µx
2

+ µy) + cot(
µx
2

− µy)]

−9
4

λ2βxβyAxAy[2βx cot
µx
2

+ βy cot(
µx
2

− µy) − βy cot(
µx
2

+ µy)]

+
9
16

λ2β3
xA2

x(3 cot
µx
2

+ cot
3µx
2

)

−9
2

λ2βyAyη
2δ2(βx cot

µx
2

− βy cot µy)

+
9
2

λ2β2
xAxη2δ2(cot

µx
2

+ cot µx) +
9
4

λ2βxη4δ4 cot
µx
2

(9.696)

The effective Hamiltonian is −f2 − h3 − h4. The betatron tunes can now be
carried to include terms higher order than Eq.(9.685). This gives

νx(Ax, Ay, δ) =
1
2π

µx −
3
2π

λβxηδ
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+
9
8π

λ2βxβyAy[2βx cot
µx
2

+ βy cot(
µx
2

− µy) − βy cot(
µx
2

+ µy)]

− 9
16π

λ2β3
xAx(3 cot

µx
2

+ cot
3µx
2

)

− 9
4π

λ2β2
xη2δ2(cot

µx
2

+ cot µx) + O(λ3X3)

νy(Ax, Ay, δ) =
1
2π

µy +
3
2π

λβyηδ

− 9
16π

λ2βxβ2
yAy[4 cot

µx
2

+ cot(
µx
2

+ µy) + cot(
µx
2

− µy)]

+
9
8π

λ2βxβyAx[2βx cot
µx
2

+ βy cot(
µx
2

− µy) − βy cot(
µx
2

+ µy)]

+
9
4π

λ2βyη
2δ2(βx cot

µx
2

− βy cot µy) + O(λ3X3) (9.697)

As mentioned before, the leading terms in the shifts of the betatron tunes from
the ideal values are proportional to δ, and these are the linear chromaticity
terms. In particular, on-momentum particles do not experience betatron tune
shifts due to sextupoles to first order in the sextupole strength. The higher
order terms, on the other hand, contains terms that do not vanish for δ = 0.
Also as pointed out before, the νx dependence on Ay is the same as the νy
dependence on Ax.

One also obtains a higher order counterpart of Eq.(9.686) for the path length,

∆z(Ax, Ay, δ) = αcδ − 3λη3δ3 − 3λη(βxAx − βyAy)
+9λ2βyAyη

2δ(βx cot
µx
2

− βy cot µy)

−9λ2β2
xAxη2δ(cot

µx
2

+ cot µy)

−9λ2βxη4δ3 cot
µx
2

+ O(λ3X4) (9.698)

So far we have studied the case of perturbation by a single sextupole. What
happens when there is a distribution of sextupoles is a straightforward extension
[more to be added].

Smear and distortion function Equation (9.691) can be used to extract
the “smears” and the “distortion functions”. The x-smear Sx is the relative
variation of the Courant-Snyder invariant Ax (which is a true invariant only
in the linear case without the sextupole perturbation) as a function of time
for an on-momentum particle. Let the peak-to-peak variation of Ax be 2∆Ax.
Similarly we define the y-smear Sy. To first order in λ, since Wx are Wy are
true invariants, the smears are given by

Sx =
∆Ax

Ax
=

3
4

λ

√
2βx
Ax

βyAy

(
1

| sin(µx

2 + µy)|
+

1
| sin(µx

2 − µy)|
+

2
| sin µx

2 |

)

+
3
8

λ(2βx)3/2A1/2
x

(
1

| sin µx

2 | +
1

| sin 3µx

2 |

)
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Sy =
∆Ay

Ay
=

3
2

λ
√

2βxAxβy

(
1

| sin(µx

2 + µy)|
+

1
| sin(µx

2 − µy)|

)
(9.699)

The smears also contain the resonance denominators. Near resonances, the
smears become large. The smears are sometimes used as indicators of how the
system deviates from a perfectly linear system.

Smears for a distribution of sextupoles can also be found.

Exercise 102 One may repeat the analysis in the text for the case of
a single octupole. Consider 1-D motion. The one-turn map around
the exit of the octupole is

e−:µA:e:λx4: (9.700)

where λ is the octupole strength, and A = 1
2 (γx2 + 2αxp + βp2).

(a) Find the invariant of the motion to first order in λ. Express it
in terms of the action-angle coordinates (φ, A). Assume there are
no resonances nearby. (b) Find the tune shift with amplitude A to
first order in λ. (c) Find the invariant when the tune is close to a
resonance ν = p

4 .

Exercise 103 Consider a circular accelerator, which has a perfectly
linear optics in its x and y motions, but is perturbed by a thin,
weak quadrupole of strength k = ∂By

∂x F/Bρ. Perform a normal form
analysis to obtain the x- and y-tune shifts to second order in k.
Also calculate the perturbation on the Courant-Snyder β- and α-
functions to second order in k at the exit location of the perturbing
quadrupole. Compare the results with an exact calculation using
matrices.
Exercise 104 Consider a weak thin-lens skew quadrupole with strength
k = ∂By

∂y F/Bρ. Compute the tune shifts to order O(k2) (a) away from
resonances, (b) near a νx ± νy = p resonance.

9.11 Achromats

Accelerator lattice is often constructed from building blocks. One very useful
building block is a section of magnets arranged in such a way that it is trans-
parent to particle motion, i.e. the section is there only to physically transport
the beam but otherwise as if it does not exist. In particular, this section can
be “unit transformations”. However there is a question of how accurately the
section acts as a unit transformation. An array of quadrupoles can easily make
a unit transformation, but only to first order in X = (x, x′, y, y′, z, δ). Particu-
larly, the higher order δ-dependence of the map often contributes to chromatic
abberrations that must be compensated for. Adding sextupoles to this array
of quadrupoles can make the section to act as a unit transformation to second
order in X, thus providing a more accurate unit transformation section, which
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we will call an achromat — in this case, a second order achromat. Similarly, if
the array includes octupoles, the unit transformation can be made into a third
order achromat.

First consider two thin-lens sextupoles of strengths λ1 and λ2 at locations 1
and 2 in an accelerator. Let us consider only the 1-D x-motion for now. Let ψ
be the betatron phase advance between these two locations. Let α1,2, β1,2, and
γ1,2 be the Courant-Snyder parameters at these two locations. See Fig.9.8(a).
The map from the entrance of sextupole 1 to the exit of the sextupole 2 is

M = e:λ1x
3:e:f2:e:λ2x

3: (9.701)

where f2 is the linear transformation from location 1 to location 2. We have

M = e:f2: exp(:e−:f2:λ1x3:)e:λ2x
3: (9.702)

Figure 9.8: Optimal arrangement of two sextupoles.

Using Eq.(9.111), we have

e−:f2:x = x

√
β1

β2
(cos ψ − α2 sin ψ) − x′√β1β2 sin ψ (9.703)

This leads to

M = e:f2: exp


:λ1

[
x

√
β1

β2
(cos ψ − α2 sin ψ) − x′√β1β2 sin ψ

]3

:


 e:λ2x

3:

(9.704)
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We now observe that the two factor exponential maps on the right of Eq.(9.704)
—those involving the sextupoles — commute if sin ψ = 0. In other words, if
ψ = kπ for some integer k, the total map of this section reads

M = e:f2: exp

[
:λ1x3

(
β1

β2

)3/2

(−1)3k + λ2x3:

]
(9.705)

If we further choose the sextupole strengths so that

λ1

(
β1

β2

)3/2

(−1)3k + λ2 = 0 (9.706)

then the map of the section is e:f2: just as if the sextupoles were not there.
Effects of the two sextupoles have cancelled each other, and the section is made
optically transparent when observed outside the section.

Note that the cancellation is exact, i.e. Eq.(9.704) is not a perturbation
treatment, and that the cancellation is not true if observed inside the section.
Note also that in the special case when β1 = β2, the cancellation condition reads{

λ1 = λ2 if ψ = odd multipole of π
λ1 = −λ2 if ψ = even multipole of π

(9.707)

Let us make a detour concerning what would affect the exact cancellation
mentioned above. One situation occurs when the condition sin ψ is not exactly
0. This will be studied in Exercise 105. Another situation occurs when the
sextupoles are thick, as shown in Fig.9.8(b). To be specific, let ψ — measured
from the entrace of sextupole 1 to the entrance of sextupole 2 (or measured
between the two exits) — be exactly equal to π, and let β1 = β2 and α1 = α2.
Let the two sextupoles both have strength S and length L. Let us still consider
1-D motion. Inside the sextupole, the equation of motion is

x′′ = Sx2, λ =
1
3

SL (9.708)

The map from the entrance of sextupole 1 to the exit of sextupole 2 is

M = e:−L
2 x

′2+ 1
3SLx

3:e: L
2 x

′2:e:f2:e:−L
2 x

′2+ 1
3SLx

3: (9.709)

where e:f2: is the linear map from the entrance of sextupole 1 to the entrance
of sextupole 2. We would like to know what is the residual error of the map, to
order O(L2), when sextupoles are thick.

We have

M = e:f2:(e−:f2:e: L
2 x

′2:e:f2:)(e−:f2:e−: L
2 x

′2:e−:f2:)

×(e−:f2:e:−L
2 x

′2+ 1
3SLx

3:e:f2:)(e−:f2:e: L
2 x

′2:e:f2:)e:−L
2 x

′2+ 1
3SLx

3:(9.710)

Using the fact that
e−:f2:x = −x, e−:f2:x′ = −x′ (9.711)
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it follows

M = e:f2:e: L
2 x

′2:e−: L
2 x

′2:e:−L
2 x

′2− 1
3SLx

3:e: L
2 x

′2:e:−L
2 x

′2+ 1
3SLx

3:

= e:f2:e:−L
2 x

′2:(e: L
2 x

′2:e:−L
2 x

′2− 1
3SLx

3:)(e: L
2 x

′2:e:−L
2 x

′2+ 1
3SLx

3:) (9.712)

The left-most two exponential factor maps e:f2:e:−L
2 x

′2: give the intended
map if the scheme has worked perfectly. The “error map” due to the fact that
the sextupoles are thick is therefore given by

E = (e: L
2 x

′2:e:−L
2 x

′2− 1
3SLx

3:)(e: L
2 x

′2:e:−L
2 x

′2+ 1
3SLx

3:) (9.713)

and we need to compute E to order O(L3). To do so, one writes

e: L
2 x

′2:e:−L
2 x

′2+ 1
3SLx

3: = e:h: (9.714)

where, h can be found by applying the BCH formula Eq.(9.192) as

h =
1
3

SLx3 − 1
2

SL2x′x2 +
1
3

SL3x′2x +
1
12

S2L3x4 (9.715)

Inserting this into Eq.(9.713) then yields

E = e:− 1
3SLx

3+ 1
2SL

2x′x2− 1
3SL

3x′2x+ 1
12S

2L3x4:

×e: 13SLx
3− 1

2SL
2x′x2+ 1

3SL
3x′2x+ 1

12S
2L3x4:

= e: 16S
2L3x4+O(L4): (9.716)

The leading term in the error map is of the order O(L3) and it behaves like an
octupole.

The achromat analysis can be extended to 6-D phase space (x, x′, y, y′, z, δ)
[more to add].

Exercise 105 Consider the 1-D motion for the system shown in
Fig.9.8(a) with thin-lens sextupoles. What happens if the condi-
tions ψ = kπ or (9.706) are not satisfied exactly? Consider the
case when k = 1, (a) what if (β1/β2)3/2λ1 = λ2 + ∆λ? (b) what if
ψ = π + ∆ψ ? Give the error map to first order in ∆λ and ∆ψ.
Solution (a) The error map is

E = e:−∆λx3: (9.717)

The net effect is as if there is a thin-lens sextupole of strength −∆λ
at position 2.
(b) Here we assume condition (9.706) is satisfied. To first order in
∆ψ,

M = e:f2: exp
[
: − λ2x3 − 3x2∆ψλ2(α2x + β2x′):

]
e:λ2x

3: (9.718)
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An application of Eq.(9.264) then gives

M = e:f2: exp
{

:
∫ 1

0

du eu:−λ2x
3:
[
−3x2∆ψλ2(α2x + β2x′)

]
:
}

= e:f2: exp
{

: − 3∆ψλ2

∫ 1

0

du
[
α2x3 + β2x2(x′ − 3uλ2x2)

]
:
}

= e:f2: exp
[
: − 3∆ψλ2x2(α2x + β2x′ − 3

2
β2λ2x2):

]
(9.719)

At the exit end of sextupole 2, the trajectory of a particle gets an
additional kick, to order O(∆ψ), of

∆x = 3β2∆ψλ2x2

∆x′ = −3∆ψλ2(3α2x2 + 2β2xx′ − 6β2λ2x3) (9.720)

Exercise 106 If we trace a particle with initial conditions (x0, x′
0)

through the thick-sextupole achromat system of Fig.9.8(b), the par-
ticle coordinate at the exit of the system, to order O(X3), is deter-
mined by {

x1 = x0 + x′
0L + 1

2Sx2
0L2 + 1

3Sx0x′
0L3

x′
1 = x′

0 + Sx2
0L + Sx0x′

0L2 + 1
3S(x′

0
2 + Sx0

3)L3{
x2 = −x1

x′
2 = −x′

1{
x3 = x2 − Lx′

2

x′
3 = x′

2{
x4 = x3 + x′

3L + 1
2Sx2

3L2 + 1
3Sx3x′

3L3

x′
4 = x′

3 + Sx2
3L + Sx3x′

3L2 + 1
3S(x′

3
2 + Sx3

3)L
3 (9.721)

where (x1, x′
1), (x2, x′

2), (x3, x′
3), and (x4x′

4) are the coordinates of
the particle at different stages in passing through the system with
(x4, x′

4) the coordinates at the exit of sextupole 2. The connection
between (x1, x′

1) and (x0, x′
0) and the connection between (x4, x′

4)
and (x3, x′

3) are according to Eq.(47.41).
Equation (9.721) can be processed to give (x4, x′

4) in terms of
the initial coordinates (x0, x′

0) as{
x4 = −x0 − x′

0L + O(L4)
x′

4 = −x′
0 − 2

3S2L3x3
0 + O(L4) (9.722)

Compare this result with that obtained using Lie language, Eq.(9.716).
Solution In the Lie language, the map is given by

M = e:f2:e:− 1
2Lx

′2:E (9.723)
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where E is the error map (9.716). We need to find Xfinal where

Xfinal = MX
∣∣∣
x=x0,x′=x′

0

(9.724)

Note the ordering of factor maps of M is such that earlier maps
occur to the left, but when performing the computations, operators
to the right are applied first. After computation is completed, x and
x′ are set to x0 and x′

0.
We first find

E

[
x
x′

]
=

[
x

x′ + 1
6S2L3:x4:x′

]
+ O(L4)

=
[

x
x′ + 2

3S2L3x3

]
+ O(L4) (9.725)

This then leads to

Xfinal = M

[
x
x′

]
=

[
−x0 − Lx′

0

−x′
0 + 2

3S2L3x3
0

]
(9.726)

which agrees with Eq.(9.722).

9.12 Beam-beam Interaction

One of the sources of nonlinear perturbation in the storage ring collider accel-
erators is the beam-beam interaction. Particles in one beam, as it circulates
around the storage ring, encounters the electromagnetic fields generated by the
on-coming beam every time it passes by the point of collision (let it be desig-
nated s = 0). These fields perturb the motion of the particle being considered.
This perturbation is localized at the point of collision and is very nonlinear.
The beam-beam interaction perturbation is one of the main limitations on the
beam intensity in colliders.

Consider first the 1-D motion. In the absence of the beam-beam perturba-
tion, the one-turn map of the accelerator around s = 0 can be written as

x = x0 cos µ + βp0 sin µ

p = −x0

β
sin µ + p0 cos µ (9.727)

where β is the β-function at s = 0, ν = µ/2π is the betatron tune, and we have
assumed the parameter α = 0 at s = 0. Both β and µ are the nominal values
unperturbed by the beam-beam interaction. In matrix form, we can represent
(9.727) by the Courant-Snyder map[

cos µ β sin µ
− 1
β sin µ cos µ

]
(9.728)
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In Lie algebraic form, we can write the map as

e:f2:, where f2 = −µ

2
(
x2

β
+ βp2) (9.729)

i.e.,

x = e:f2:x

∣∣∣∣
x=x0,p=p0

, and p = e:f2:p

∣∣∣∣
x=x0,p=p0

(9.730)

We now introduce the beam-beam interaction. Consider the case when there
is only one collision point around the circumference. The beam-beam pertur-
bation is represented as a δ-function kick at s = 0,

x = x0 and p = p0 + f(x0) (9.731)

where f(x) is the nonlinear beam-beam kick. The form of f(x) depends on
how particles are distributed in the on-coming beam at the collision point. For
example,

f(x) =
Nr0

γ




2
x (1 − e−x

2/2σ2
), round gaussian of rms radius σ√

2π
W

∫ x
−x

dx′

σ e−x
′2/2σ2

, flat gaussian of width W
2x
a2 if x < a, 2

x if x > a, uniform disc of radius a
(9.732)

where N is the number of particles in the on-coming beam, r0 is the classical
radius of the particle, γ is the relativistic Lorentz factor. We have assumed the
two beam particles have the same sign of charge so that the beam-beam kick is
repulsive.

The beam-beam map (9.731) can be written in Lie form as

e:F : where F =
∫ x

0

dx′f(x′) (9.733)

The quantity −F is just the potential due to the beam-beam force.
Observe the particle motion at the exit of the collision point, the one-turn

map of the particle motion, in the Lie formulation, reads

e:f2:e:F : (9.734)

If the beam-beam perturbation is weak, we can apply the BCH formula
(9.195) to concatenate the map (9.734) to obtain the effective Hamiltonian of
the system. To proceed, we introduce the action-angle variables (φ, A) according
to

x =
√

2Aβ sin φ, p =

√
2A

β
cos φ (9.735)

and decompose F (x) as a Fourier series in φ as

F (x) =
∞∑

n=−∞
cn(A)einφ (9.736)
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Note that in previous studies we have cn(A) as A to some power. This does not
have to be the case. For the beam-beam problem, for example, as we will soon
see, cn(A) are more related to the Bessel functions.

The function f2 becomes f2 = −µA, and we have the properties

:f2:g(A) = 0, :f2:einφ = inµeinφ (9.737)

for arbitrary function g(A). We then have, to first order in the beam-beam
perturbation strength,

h = f2 +
(

:f2:
1 − e−:f2:

)
F + O(F 2)

= −µA +
∑
n

cn(A)
(

inµ

1 − e−inµ

)
einφ

= −µA +
∑
n

cn(A)
nµ

2 sin nµ
2

einφ+inµ
2 (9.738)

where the one-turn map (9.734) has been concatenated into the form e:h:.
Equation (9.738) is the expression of the beam-beam perturbed invariant,

to first order of perturbation, away from resonances. Resonances appear at

ν =
µ

2π
=

p

n
(9.739)

for all integers p and n, as long as cn �= 0. Near resonances, the expansion
(9.738) diverges.

Away from resonances, one can make a normal form transformation which
removes the oscillating terms in Eq.(9.738). The only term left will be the
zero-th Fourier harmonic term, and the effective Hamiltonian becomes

h = −µA + c0(A) (9.740)

The tune shift due to the beam-beam perturbation is given by

∆ν = − 1
2π

dc0(A)
dA

(9.741)

This tune shift is a function of the amplitude A.
If we take the round gaussian beam distribution in Eq.(9.732), we have

F (x) =
Nr0

γ

∫ Aβ/2σ2

0

dα

α
(1 − e−2α sin2 φ) (9.742)

The decomposition coefficients cn are

cn(A) =
1
2π

∫ 2π

0

dφ e−inφF (x)

=
Nr0

γ

∫ Aβ/2σ2

0

dα

α

1
2π

∫ 2π

0

dφe−inφ(1 − e−2α sin2 φ)
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=
Nr0

γ

∫ Aβ/2σ2

0

dα

α

1
2π

∫ 2π

0

dφ e−inφ[1 − e−α
∑
k

Ik(α)e2ikφ]

=
Nr0

γ

∫ Aβ/2σ2

0

dα

α

{
1 − e−αI0(α), if n = 0
−e−αIn/2(α), if n =even�= 0
0 otherwise

(9.743)

In the derivation of (9.743), we have used

ex cos y =
∞∑

k=−∞
Ik(x)eiky (9.744)

where Ik(x) is the Bessel function.
One observes that due to the symmetry of the beam-beam force, only even

order resonances with even n are excited. Figure 9.9 shows the behavior of cn
as functions of A.

Figure 9.9: Beam-beam detuning functions. The vertical scale is ±cn/Nr0γ . The
horizontal scale is Aβ/2σ2.

The tune shift (9.741) reads, for a round gaussian beam,

∆ν(A) = − 1
2π

Nr0

γ

d

dA

[∫ Aβ/2σ2

0

dα

α
(1 − e−αI0(α))

]

= − 1
2π

Nr0

γA
[1 − e−Aβ/2σ

2
I0(Aβ/2σ2)] (9.745)
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Figure 9.10: Beam-beam tune shift.

Plotted in Fig.9.10 is the function

y(x) = ∆ν
/ Nr0β

4πγσ2
=

1
x

(e−xI0(x) − 1) (9.746)

where x = Aβ/2σ2. For small betatron amplitudes, the tune shift is given by

∆ν(A = 0) = − Nr0β

4πγσ2
(9.747)

This parameter is called the beam-beam tune shift parameter, although it refers
only to the tune shift of small-amplitude particles. As can be seen in Fig.9.10,
particles with large amplitudes do not experience much tune shift. This is
because, unlike forces due to magnet multipoles, the beam-beam force decreases
rapidly with amplitude. An inspection of Fig.9.10 indicates that the beam-beam
tune shift also has the physical meaning of the beam-beam induced tune spread
of the beam.

In case the tune is close to the resonance (9.739) for some integers n and p,
let

ν =
p

n
+ d, |d| � 1 (9.748)

As mentioned, the expansion (9.738) diverges. The way to proceed is to consider
an n-turn map. Following the development similar to Eqs.(9.646-9.651), the n-
turn map can be written as

e:nh̄: (9.749)

where the n-turn effective Hamiltonian is given by

h̄ =
d

ν
f2 +

d

ν

(
:f2:

1 − e−nd:f2:/ν

)
[1 + e−:f2: + ...e−(n−1):f2:]F + O(F 2) (9.750)
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After some algebraic manipulations, we arrive at

h̄ = −2πdA +
∑
k

ck(A)
i2πkd

1 − e−i2πknd

(
1 − e−iknµ

1 − e−ikµ

)
eikφ (9.751)

This expression is well-behaved at the resonance, i.e. when d → 0. As pointed
out before, it can be obtained by considering the expression (9.738) and taking
the limit approaching the resonance.

These results are to be compared with those obtained by the smooth ap-
proximation. The phase space topology is shown in Fig.??. One can carry
the analysis to second order in the beam-beam strength. A more elaborate
application to 2-D case can also be done.
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