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Abstract

In a physical renormalization scheme, gauge couplings are defined directly
in terms of physical observables. Such effective charges are analytic functions
of physical scales, and thus mass thresholds are treated with their correct ana-
lytic dependence. In particular, particles will contribute to physical predictions
even at energies below their threshold. This is in contrast to unphysical renor-
malization schemes such as MS where mass thresholds are treated as step
functions. In this paper we analyze supersymmetric grand unification in the
context of physical renormalization schemes and find a number of qualitative
differences and improvements in precision over conventional approaches. The
effective charge formalism presented here provides a template for calculating
all mass threshold effects for any given grand unified theory. These new thresh-
old corrections may be important in making the measured values of the gauge
couplings consistent with unification.
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1 Introduction

Precision measurements of the gauge couplings and their possible unification provide
some of the few windows to the Planck scale. It is thus important to have a firm
grasp of the theoretical ambiguities involved. This paper attempts to address some
of these ambiguities.

In a physical renormalization scheme, gauge couplings are defined directly in terms
of physical observables. Such effective charges are analytic functions of physical scales,
and thus the thresholds associated with heavy particles are treated with their correct
analytic dependence. This is in contrast to unphysical renormalization schemes such
as the MS scheme where mass thresholds are treated as step functions. In this
paper we will analyze supersymmetric grand unification in the context of physical
renormalization schemes with the goal of systematizing the effects of light and heavy
mass thresholds and improving the precision of tests of unification compared with
conventional approaches.

In section 2, we motivate physical renormalization schemes with a simple example
and then present the notation and results used throughout the paper. In section 3,
we look more carefully at the problem of decoupling heavy particles and the errors
induced by unphysical schemes. In section 4, we discuss the canonical self-energy-like
effective charges for the minimal symmetric standard model (MSSM). These effective
couplings run smoothly over spacelike momenta, have non-analytic behavior only at
the expected physical thresholds for timelike momenta, and more directly measure
the strengths of the forces than the charges of unphysical schemes. The extraction of
effective charges from low energy data is considered. We identify an important modifi-
cation of the electromagnetic coupling αQED(MZ) due to the proper inclusion of virtual
W± loops, thus resulting in a 4σ change in its numerical value. Similar modifications
are found for the weak mixing angle. As seen in section 5, these effective charges pro-
vide a more natural and physical framework for examining gauge coupling unification.
In section 5.1, we demonstrate the invalidity of neglecting heavy threshold corrections
in analyzing grand unified models. The more rigorous treatment of light thresholds
in physical schemes gives rise to new corrections, but these are numerically small for
most sparticle spectra. The treatment of heavy thresholds with various unification
boundary conditions is discussed in section 5.2. In the simplest scenario, we find that
the gauge couplings should unify at asymptotically large energies and the only heavy
threshold corrections are logarithms of heavy mass ratios, corrections which can be
obtained in unphysical schemes. An effective unification scale, defined in section 5.3
as the scale where quantum gravity corrections produce non-negligible splittings be-
tween the gauge couplings, is found to be roughly 1017 − 1018GeV, depending on the
specific GUT model used. Section 5.4 considers more general unification boundary
conditions with finite unification scale. The resulting heavy threshold corrections are
given in Eq.(44). This result combined with the results of section 5.2 may be used to
determine the experimental consistency of any given GUT model. This is the main
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result of the paper. An appendix discusses the details of constructing the effective
charges. Throughout our analysis, we will find several attractive theoretical features
of the supersymmetric regulator, dimensional reduction, which makes it the preferred
regulator for physical effective charge schemes, even without supersymmetry.

There have been several previous works on threshold effects in grand unification.
In the first such study [1], which appeared just after the discovery of the grand
unification, D.A. Ross uses form factors to define beta functions which are valid
over all energy scales, including near mass thresholds. The coupling constants run
smoothly over all momenta, and nontrivial threshold corrections are found for grand
unification. Despite this early significant work, most subsequent work on GUTs have
ignored these threshold effects, perhaps due to the complexity of the Ross approach.
In [2, 3], the authors include the effects of light supersymmetric scalar and fermion
thresholds, although heavy thresholds and gauge bosons virtual effects are not treated.
In [4], the authors include both light and heavy threshold corrections, although the
treatment of gauge bosons is not adequate. In Refs. [5, 6], the authors come to
several conclusions similar to ours. However, their definition leads to gauge parameter
dependent effective couplings. Further, in [6], it is claimed that effective coupling
methods and MS lead to the same physical predictions. We prove that this is not
true in section 3.

2 Physical Renormalization Schemes and Effective

Charges

In order to motivate the re-analysis of supersymmetric unification given in this paper,
we will first discuss some general properties of renormalization schemes in the presence
of massive fields and determine a criterion for consistent physical renormalization

schemes. These criteria will not be satisfied by the schemes conventionally used in
unification (and most perturbative calculations), MS and DR, which have persistent
threshold and matching errors. Heuristically, these errors can be understood by noting
that such schemes implicitly integrate out all masses heavier than the physical energy
scale until they are crossed, and then they are “clicked” on with a step function.
Of course, integrating out heavy fields is only valid for energies well below their
masses. This procedure is problematic since it does not correctly incorporate the finite
probability that the uncertainty principle gives for a particle to be pair produced below
threshold. Effective charge[7] schemes, derived from physical observables, naturally
avoid such errors and are formally consistent.

2.1 A Simple Example

For the purpose of elucidating the benefits of physical renormalization schemes, we
will give a simple toy example using QED with three fermions, e, µ, and τ . Consider
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the amplitude for the process e−µ−→e−µ−. This can be written as a dressed skeleton
expansion, i.e. the dressed tree level graph plus the dressed box diagram plus the
dressed double box, etc.. The tree level diagram, dressed to all orders in perturbation
theory, is equal to the tree level diagram with one modification : the QED coupling
α = e2

4π
is replaced by the Gell-Man–Low–Dyson effective charge

α(Q2) =
α

1 + Πγγ(Q2) − Πγγ(0)
. (1)

Hence, from measurements of the cross section, one can measure the effective charge
at two different scales, α(Q2

h) and α(Q2
l ). Suppose the value of the electron charge

is not known, and we are trying to test the predictions of QED. The way to proceed
is to use one measurement, say at the low scale Ql, as an input to determine e.
Now the prediction at the high scale Qh is well defined, and represents a test of
the theory. More directly, we could just write α(Q2

h) in terms of α(Q2
l ), leading

to the same prediction. Since the cross section σe−µ−→e−µ−(Q2) is proportional to
(α(Q2))2, we are clearly relating one observable to another. The procedure just
outlined is simply an on-shell renormalization scheme if Ql = 0. More generally,
we will refer to such a scheme as an effective charge scheme, since we are writing
a given observable, here just σe−µ−→e−µ−(Q2

h) (or α(Q2
h)), in terms of an effective

charge, α(Q2
l ), defined from a measurement of the cross section at the scale Ql. One

could equally well write any observable in terms of this effective charge. Note that
this approach to renormalization works for arbitrary scales, even if the low scale lies
below some threshold, say Ql < mτ , while Qh > mτ . Decoupling and the smooth
“turning on” of the τ are manifest.

Now we will compare with the results obtained by using the conventional imple-
mentation of MS, which is as follows. First, the cross section is calculated at Ql

using the rules of MS, which allows only the electrons and muons to propagate in
loops, since Ql < mτ . Comparing the observed cross section to this result will fix
the value of the MS coupling for two flavors, α̂2(Ql). To predict the result of the
same experiment at scale Qh > mτ , we need to evolve α̂2 to the tau threshold using
the two flavor beta function, match with a three flavor coupling, α̂3, through the
relation α̂2(mτ ) = α̂3(mτ ), and then evolve α̂3(mτ ) to Qh using the three flavor beta
function. We will now have a prediction for σe−µ−→e−µ−(Q2

h) ∝ (α(Q2
h))

2. One might
expect, from the general principle of RG invariance of physical predictions that this
result should be the same as the prediction derived using the physical effective charge
scheme above. However, there is a discrepancy arising from the incorrect treatment
of the threshold effects in MS. A detailed discussion of this problem will be given
in section 3. In any case, the result can be obtained by straightforwardly applying
the procedure outlined above. One finds that the ratio of the cross section derived
using MS with the cross section derived using effective charges, to first order in
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perturbation theory, is given by

σ̂(Q2
h)

σ(Q2
h)

= 1 + 2
α(Ql)

3π

(
Lτ (Ql/mτ ) − 5/3

)
, (2)

where Lτ is a logarithm-like function (the high energy limit is a logarithm) given by

Lτ (Q/m) =
∫ 1

0
dx6x(1 − x) log

(
1 +

Q2

m2
x(1 − x)

)
+ 5/3

= (βtanh−1(β−1) − 1)(3 − β2) + 2, (3)

where β =
√

1 + 4m2

Q2 . It satisfies the property Lτ (0) = 5/3, so that there is no
discrepancy when the low reference scale Ql is much lower than the tau mass threshold.
This reflects the important, but often overlooked, fact that unphysical schemes, such
as MS, are formally consistent only in desert regions where particle masses can be
neglected. The error is plotted in Fig.(1). Notice that in this example there is an error
only for Ql < mτ . However, in the more general case of multiple flavor thresholds,
there will be errors from both high and low scales. Similar discrepancies will be found
in our analysis of grand unification.

Figure 1: The error in the MS based prediction for the scattering cross section,

100% ×
(

σ̂(Q2
h
)

σ(Q2
h
)
− 1

)
, plotted against the reference subtraction scale Ql for the choice

α(Ql) ≈ 0.1.

2.2 General Properties of Effective Charges and Physical
Renormalization Schemes

Effective charges [7] may be defined for any perturbatively calculable observable

O(Q) ≡ AO + aO
1 αO(Q) (4)
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by absorbing all of the radiative corrections into the effective charge αO. To one-loop
order using dimensional regularization (DREG) or dimensional reduction (DRED), it
is straightforward to show that any unrenormalized effective charge may be parame-
terized as1

αO(Q) = α0 −
α2

0

4π

∑

p

βp

(
Lp(Q/mp) − ηO

p (Q/mp) − CUV + log
m2

p

µ2

)
+ · · ·, (5)

where the sum is over all particles p in the fundamental theory which contribute to
the running of the effective charge. In the QED example above, the sum proceeds
over e, µ, τ and Le = Lµ = Lτ , and the function ηO

p (Q/mp) = 5/3 is a constant for
the simple observable O =

√
σe−µ−→e−µ− . In Eq.(5), CUV = 1

ǫ
− γE + log 4π is the

divergence and associated constants, µ is the regularization scale, α0 is the bare gauge
coupling, and βp is the contribution of each particle to the one-loop beta function
coefficient. The Lp(Q/mp) are logarithmic-like functions which are characteristic of
the spin of each particle, and are given exactly in Eq.(23). They may be approximated
to within a few percent2 by

Lp(Q/m) ≈ log
(
eηp +

Q2

m2
p

)
(6)

and have the limits

Lp(Q/m)
Q≫m≈ log

Q2

m2
, Lp(Q/m)

m≫Q≈ ηp, (7)

where the constants ηp have values given in the table below. We will see that these
constants are of central importance in physical renormalization schemes. These log-
like functions characterize the self-energy-like effect of each particle, including the
finite spread of the wavefunctions near thresholds due to the uncertainty principle,
and may be calculated in several different ways, as will be discussed in section 4 and
the Appendix. Figure 2 shows the Lp functions for spacelike momenta.

Table I.

scalars fermions massive gauge bosons

ηp 8/3 5/3 40/21

1This follows from considering the high energy limit and requiring renormalizability. Note also
that our parameterization can be easily extended to effective charges which have particles with
different masses running together in the loops, and the results are similar. In any case, we will not
have use for such charges in this paper.

2To be precise, the approximations reproduce the exact functions L0, L1/2, and L1 (the subscripts
refer to the spin of the massive field) with maximum error of 3.5%, 0.8%, and 2.2%, respectively,
over the entire range of Q.
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Figure 2: The logarithm-like functions for massive particles of spin 0, 1/2, and 1 are
denoted by Ls, Lf , and LW , respectively.

The functions ηO
p (Q/mp) are characteristic of each observable, with a nontrivial func-

tional form indicating deviations from self-energy like behavior. For a general ob-
servable O, the function ηO

p (Q/mp) is nontrivial. We will show in section 4 that the
constants ηp correspond to a particularly simple and canonical observable, called the
pinch-technique (PT) self-energy.

The effective coupling renormalized in the most general scheme R is

αO(Q) = αR(Q0) −
(αR(Q0))

2

4π

∑

p

βp

(
Lp(Q/mp) − Lp(Q0/mp)

− ηO
p (Q/mp) + ηR

p (Q0/mp)
)
, (8)

where the functions ηR
p (Q0/mp) contain all of the information about the scheme. Here

R can be any mathematical scheme for defining the couplings. In the case of MS,
we have ηMS

p (Q0/mp) = Lp(Q0/mp) − log (Q2
0/m

2
p) so that only logarithms of the

renormalization scale, Q0, are subtracted.3

It is straightforward to relate observables to each other:

αO1(Q1) = αO2(Q2) −
(αO2(Q2))

2

4π

∑

p

βp

(
Lp(Q1/mp) − Lp(Q2/mp)

− ηO1

p (Q1/mp) + ηO2

p (Q2/mp)
)
. (9)

3The term in parentheses in Eq.(8) becomes Lp(Q/mp) − log (Q2
0/m2

p) − ηO
p (Q/mp). Note that

in most calculations the first term is taken to be a logarithm and mass corrections are systemat-
ically added, in order to approximate the full threshold dependence of Lp(Q/mp). However, the
log (Q2

0/m2
p) term does not have the correct threshold dependence, as we will be discussing.
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This satisfies the transitivity property of the physical renormalization group. As be-
fore, the sum over p runs over all particles in the fundamental theory which contribute
to the effective charges.

For consistency, very massive particles must decouple properly and must not con-
tribute to physical predictions. Taking the mp→∞ limit in Eq.(8) and Eq.(9) yields
a fundamental requirement of renormalization schemes and observables:

ηR
p (0) = ηO1

p (0) = ηO2

p (0)
DRED

= ηp. (10)

This consistency requirement holds for all schemes R, observables O1,O2, and for each
massive particle p. These are universal constants for each spin and, when DRED is
used, are equal to the ηp given in Table I above, as can be verified through explicit
calculations. If, for example, DREG was used instead of DRED, the last equality
of Eq.(10) would hold only for fermions and scalars, but for spin 1 fields there is an
additional constant.4 Renormalization schemes that satisfy (the first two equalities
of) Eq.(10) will henceforth be referred to as physical renormalization schemes, and
those that do not will be called unphysical renormalization schemes, for reasons that
will become clear.

The above discussion implies a unique decoupling limit (Q/m→0) for observables.
It is interesting that there is also a restriction on the high energy behavior (Q/m→∞),
which holds only for supersymmetric theories and takes the form of a sum rule. It is
given by

∑
p∈S βp(G)ηO

p (∞)
∑

p∈S βp(G)
= KO, (11)

where KO is a constant that depends only on the observable, not on the gauge group
G or the supermultiplet S. The ηO

p (Q/mp) are calculated using DRED, otherwise the
sum rule is true only for differences ηO1

p (∞)− ηO2

p (∞) between observables. Further,
the result holds for any number of supersymmetries, which may be broken or unbroken
at low energies. This can be proven inductively given the result for N = 1. It is
easy to check using Table I above and the corresponding result for massless gauge
bosons given below Eq.(19) that KPT = 2. The sum rule just expresses the fact that
there is no resolution within a supermultiplet at high energies, and is motivated from
conformal invariance and physical renormalization scheme invariance. Such a sum
rule may provide a powerful link between the contributions of various spin fields to
any observable, particularly if a multi-loop or non-perturbative generalization was
found.

4This is explained below Eq.(19) and below Eq.(56).
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3 Un-Physical Renormalization Schemes and the

Problem of Decoupling

Notice that the physical renormalization scheme requirement Eq.(10) is not met by
MS, DR, their massive extensions, or similar schemes. It is well known that MS by
itself does not constitute a complete scheme, rather one must truncate the sum over
p to include only particles with masses less than the scale of the problem. For each
region between thresholds a different scheme is implemented and one must translate
between schemes when crossing thresholds. Hence, MS is really a set of schemes
related to each other. We will call such a set an artificial decoupling scheme(ADS),
and now discuss the most general case at one loop. This will give us an idea of the dis-
crepancies one may expect in ADS’s when compared to the physical renormalization
scheme approach.

Let S = {m1, m2, ...} be the spectrum of massive particles of the fundamental
theory ordered from lightest to heaviest, let S0 be the set of massless particles, and
let SN = S0⊕{m1, m2, ..., mN} be some subset up to a given mass scale. For any
given renormalization scheme R, let the Nth phase of R, denoted RN , be the scheme
used to renormalize observables at energy scales Q such that

m1, ..., mN < Q < mN+1. (12)

To use RN , one simply renormalizes the contributions from particles p ∈ SN in the
usual way dictated by scheme R, and then entirely neglects the contributions from all
p ∈ S − SN . This is a formal statement of the usual implementation of ADS’s using
step functions.

For m1, ..., mN < Q, Q′ < mN+1, the gauge coupling of the RN scheme flows by

αRN (Q) = αRN (Q′) − (
αRN (Q′))2

4π

∑

p∈SN

βp

(
Lp(Q/mp) − Lp(Q

′/mp)

− ηR
p (Q/mp) + ηR

p (Q′/mp)

)
, (13)

and the most general matching condition between schemes RN−1 and RN takes the
form

αRN−1(µN) = αRN (µN) +
α2

RN (µN)

4π
βNAN(µN/mN ), (14)

where Ap(µp/mp) is arbitrary now, but will be specified below by minimizing errors,
and may depend only on the matching scale µp for each threshold mp, for reasons
discussed below.

For Qh > mN+n and m1, ..., mN < Ql < mN+1 (the h and l stand for heavy and
light scales, respectively) one may relate observables by flowing through n thresholds
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using the above formulas to obtain

αO1(Qh) = αO2(Ql) −
(αO2(Ql))

2

4π

[
∑

p∈SN+n

βp

(
Lp(Qh/mp) − Lp(Ql/mp) − ηO1

p (Qh/mp)

+ ηO2

p (Ql/mp)
)

+
∑

p∈SN+n−SN

βp

(
Ap(µp/mp) − Lp(µp/mp) + ηR

p (µp/mp)

+ Lp(Ql/mp) − ηO2

p (Ql/mp)
)]

. (15)

Now let us compare this to the relation, Eq.(9), obtained in the previous sec-
tion for the tracking of two observables. For the case of a high scale desert region
(Qh≪mN+n+1), the first sum reduces to Eq.(9). However, when Qh

<∼ mN+n+1, there
are errors of one loop order which are proportional to Lp(Qh/mp)− ηO1

p (Qh/mp), and
occur for each neglected threshold5 p∈S−SN+n such that Qh

<∼ mp. These errors are
naturally remedied in physical renormalization schemes, leading to heavy threshold
corrections which will be of importance when grand unification is discussed later.
There are also analogous light threshold corrections. The second sum in Eq.(15) con-
tains extra terms which arise from the artificial decoupling and matching conditions
at each threshold. These terms are also generally of order of the one-loop corrections
and must cancel if the ADS is to be consistent (in the sense of giving reliable physi-
cal predictions in relations between two observables). In general, these terms do not
cancel, since the Ql-dependent terms cannot be cancelled by the choice of Ap, which
depends only on the ratio µp/mp. Suitably choosing Ap (see Eq.16 below) leaves a
term Lp(Ql/mp)−ηO2

p (Ql/mp) for all p∈SN+n−SN . Hence, we see that the high scale
and low scale threshold corrections have exactly the same form; indeed, they have
the same origin, namely the necessity of using an ADS, which arises from improper
decoupling.

In the case of a low scale desert region, Ql≪mp∀p∈SN+n − SN , one finds that
Lp(Ql/mp)− ηO2

p (Ql/mp)→0 (by Eqs.(7,10)), and the light threshold errors are elim-
inated through the choice

Ap(µp/mp) = Lp(µp/mp) − ηR
p (µp/mp). (16)

In this case, notice that once the Ap are chosen suitably, the matching scale µp

exactly cancels and there is no need to fix its value. However, for MS, this choice is
equivalent to using Ap = 0 and µp = mp, which is the matching scale typically used
at one loop. One may object that even in non-desert regions the known anomalous
matching threshold errors could be systematically subtracted off for each physical
process considered (equivalently allowing Ap = Ap(Ql)). This is untenable, as it is
the same as using a different coupling for each process, thus losing the remnants of
universality left by ADS’s (i.e. universality in each desert region).

5similar errors occur if Ql
<∼mN+n+1
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We have identified two potential problems in artificial decoupling schemes, which
arise solely from the failure of the decoupling requirement given in Eq.(10), regardless
of whether or not the scheme R has analytic threshold dependence.6 The low scale
errors come from the matching conditions and are exhibited in the last two terms of
Eq.(15). These are significant only when Ql

<∼mN+1. The high scale errors occur when
one is calculating an observable at an energy Qh

<∼mN+n+1 that is slightly less than
masses that should contribute, but are cut off in an ADS. These two errors will give
rise to light and heavy threshold corrections in unification, as discussed in section IV.

In practice, both types of errors can often be eliminated through a “threshold shift-
ing” procedure. This involves modifying the definition of RN by replacing Eq.(12)
with m1, ..., mN < aQ < mN+1 and making similar subsequent replacements, and by
choosing a > 1 to be large enough so that the desired thresholds that are slightly
above Ql or Qh are ‘moved’ below aQl, so that no matching need occur for those
thresholds, since they are already implicitly included in the couplings. The limit of
this procedure as a→∞ leads to a formally consistent scheme where no matching or
artificial decoupling is used, but due to the failure of decoupling, it requires inclusion
of contributions from every particle in the (unknown) fundamental theory. This is
the exact situation that caused us to introduce an ADS in the first place, since we
did not want unknown and arbitrarily massive fields contributing to every physical
observable (written in terms of the ADS scheme charge). It is true that such unknown
contributions cancel in relations between observables, but the utility of the interme-
diate ADS scheme is lost since it’s coupling is ill-defined7. In many calculations in
unphysical schemes such as MS, the “threshold shifting” approach may be used to
yield physical predictions which are arbitrarily accurate by choosing a sufficiently
large ‘a’. However, the usefulness of this procedure depends on the details of the
mass spectrum. There is no universal algorithm that applies to any field theory. The
complicated nature of such artificial fixes to the decoupling problem are reflections of
the unphysical nature of the schemes and couplings.

Thus, we have shown that the MS and DR schemes suffer errors unless one is
restricted to observables at energies Q which lie far between mass thresholds. In
addition, complicated matching conditions must be applied when crossing thresholds
to maintain consistency for such desert scenarios. In principle, these schemes are only
valid for theories where all particles have zero or infinite mass, or if one knows the
full field content of the underlying physical theory.

6Proper analytic threshold dependence may be defined by ηR
p (Q/m) going to a constant for both

small and large Q/m. Consider the analytic extension of MS into the region of mass thresholds,

which we call massive MS, or MMS (similar to that in [8]). This is defined by ηMMS
p (Q0/mp) = 0

so that the full logarithmic-like functions Lp are subtracted and trivially the conditions for smooth
threshold dependence are satisfied. Nonetheless, MMS has matching errors, which result from the
failure of Eq.(10) and the subsequent need to construct an ADS from MMS.

7We might as well always write observables in terms of other observables; this is precisely the
philosophy of effective charge inspired physical renormalization schemes.
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4 The Canonical Physical Effective Charges for

the MSSM

The difficulties associated with unphysical schemes are circumvented in physical
renormalization schemes (PRS) based upon effective charges. So far, we have given
consistency conditions which are satisfied PRS’s, but explicit examples have not been
given. This is the topic we now take up.

For any observable O, we define an effective charge scheme RO, by

ηRO

p (Q/mp) = ηO
p (Q/mp), (17)

which, after using Eq.(8), is equivalent to

αO(Q) = αRO(Q), (18)

thus motivating the terminology “effective charge”. Here RO is the physical subset
of all possible mathematical schemes. The canonical example for using an effective
charge as a scheme is furnished in QED by the Gell-Mann–Low–Dyson charge, which
can be measured directly from scattering experiments. The extension of this concept
to non-abelian gauge theories is non-trivial[9], due to the self interactions of the gauge
bosons which make the usual self-energy gauge dependent. However, systematically
implementing the Ward identities of the theory allows one to project out the unique
self-energy of each physical particle, resulting in a self-energy that is gauge indepen-
dent, may be resummed to define an effective charge, and may be related via the
optical theorem to appropriate cuts of differential cross sections. The algorithm for
performing the calculation at the diagrammatic level is called the pinch-technique
(PT) [10][11][12][13]. The procedure is illustrated in Fig.(3) for the case of massless
gauge theory, where momentum factors from internal gauge boson lines or vertices
combine with gamma matrices to cancel internal fermion propagators, yielding a gluon
self-energy-like graph. This is then added to the usual self-energy to yield the full PT
self-energy.

The PT procedure is unambiguous at one loop and is merely an application of
the Ward identities of the theory, which becomes more transparent in a dispersive
derivation from physical cross sections σ(qq→gg) (see [13] for such a construction for
the electroweak sector). The generalization of the pinch technique to higher loops is
currently under investigation [14][15][16][17].

The PT charge, labelled by α̃, written in terms of the bare coupling α0 may be
calculated for arbitrary gauge theory, broken or unbroken, to be8

α̃(Q) = α0 −
α2

0

4π

∑

p

βp

(
Lp(Q/mp) − ηp − CUV + lm

)
+ · · ·, (19)

8If particles of different mass propagate together in the loops, this formula is trivially modified.
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self−energy−like
projection

self−energy−like
projection

self−energy−like
projection

Figure 3: Pinch-technique for QCD at 1 loop. The unique gluonic self-energy-
like projection of the vertex and box graphs yield terms which must be added to the
conventional self-energy to get the PT effective charge.

where ηPT−DRED
p ( Q

mp
) = ηp are the constants given in Table I for massive fields and

ηg = 64/33 for massless spin 1 fields9. The fact that these ηO
p (Q/m) functions are

constants is what makes the PT observable the most simple and natural choice for
defining an effective charge scheme. More general physical effective charge schemes
(see Eqs.(8,9,10)) have more complicated running due to the ηO

p (Q/mp) terms. The
calculation of α̃(Q) has been performed using dimensional reduction (DRED), rather

9We will use ′W ′ or ′1′ subscripts to denote massive spin 1 fields and a ′g′ subscript for massless
spin fields. The constants 64/33 and 40/21 are related straightforwardly. In general, for a massive
gauge boson W in the representation R of group G that is being considered and representations R′

in additional group factors G′, we have

βW =
11

3
C(R)d(R′) − 1

6
C(R)d(R′) =

7

2
C(R)d(R′) (20)

and

ηW =
1

βW

(
11

3
C(R)d(R′)

(64

33

)
− 1

6
C(R)d(R′)

(8

3

))
=

40

21
. (21)
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than dimensional regularization (DREG). We will let PT stand for the renormaliza-
tion scheme associated to the PT observable regularized using DRED. The results
in DREG for s = 0, 1/2 fields are the same, but for spin one fields are given by the
replacement ηW → ηW + 2/21, where the additional constant is due to the so-called ǫ
ghosts. Although the constant terms will cancel in relations between physical observ-
ables, DRED is the more natural choice, even for non-supersymmetric theories. This
is because decoupling is manifest (including for massive spin 1 fields) individually
for each observable without relying on cancellation terms arising from relations to
another observable. This is just a statement of the fact that ηPT−DRED

p = Lp(0)∀p.

In contrast, with DREG one has ηPT−DREG
W 6= LW (0). Also, the supersymmetric sum

rule in Eq.(11) becomes manifest in DRED.
Using the above results, it is straightforward to write down the effective charges

for the standard model through

α̃1(Q
2) =

5

3

α̃(Q2)

1 − s̃2(Q2)

α̃2(Q
2) =

α̃(Q2)

s̃2(Q2)

α̃3(Q
2) = α̃s(Q

2), (22)

where the effective couplings α̃ and s̃2 are defined from PT self-energies Π̃γγ and Π̃γZ ,
respectively [13], as is detailed in Appendix A. It is convenient to write α̃1 and α̃2 in
terms of α̃ and s̃2 since the latter contain the contributions from the mass eigenstate
fields. One could use Eq.(19) directly, although the Higgs sector requires care.

Several subtleties should be addressed before the numerical values of the PT
couplings are given.

An important difference between the physical effective charges and the unphysical
MS couplings is a distinction between timelike and spacelike momenta. In conven-
tional approaches, thresholds are treated in a step function approximation, and hence
the running is always logarithmic. The analytic continuation from spacelike to time-
like momenta is trivial, yielding iπ imaginary terms on the timelike side. Thus, the
real parts of such couplings are the same modulo three loop (iπ)2 corrections. In
contrast, the PT couplings on timelike and spacelike sides have considerable differ-
ences at one-loop. To see this we need the exact expressions for the logarithmic-like
functions of a particle of spin s, which can be written as

Ls(Q/m) = 2

[
(βtanh−1(β−1) − 1)

(
4S2 − β2

4S2 − 1

)
+ 1

]
, (23)

where S2 = s(s + 1) is the total spin squared eigenvalue, β =
√

1 + 4m2

Q2 , and the

momenta is spacelike (Q2 > 0). This formula is merely a compact way to write
the results for massive spin 0, 1/2, and 1 fields, and has not been explicitly verified
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for higher spins. For example, Ls=1 is calculated from the sum of the usual gauge
boson self interaction loop, the ghost loops, the appropriate loops of Goldstone bosons
that are eaten, and the pinched parts of the vertex and box graphs (see appendix A
for details). In contrast, Ls=1/2 is simply the related to the usual fermion vacuum
polarization graph, and Ls=0 comes from the usual scalar contribution to the gauge
boson self-energy. It is interesting that such a simple compact form is obtained,
considering the seemingly different derivations of the three Ls functions. This may
suggest a more efficient formulation of the perturbative dynamics of quantum fields
that treats the various spins in a unified manner [18]. Notice that

lim
m→∞

Ls(Q/m) =
8

3

[
1 − 3s(s + 1)

1 − 4s(s + 1)

]
, (24)

corresponding to the results of Table I. The analytic continuation of Eq.(23) to time-
like momenta below threshold, 0 < q2 = −Q2 < 4m2, is obtained by replacing

β→iβ, where β =

√
4m2

q2
− 1, and tanh−1(β−1)→− itan−1(β

−1
). (25)

Above threshold, q2 > 4m2, one should replace

tanh−1(β−1)→tanh−1(β) + i
π

2
where β =

√

1 − 4m2

q2
. (26)

From these results it is clear that significant differences will arise between the spacelike
and timelike couplings evaluated at scale M2

Z , mainly due to the W± boson threshold
asymmetry.

As has been discussed, another distinction of effective couplings is that they are
automatically sensitive to light SUSY thresholds near MZ , since the Ls functions are
not zero below threshold (on the spacelike side nor on the timelike side). The effects
of light SUSY thresholds on the values of the couplings at the Z-pole will depend
on the method of extraction from the data. The key question is whether or not the
light sparticles are implicitly included in the measured values of the couplings at
MZ . For α̃(MZ), which is extracted by running the precisely known fine structure
constant from Q = 0 to MZ , we should include corrections from virtual effects of
sparticles (with model-dependent mass), in the self-energy term Πγγ(MZ). However,
these threshold corrections will cancel in any unification prediction, since then one is
essentially running from Q = 0 to Q = MGUT and the light SUSYs are either fully
decoupled or fully turned on. For the strong and weak couplings we use data from the
Z-pole, and thus no unknown sparticle thresholds must be accounted for since they
are already implicitly contained in the measured values. When these couplings are
run to the unification scale the induced light threshold corrections will not cancel. Of
course, linear combinations of the electromagnetic and weak couplings (Eq.(22)) are
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used for unification, which complicates the matter further, since different methods
of extraction are used for each. It would be unpleasant to quote a different value of
α̃−1(MZ) for each different SUSY spectra considered. However, this approach has the
advantage that the values of the couplings used are the values that one would directly
measure in an experiment at MZ if a given sparticle spectrum were the correct one.
For convenience, we will quote the QED coupling extracted assuming a fully decoupled
SUSY. When calculating detailed unification predictions in given models, however,
the appropriate terms will be included in the determination of α̃−1(MZ). It should
be emphasized that the above complications are only numerically significant for light
sparticle spectra.

The initial values may be extracted from experimental data and are given in the
following table, where spacelike and timelike effective couplings are denoted with a
′+′ and ′−′, respectively. The MS and DR couplings are on the timelike side.

Table II.

MS DR PT+ PT−

α−1(MZ) 127.934(27) 127.881(27) 129.076(27) 128.830(27)
s2(MZ) 0.23114(20) 0.23030(20) 0.23130(20) 0.22973(20)
α3(MZ) 0.118(4) 0.119(4) 0.140(5) 0.140(5)

See the appendix for detailed formulas for the effective couplings.

Notice that the value of the PT+ electromagnetic inverse coupling, α̃−1(MZ) =
129.076(27), does not correspond to the usual value of about 128.968(27). This dis-
crepancy arises because α̃−1(MZ) includes the virtual effects of W+W− loops, whereas
the usual construction of αQED(MZ) entirely ignores the virtual effects of the massive
gauge bosons. The proximate cause of this consistent oversight in the literature is the
difficulty in extracting a gauge invariant self-energy-like contribution to the running
couplings for non-abelian theories, a problem which is resolved through the pinch
technique, in particular, and more generally, in any effective charge scheme. Clearly,
the present approach yields a coupling which more accurately reflects the strength of
the electromagnetic force. Similar comments apply to the weak mixing angle.

It should be emphasized that although we have chosen to discuss a particular
physical renormalization scheme, it will be shown in the next section that all predic-
tions associated with unification are PRS invariant, as they should be. However, a
definite scheme must be chosen for explicit calculations, and the PT scheme is the
simplest choice. As expected, we will find that PRS invariance does not extend to un-
physical schemes such as MS or DR, because of errors associated with the incorrect
treatment of light and heavy thresholds.
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5 Unification in Physical Renormalization Schemes

Now we are ready to discuss unification. In section 5.1, we will consider only the light
spectrum given by the standard model fields and their N = 1 superpartners. This
gives a model-independent starting point for discussing unification, and makes clear
exactly what model dependent heavy threshold corrections are needed for consistency
with the unification hypothesis. New light threshold corrections, in addition to the
usual light mass corrections, are evident, although they are numerically important
for only a small range of parameter space corresponding to light sparticles. In section
5.2, asymptotic unification is introduced, leading to substantial qualitative changes in
the usual picture of gauge unification. This particular choice of unification boundary
conditions will lead to corrections from logarithms of superheavy mass ratios, just
as would be obtained by implementing DR with the step function approximation.
This sheds light on the nature of the approximation of the DR approach. In section
5.3, an effective unification scale is derived that is considerable higher than the usual
unification scale. In section 5.4, more general non-asymptotic boundary conditions are
considered, and the new non-trivial thresholds corrections are found to be important.

In performing the analysis, the exact analytic one-loop formulas discussed in sec-
tion 4 will be used, as well as the leading two-loop corrections. The analytic mass
dependent two-loop corrections are not known, but these can be estimated to be
numerically small and well within the error bars, and hence can be neglected.

We will treat the SUSY spectrum as entirely arbitrary, rather than assume a
particular model or theoretical bias. The advantage of this approach is that impor-
tance of various spectra parameters becomes transparent, and irrelevant details can
be ignored.

5.1 The (in)validity of Neglecting Heavy Thresholds

In this subsection only, heavy thresholds will be entirely neglected.
The usual test of unification is to predict α3(MZ) contingent upon unification.

Compared with the conventional DR framework, we expect to see improvements
due to the correct treatment of light thresholds. To be precise, the corrections we
are discussing are to the difference between the α̃3(MZ) prediction obtained from
the following two methods: (a)using the PT+ scheme throughout, (b) using DR
(with the artificial decoupling and theta function treatment of light thresholds) to
predict α̂3(MZ), which is then translated to a prediction for α̃3(MZ). Both approaches
capture the leading light threshold effects, which appear as logarithms of light masses.
The additional corrections in the PT scheme are from what we will call analytic

light threshold corrections, since they arise from correctly and smoothly interpolating
between thresholds. These are largest when there are light supersymmetric partners
near or below MZ . For most values of the sparticle masses, they fall inside the error
bars. However, such corrections may become more important as the experimental
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values of the couplings are determined more precisely. The exact form of the new
corrections will be shown explicitly in section 5.2, Eqs.(31,35).

Now let us compare the PT unification predictions with experiment. The predic-
tions for the PT strong coupling, α̃3, (obtained through method (a)) are displayed
in Fig.[4] against the SUSY scale and in Fig.[5] against the mass ratio of the gluino
and wino. These are the two SUSY spectrum parameters to which the α̃3 prediction
is most sensitive.

Figure 4: The error in the prediction for α̃3(MZ) is plotted against the typical SUSY
mass scale, with different lines corresponding to values of the ratio of the gluino mass
to the wino mass. The relative mass spectrum is roughly the same as most sparticle
spectrum models, including supergravity models, with Ms setting the overall scale.
The experimental standard deviation, s.d., is 0.0055 for the PT strong coupling.

Only light gluino scenarios with mg̃
<∼ mw̃, are able to correctly predict the strong

coupling for natural SUSY scales (less than about a TeV). However, it is generally ex-
pected that the gluino is several times heavier than the wino for most realistic models
of supersymmetry breaking and spectra. Hence, we reproduce the known result [19]
that, at two loops and neglecting heavy thresholds, gauge coupling unification fails
by several standard deviations. Except for the light gluino escape route, this points
to the need for large heavy threshold corrections if unification is to be achieved.
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Figure 5: The error in the prediction for α̃3(MZ) is plotted against the ratio of the
gluino mass to the wino mass, which is the sparticle spectrum parameter to which
α̃3(MZ) predictions are most sensitive. The spectrum is fully specified by the ratio
and

√
mg̃mw̃ = 500GeV = Msusy, where Msusy is the mass of all other sparticles.

5.2 Heavy Thresholds and Asymptotic Unification

Henceforth, the complete heavy threshold behavior will be included in the running
of the effective couplings. The form of the subsequent corrections will depend on the
particular unification boundary conditions that are chosen, and the numerical values
of the corrections will depend on the details of the GUT model. In this section we
will choose the simplest boundary conditions, since it will reproduce known results.
Later, more general cases will be considered.

Generally, there are four parameters which specify the unification boundary con-
ditions. These are the unification scale, MU , and the values of the couplings at that
scale, α̃i(MU) for i = 1, 2, 3. For our purposes, we will always assume standard nor-
malizations and take the couplings to be equal at some scale. In this case, the only
free parameter is MU . The two distinct cases are for finite MU and infinite MU . The
so-called asymptotic unification considered in this section corresponds to the latter
choice, namely MU→∞ and α−1

1 (MU ) = α−1
2 (MU) = α−1

3 (MU ). The asymptotic unifi-
cation conditions would be appropriate if the standard model group GSM is embedded
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in a simple Lie group G which is fully restored before gravitational or other string
interactions become relevant, and neglecting any other exotic phenomena. Hence,
this choice is somewhat simple and naive, but it is very instructive.

We will find that asymptotic unification reproduces the same heavy threshold
corrections which can be obtained by unphysical renormalization schemes (DR) with
finite unification scale. The reason is that in taking MU→∞, one is essentially looking
at an observable (the unification requirement) in a desert region, which, as we have
seen, unphysical schemes are capable of treating without error. At first sight, it
may seem strange that the infinite unification scale predictions of physical schemes
correspond to finite unification scale predictions of unphysical schemes. However, this
is dictated by the nature of unphysical schemes where masses are turned on and off
with a step function.

The paradigmatic improvement over conventional methods is summarized in Fig.[6],
where asymptotic unification of the couplings occurs at very large energy. For demon-
strative purposes, the parameters are chosen so that unification occurs.

Now let us derive the analytic formulae for the unification predictions. We will dis-
cuss the most general case of an N = 1 supersymmetric GSM = U(1)Y ⊗SU(2)L⊗SU(3)C

embedded in a larger gauge group, G, using any physical RN scheme (all others are
inconsistent), which we label by its associated observable, O.

In general the running of the couplings can be expressed in the form

α−1
Oi

(Q) = α−1
Oi

(Q0) + Π̃O
i (Q, Q0) + θi(Q, Q0), (27)

where the two-loop corrections10 are contained in θi(Q, Q0), and we have defined

Π̃O
i (Q, Q0) =

1

4π

∑

p∈G

β
(p)
i

(
Lp(Q/mp) − Lp(Q0/mp) − ηOi

p (Q/mp) + ηOi

p (Q0/mp)
)
,(28)

which contains all of the one loop corrections. Now we separate the sums over the
light and heavy spectra, L = GSM (GSM means the standard model fields plus SUSY
partners) and H = G − GSM , take Q0 = MZ , and let Q = MU be some energy much
larger than the mass of all fields, including the heavy fields; i.e. MU≫mp ∀p∈L+H .
The functions Π̃O

i can then be written as

Π̃O
i (MU→∞, MZ) = βGlU − ∆L

i − δH
i − βH

i lX − SO
L,i(∞) + SO

L,i

(
MZ

)
− SO

H,i(∞) (29)

where βG =
∑

p∈G βp, lU = 1
2π

log MU

MZ
, lX = 1

2π
log MX

MZ
,

SO
L,i(Q) =

∑

l∈L

1

4π
β

(l)
i ηO

l (Q/ml), (30)

∆L
i =

∑

l∈L

1

4π
β

(l)
i

(
Ll

(MZ

ml

)
− log

M2
Z

m2
l

)
, (31)

10see Appendix A for the details
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Figure 6: Asymptotic Unification. The solid lines are the analytic PT effective
couplings, while the dashed lines are the DR couplings. For illustrative purposes,
α3(MZ) has been chosen so that unification occurs at a finite scale for DR and
asymptotically for the PT couplings. Here MSUSY = 200GeV is the mass of all light
superpartners except the wino and gluino which have values 1

2
mg̃ = MSUSY = 2mw̃.

For illustrative purposes, we use SU(5).

and

δH
i =

∑

h∈H

1

4π
β

(h)
i log

m2
h

M2
X

. (32)

The exact 1-loop analytic light threshold corrections are contained in ∆L
i , while the

heavy threshold splittings are contained in δH
i , with some arbitrarily chosen heavy

mass MX which is conveniently taken to be the mass of heavy gauge bosons.

It is useful to verify that predictions for lX and α3(MZ) are invariant under the
choice of physical renormalization scheme. In performing the calculation, one must
use the fact that the ηO

p functions do not depend on the gauge group or representation
of p, only the spin. These are necessary (but not sufficient) conditions for the sum
rule in Eq.(11). This scheme equivalence does not extend to unphysical schemes such
as DR, though the errors are quantifiable.

Due to the physical renormalization scheme invariance, we may choose the simplest
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scheme, which is the PT scheme discussed earlier. Because the ηPT
p functions are

constants equal to ηp = Lp(0), the expressions for the unification predictions are
simple and compact when written in terms of the PT charges α̃i.

From α̃1(MP ) = α̃2(MP ), the heavy gauge boson mass, MX , is given by

log
(

MX

MZ

)
+ 1

2π
=

α̃−1
2 (MZ) − α̃−1

1 (MZ) + ∆12

β12

, (33)

where ∆12 = ∆1 − ∆2, β12 = β1 − β2, and ∆1 = ∆L
1 + δH

1 + θ1. Notice that MX can
be determined explicitly only for the (unlikely) case of a degenerate heavy spectrum
when δH

i = 0, otherwise the expression is transcendental in MX . In the degenerate

case, the gauge boson mass MX = M
/H
U/e is equal to the unification scale determined

by entirely neglecting heavy thresholds(denoted by /H), divided by e = 2.71828.... This
result relies on use of the sum rule in Eq.(11) which gives rise to the 1/2π term on
the LHS of Eq.(33). The generalization to arbitrary physical renormalization scheme

is MX = M
/H
Ue−KO/2, where KO is defined in Eq.(11). Neglecting the light and

heavy analytic threshold corrections, the gauge boson mass prediction is the same
as the unification scale prediction in the DR scheme. Also, the ‘unification’ scale

M
/H
U depends on the particular scheme, which makes sense since different schemes

correspond to different observables. In contrast, MX is scheme independent.
The strong coupling prediction is

α̃−1
3 (MZ) = α̃−1

1 (MZ) + ∆31 +
β13

β12

(
α̃−1

2 (MZ) − α̃−1
1 (MZ) + ∆12

)
, (34)

which differs from the prediction obtained by neglecting heavy thresholds by only the
terms δH

12, δH
13, which reflect the heavy splitting.

In order to explicitly compare with the DR approach, the artificial decoupling
treatment of thresholds should be employed, as described in section 2. This involves
using a step function through each light field l ∈ L with mass greater than MZ ,
and through every superheavy field h ∈ H . Then one must impose the unification
condition that the three gauge couplings are equal at the maximum mass of heavy
fields, MX = max {mh, h ∈ H}. At energies above this maximum mass, the three
couplings run identically according to the beta function for the unified group G; hence
there is no arbitrariness in the choice of the unification scale.11 Next, the prediction
for the DR strong coupling should be translated to the PT strong coupling. Doing
this, one finds the exact same form of Eq.(34), except that ∆L

i is replaced by

∆L
i →

∑

ml<MZ

1

4π
β

(l)
i

(
Ll

(MZ

ml

)
− log

M2
Z

m2
l

)
+

∑

ml>MZ

1

4π
β

(l)
i

(
ηl − log

M2
Z

m2
l

)
. (35)

11This is contrary to the claims of [20], where the authors advocate defining the unification scale
to be the geometric mean of the heavy masses.
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Notice that there are only light threshold corrections beyond the theta function ap-
proximation for particles of mass above MZ , since those below MZ are already im-
plicitly accounted for. This formula is in agreement with Eqs.[15,16], since there is a
residual error proportional to Lp(MZ/mp)− ηp for each crossed threshold. The anal-
ogous corrections for the heavy thresholds do not arise in the asymptotic unification
scenario, since we are essentially comparing observables at energy scales MZ ∼ ml,
which is of the same order of magnitude as the light thresholds, and MU≫mh, which
is much greater than all thresholds when asymptotic unification conditions are as-
sumed. The latter scale is a “desert” scale, and so the step function method has
no errors, giving the same result obtained above in the δH

i .12 For the more general
unification conditions considered in the next subsection there will be additional heavy
threshold corrections.

Eq.(34) is a useful result, as it allows one to constrain the heavy spectrum, given
a light SUSY spectrum. Up to two loop finite threshold corrections, which we have
estimated to be small, and assuming that Eq.(34) will yield the experimental value
of the strong coupling given some appropriate full GUT theory (i.e. assuming the
asymptotic unification hypothesis is true), we can write

ǫH ≡ α̃−1
3 (MZ)pred

/H
− α̃−1

3 (MZ)expt ≈ δH
31 +

β13

β12
δH
12, (36)

where α̃−1
3 (MZ)pred

/H
is the predicted value of the strong coupling obtained by neglecting

heavy thresholds, as illustrated in Figs.[4,5]. We should emphasize the assumptions
leading to this result. First, the standard normalizations of the couplings are assumed,
so that Eq.(37) does not hold for higher affine levels or non-standard hypercharge
normalizations, as often occur in string models. Second, we assume that the gluino
is somewhat heavier than the chargino, so that there are serious discrepancies, as in
Fig.[4], which must be explained by heavy threshold corrections. Finally, we are using
the paradigm of asymptotic unification, wherein the full gauge group G in which the
SM is embedded is restored before other Planck scale physics becomes relevant. With
these assumptions, and noting that heavy thresholds were neglected in Figs.[4,5], we
find a typical value of

ǫH expt≈ − 1
theory≈ 1

4π

∑

h∈H

Bh log
m2

h

M2
X

, (37)

where we have defined13

Bh ≡ β
(h)
31 +

12

7
β

(h)
12 . (38)

12It should be emphasized that this is only the case when the DR is correctly implemented by
choosing the unification scale to be equal to the heaviest threshold in the theory. Different choices
are sometimes made in the literature.

13Note that β13

β12

= 12

7
.
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Values of Bh can be compiled for the heavy representations any unified gauge group,
and hence may be used with heavy mass ratios to exclude or provide evidence for a
given GUT theory.

To calculate Bh, we first write Bh = βsh
Bh, where βsh

= −1/3,−2/3, 11/3 for spin
0, 1/2, 1 fields and the remaining group theory factor is Bh = 5

7
T1(R)− 12

7
T2(R)+T3(R)

for a representation R. It is necessary to decompose all representations in terms of
their U(1)Y ⊗SU(2)L⊗SU(3)C content. Here T1(R) = 3

5

∑
p∈R Y 2

p and Ti(R)δab =∑
p∈R tri(t

a
RtbR), i = 2, 3. For most grand unified theories of interest, all multiplets can

be decomposed in terms of only eight different standard model multiplets (plus their
conjugate representations, which have the same Bh, and a singlet which has Bh = 0),
which are given in Table III along with the value of Bh.

Table III.

Bh(Ri) Bh(Ri)

R1 = (3, 2, 1/6) −3/2 R5 = (1, 1, 1) 3/7
R2 = (3, 1,−1/3) 9/14 R6 = (8, 1, 0) 3
R3 = (3, 1, 2/3) 15/14 R7 = (1, 3, 0) −24/7
R4 = (1, 2, 1/2) −9/14 R8 = (3, 2, 5/6) 3/14

These same constants will also govern the corrections from analytic heavy thresh-
old corrections that will be discussed later in section 5.4. Notice that, by definition,
the constants satisfy the constraint that the sum over all heavy multiplets vanishes,

∑

h∈H

Bh = 0, (39)

which equivalently reflects the arbitrariness in the choice of which heavy mass scale
MX one chooses to be canonical (see Eq.(37)), ∂ǫH

∂MX
= 0. A similar relation also holds

for any complete representation of the grand unified group. For example, the 24 of
SU(5) decomposes into a singlet plus R6 + R7 + R8 + R8. From the table, we have
Bh(R6) + Bh(R7) + 2Bh(R8) = 0.

As a simple example, let us explore the (unlikely) possibility wherein the only
heavy field with significantly different mass than the heavy gauge boson mass MX

is the 5 dimensional Higgs supermultiplet in which the light Higgs doublets are
embedded. The triplet components of the two Higgs supermultiplets contributes
−2/5, 0,−1 to β1, β2, β3, and hence Bh(3 + 3) = −9/7. Using Eq.(37), this leads to

M3 ≈ MX exp
(

14π
9

)
, which is of order 100MX . Such a large splitting is unnatural

and difficult to accommodate in a theory. In general, “natural” splittings do not lead
to ǫH values of the correct magnitude in SU(5). This is not terribly surprising, since
minimal SUSY SU(5) is already excluded on other grounds.

In general, the large discrepancies in Figs.[4,5] imply a large splitting in the
heavy spectrum, which, in turn may imply a multistep unification scenario, e.g.
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SO(10)→G224→GSM . The reason is that for the heavy fields to contribute to α̃3(MZ),
they must not only have a mass splitting compared to some reference heavy gauge
boson, X, but also must have different first beta function coefficients since only the
differences β

(h)
1 − β

(h)
2 and β

(h)
1 − β

(h)
3 appear in the corrections.

Before moving to more general unification boundary conditions, we shall give
a simple way to define an effective unification scale in the asymptotic unification
scenario.

5.3 Effective Unification Scale

Because the couplings formally unify at infinite energy in the paradigm of asymptotic
unification, there is no apparent unification scale. However, we suspect that in reality
quantum gravitational fluctuations will affect the couplings as they approach the
Planck energy. Hence, one can define an effective unification scale to be where the
splittings between the gauge couplings are of the same order as those induced by
gravitational effects. To be precise, define a dimensionless gravitational coupling
which classically runs with energy as

GN(Q) =
Q2

M2
P l

, (40)

where MP l ≈ 1.22×1019GeV . The leading gravitational corrections to the running
gauge couplings αi(Q) will be proportional to GN(Q)αi(Q). Hence, the effective
asymptotic unification scale, Meff , can be defined as the scale where the split-
tings in the gauge couplings are of order the gravitational corrections, |αi(Meff ) −
αj(Meff )| ≈ b2GN (Meff)αU , or equivalently

|α−1
i (Meff ) − α−1

j (Meff)| ≈ b2GN(Meff )α
−1
U ≡ δg(Meff), (41)

where we take α−1
U ∼ 24 to be the typical gauge coupling near unification. The

unknown parameter b2 should be of order one. Estimating Meff using a simple SU(5)
model, we find a typical effective unification scale of 1 − 5×1017GeV . This is only
intended to a very rough approximation since a naively simple SU(5) model was used.
Nevertheless, more complicated and realistic GUT models yield a unification scale in
the same ballpark. It is generally true that our effective unification scale is about an
order of magnitude or more greater than what is typically called the unification scale
(∼2×1016GeV).

It may seem that our definition of an effective unification scale is rather artificial.
However, it may be physically motivated by the following considerations. If indeed the
standard model is embedded in some unified theory of gravity and gauge forces, then
there may exist a phase at energies below the Planck scale which consists of a simple
Lie group containing the supersymmetric standard model. In the absence of any
gravitational corrections, the running gauge couplings certainly unify asymptotically,
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as this is the only case in which the higher group symmetry is fully realized up to
arbitrarily high energies. Hence, the running couplings should only deviate from
asymptotic unification by the gravitational corrections parameterized above. So, by
the above reasoning, the effective unification scale should roughly correspond to the
physical unification scale when the full (quantum gravitational) theory is considered.

These results may have consequences for the paradigm of string unification. In
particular, one problem of string unification [21] is that the couplings seem to unify

at a scale (MDR
G ≈ 2×1016GeV) about twenty times lower than the scale predicted

by four dimensional heterotic string models (Mstring
G ≈ 5×1017GeV). In the approach

presented here, heavy threshold effects seem to push the effective asymptotic unifica-
tion scale to roughly Mstring

G . Despite the apparent success, this coincidence cannot
be taken seriously until several questions are addressed in regards to this so-called
string gauge coupling problem. First, the calculation of Mstring

G [22] was performed in
the DR scheme, with the field theory step-function treatment generalized to strings.
An analogous calculation for physical renormalization schemes is lacking, so it is
difficult to compare our results with string predictions. Secondly, the asymptotic
unification boundary conditions are probably not valid for many string models, and
so the unification scale will be further changed by more general boundary conditions,
as discussed below.

5.4 More General Boundary Conditions

The discussion of this section concerns the next-simplest boundary conditions after
asymptotic unification. In particular, we will impose α1(MU) = α2(MU) = α3(MU)
at scale MU∼Mh, for some h ∈ H . As discussed in the previous section, one might
expect MU to roughly correspond to the asymptotic unification scale, which we found
to be roughly 5×1017GeV. However, we will consider MU as an input and find the
corrections for the strong coupling and gauge boson mass predictions.

Before proceeding, there is a subtle point that should be addressed. Notice that in
the previous section, we assumed that unification would have occurred asymptotically
were it not for gravitational corrections. Hence, starting with a finite unification scale
and then neglecting gravitational corrections, as we do in this section, does not seem
logically consistent with what was done in the previous section. This observation
is entirely correct, but the point is that indeed we are considering two orthogonal
scenarios, one where a finite unification scale is obtained from gravity, and another
where finite unification scale is obtained from non-trivial threshold corrections. The
latter case may have its origin in stringy or gravitational physics, but nevertheless
becomes manifest through purely field theoretic mechanisms.

The corrections from imposing finite unification scale are straightforward to derive
and can be stated in terms of the ∆i = ∆L

i + δH
i + θi which we defined earlier. This
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gains an additional contribution and can now be written

∆i = ∆L
i + δH

i + θi − ∆H
i , (42)

where

∆H
i =

∑

h∈H

1

4π
β

(h)
i

(
Lh

(MU

mh

)
− log

M2
U

m2
h

)
, (43)

which is of exactly the same form expected from Eq.(15)14. Evidently, these are finite
heavy threshold corrections in addition to the corrections from the heavy threshold
splittings. Hence, the ǫH defined earlier will get an additional contribution from the
∆H

i ’s and is now

ǫH theory≈ 1

4π

∑

h∈H

Bh

[
log

m2
h

M2
X

−
(
Lh

(MU

mh

)
− log

M2
U

m2
h

)]

= − 1

4π

∑

h∈H

BhLh

(MU

mh

)
. (44)

Experimentally, ǫH≈− 1, as seen in Figs.[4,5] for typical gluino to wino mass ratios;
this value can be easily adjusted for nonstandard sparticle spectra. This is our final
formula which may be used to assess the experimental validity of gauge coupling
unification in any specific GUT model where the gauge group, superheavy mass ratios,
and light SUSY masses are given.

Let us now consider the numerical size of these new threshold corrections. From
Eq.(6) one finds that

Lh

(MU

mh

)
− log

M2
U

m2
h

≈ log
(
1 +

m2
h

M2
U

eηh

)
, (45)

which can be larger than heavy splitting corrections log
m2

h

M2
X

for values of MU that are

not too large. Hence, such corrections cannot be neglected.
The value of MU is not fixed a priori, and corresponds to the physically meaningful

energy where the couplings become equal due to the new nontrivial heavy threshold
corrections. This complicates the analysis of unification by introducing another pa-
rameter beyond those that are usually needed. However, this is to be expected, since
a new physical phenomena (corrections arising from the virtuality of very massive
particles) has been included.

6 Conclusions

We have developed a new way of looking at detailed predictions of gauge coupling
unification which is more physically motivated than conventional approaches. In

14This is not obvious; one must work through the derivation to see that indeed the expected
Lp − ηp correction terms do arise.
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addition to a dramatic paradigmatic improvement, novel heavy and light threshold
corrections are obtained, and the resulting corrections to unification predictions are
presented for a general GUT model. A natural extension of this work is a thorough
analysis and classification of various unified theories. By calculating the Bh constants
and the heavy spectrum, one may exclude or verify the gauge unification of a given
model.
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Appendix A : The Pinch Technique
Self-Energy-Like Effective Charges

Here we will give explicit formulae for the pinch technique effective couplings reg-
ularized using dimensional reduction (DRED), which will be denoted with a tilde.
These effective charges will be similar to those constructed in [10][12] for QCD, and
in [11][13] for the electroweak sector. However, we will extend these to the mini-
mal supersymmetric case, which involves explicitly including another Higgs doublet,
and regulating the loop integrals with dimensional reduction (DRED), as opposed
to dimensional regularization (DREG), which is used in most non-supersymmetric
settings. It is well known that DRED preserves both supersymmetry and gauge sym-
metry. Also, the effective charges presented in [13] were in the on-shell subtraction
scheme (Q0 = 0), whereas here we will need the result for arbitrary renormalization
scale. In the appropriate limits our results reduce to those given in [12] and [13].

The charges are constructed using the pinch-technique (PT), which allows one to
extract the universal self-energy function in non-abelian gauge theories, thus leading
to gauge invariant effective couplings which

• contain explicit and complete mass-threshold behavior and

• reproduce the conventional massless beta function in the limit where masses
can be neglected.

At one-loop, the spin 1/2 and spin 0 PT self-energies are trivially just the usual
transverse vacuum polarization graphs. Only the graph with a gauge boson loop
needs to have the self-energy-like part projected, as described briefly in section III,
and in more detail in the references [12][13]. In calculating the following, we used both
the direct diagrammatic pinch technique algorithm[12] and the dispersive derivation
from physical cross sections[13].

The PT effective charges naturally measure the self-energy-like propagation of a
gauge boson and hence can be interpreted as measuring the real force between two
fermions of arbitrary mass, analogous to the QED effective charge. The PT charge
includes finite mass recoil effects that are missed in the heavy quark effective charge
(the V-scheme). In fact, one may obtain the heavy quark potential in the appropriate
kinematical limit of the pinch technique effective charge [12]. The difference between
the two are due to finite mass test-charge effects that are not present in the (V) charge
but are in the (PT) charge. Different extensions of the PT effective charge beyond
one-loop have been put forth [14][15][16], although it seems that the approach of [16]
most closely matches the philosophy used here. A multi-loop generalization of this
algorithm remains to be constructed.
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QCD Effective Charges

The PT self-energy function for supersymmetric QCD, Π̃3, can be used to define
the effective coupling for supersymmetric QCD by

α̃3(Q) =
α̃3(Q0)

1 + Π̃3(Q, Q0)
. (46)

The function Π̃3 can be written down straightforwardly using Eqs.[5,9], and the
unsubtracted result is given by

Π̃3(Q) =
α̃3(Q0)

4π

[
11

3
Nc

(
log

Q2

µ2
− CUV − 64/33

)

− 2

3
Nc

(
L 1

2

(Q/mg̃) + log (m2
g̃/µ

2) − CUV − 5/3
)

−
∑

q

2

3

(
L 1

2

(Q/mq) + log (m2
q/µ

2) − CUV − 5/3
)

−
∑

q̃

1

3

(
L0(Q/mq̃) + log (m2

q̃/µ
2) − CUV − 8/3

)]
. (47)

The four terms correspond respectively to the gluons, gluinos (g̃), Dirac quarks
(q), and to complex squark doublets(q̃). For the scalars we will take the left and right
components to be degenerate in mass since such complications do not change the
unification predictions to any numerical significance. In any case, one may trivially
treat the two separately.

To relate the resulting effective charge to other schemes or observables one needs
to use Eq.(9).

Eq.(47) can be written in a more useful once subtracted form by relating the
effective charges at different scales, leading to an expression governing the running of
the charge given by

Π̃3(Q, Q0) ≡ Π̃3(Q) − Π̃3(Q0)

=
α̃3(Q0)

4π

[
11

3
Nc

(
log

Q2

Q2
0

)
− 2

3
Nc

(
L 1

2

(Q/mg̃) − L 1

2

(Q0/mg̃)
)

−
∑

q

2

3

(
L 1

2

(Q/mq) − L 1

2

(Q0/mq)
)

−
∑

q̃

1

3

(
L0(Q/mq̃) − L0(Q0/mq̃)

)]
. (48)

Though the gluon contribution in Eq.(47) looks simple, it is actually the most
difficult piece to compute. As discussed in [12], the pinch technique self-energy that
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contributes to the effective charge is gauge and scale independent, and indeed repro-
duces the pure gauge term of the β function coefficient. This of course is not the case
for the full pure gluon vacuum polarization, which is gauge and scale dependent and
does not reproduce the correct β function. The non-trivial and important part of the
result is the constant 64/33. This constant may be obtained using the pinch tech-
nique and DRED. To translate to DREG one just subtracts 1/11 (from the so-called
epsilon ghosts) to get the constant 67/33. For comparison, the heavy quark potential
effective charge, αV , replaces this constant with 28/33 and 31/33 when using DRED
and DREG, respectively. Consequently, the V-scheme doesn’t satisfy the decoupling
criterion of Eq.(10). This is just a reflection of the fact that infinitely heavy external
quarks are used in the V-scheme calculation, thus rendering meaningless the limit
where internal virtual gauge bosons acquire very large mass.

Notice that in the appropriate limit the above reduces to the standard RG β
function coefficient,

lim
mi→0

Π̃3 =
αs

4π
(9 − nf ) log

Q2

Q0
. (49)

The Electroweak Sector

The effective QED charge and the effective weak-mixing angle are obtained by
diagonalizing the electroweak neutral currents and are given by [13]

α̃(Q) =
α̃(Q0)

1 + Π̃γγ(Q, Q0)
, (50)

and

s̃2
w(Q) = s̃2

w(Q0)

(
1 +

c̃w(Q0)

s̃w(Q0)

Π̃γZ(Q, Q0)

1 + Π̃γγ(Q, Q0)

)
. (51)

For the matter sector, we will write only the subtracted PT self-energies, as it
is now clear how to translate between schemes using the ηp constants as described

before. The quarks (q) and leptons (l), along with their scalar superpartners (q̃, l̃),
yield

Π̃γγ(matter) =
α̃(Q0)

4π

[
−
∑

q

4

3
Nce

2
q

(
L 1

2

(Q/mq) − L 1

2

(Q0/mq)
)

−
∑

q̃

2

3
Nce

2
q̃

(
L0(Q/mq̃) − L0(Q0/mq̃)

)

−
∑

l

4

3

(
L 1

2

(Q/ml) − L 1

2

(Q0/ml)
)

−
∑

l̃

2

3

(
L0(Q/m

l̃
) − L0(Q0/ml̃

)
)]

. (52)
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The electric charge of a particle p is denoted ep. The analogous contribution of
individual Dirac mass eigenstate matter fields to the γZ self energy are given by the
relation

Π̃
(p)
γZ =

( 1

4|ep|
− s̃2

w

) 1

s̃w c̃w
Π̃(p)

γγ , (53)

where p denotes any of the fermions or scalars above.
The contribution of the charged vector bosons to the self-energies is more compli-

cated than the matter multiplets. Similar to the QCD case, the non-abelian nature
of the theory implies that W+W− loops (along with possible gauge dependent ghost
and Goldstone boson loops), do not yield a gauge invariant result, and do not give the
appropriate contribution to the electroweak beta functions. The proper treatment in-
volves calculating the self-energy like part of the one-loop e+e−→e+e− amplitude (or
using any other fermions due to universality), including vertex and box corrections
involving neutrinos. These contribute pinched parts which make the self-energy-like
part gauge invariant and transverse. This calculation was first performed in [11], and
then with dispersion relations in [13], for nH = 1 Higgs doublets and renormalized in
the on-shell scheme at Q0 = 0. Here we need to extend these results to arbitrary nH

and Q0, and would like to have the finite constants in the unrenormalized expression,
including constant terms arising from using DRED instead of DREG. The most ef-
ficient way to do this is to use the Feynman gauge ξ = 1, where W± bosons, −G±

Goldstone bosons, and η± ghosts all propagate with −igµν/(p2 − M2
W ). Hence, the

only factors of transverse momenta arise from the three boson vertex, and so the box
graph and several of the vertex graphs may be neglected, as they do not have pinched
parts. Here, the dependence on the Higgs doublets comes only from the unphysical
charged Goldstone scalars for the nH = 1 case, and also on charged Higgs for nH > 1.
The result for the SU(2)L⊗U(1)Y electroweak theory is

Π̃(W,H)
γγ =

α̃(Q0)

4π

[
2
11

3

(
L1(Q/MW ) + log (M2

W /µ2) − CUV − 64/33
)

+
nH∑

a=1

(
− 1

3

)(
L0(Q/Ma) + log (M2

a/µ2) − CUV − 8/3
)]

, (54)

where the constant 64/33 is the same as appeared for the gluon self energy. The sum
in the second line will be over mass eigenstate charged Higgs scalars; there will be
one of these for each Higgs doublet in the theory. The first scalar (a = 1 in the sum)
is an unphysical Goldstone boson that is eaten by the W±, and hence one identifies
its mass to be M1 = MW (in the Feynman gauge). The second charged scalar (a=2)
is conventionally denoted by H± in the MSSM, with mass M2 = MH± . Additional
Higgs doublets beyond the MSSM are not considered here so we can take nH = 2.
The function

L1(Q/m) =
2

11

(
βtanh−1β−1(12 − β2) + β2 − 1

)
, (55)
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with β =
√

1 + 4m2

Q2 , comes from the W+W− and ghost loops, the W+G− + W−G+

loops, and the pinched self-energy-like part of the γWW vertex where the internal
neutrino line is pinched. The L0 comes from the charged Goldstones and Higgs
loops. As might be anticipated from the fermions and scalars, where, for example,
limm→∞ L 1

2

(Q/m) = 5/3 is the same constant as appears in the self-energy, we also
have the nice property that

lim
MW→∞

L1(Q/MW ) = 64/33. (56)

Notice that in DREG this does not cancel the constant, which in that case is 67/33.
With DRED regularization, all massive particles decouple, modulo divergent pieces,
from the unsubtracted self-energy-like expression.

Letting the W-bosons eat the Goldstones by performing simple algebra in Eq.(54),
one finds the result written in terms of physical degrees of freedom,

Π̃(W,H)
γγ =

α̃(Q0)

4π

[
7
(
L1(Q/MW ) + log (M2

W /µ2) − CUV − 40/21
)

+
nH∑

a=2

(
− 1

3

)(
L0(Q/Ma) + log (M2

a/µ2) − CUV − 8/3
)]

, (57)

The contribution of the physical massive gauge boson is characterized by 7L1 =
(22/3)L1 + (−1/3)Ls, explicitly given by

L1(Q/m) = 2βtanh−1β−1(1 − (β2 − 1)/7) + (2/7)(β2 − 1). (58)

As expected,

lim
m→0

LW (Q/m) = log
Q2

m2
lim

m→∞
LW (Q/m) = 40/21. (59)

Notice that Eq.(58) precisely corresponds to Eq.(23) for s = 1.
The separation of pure gauge effects and those arising in the broken phase of the

theory is useful, and allows us to immediately write down the analogous result for γZ
without further calculation :

Π̃
(W,H)
γZ =

α̃(Q0)

4πcwsw

[
2
11

3
c2
w

(
L1(Q/MW ) + log (M2

W /µ2) − CUV − 64/33
)

+
nH∑

a=1

(
− 1

3
(c2

w − 1

2
)
)(

L0(Q/Ma) + log (M2
a/µ2) − CUV − 8/3

)]
. (60)

Finally, the wino and charged Higgsino, whose mixing is neglected, contribute

Π̃H̃,W̃
γγ =

α̃(Q0)

4π

[
4

3

(
L 1

2

(Q/m
H̃

)−L 1

2

(Q0/mH̃
)
)
−4

3

(
L 1

2

(Q/m
W̃

)−L 1

2

(Q0/mW̃
)
)]

(61)
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and

Π̃H̃,W̃
γZ =

α̃(Q0)

4πcwsw

[
−4

3
c2
w

(
L 1

2

(Q/m
H̃

)−L 1

2

(Q0/mH̃
)
)
−4

3
(c2

w−1/2)
(
L 1

2

(Q/m
W̃

)−L 1

2

(Q0/mW̃
)
)]

.

(62)
The SU(2)L⊗U(1)Y effective couplings constructed from the above results are

α̃i(Q) =
α̃i(Q0)

1 + Π̃i(Q, Q0)
, (63)

for i = 1, 2 and α̃i(Q) given in Eq.(22). The PT self-energies are related by

Π̃1 = Π̃γγ −
sw

cw

Π̃γZ

Π̃2 = Π̃γγ +
cw

sw
Π̃γZ . (64)

Notice that Π̃γγ =
∑

p Π̃(p)
γγ and Π̃γZ =

∑
p Π̃

(p)
γZ (as well as Π̃i ) have the correct beta

function coefficients, which are summarized below, and smoothly interpolate between
all mass thresholds. The full mass-dependent beta functions may be obtained by
differentiating the above expressions, but we will just give the massless limits, in
order to make clear our conventions.

The one-loop beta function coefficients are defined by the relations

dα

d log Q2
= −α

dΠ̃γγ

d log Q2
= −α2

4π
βγγ (65)

ds2
w

d log Q2
= swcw

dΠ̃γZ

d log Q2
=

α

4π
βγZ (66)

β1 =
3

5
(c2

wβγγ − βγZ) (67)

β2 = s2
wβγγ + βγZ . (68)

One finds

βγγ = −16

3
Ng + 6 − nH

βγZ = −2Ng +
16

3
s2

wNg + 6c2
w − nH(

1

2
− s2

w), (69)

thus leading to the MSSM beta function coefficients

(β1

β2

β3

)
=

( 0
6
9

)
− Ng

( 2
2
2

)
− nH

( 3/10
1/2
0

)
. (70)
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The two loop effects contribute to the running of the couplings through the terms
θi(Q, Q0) in Eq.(27). Since we do not have the full mass-dependent contributions,
we will have to settle with the using the usual massless limits. These are explicitly
determined by solving the two-loop renormalization group equations and are given
by

θi(Q, Q0) = − 1

4π

3∑

j=1

βij

βj
log

(
1 + αj(MZ)

βj

4π
log (Q2/Q2

0)
)
, (71)

where the beta matrix is

βMSSM
ij = −

( 7.96 5.4 17.6
1.8 25 24
2.2 9 14

)
. (72)
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