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Abstract

The hadronic decays of the τ lepton can be used to determine the effective

charge ατ (m
2
τ ′) for a hypothetical τ -lepton with mass in the range 0 < mτ ′ <

mτ . This definition provides a fundamental definition of the QCD coupling

at low mass scales. We study the behavior of ατ at low mass scales directly

from first principles and without any renormalization-scheme dependence by

looking at the experimental data from the OPAL Collaboration. The results

are consistent with the freezing of the physical coupling at mass scales s = m2
τ ′

of order 1GeV2 with a magnitude ατ ∼ 0.9 ± 0.1.
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I. INTRODUCTION

One of the major uncertainties in making reliable predictions in quantum chromodynam-
ics (QCD) is to understand the theory at low momentum scales where the coupling becomes
large and non-perturbative effects become important. In fact, it is well known that pertur-
bation theory itself is not well defined in the infrared domain, since the perturbative series is
asymptotic. For infrared-safe quantities the non-perturbative effects can be parameterized
as power corrections of the form cn(Λ/Q)n, where Λ is the QCD-scale and Q is the hard
scale of the process considered. The coefficients cn cannot be calculated in general, but in
some cases such as the event-shapes in e+e− annihilation, one can determine the dominating
power n and also find relations between the cn for different observables by using the operator
product expansion or renormalon calculus.

The behavior of fixed-order perturbation theory at low momentum scales is governed by
the running coupling αs(k

2). The conventional coupling αMS(k
2), defined using the modified

minimal subtraction renormalization scheme and dimensional regularization, is analytically
singular at a scale k2 = Λ2

MS
. This nonphysical behavior leads to a number of difficulties,

including renormalon n! growth of the coefficients when one makes perturbative expansions
of physical observables in the MS scheme. These problems can be traced to the fact that
integrals over the running coupling which appear in bubble graphs are ill-defined due to the
non-analyticity of the MS coupling.

An alternative procedure is to define the fundamental coupling of QCD from a given
physical observable [1,2]. These couplings, called effective charges, are all-order resumma-
tions of perturbation theory and include all non-perturbative effects. Since these physical
charges correspond to the complete theory of QCD, it is guaranteed that they are analytic
and non-singular. For example, it has been shown that unlike the MS coupling, a physical
coupling is analytic across quark flavor thresholds [3,4]. Furthermore, we expect that a
physical coupling should stay finite in the infrared when the momentum scale goes to zero.
In turn, this means that integrals over the running coupling are well defined for physical
couplings. An additional question is whether the physical couplings freeze to a constant
value in the infrared.

Once such a physical coupling αphys(k
2) is chosen, other physical quantities can be ex-

pressed as expansions in αphys by eliminating the MS coupling which now becomes only
an intermediary [5]. In such a procedure there are in principle no further renormalization
scale (µ) or scheme ambiguities. The physical couplings satisfy the standard renormaliza-
tion group equation for its logarithmic derivative, dαphys/d ln k2 = β̂phys[αphys(k

2)], where

the first two terms in the perturbative expansion of the Gell-Mann Low function β̂phys are
scheme-independent at leading twist whereas the higher order terms have to be calculated
for each observable separately using perturbation theory.

Quantum field theoretic predictions which relate physical observables cannot depend on
theoretical conventions such as the choice of renormalization scheme or scale (µ). The most
well-known example is the perturbative “generalized Crewther relation” [6] in which the
leading twist QCD corrections to the Bjorken sum rule for polarized deep inelastic scattering
at a given lepton momentum transfer Q2 are related through a geometric series to the QCD
corrections to Re+e− at a corresponding CM energy squared, s∗ = s∗(Q2), independent of
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renormalization scheme, (1+αR(s∗)/π)(1−αg1
(Q2)/π) = 1 [7]. The ratio of the scales s∗/Q2

has been computed to NLO in PQCD. Such leading-twist predictions between observables
are called “commensurate scale relations” and are identical for conformal and nonconformal
theories [5]. In addition, the conformal coefficients are free of the renormalon factorial
growth [8–10]

For example, in QED, the Gell-Mann Low running coupling αQED(k2) =
α(k2

0)

1−Π(k2,k2
0
)
, which

is formally defined from the renormalization of the dressed photon propagator, is a physical
coupling since it could be determined from a measurement of the part of the potential V (k2)
between two infinitely heavy test charges which is linear in their charges; i.e., 4παQED(k2) =
−k2Vlin(k

2). Using the skeleton expansion [11], the coefficients in perturbative expansions
of other physical quantities are identical to that in a theory which is conformal, since all
effects of the non-zero β̂ function are already summed into the integrals over the running
coupling. By the mean value theorem, the same is also true for the standard perturbative
expansion if the scale, at which to evaluate the coupling, is properly chosen [12,13].

It is not as simple to identify a suitable physical coupling to be used in the case of
QCD. For a skeleton expansion to be possible, the Abelian part of the coupling should
coincide with the Gell-Mann Low coupling, since QCD becomes an Abelian theory in the
analytic limit Nc → 0 at fixed CFαs and fixed nf/CF [14]. A possible candidate for a
physical coupling in QCD which fulfills this requirement is the αV (k2) scheme defined from
the potential between two heavy test color charges. However, in contrast to the Abelian
case, this definition is problematic since the “H−graphs” which arise from gluon exchange
diagrams with a horizontal gluon rung connecting the “first” and “last” exchanged gluons
have an infrared sensitivity which depends on the details of the test charge wavefunction [15].
Another possible generalization of the Gell-Man Low coupling to non-Abelian theories is
the “pinch” scheme [16–18] which rearranges the contributions to scattering amplitudes to

insure a structure αpinch(k
2) =

αpinch(k2
0)

1−Π(k2,k2
0)

similar to that of QED. As in QED, expansions

in the pinch scheme have the same structure as those of a conformal theory. The pinch
charge is a promising physical scheme, but at this time the complexity of higher order
calculations in this scheme and its indirect connection to measurements has prevented its
practical implementation, although recently there has been attempts to make an all-orders
definition of a QCD effective charge [19].

In this note we will discuss an alternative definition of a physical coupling for QCD which
has a direct relation to high precision measurements of the hadronic decay channels of the
τ− → ντh

−. Details on the extraction of αs(m
2
τ ) from τ decays can be found in refs. [22–26].

Let Rτ be the ratio of the hadronic decay rate to the leptonic one. Then Rτ ≡ R0
τ

[

1 + ατ

π

]

,

where R0
τ is the zeroth order QCD prediction, defines the effective charge ατ . Throughout

this paper we will concentrate on non-strange decay modes and thus R0
τ = 3SEW|Vud|2 where

SEW = 1.0194 is an electroweak correction term [20] and |Vud|2 = 0.9512 ± 0.0008 [21] is
the relevant CKM matrix element. The data for τ decays is well-understood channel by
channel, thus allowing a precise separation of vector and axial-vector decay modes which
can therefore be studied separately.

The measured invariant mass spectrum for the non-strange hadronic decay modes can
also be used to study hypothetical τ -leptons with a smaller mass, mτ ′ < mτ [27–29]. In this
way the τ -decay data allows us to study the behavior of the coupling ατ (s) in the region
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0 ≤ s ≤ m2
τ and address the question whether this physical coupling freezes in the infrared.

II. EXTRACTING ατ(S) FROM DATA ON τ -DECAYS

The experimental data on the non-strange hadronic τ -decays can be used to define the
hadronic decay rate normalized to the leptonic one for a hypothetical τ -lepton with mass in
the range 0 < mτ ′ < mτ in the following way [29]:

RV/A
τ (m2

τ ′) ≡ 12πSEW|Vud|2
m2

τ
′

∫

0

ds

m2
τ ′

(

1 − s

m2
τ ′

)2 [(

1 + 2
s

m2
τ ′

)

ImΠ
(1)
V/A(s) + ImΠ

(0)
V/A(s)

]

, (1)

where 2πImΠ
(1)
V/A(s) = v/a(s) are the spectral functions for the measured non-strange

hadronic final states with angular momentum J = 1. The scalar contributions ImΠ
(0)
V/A(s)

are assumed to vanish for the vector current and is given by the single pion pole for the axial
current. The above definition coincides with the standard definition in the case mτ ′ = mτ .
Note, however, that the right-hand side above uses mτ ′ instead of mτ not only in the upper
integration limit but also in the kinematic prefactors. This way the end-point is suppressed
in the same way for the hypothetical τ -lepton as for the real one. The ratio RV/A

τ (m2
τ ′) is

thus defined as if a hypothetical lepton of mass mτ ′ existed.
Since states with non-zero strangeness can be excluded, all of the hadrons in the final state

can be assumed to arise from τ− → ντ ūd. We can then define effective charges αV/A
τ (m2

τ ′)
for the vector and axial-vector decay modes as follows:

RV/A
τ (m2

τ ′) ≡ R0
τ

2

[

1 +
αV/A

τ (m2
τ ′)

π

]

. (2)

Notice that the combination RV
τ − RA

τ does not receive a perturbative QCD contribution
at leading twist; thus if QCD is correct this contribution should be power law suppressed
at high energies. It is thus natural to identify the complimentary RV

τ + RA
τ combination

which has canonical perturbative QCD contributions as the preferred QCD effective charge,
ατ (m

2
τ ′), defined by

Rτ (m
2
τ ′) = RV

τ (m2
τ ′) + RA

τ (m2
τ ′) ≡ R0

τ

[

1 +
ατ (m

2
τ ′)

π

]

. (3)

For completeness, we also recall how one can use experimental data to measure the decay
ratio of hypothetical τ -leptons for masses well above mτ [30]. Just as in the case of τ -leptons
one can define a local unintegrated effective charge αR(s) directly from the annihilation data:

Re+e−(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
≡ R0

e+e−

[

1 +
αR(s)

π

]

, (4)

where R0
e+e− is the zeroth order QCD prediction. If we assume isospin invariance, then the

decay ratio of a hypothetical τ -lepton in the vector channel RV
τ (m2

τ ′) can be written as a
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spectral integral with weight f(x) = (1 − x)2 (1 + 2x), where x = s/m2
τ ′ , of the annihilation

cross section e+e− → γ∗ → hadrons in the isospin I = 1 channel. This allows the measure-
ment of αV

τ (m2
τ ′) well above the physical mass of the τ [30]. We thus can relate the αV

τ and

α
(I=1)
R effective charges:

αV
τ (m2

τ ′) =

∫ m2
τ
′

0

ds

m2
τ ′

f

(

s

m2
τ ′

)

α
(I=1)
R (s)

∫ m2
τ
′

0

ds

m2
τ ′

f

(

s

m2
τ ′

) . (5)

The mean value theorem then implies

αV
τ (m2

τ ′) = α
(I=1)
R (s∗), 0 ≤ s∗ ≤ m2

τ ′, (6)

a form of commensurate scale relation. In the case of three flavors (nf = 3) the above relation
is still valid to next-to-next-to-leading order even if one does not restrict oneself to the I = 1
channel. To next-to-leading order in αR the scale s∗ is given by (see for example [5])

s∗ = m2
τ ′ exp

[

−19

12
− 169

576

(

11 − 2

3
nf

)

αR

π

]

. (7)

Before continuing we also note that as an alternative definition of a hypothetical τ -lepton
with mass above mτ one could use ImΠ

(1)
V (s) measured from τ -decays for the integration

region 0 < s < m2
τ and data from Re+e−(s) in the I = 1 channel for the remaining integration

region m2
τ < s < m2

τ ′.
The empirical behavior of the decay ratios Rτ , RV

τ , RA
τ , and RV

τ − RA
τ using data on τ -

decays as determined by the OPAL collaboration at LEP [29,31] are shown in fig. 1. There
are several striking features:

1. the RV
τ − RA

τ combination tends to vanish at high scales, showing that only higher
dimensional operators contribute. This is a highly non-trivial test of QCD. [32]

2. The Rτ contribution has only a slow variation in the low mass range.

The corresponding effective charges ατ , αV
τ , and αA

τ as well as the difference |αV
τ − αA

τ |
are shown in Fig. 2.

Based on the analysis by the OPAL collaboration [29], the experimental value of the
coupling ατ (s) = 0.621 ± 0.008 at s = m2

τ corresponds to a value of αMS(M
2
Z) = (0.117-

0.122)± 0.002, where the range corresponds to three different perturbative methods used in
analyzing the data. This result is, at least for the fixed order and renormalon resummation
methods, in good agreement with the world average αMS(M

2
Z) = 0.117±0.002 [33]. However,

from the figure we also see that the effective charge only reaches ατ (s) ∼ 0.9 ± 0.1 at
s = 1 GeV2, and it even stays within the same range down to s ∼ 0.5 GeV2. This result is in
good agreement with the estimate of Mattingly and Stevenson [34] for the effective coupling
αR(s) ∼ 0.85 for

√
s < 0.3 GeV determined from e+e− annihilation, especially if one takes

into account the perturbative commensurate scale relation, ατ (m
2
τ ′) = αR(s∗) where, for

αR = 0.85, we have s∗ ' 0.10 m2
τ ′ according to Eq. (7). As we will show in more detail in

5



-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

Rτ
V      OPAL

Rτ
A      OPAL

Rτ      OPAL
Rτ
V-A      OPAL

s (GeV2)

R
τ

FIG. 1. The non-strange hadronic decay rate of a hypothetical τ lepton with m2

τ ′ = s versus the

upper integration limit s for the currents V , A, V + A, and V − A. Error bands include statistical

and systematic errors.

the next section, this behavior is not consistent with the coupling having a Landau pole but
rather shows that the physical coupling is much more constant at low scales, suggesting that
physical QCD couplings are effectively constant or “frozen” at low scales.

At the same time, it should be recognized that the behavior of ατ (s) in the region
s < 1 GeV2 is more and more influenced by non-perturbative effects as the scale is lowered.
Even though the dominant non-perturbative effects cancel in the sum of the vector and
axial-vector contributions as can be seen by looking at the corresponding effective charges
individually. Looking at αV

τ (s), we see that it more or less vanishes as the integration region
moves to the left of the two-pion peak in the hadronic spectrum. In the same way the
behavior of αA

τ (s) at small scales is governed by the single pion pole.
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FIG. 2. The effective charges for non-strange hadronic decays of a hypothetical τ lepton with

m2

τ ′ = s versus the upper integration limit s for the currents V , A, V + A. Also shown is the

difference of the effective charges for the vector and axial-vector current. Error bands include

statistical and systematic errors.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF ατ(S)

In order to be able to analyze the infrared behavior of the effective coupling ατ (s) in
more detail, we will compare with (a) the fixed-order perturbative evolution of the ατ (s)
coupling on the one hand, and (b) with the evolution of couplings that have non-perturbative
or all-order resummations included in their definition. For the latter case, many different
schemes have been suggested, and we will concentrate on two of them: the one-loop “time-
like” effective coupling αeff(s) [35], and the modified α̃V coupling calculated from the static
quark potential using perturbative gluon condensate dynamics [36].

The perturbative couplings evolve according to the standard evolution equation

das(s)

d ln s
= −β0a

2
s (s) − β1a

3
s (s) − β2a

4
s(s) − β3a

5
s (s) − . . . , (8)

where as(s) = αs(s)/(4π). The first two terms in the β-function, β0 and β1, are universal at
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leading twist whereas the higher order terms are scheme dependent. Currently the β-function
is known to four loops (β3) in the MS scheme and to three loops (β2) in the ατ scheme. In
the latter case there also exists an estimate of the four-loop term. For completeness these
terms are summarized in the appendix.

Fig. 3 shows a comparison of the experimentally determined effective charge ατ (s) with
solutions to the evolution equation (8) for ατ at two-, three-, and four-loop order normalized
at mτ . It is clear from the figure that the data on ατ (s) does not have the same behavior as
the solution of the (universal) two-loop equation which is singular1 at the scale s ' 1 GeV2.
However, at three loops the behavior of the perturbative solution drastically changes, and
instead of diverging, it freezes to a value ατ ' 2 in the infrared. The reason for this
fundamental change is, of course, the negative sign of βτ,2. At the same time, it must
be kept in mind that this result is not perturbatively stable since the evolution of the
coupling is governed by the highest order term. This is illustrated by the widely different
results obtained for three different values of the unknown four loop term βτ,3 which are also
shown2. Still, it may be more than a mere coincidence that the three-loop solution freezes in
the infrared. Recently it has been argued that αR(s) freezes perturbatively to all orders [37].
Given the commensurate scale relation (6) this should also be true perturbatively for ατ (s).
It is also interesting to note that the central four-loop solution is in good agreement with
the data all the way down to s ' 1 GeV2.

The one-loop “time-like” effective coupling

αeff(s) =
4π

β0

{

1

2
− 1

π
arctan

[

1

π
ln

s

Λ2

]}

is obtained from the analytic continuation of the one-loop coupling αs(Q
2) =

(4π)/[β0 ln(Q2/Λ2)] which defines the spectral density dαeff(s)/d ln s = [αs(−s+iε)−αs(−s−
iε)]/(2πi) in the same way as Re+e−(s) is related to the Adler D-function. The resulting
effective coupling is finite in the infrared and freezes to the value αeff(s) = 4π/β0 as s → 0.
It is also instructive to expand the “time-like” effective coupling for large s,

αeff(s) =
4π

β0 ln (s/Λ2)

{

1 − 1

3

π2

ln2 (s/Λ2)
+

1

5

π4

ln4 (s/Λ2)
+ . . .

}

= αs(s)







1 − π2β2
0

3

(

αs(s)

4π

)2

+
π4β4

0

5

(

αs(s)

4π

)4

+ . . .







.

This shows that the “time-like” effective coupling is a resummation of (π2β2
0α

2
s )

n-corrections
to the “space-like” coupling which occurs in the analytic continuation. The “time-like”

1The same divergent behavior would also be seen at three- and four-loop order in the MS scheme

where both β2 and β3 are positive for nf = 3.

2The values of βτ,3 used are obtained from the estimate of the four loop term in the perturbative

series of Rτ , KMS
4 = 25 ± 50 [23].
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FIG. 3. The effective charge ατ for non-strange hadronic decays of a hypothetical τ lepton with

m2

τ ′ = s compared to solutions of the fixed order evolution equation (8) for ατ at two-, three-, and

four-loop order. Error bands include statistical and systematic errors.

effective coupling can also be defined to higher orders (for a recent review see [38]) but the
infrared behavior persists also in these cases.

The evolution of the modified α̃V (Q2, Λ2
gc) coupling is to leading order governed by the

evolution equation,

dãV (Q2, Λ2
gc)

d ln Q2
= −β̃0(Λgc/Q)ã2

V (Q2, Λ2
gc), (9)

where

β̃0(Λgc/Q) = 5 − 12
Λ2

gc

Q2
+

(

12
Λ3

gc

Q3
− 6

Λgc

Q
+

3

2

Q

Λgc

)

ln
Q + 2Λgc

Q − 2Λgc
− 2

3
nf . (10)

The difference compared to the ordinary evolution equation is thus that the gluonic contri-
bution to β0 freezes out at a scale Q ∼ Λgc – the scale of the gluon condensate.

Fig. 4 shows a comparison of the experimentally determined effective charge ατ (s) with
the one-loop “time-like” effective coupling αeff(s) and the modified α̃V coupling calculated
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FIG. 4. The effective charge ατ for non-strange hadronic decays of a hypothetical τ lepton

with m2

τ ′ = s compared to the one-loop “time-like” effective coupling αeff(s) and the modified α̃V

coupling calculated from the static quark potential using perturbative gluon condensate dynamics.

Error bands include statistical and systematic errors.

from the static quark potential using perturbative gluon condensate dynamics. In both
cases the solutions have been normalized to the data at mτ . In addition, when solving
the evolution equation for α̃V (9) we have used the value Λgc = 581 MeV which makes
the solution to the one-loop evolution equation (8) agree with the data at mτ if one sets
Λ = Λgc. As can be seen from the figure, the data on ατ (s) agrees well qualitatively with
both of these simple examples of freezing couplings down to the scale s ' 1 GeV2. Below this
scale the non-perturbative effects in ατ (s) associated with the single pole in the axial vector
current and the double pion peak in the vector current starts to dominate and makes a direct
comparison with models which do not contain the spectrum of hadrons less meaningful.
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IV. CONCLUSIONS

The results of this paper show the advantages of defining the QCD coupling directly from
a physical observable. The resulting effective coupling can be defined even at low scales,
it is finite and analytic, and it has no scheme or renormalization scale ambiguities. As we
have shown, the hadronic decays of the τ lepton can be used to determine the effective
charge ατ (m

2
τ ′) for a hypothetical τ -lepton with mass in the range 0 < mτ ′ < mτ . The

high precision of τ hadronic decay data thus provides a precise standard definition for the
fundamental QCD coupling. QCD predictions for other observables can then be expressed
as functions of this coupling ατ (s), thus relating observable to observable.

An important feature of ατ (s) is its apparent near constant behavior at low mass scales.
The empirical results using the OPAL data are consistent with the freezing of the physical
coupling at mass scales s = m2

τ ′ of order 1 GeV2 with a magnitude ατ ∼ 0.9 ± 0.1. These
results contrast dramatically with standard expectations of a divergent coupling based on the
universal two-loop coupling which becomes infinite at small mass scales. At higher orders of
perturbation theory for the beta function, the behavior of the coupling is scheme dependent
and in addition it is dominated by the highest order term. In the physical ατ -scheme the
behavior of the coupling in the infrared is not so clear. At 3-loops the ατ (s) coupling has
a infrared fixed point whereas at higher orders the behavior of the coupling is not known.
Estimates of the 4-loop term indicate both an infrared fixed point as well as a divergent
behavior.

Recently it has been argued by Howe and Maxwell [37] that the effective charge αR(s)
has an infrared fixed point to all orders in perturbation theory. Given the commensurate
scale relation between ατ and αR this should then also be true for ατ (s). A simple example
of the mechanism behind such a perturbative infrared fixed point is given by the effective
“time-like” one-loop coupling αeff(s) which agrees well qualitatively with the empirically
determined coupling. Another mechanism which also gives an infrared fixed point in qual-
itative agreement with the data is given by the perturbative gluon condensate dynamics.
These simple examples show that indeed the empirical behavior ατ (s) is consistent with an
infrared fixed point.

The near constancy of the effective QCD coupling at small scales helps explain the
empirical success of dimensional counting rules for the power law fall-off of form factors and
fixed angle scaling. As shown in ref. [39], one can calculate the hard scattering amplitude
TH for such processes [40] without scale ambiguity in terms of the effective charge ατ or
αR. The effective coupling is evaluated in the regime where the coupling is approximately
constant, in contrast to the rapidly varying behavior of αs predicted by perturbation theory
(the universal two-loop coupling). The large magnitude that we find ατ ∼ 0.9 ± 0.1 implies
a substantially larger normalization for the pion form factor and other exclusive observables
than estimates based on a canonical value αs ∼ 0.3.

APPENDIX A: THE β-FUNCTION IN THE MS AND ατ SCHEMES

The perturbative expansion of the β function is given by,
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das(s)

d ln s
= −β0a

2
s(s) − β1a

3
s (s) − β2a

4
s (s) − β3a

5
s (s) − . . . , (A1)

where as(s) = αs(s)/(4π). The first two terms in the β-function [41–45],

β0 = 11 − 2

3
nf ,

β1 = 102 − 38

3
nf ,

are universal at leading twist whereas the higher order terms are scheme dependent. In the
MS scheme the first two scheme dependent coefficients are known [46–48]:

βMS
2 =

2857

2
− 5033

18
nf +

325

54
n2

f ,

βMS
3 =

149753

6
+ 3564 ζ3 −

(

1078361

162
+

6508

27
ζ3

)

nf

+
(

50065

162
+

6472

81
ζ3

)

n2
f +

1093

729
n3

f . (A2)

In case of the ατ scheme, βτ,2 is known exactly whereas for βτ,3 there are only estimates.
Since the three- and four-loop coefficients in the β-function are known in the MS-scheme,

the corresponding coefficients (or estimates thereof) can be obtained from the perturbative
expansion of ατ in the MS-scheme. Starting from the perturbative expansion of the Adler
D-function for the photon vacuum polarization:

D(−s) = −4π2s
dΠγ(−s)

ds
=
∑

f

Q2
f

(

1 +
4
∑

n=1

Dn
αn

s (s)

πn

)

, (A3)

with the known coefficients [49–53]

D1 = 1,

D2 =
365

24
− 11 ζ3 −

(

11

12
− 2

3
ζ3

)

nf ,

DMS
3 =

87029

288
− 1103

4
ζ3 +

275

6
ζ5 +

(

−7847

216
+

262

9
ζ3 −

25

9
ζ5

)

nf

+
(

151

162
− 19

27
ζ3

)

n2
f +

(

55

72
− 5

3
ζ3

)





∑

f

Qf





2

Nc

∑

f

Q2
f

(A4)

one can calculate the following expression for ατ where nf = 3 is assumed for the βn:

ατ (s)

π
=

αMS(s)

π
+
(

19

48
β0 + K2

)

α2
MS

(s)

π2

+
{[

265

1152
− 1

48
π2
]

β2
0 +

19

192
β1 +

19

24
β0 K2 + KMS

3

}

α3
MS

(s)

π3

+
{[

3355

18432
− 19

768
π2
]

β3
0 +

[

1325

9216
− 5

384
π2
]

β0 β1 +
19

768
βMS

2

+
[(

265

384
− 1

16
π2
)

β2
0 +

19

96
β1

]

K2 +
19

16
β0 KMS

3 + KMS
4

}

α4
MS

(s)

π4
, (A5)
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where, as is customary in the τ literature, we use the following notation for the Dn with
f = {u, d, s}:

K1 = D1 = 1,

K2 = D2(nf = 3) =
299

24
− 9 ζ3,

KMS
3 = DMS

3 (nf = 3) =
58057

288
− 779

4
ζ3 +

75

2
ζ5

KMS
4 ∼ 25 ± 50, (A6)

The last coefficient above is only an estimate [23] but it is often used to evaluate the uncer-
tainty resulting from the missing higher order terms.

Finally, the resulting non-universal β-function coefficients in the ατ -scheme are then
given by:

βτ,2 = βMS
2 +

(

−299

6
+ 36 ζ3

)

β1 +
(

169

144
− 1

3
π2
)

β3
0

+
(

26713

36
+ 472 ζ3 + 600 ζ5 − 1296 ζ2

3

)

β0

=
79813

16
+ 6552 ζ3 + 5400 ζ5 − 243 π2 − 11664 ζ2

3 ' −789,

βτ,3 = βMS
3 +

(

−299

3
+ 72 ζ3

)

βMS
2 +

(

89401

36
− 3588 ζ3 + 1296 ζ2

3

)

β1

+
1819

432
β4

0 +
(

845

144
− 5

3
π2
)

β1 β2
0 +

(

−12673115

27
+ 555556 ζ3

− 179400 ζ5 + 129600 ζ3 ζ5 + 101952 ζ2
3 − 186624 ζ3

3 + 128 KMS
4

)

β0

= −585179735

144
+ 4820288 ζ3 − 1614600 ζ5 + 1166400 ζ3 ζ5

+1000512 ζ2
3 − 8640 π2 − 1679616 ζ3

3 + 1152 KMS
4 ' −46776 + 1152 KMS

4 . (A7)

Our results agree with the numerical results published in [54].
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